1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/CallGraph.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/InstIterator.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/SCCIterator.h"
34 STATISTIC(NumNonAddrTakenGlobalVars
,
35 "Number of global vars without address taken");
36 STATISTIC(NumNonAddrTakenFunctions
,"Number of functions without address taken");
37 STATISTIC(NumNoMemFunctions
, "Number of functions that do not access memory");
38 STATISTIC(NumReadMemFunctions
, "Number of functions that only read memory");
39 STATISTIC(NumIndirectGlobalVars
, "Number of indirect global objects");
42 /// FunctionRecord - One instance of this structure is stored for every
43 /// function in the program. Later, the entries for these functions are
44 /// removed if the function is found to call an external function (in which
45 /// case we know nothing about it.
46 struct VISIBILITY_HIDDEN FunctionRecord
{
47 /// GlobalInfo - Maintain mod/ref info for all of the globals without
48 /// addresses taken that are read or written (transitively) by this
50 std::map
<GlobalValue
*, unsigned> GlobalInfo
;
52 /// MayReadAnyGlobal - May read global variables, but it is not known which.
53 bool MayReadAnyGlobal
;
55 unsigned getInfoForGlobal(GlobalValue
*GV
) const {
56 unsigned Effect
= MayReadAnyGlobal
? AliasAnalysis::Ref
: 0;
57 std::map
<GlobalValue
*, unsigned>::const_iterator I
= GlobalInfo
.find(GV
);
58 if (I
!= GlobalInfo
.end())
63 /// FunctionEffect - Capture whether or not this function reads or writes to
64 /// ANY memory. If not, we can do a lot of aggressive analysis on it.
65 unsigned FunctionEffect
;
67 FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
70 /// GlobalsModRef - The actual analysis pass.
71 class VISIBILITY_HIDDEN GlobalsModRef
72 : public ModulePass
, public AliasAnalysis
{
73 /// NonAddressTakenGlobals - The globals that do not have their addresses
75 std::set
<GlobalValue
*> NonAddressTakenGlobals
;
77 /// IndirectGlobals - The memory pointed to by this global is known to be
78 /// 'owned' by the global.
79 std::set
<GlobalValue
*> IndirectGlobals
;
81 /// AllocsForIndirectGlobals - If an instruction allocates memory for an
82 /// indirect global, this map indicates which one.
83 std::map
<Value
*, GlobalValue
*> AllocsForIndirectGlobals
;
85 /// FunctionInfo - For each function, keep track of what globals are
87 std::map
<Function
*, FunctionRecord
> FunctionInfo
;
91 GlobalsModRef() : ModulePass(&ID
) {}
93 bool runOnModule(Module
&M
) {
94 InitializeAliasAnalysis(this); // set up super class
95 AnalyzeGlobals(M
); // find non-addr taken globals
96 AnalyzeCallGraph(getAnalysis
<CallGraph
>(), M
); // Propagate on CG
100 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
101 AliasAnalysis::getAnalysisUsage(AU
);
102 AU
.addRequired
<CallGraph
>();
103 AU
.setPreservesAll(); // Does not transform code
106 //------------------------------------------------
107 // Implement the AliasAnalysis API
109 AliasResult
alias(const Value
*V1
, unsigned V1Size
,
110 const Value
*V2
, unsigned V2Size
);
111 ModRefResult
getModRefInfo(CallSite CS
, Value
*P
, unsigned Size
);
112 ModRefResult
getModRefInfo(CallSite CS1
, CallSite CS2
) {
113 return AliasAnalysis::getModRefInfo(CS1
,CS2
);
115 bool hasNoModRefInfoForCalls() const { return false; }
117 /// getModRefBehavior - Return the behavior of the specified function if
118 /// called from the specified call site. The call site may be null in which
119 /// case the most generic behavior of this function should be returned.
120 ModRefBehavior
getModRefBehavior(Function
*F
,
121 std::vector
<PointerAccessInfo
> *Info
) {
122 if (FunctionRecord
*FR
= getFunctionInfo(F
)) {
123 if (FR
->FunctionEffect
== 0)
124 return DoesNotAccessMemory
;
125 else if ((FR
->FunctionEffect
& Mod
) == 0)
126 return OnlyReadsMemory
;
128 return AliasAnalysis::getModRefBehavior(F
, Info
);
131 /// getModRefBehavior - Return the behavior of the specified function if
132 /// called from the specified call site. The call site may be null in which
133 /// case the most generic behavior of this function should be returned.
