It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / Analysis / IPA / GlobalsModRef.cpp
blob2e9884aa01b404069c98ffc0e67abc790b3f5470
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/CallGraph.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/InstIterator.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/SCCIterator.h"
31 #include <set>
32 using namespace llvm;
34 STATISTIC(NumNonAddrTakenGlobalVars,
35 "Number of global vars without address taken");
36 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 namespace {
42 /// FunctionRecord - One instance of this structure is stored for every
43 /// function in the program. Later, the entries for these functions are
44 /// removed if the function is found to call an external function (in which
45 /// case we know nothing about it.
46 struct VISIBILITY_HIDDEN FunctionRecord {
47 /// GlobalInfo - Maintain mod/ref info for all of the globals without
48 /// addresses taken that are read or written (transitively) by this
49 /// function.
50 std::map<GlobalValue*, unsigned> GlobalInfo;
52 /// MayReadAnyGlobal - May read global variables, but it is not known which.
53 bool MayReadAnyGlobal;
55 unsigned getInfoForGlobal(GlobalValue *GV) const {
56 unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
57 std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
58 if (I != GlobalInfo.end())
59 Effect |= I->second;
60 return Effect;
63 /// FunctionEffect - Capture whether or not this function reads or writes to
64 /// ANY memory. If not, we can do a lot of aggressive analysis on it.
65 unsigned FunctionEffect;
67 FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
70 /// GlobalsModRef - The actual analysis pass.
71 class VISIBILITY_HIDDEN GlobalsModRef
72 : public ModulePass, public AliasAnalysis {
73 /// NonAddressTakenGlobals - The globals that do not have their addresses
74 /// taken.
75 std::set<GlobalValue*> NonAddressTakenGlobals;
77 /// IndirectGlobals - The memory pointed to by this global is known to be
78 /// 'owned' by the global.
79 std::set<GlobalValue*> IndirectGlobals;
81 /// AllocsForIndirectGlobals - If an instruction allocates memory for an
82 /// indirect global, this map indicates which one.
83 std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
85 /// FunctionInfo - For each function, keep track of what globals are
86 /// modified or read.
87 std::map<Function*, FunctionRecord> FunctionInfo;
89 public:
90 static char ID;
91 GlobalsModRef() : ModulePass(&ID) {}
93 bool runOnModule(Module &M) {
94 InitializeAliasAnalysis(this); // set up super class
95 AnalyzeGlobals(M); // find non-addr taken globals
96 AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
97 return false;
100 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101 AliasAnalysis::getAnalysisUsage(AU);
102 AU.addRequired<CallGraph>();
103 AU.setPreservesAll(); // Does not transform code
106 //------------------------------------------------
107 // Implement the AliasAnalysis API
109 AliasResult alias(const Value *V1, unsigned V1Size,
110 const Value *V2, unsigned V2Size);
111 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
112 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
113 return AliasAnalysis::getModRefInfo(CS1,CS2);
115 bool hasNoModRefInfoForCalls() const { return false; }
117 /// getModRefBehavior - Return the behavior of the specified function if
118 /// called from the specified call site. The call site may be null in which
119 /// case the most generic behavior of this function should be returned.
120 ModRefBehavior getModRefBehavior(Function *F,
121 std::vector<PointerAccessInfo> *Info) {
122 if (FunctionRecord *FR = getFunctionInfo(F)) {
123 if (FR->FunctionEffect == 0)
124 return DoesNotAccessMemory;
125 else if ((FR->FunctionEffect & Mod) == 0)
126 return OnlyReadsMemory;
128 return AliasAnalysis::getModRefBehavior(F, Info);
131 /// getModRefBehavior - Return the behavior of the specified function if
132 /// called from the specified call site. The call site may be null in which
133 /// case the most generic behavior of this function should be returned.
134 ModRefBehavior getModRefBehavior(CallSite CS,
135 std::vector<PointerAccessInfo> *Info) {
136 Function* F = CS.getCalledFunction();
137 if (!F) return AliasAnalysis::getModRefBehavior(CS, Info);
138 if (FunctionRecord *FR = getFunctionInfo(F)) {
139 if (FR->FunctionEffect == 0)
140 return DoesNotAccessMemory;
141 else if ((FR->FunctionEffect & Mod) == 0)
142 return OnlyReadsMemory;
144 return AliasAnalysis::getModRefBehavior(CS, Info);
147 virtual void deleteValue(Value *V);
148 virtual void copyValue(Value *From, Value *To);
150 private:
151 /// getFunctionInfo - Return the function info for the function, or null if
152 /// we don't have anything useful to say about it.
