1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #define DEBUG_TYPE "scalar-evolution"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/Constants.h"
64 #include "llvm/DerivedTypes.h"
65 #include "llvm/GlobalVariable.h"
66 #include "llvm/Instructions.h"
67 #include "llvm/LLVMContext.h"
68 #include "llvm/Operator.h"
69 #include "llvm/Analysis/ConstantFolding.h"
70 #include "llvm/Analysis/Dominators.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/Assembly/Writer.h"
74 #include "llvm/Target/TargetData.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/GetElementPtrTypeIterator.h"
80 #include "llvm/Support/InstIterator.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/ADT/Statistic.h"
84 #include "llvm/ADT/STLExtras.h"
85 #include "llvm/ADT/SmallPtrSet.h"
89 STATISTIC(NumArrayLenItCounts
,
90 "Number of trip counts computed with array length");
91 STATISTIC(NumTripCountsComputed
,
92 "Number of loops with predictable loop counts");
93 STATISTIC(NumTripCountsNotComputed
,
94 "Number of loops without predictable loop counts");
95 STATISTIC(NumBruteForceTripCountsComputed
,
96 "Number of loops with trip counts computed by force");
98 static cl::opt
<unsigned>
99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant "
105 static RegisterPass
<ScalarEvolution
>
106 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107 char ScalarEvolution::ID
= 0;
109 //===----------------------------------------------------------------------===//
110 // SCEV class definitions
111 //===----------------------------------------------------------------------===//
113 //===----------------------------------------------------------------------===//
114 // Implementation of the SCEV class.
119 void SCEV::dump() const {
124 void SCEV::print(std::ostream
&o
) const {
125 raw_os_ostream
OS(o
);
129 bool SCEV::isZero() const {
130 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
131 return SC
->getValue()->isZero();
135 bool SCEV::isOne() const {
136 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
137 return SC
->getValue()->isOne();
141 bool SCEV::isAllOnesValue() const {
142 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
143 return SC
->getValue()->isAllOnesValue();
147 SCEVCouldNotCompute::SCEVCouldNotCompute() :
148 SCEV(FoldingSetNodeID(), scCouldNotCompute
) {}
150 bool SCEVCouldNotCompute::isLoopInvariant(const Loop
*L
) const {
151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
155 const Type
*SCEVCouldNotCompute::getType() const {
156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
160 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop
*L
) const {
161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
165 bool SCEVCouldNotCompute::hasOperand(const SCEV
*) const {
166 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
170 void SCEVCouldNotCompute::print(raw_ostream
&OS
) const {
171 OS
<< "***COULDNOTCOMPUTE***";
174 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
175 return S
->getSCEVType() == scCouldNotCompute
;
178 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
180 ID
.AddInteger(scConstant
);
183 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
184 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVConstant
>();
185 new (S
) SCEVConstant(ID
, V
);
186 UniqueSCEVs
.InsertNode(S
, IP
);
190 const SCEV
*ScalarEvolution::getConstant(const APInt
& Val
) {
191 return getConstant(ConstantInt::get(getContext(), Val
));
195 ScalarEvolution::getConstant(const Type
*Ty
, uint64_t V
, bool isSigned
) {
197 ConstantInt::get(cast
<IntegerType
>(Ty
), V
, isSigned
));
200 const Type
*SCEVConstant::getType() const { return V
->getType(); }
202 void SCEVConstant::print(raw_ostream
&OS
) const {
203 WriteAsOperand(OS
, V
, false);
206 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID
&ID
,
207 unsigned SCEVTy
, const SCEV
*op
, const Type
*ty
)
208 : SCEV(ID
, SCEVTy
), Op(op
), Ty(ty
) {}
210 bool SCEVCastExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
211 return Op
->dominates(BB
, DT
);
214 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID
&ID
,
215 const SCEV
*op
, const Type
*ty
)
216 : SCEVCastExpr(ID
, scTruncate
, op
, ty
) {
217 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
218 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
219 "Cannot truncate non-integer value!");
222 void SCEVTruncateExpr::print(raw_ostream
&OS
) const {
223 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
226 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID
&ID
,
227 const SCEV
*op
, const Type
*ty
)
228 : SCEVCastExpr(ID
, scZeroExtend
, op
, ty
) {
229 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
230 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
231 "Cannot zero extend non-integer value!");
234 void SCEVZeroExtendExpr::print(raw_ostream
&OS
) const {
235 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
238 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID
&ID
,
239 const SCEV
*op
, const Type
*ty
)
240 : SCEVCastExpr(ID
, scSignExtend
, op
, ty
) {
241 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
242 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
243 "Cannot sign extend non-integer value!");
246 void SCEVSignExtendExpr::print(raw_ostream
&OS
) const {
247 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
250 void SCEVCommutativeExpr::print(raw_ostream
&OS
) const {
251 assert(Operands
.size() > 1 && "This plus expr shouldn't exist!");
252 const char *OpStr
= getOperationStr();
253 OS
<< "(" << *Operands
[0];
254 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
255 OS
<< OpStr
<< *Operands
[i
];
259 bool SCEVNAryExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
260 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
261 if (!getOperand(i
)->dominates(BB
, DT
))
267 bool SCEVUDivExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
268 return LHS
->dominates(BB
, DT
) && RHS
->dominates(BB
, DT
);
271 void SCEVUDivExpr::print(raw_ostream
&OS
) const {
272 OS
<< "(" << *LHS
<< " /u " << *RHS
<< ")";
275 const Type
*SCEVUDivExpr::getType() const {
276 // In most cases the types of LHS and RHS will be the same, but in some
277 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
278 // depend on the type for correctness, but handling types carefully can
279 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
280 // a pointer type than the RHS, so use the RHS' type here.