134 ModRefBehavior
getModRefBehavior(CallSite CS
,
135 std::vector
<PointerAccessInfo
> *Info
) {
136 Function
* F
= CS
.getCalledFunction();
137 if (!F
) return AliasAnalysis::getModRefBehavior(CS
, Info
);
138 if (FunctionRecord
*FR
= getFunctionInfo(F
)) {
139 if (FR
->FunctionEffect
== 0)
140 return DoesNotAccessMemory
;
141 else if ((FR
->FunctionEffect
& Mod
) == 0)
142 return OnlyReadsMemory
;
144 return AliasAnalysis::getModRefBehavior(CS
, Info
);
147 virtual void deleteValue(Value
*V
);
148 virtual void copyValue(Value
*From
, Value
*To
);
151 /// getFunctionInfo - Return the function info for the function, or null if
152 /// we don't have anything useful to say about it.
153 FunctionRecord
*getFunctionInfo(Function
*F
) {
154 std::map
<Function
*, FunctionRecord
>::iterator I
= FunctionInfo
.find(F
);
155 if (I
!= FunctionInfo
.end())
160 void AnalyzeGlobals(Module
&M
);
161 void AnalyzeCallGraph(CallGraph
&CG
, Module
&M
);
162 bool AnalyzeUsesOfPointer(Value
*V
, std::vector
<Function
*> &Readers
,
163 std::vector
<Function
*> &Writers
,
164 GlobalValue
*OkayStoreDest
= 0);
165 bool AnalyzeIndirectGlobalMemory(GlobalValue
*GV
);
169 char GlobalsModRef::ID
= 0;
170 static RegisterPass
<GlobalsModRef
>
171 X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
172 static RegisterAnalysisGroup
<AliasAnalysis
> Y(X
);
174 Pass
*llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
176 /// AnalyzeGlobals - Scan through the users of all of the internal
177 /// GlobalValue's in the program. If none of them have their "address taken"
178 /// (really, their address passed to something nontrivial), record this fact,
179 /// and record the functions that they are used directly in.
180 void GlobalsModRef::AnalyzeGlobals(Module
&M
) {
181 std::vector
<Function
*> Readers
, Writers
;
182 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
)
183 if (I
->hasLocalLinkage()) {
184 if (!AnalyzeUsesOfPointer(I
, Readers
, Writers
)) {
185 // Remember that we are tracking this global.
186 NonAddressTakenGlobals
.insert(I
);
187 ++NumNonAddrTakenFunctions
;
189 Readers
.clear(); Writers
.clear();
192 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
194 if (I
->hasLocalLinkage()) {
195 if (!AnalyzeUsesOfPointer(I
, Readers
, Writers
)) {
196 // Remember that we are tracking this global, and the mod/ref fns
197 NonAddressTakenGlobals
.insert(I
);
199 for (unsigned i
= 0, e
= Readers
.size(); i
!= e
; ++i
)
200 FunctionInfo
[Readers
[i
]].GlobalInfo
[I
] |= Ref
;
202 if (!I
->isConstant()) // No need to keep track of writers to constants
203 for (unsigned i
= 0, e
= Writers
.size(); i
!= e
; ++i
)
204 FunctionInfo
[Writers
[i
]].GlobalInfo
[I
] |= Mod
;
205 ++NumNonAddrTakenGlobalVars
;
207 // If this global holds a pointer type, see if it is an indirect global.
208 if (isa
<PointerType
>(I
->getType()->getElementType()) &&
209 AnalyzeIndirectGlobalMemory(I
))
210 ++NumIndirectGlobalVars
;
212 Readers
.clear(); Writers
.clear();
216 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
217 /// If this is used by anything complex (i.e., the address escapes), return
218 /// true. Also, while we are at it, keep track of those functions that read and
219 /// write to the value.
221 /// If OkayStoreDest is non-null, stores into this global are allowed.
222 bool GlobalsModRef::AnalyzeUsesOfPointer(Value
*V
,
223 std::vector
<Function
*> &Readers
,
224 std::vector
<Function
*> &Writers
,
225 GlobalValue
*OkayStoreDest
) {
226 if (!isa
<PointerType
>(V
->getType())) return true;
228 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ++UI
)
229 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
230 Readers
.push_back(LI
->getParent()->getParent());
231 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
232 if (V
== SI
->getOperand(1)) {
233 Writers
.push_back(SI
->getParent()->getParent());
234 } else if (SI
->getOperand(1) != OkayStoreDest
) {
235 return true; // Storing the pointer
237 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(*UI
)) {
238 if (AnalyzeUsesOfPointer(GEP
, Readers
, Writers
)) return true;
239 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(*UI
)) {
240 // Make sure that this is just the function being called, not that it is
241 // passing into the function.