153 FunctionRecord *getFunctionInfo(Function *F) {
154 std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
155 if (I != FunctionInfo.end())
156 return &I->second;
157 return 0;
160 void AnalyzeGlobals(Module &M);
161 void AnalyzeCallGraph(CallGraph &CG, Module &M);
162 bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
163 std::vector<Function*> &Writers,
164 GlobalValue *OkayStoreDest = 0);
165 bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
169 char GlobalsModRef::ID = 0;
170 static RegisterPass<GlobalsModRef>
171 X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
172 static RegisterAnalysisGroup<AliasAnalysis> Y(X);
174 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
176 /// AnalyzeGlobals - Scan through the users of all of the internal
177 /// GlobalValue's in the program. If none of them have their "address taken"
178 /// (really, their address passed to something nontrivial), record this fact,
179 /// and record the functions that they are used directly in.
180 void GlobalsModRef::AnalyzeGlobals(Module &M) {
181 std::vector<Function*> Readers, Writers;
182 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
183 if (I->hasLocalLinkage()) {
184 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
185 // Remember that we are tracking this global.
186 NonAddressTakenGlobals.insert(I);
187 ++NumNonAddrTakenFunctions;
189 Readers.clear(); Writers.clear();
192 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
193 I != E; ++I)
194 if (I->hasLocalLinkage()) {
195 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
196 // Remember that we are tracking this global, and the mod/ref fns
197 NonAddressTakenGlobals.insert(I);
199 for (unsigned i = 0, e = Readers.size(); i != e; ++i)
200 FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
202 if (!I->isConstant()) // No need to keep track of writers to constants
203 for (unsigned i = 0, e = Writers.size(); i != e; ++i)
204 FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
205 ++NumNonAddrTakenGlobalVars;
207 // If this global holds a pointer type, see if it is an indirect global.
208 if (isa<PointerType>(I->getType()->getElementType()) &&
209 AnalyzeIndirectGlobalMemory(I))
210 ++NumIndirectGlobalVars;
212 Readers.clear(); Writers.clear();
216 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
217 /// If this is used by anything complex (i.e., the address escapes), return
218 /// true. Also, while we are at it, keep track of those functions that read and
219 /// write to the value.
221 /// If OkayStoreDest is non-null, stores into this global are allowed.
222 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
223 std::vector<Function*> &Readers,
224 std::vector<Function*> &Writers,
225 GlobalValue *OkayStoreDest) {
226 if (!isa<PointerType>(V->getType())) return true;
228 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
229 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
230 Readers.push_back(LI->getParent()->getParent());
231 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
232 if (V == SI->getOperand(1)) {
233 Writers.push_back(SI->getParent()->getParent());
234 } else if (SI->getOperand(1) != OkayStoreDest) {
235 return true; // Storing the pointer
237 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
238 if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
239 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
240 // Make sure that this is just the function being called, not that it is
241 // passing into the function.
242 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
243 if (CI->getOperand(i) == V) return true;
244 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
245 // Make sure that this is just the function being called, not that it is
246 // passing into the function.
247 for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
248 if (II->getOperand(i) == V) return true;
249 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
250 if (CE->getOpcode() == Instruction::GetElementPtr ||
251 CE->getOpcode() == Instruction::BitCast) {
252 if (AnalyzeUsesOfPointer(CE, Readers, Writers))
253 return true;
254 } else {
255 return true;
257 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
258 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
259 return true; // Allow comparison against null.
260 } else if (FreeInst *F = dyn_cast<FreeInst>(*UI)) {
261 Writers.push_back(F->getParent()->getParent());
262 } else {
263 return true;
265 return false;
268 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
269 /// which holds a pointer type. See if the global always points to non-aliased
270 /// heap memory: that is, all initializers of the globals are allocations, and
271 /// those allocations have no use other than initialization of the global.
272 /// Further, all loads out of GV must directly use the memory, not store the
273 /// pointer somewhere. If this is true, we consider the memory pointed to by
274 /// GV to be owned by GV and can disambiguate other pointers from it.
275 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
276 // Keep track of values related to the allocation of the memory, f.e. the
277 // value produced by the malloc call and any casts.
278 std::vector<Value*> AllocRelatedValues;
280 // Walk the user list of the global. If we find anything other than a direct
281 // load or store, bail out.
282 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
283 if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
284 // The pointer loaded from the global can only be used in simple ways:
285 // we allow addressing of it and loading storing to it. We do *not* allow
286 // storing the loaded pointer somewhere else or passing to a function.
287 std::vector<Function*> ReadersWriters;
288 if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
289 return false; // Loaded pointer escapes.