242 for (unsigned i
= 1, e
= CI
->getNumOperands(); i
!= e
; ++i
)
243 if (CI
->getOperand(i
) == V
) return true;
244 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(*UI
)) {
245 // Make sure that this is just the function being called, not that it is
246 // passing into the function.
247 for (unsigned i
= 3, e
= II
->getNumOperands(); i
!= e
; ++i
)
248 if (II
->getOperand(i
) == V
) return true;
249 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(*UI
)) {
250 if (CE
->getOpcode() == Instruction::GetElementPtr
||
251 CE
->getOpcode() == Instruction::BitCast
) {
252 if (AnalyzeUsesOfPointer(CE
, Readers
, Writers
))
257 } else if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(*UI
)) {
258 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
259 return true; // Allow comparison against null.
260 } else if (FreeInst
*F
= dyn_cast
<FreeInst
>(*UI
)) {
261 Writers
.push_back(F
->getParent()->getParent());
268 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
269 /// which holds a pointer type. See if the global always points to non-aliased
270 /// heap memory: that is, all initializers of the globals are allocations, and
271 /// those allocations have no use other than initialization of the global.
272 /// Further, all loads out of GV must directly use the memory, not store the
273 /// pointer somewhere. If this is true, we consider the memory pointed to by
274 /// GV to be owned by GV and can disambiguate other pointers from it.
275 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue
*GV
) {
276 // Keep track of values related to the allocation of the memory, f.e. the
277 // value produced by the malloc call and any casts.
278 std::vector
<Value
*> AllocRelatedValues
;
280 // Walk the user list of the global. If we find anything other than a direct
281 // load or store, bail out.
282 for (Value::use_iterator I
= GV
->use_begin(), E
= GV
->use_end(); I
!= E
; ++I
){
283 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*I
)) {
284 // The pointer loaded from the global can only be used in simple ways:
285 // we allow addressing of it and loading storing to it. We do *not* allow
286 // storing the loaded pointer somewhere else or passing to a function.
287 std::vector
<Function
*> ReadersWriters
;
288 if (AnalyzeUsesOfPointer(LI
, ReadersWriters
, ReadersWriters
))
289 return false; // Loaded pointer escapes.
290 // TODO: Could try some IP mod/ref of the loaded pointer.
291 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*I
)) {
292 // Storing the global itself.
293 if (SI
->getOperand(0) == GV
) return false;
295 // If storing the null pointer, ignore it.
296 if (isa
<ConstantPointerNull
>(SI
->getOperand(0)))
299 // Check the value being stored.
300 Value
*Ptr
= SI
->getOperand(0)->getUnderlyingObject();
302 if (isa
<MallocInst
>(Ptr
)) {
304 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(Ptr
)) {
305 Function
*F
= CI
->getCalledFunction();
306 if (!F
|| !F
->isDeclaration()) return false; // Too hard to analyze.
307 if (F
->getName() != "calloc") return false; // Not calloc.
309 return false; // Too hard to analyze.
312 // Analyze all uses of the allocation. If any of them are used in a
313 // non-simple way (e.g. stored to another global) bail out.
314 std::vector
<Function
*> ReadersWriters
;
315 if (AnalyzeUsesOfPointer(Ptr
, ReadersWriters
, ReadersWriters
, GV
))
316 return false; // Loaded pointer escapes.
318 // Remember that this allocation is related to the indirect global.
319 AllocRelatedValues
.push_back(Ptr
);
321 // Something complex, bail out.
326 // Okay, this is an indirect global. Remember all of the allocations for
327 // this global in AllocsForIndirectGlobals.
328 while (!AllocRelatedValues
.empty()) {
329 AllocsForIndirectGlobals
[AllocRelatedValues
.back()] = GV
;
330 AllocRelatedValues
.pop_back();
332 IndirectGlobals
.insert(GV
);
336 /// AnalyzeCallGraph - At this point, we know the functions where globals are
337 /// immediately stored to and read from. Propagate this information up the call
338 /// graph to all callers and compute the mod/ref info for all memory for each
340 void GlobalsModRef::AnalyzeCallGraph(CallGraph
&CG
, Module
&M
) {
341 // We do a bottom-up SCC traversal of the call graph. In other words, we
342 // visit all callees before callers (leaf-first).
343 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
), E
= scc_end(&CG
); I
!= E
;
345 std::vector
<CallGraphNode
*> &SCC
= *I
;
346 assert(!SCC
.empty() && "SCC with no functions?");
348 if (!SCC
[0]->getFunction()) {
349 // Calls externally - can't say anything useful. Remove any existing
350 // function records (may have been created when scanning globals).
351 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
; ++i
)
352 FunctionInfo
.erase(SCC
[i
]->getFunction());
356 FunctionRecord
&FR
= FunctionInfo
[SCC
[0]->getFunction()];
358 bool KnowNothing
= false;
359 unsigned FunctionEffect
= 0;
361 // Collect the mod/ref properties due to called functions. We only compute
363 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& !KnowNothing
; ++i
) {
364 Function
*F
= SCC
[i
]->getFunction();
370 if (F
->isDeclaration()) {
371 // Try to get mod/ref behaviour from function attributes.
372 if (F
->doesNotAccessMemory()) {
373 // Can't do better than that!
374 } else if (F
->onlyReadsMemory()) {
375 FunctionEffect
|= Ref
;
376 if (!F
->isIntrinsic())
377 // This function might call back into the module and read a global -
378 // consider every global as possibly being read by this function.
379 FR
.MayReadAnyGlobal
= true;
381 FunctionEffect
|= ModRef
;
382 // Can't say anything useful unless it's an intrinsic - they don't
383 // read or write global variables of the kind considered here.
384 KnowNothing
= !F
->isIntrinsic();
389 for (CallGraphNode::iterator CI
= SCC
[i
]->begin(), E
= SCC
[i
]->end();
390 CI
!= E
&& !KnowNothing
; ++CI
)
391 if (Function
*Callee
= CI
->second
->getFunction()) {
392 if (FunctionRecord
*CalleeFR
= getFunctionInfo(Callee
)) {
393 // Propagate function effect up.
394 FunctionEffect
|= CalleeFR
->FunctionEffect
;
396 // Incorporate callee's effects on globals into our info.
397 for (std::map
<GlobalValue
*, unsigned>::iterator GI
=
398 CalleeFR
->GlobalInfo
.begin(), E
= CalleeFR
->GlobalInfo
.end();
400 FR
.GlobalInfo
[GI
->first
] |= GI
->second
;
401 FR
.MayReadAnyGlobal
|= CalleeFR
->MayReadAnyGlobal
;
403 // Can't say anything about it. However, if it is inside our SCC,
404 // then nothing needs to be done.
405 CallGraphNode
*CalleeNode
= CG
[Callee
];
406 if (std::find(SCC
.begin(), SCC
.end(), CalleeNode
) == SCC
.end())
414 // If we can't say anything useful about this SCC, remove all SCC functions
415 // from the FunctionInfo map.
417 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
; ++i
)
418 FunctionInfo
.erase(SCC
[i
]->getFunction());
422 // Scan the function bodies for explicit loads or stores.
423 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& FunctionEffect
!= ModRef
;++i
)
424 for (inst_iterator II
= inst_begin(SCC
[i
]->getFunction()),
425 E
= inst_end(SCC
[i
]->getFunction());
426 II
!= E
&& FunctionEffect
!= ModRef
; ++II
)
427 if (isa
<LoadInst
>(*II
)) {
428 FunctionEffect
|= Ref
;
429 if (cast
<LoadInst
>(*II
).isVolatile())
430 // Volatile loads may have side-effects, so mark them as writing
431 // memory (for example, a flag inside the processor).
432 FunctionEffect
|= Mod
;
433 } else if (isa
<StoreInst
>(*II
)) {
434 FunctionEffect
|= Mod
;
435 if (cast
<StoreInst
>(*II
).isVolatile())
436 // Treat volatile stores as reading memory somewhere.
437 FunctionEffect
|= Ref
;
438 } else if (isa
<MallocInst
>(*II
) || isa
<FreeInst
>(*II
)) {
439 FunctionEffect
|= ModRef
;
442 if ((FunctionEffect
& Mod
) == 0)
443 ++NumReadMemFunctions
;
444 if (FunctionEffect
== 0)
446 FR
.FunctionEffect
= FunctionEffect
;
448 // Finally, now that we know the full effect on this SCC, clone the
449 // information to each function in the SCC.
450 for (unsigned i
= 1, e
= SCC
.size(); i
!= e
; ++i
)
451 FunctionInfo
[SCC
[i
]->getFunction()] = FR
;
457 /// alias - If one of the pointers is to a global that we are tracking, and the
458 /// other is some random pointer, we know there cannot be an alias, because the
459 /// address of the global isn't taken.