290 // TODO: Could try some IP mod/ref of the loaded pointer.
291 } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
292 // Storing the global itself.
293 if (SI->getOperand(0) == GV) return false;
295 // If storing the null pointer, ignore it.
296 if (isa<ConstantPointerNull>(SI->getOperand(0)))
297 continue;
299 // Check the value being stored.
300 Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
302 if (isa<MallocInst>(Ptr)) {
303 // Okay, easy case.
304 } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
305 Function *F = CI->getCalledFunction();
306 if (!F || !F->isDeclaration()) return false; // Too hard to analyze.
307 if (F->getName() != "calloc") return false; // Not calloc.
308 } else {
309 return false; // Too hard to analyze.
312 // Analyze all uses of the allocation. If any of them are used in a
313 // non-simple way (e.g. stored to another global) bail out.
314 std::vector<Function*> ReadersWriters;
315 if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
316 return false; // Loaded pointer escapes.
318 // Remember that this allocation is related to the indirect global.
319 AllocRelatedValues.push_back(Ptr);
320 } else {
321 // Something complex, bail out.
322 return false;
326 // Okay, this is an indirect global. Remember all of the allocations for
327 // this global in AllocsForIndirectGlobals.
328 while (!AllocRelatedValues.empty()) {
329 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
330 AllocRelatedValues.pop_back();
332 IndirectGlobals.insert(GV);
333 return true;
336 /// AnalyzeCallGraph - At this point, we know the functions where globals are
337 /// immediately stored to and read from. Propagate this information up the call
338 /// graph to all callers and compute the mod/ref info for all memory for each
339 /// function.
340 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
341 // We do a bottom-up SCC traversal of the call graph. In other words, we
342 // visit all callees before callers (leaf-first).
343 for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
344 ++I) {
345 std::vector<CallGraphNode *> &SCC = *I;
346 assert(!SCC.empty() && "SCC with no functions?");
348 if (!SCC[0]->getFunction()) {
349 // Calls externally - can't say anything useful. Remove any existing
350 // function records (may have been created when scanning globals).
351 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
352 FunctionInfo.erase(SCC[i]->getFunction());
353 continue;
356 FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
358 bool KnowNothing = false;
359 unsigned FunctionEffect = 0;
361 // Collect the mod/ref properties due to called functions. We only compute
362 // one mod-ref set.
363 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
364 Function *F = SCC[i]->getFunction();
365 if (!F) {
366 KnowNothing = true;
367 break;
370 if (F->isDeclaration()) {
371 // Try to get mod/ref behaviour from function attributes.
372 if (F->doesNotAccessMemory()) {
373 // Can't do better than that!
374 } else if (F->onlyReadsMemory()) {
375 FunctionEffect |= Ref;
376 if (!F->isIntrinsic())
377 // This function might call back into the module and read a global -
378 // consider every global as possibly being read by this function.
379 FR.MayReadAnyGlobal = true;
380 } else {
381 FunctionEffect |= ModRef;
382 // Can't say anything useful unless it's an intrinsic - they don't
383 // read or write global variables of the kind considered here.
384 KnowNothing = !F->isIntrinsic();
386 continue;
389 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
390 CI != E && !KnowNothing; ++CI)
391 if (Function *Callee = CI->second->getFunction()) {
392 if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
393 // Propagate function effect up.
394 FunctionEffect |= CalleeFR->FunctionEffect;
396 // Incorporate callee's effects on globals into our info.
397 for (std::map<GlobalValue*, unsigned>::iterator GI =
398 CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
399 GI != E; ++GI)
400 FR.GlobalInfo[GI->first] |= GI->second;
401 FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
402 } else {
403 // Can't say anything about it. However, if it is inside our SCC,
404 // then nothing needs to be done.
405 CallGraphNode *CalleeNode = CG[Callee];
406 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
407 KnowNothing = true;
409 } else {
410 KnowNothing = true;
414 // If we can't say anything useful about this SCC, remove all SCC functions
415 // from the FunctionInfo map.
416 if (KnowNothing) {
417 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
418 FunctionInfo.erase(SCC[i]->getFunction());
419 continue;
422 // Scan the function bodies for explicit loads or stores.
423 for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
424 for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
425 E = inst_end(SCC[i]->getFunction());
426 II != E && FunctionEffect != ModRef; ++II)
427 if (isa<LoadInst>(*II)) {
428 FunctionEffect |= Ref;
429 if (cast<LoadInst>(*II).isVolatile())
430 // Volatile loads may have side-effects, so mark them as writing
431 // memory (for example, a flag inside the processor).