460 AliasAnalysis::AliasResult
461 GlobalsModRef::alias(const Value
*V1
, unsigned V1Size
,
462 const Value
*V2
, unsigned V2Size
) {
463 // Get the base object these pointers point to.
464 Value
*UV1
= const_cast<Value
*>(V1
->getUnderlyingObject());
465 Value
*UV2
= const_cast<Value
*>(V2
->getUnderlyingObject());
467 // If either of the underlying values is a global, they may be non-addr-taken
468 // globals, which we can answer queries about.
469 GlobalValue
*GV1
= dyn_cast
<GlobalValue
>(UV1
);
470 GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(UV2
);
472 // If the global's address is taken, pretend we don't know it's a pointer to
474 if (GV1
&& !NonAddressTakenGlobals
.count(GV1
)) GV1
= 0;
475 if (GV2
&& !NonAddressTakenGlobals
.count(GV2
)) GV2
= 0;
477 // If the the two pointers are derived from two different non-addr-taken
478 // globals, or if one is and the other isn't, we know these can't alias.
479 if ((GV1
|| GV2
) && GV1
!= GV2
)
482 // Otherwise if they are both derived from the same addr-taken global, we
483 // can't know the two accesses don't overlap.
486 // These pointers may be based on the memory owned by an indirect global. If
487 // so, we may be able to handle this. First check to see if the base pointer
488 // is a direct load from an indirect global.
490 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UV1
))
491 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
492 if (IndirectGlobals
.count(GV
))
494 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UV2
))
495 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
496 if (IndirectGlobals
.count(GV
))
499 // These pointers may also be from an allocation for the indirect global. If
500 // so, also handle them.
501 if (AllocsForIndirectGlobals
.count(UV1
))
502 GV1
= AllocsForIndirectGlobals
[UV1
];
503 if (AllocsForIndirectGlobals
.count(UV2
))
504 GV2
= AllocsForIndirectGlobals
[UV2
];
506 // Now that we know whether the two pointers are related to indirect globals,
507 // use this to disambiguate the pointers. If either pointer is based on an
508 // indirect global and if they are not both based on the same indirect global,
509 // they cannot alias.
510 if ((GV1
|| GV2
) && GV1
!= GV2
)
513 return AliasAnalysis::alias(V1
, V1Size
, V2
, V2Size
);
516 AliasAnalysis::ModRefResult
517 GlobalsModRef::getModRefInfo(CallSite CS
, Value
*P
, unsigned Size
) {
518 unsigned Known
= ModRef
;
520 // If we are asking for mod/ref info of a direct call with a pointer to a
521 // global we are tracking, return information if we have it.
522 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(P
->getUnderlyingObject()))
523 if (GV
->hasLocalLinkage())
524 if (Function
*F
= CS
.getCalledFunction())
525 if (NonAddressTakenGlobals
.count(GV
))
526 if (FunctionRecord
*FR
= getFunctionInfo(F
))
527 Known
= FR
->getInfoForGlobal(GV
);
529 if (Known
== NoModRef
)
530 return NoModRef
; // No need to query other mod/ref analyses
531 return ModRefResult(Known
& AliasAnalysis::getModRefInfo(CS
, P
, Size
));
535 //===----------------------------------------------------------------------===//
536 // Methods to update the analysis as a result of the client transformation.
538 void GlobalsModRef::deleteValue(Value
*V
) {
539 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
540 if (NonAddressTakenGlobals
.erase(GV
)) {
541 // This global might be an indirect global. If so, remove it and remove
542 // any AllocRelatedValues for it.
543 if (IndirectGlobals
.erase(GV
)) {
544 // Remove any entries in AllocsForIndirectGlobals for this global.
545 for (std::map
<Value
*, GlobalValue
*>::iterator
546 I
= AllocsForIndirectGlobals
.begin(),
547 E
= AllocsForIndirectGlobals
.end(); I
!= E
; ) {
548 if (I
->second
== GV
) {
549 AllocsForIndirectGlobals
.erase(I
++);
558 // Otherwise, if this is an allocation related to an indirect global, remove
560 AllocsForIndirectGlobals
.erase(V
);
562 AliasAnalysis::deleteValue(V
);
565 void GlobalsModRef::copyValue(Value
*From
, Value
*To
) {
566 AliasAnalysis::copyValue(From
, To
);