432 FunctionEffect |= Mod;
433 } else if (isa<StoreInst>(*II)) {
434 FunctionEffect |= Mod;
435 if (cast<StoreInst>(*II).isVolatile())
436 // Treat volatile stores as reading memory somewhere.
437 FunctionEffect |= Ref;
438 } else if (isa<MallocInst>(*II) || isa<FreeInst>(*II)) {
439 FunctionEffect |= ModRef;
442 if ((FunctionEffect & Mod) == 0)
443 ++NumReadMemFunctions;
444 if (FunctionEffect == 0)
445 ++NumNoMemFunctions;
446 FR.FunctionEffect = FunctionEffect;
448 // Finally, now that we know the full effect on this SCC, clone the
449 // information to each function in the SCC.
450 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
451 FunctionInfo[SCC[i]->getFunction()] = FR;
457 /// alias - If one of the pointers is to a global that we are tracking, and the
458 /// other is some random pointer, we know there cannot be an alias, because the
459 /// address of the global isn't taken.
460 AliasAnalysis::AliasResult
461 GlobalsModRef::alias(const Value *V1, unsigned V1Size,
462 const Value *V2, unsigned V2Size) {
463 // Get the base object these pointers point to.
464 Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject());
465 Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject());
467 // If either of the underlying values is a global, they may be non-addr-taken
468 // globals, which we can answer queries about.
469 GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
470 GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
471 if (GV1 || GV2) {
472 // If the global's address is taken, pretend we don't know it's a pointer to
473 // the global.
474 if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
475 if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
477 // If the the two pointers are derived from two different non-addr-taken
478 // globals, or if one is and the other isn't, we know these can't alias.
479 if ((GV1 || GV2) && GV1 != GV2)
480 return NoAlias;
482 // Otherwise if they are both derived from the same addr-taken global, we
483 // can't know the two accesses don't overlap.
486 // These pointers may be based on the memory owned by an indirect global. If
487 // so, we may be able to handle this. First check to see if the base pointer
488 // is a direct load from an indirect global.
489 GV1 = GV2 = 0;
490 if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
491 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
492 if (IndirectGlobals.count(GV))
493 GV1 = GV;
494 if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
495 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
496 if (IndirectGlobals.count(GV))
497 GV2 = GV;
499 // These pointers may also be from an allocation for the indirect global. If
500 // so, also handle them.
501 if (AllocsForIndirectGlobals.count(UV1))
502 GV1 = AllocsForIndirectGlobals[UV1];
503 if (AllocsForIndirectGlobals.count(UV2))
504 GV2 = AllocsForIndirectGlobals[UV2];
506 // Now that we know whether the two pointers are related to indirect globals,
507 // use this to disambiguate the pointers. If either pointer is based on an
508 // indirect global and if they are not both based on the same indirect global,
509 // they cannot alias.
510 if ((GV1 || GV2) && GV1 != GV2)
511 return NoAlias;
513 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
516 AliasAnalysis::ModRefResult
517 GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
518 unsigned Known = ModRef;
520 // If we are asking for mod/ref info of a direct call with a pointer to a
521 // global we are tracking, return information if we have it.
522 if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
523 if (GV->hasLocalLinkage())
524 if (Function *F = CS.getCalledFunction())
525 if (NonAddressTakenGlobals.count(GV))
526 if (FunctionRecord *FR = getFunctionInfo(F))
527 Known = FR->getInfoForGlobal(GV);
529 if (Known == NoModRef)
530 return NoModRef; // No need to query other mod/ref analyses
531 return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
535 //===----------------------------------------------------------------------===//
536 // Methods to update the analysis as a result of the client transformation.
538 void GlobalsModRef::deleteValue(Value *V) {
539 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
540 if (NonAddressTakenGlobals.erase(GV)) {
541 // This global might be an indirect global. If so, remove it and remove
542 // any AllocRelatedValues for it.
543 if (IndirectGlobals.erase(GV)) {
544 // Remove any entries in AllocsForIndirectGlobals for this global.
545 for (std::map<Value*, GlobalValue*>::iterator
546 I = AllocsForIndirectGlobals.begin(),
547 E = AllocsForIndirectGlobals.end(); I != E; ) {
548 if (I->second == GV) {
549 AllocsForIndirectGlobals.erase(I++);
550 } else {
551 ++I;
558 // Otherwise, if this is an allocation related to an indirect global, remove
559 // it.
560 AllocsForIndirectGlobals.erase(V);
562 AliasAnalysis::deleteValue(V);
565 void GlobalsModRef::copyValue(Value *From, Value *To) {
566 AliasAnalysis::copyValue(From, To);