281 return RHS
->getType();
284 bool SCEVAddRecExpr::isLoopInvariant(const Loop
*QueryLoop
) const {
285 // Add recurrences are never invariant in the function-body (null loop).
289 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
290 if (QueryLoop
->contains(L
->getHeader()))
293 // This recurrence is variant w.r.t. QueryLoop if any of its operands
295 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
296 if (!getOperand(i
)->isLoopInvariant(QueryLoop
))
299 // Otherwise it's loop-invariant.
303 void SCEVAddRecExpr::print(raw_ostream
&OS
) const {
304 OS
<< "{" << *Operands
[0];
305 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
306 OS
<< ",+," << *Operands
[i
];
307 OS
<< "}<" << L
->getHeader()->getName() + ">";
310 bool SCEVUnknown::isLoopInvariant(const Loop
*L
) const {
311 // All non-instruction values are loop invariant. All instructions are loop
312 // invariant if they are not contained in the specified loop.
313 // Instructions are never considered invariant in the function body
314 // (null loop) because they are defined within the "loop".
315 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
316 return L
&& !L
->contains(I
->getParent());
320 bool SCEVUnknown::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
321 if (Instruction
*I
= dyn_cast
<Instruction
>(getValue()))
322 return DT
->dominates(I
->getParent(), BB
);
326 const Type
*SCEVUnknown::getType() const {
330 void SCEVUnknown::print(raw_ostream
&OS
) const {
331 WriteAsOperand(OS
, V
, false);
334 //===----------------------------------------------------------------------===//
336 //===----------------------------------------------------------------------===//
339 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
340 /// than the complexity of the RHS. This comparator is used to canonicalize
342 class VISIBILITY_HIDDEN SCEVComplexityCompare
{
345 explicit SCEVComplexityCompare(LoopInfo
*li
) : LI(li
) {}
347 bool operator()(const SCEV
*LHS
, const SCEV
*RHS
) const {
348 // Primarily, sort the SCEVs by their getSCEVType().
349 if (LHS
->getSCEVType() != RHS
->getSCEVType())
350 return LHS
->getSCEVType() < RHS
->getSCEVType();
352 // Aside from the getSCEVType() ordering, the particular ordering
353 // isn't very important except that it's beneficial to be consistent,
354 // so that (a + b) and (b + a) don't end up as different expressions.
356 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
357 // not as complete as it could be.
358 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
)) {
359 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
361 // Order pointer values after integer values. This helps SCEVExpander
363 if (isa
<PointerType
>(LU
->getType()) && !isa
<PointerType
>(RU
->getType()))
365 if (isa
<PointerType
>(RU
->getType()) && !isa
<PointerType
>(LU
->getType()))
368 // Compare getValueID values.
369 if (LU
->getValue()->getValueID() != RU
->getValue()->getValueID())
370 return LU
->getValue()->getValueID() < RU
->getValue()->getValueID();
372 // Sort arguments by their position.
373 if (const Argument
*LA
= dyn_cast
<Argument
>(LU
->getValue())) {
374 const Argument
*RA
= cast
<Argument
>(RU
->getValue());
375 return LA
->getArgNo() < RA
->getArgNo();
378 // For instructions, compare their loop depth, and their opcode.
379 // This is pretty loose.
380 if (Instruction
*LV
= dyn_cast
<Instruction
>(LU
->getValue())) {
381 Instruction
*RV
= cast
<Instruction
>(RU
->getValue());
383 // Compare loop depths.
384 if (LI
->getLoopDepth(LV
->getParent()) !=
385 LI
->getLoopDepth(RV
->getParent()))
386 return LI
->getLoopDepth(LV
->getParent()) <
387 LI
->getLoopDepth(RV
->getParent());
390 if (LV
->getOpcode() != RV
->getOpcode())
391 return LV
->getOpcode() < RV
->getOpcode();
393 // Compare the number of operands.
394 if (LV
->getNumOperands() != RV
->getNumOperands())
395 return LV
->getNumOperands() < RV
->getNumOperands();
401 // Compare constant values.
402 if (const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(LHS
)) {
403 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
404 if (LC
->getValue()->getBitWidth() != RC
->getValue()->getBitWidth())
405 return LC
->getValue()->getBitWidth() < RC
->getValue()->getBitWidth();
406 return LC
->getValue()->getValue().ult(RC
->getValue()->getValue());
409 // Compare addrec loop depths.
410 if (const SCEVAddRecExpr
*LA
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
411 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
412 if (LA
->getLoop()->getLoopDepth() != RA
->getLoop()->getLoopDepth())
413 return LA
->getLoop()->getLoopDepth() < RA
->getLoop()->getLoopDepth();
416 // Lexicographically compare n-ary expressions.
417 if (const SCEVNAryExpr
*LC
= dyn_cast
<SCEVNAryExpr
>(LHS
)) {
418 const SCEVNAryExpr
*RC
= cast
<SCEVNAryExpr
>(RHS
);
419 for (unsigned i
= 0, e
= LC
->getNumOperands(); i
!= e
; ++i
) {
420 if (i
>= RC
->getNumOperands())
422 if (operator()(LC
->getOperand(i
), RC
->getOperand(i
)))
424 if (operator()(RC
->getOperand(i
), LC
->getOperand(i
)))
427 return LC
->getNumOperands() < RC
->getNumOperands();
430 // Lexicographically compare udiv expressions.
431 if (const SCEVUDivExpr
*LC
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
432 const SCEVUDivExpr
*RC
= cast
<SCEVUDivExpr
>(RHS
);
433 if (operator()(LC
->getLHS(), RC
->getLHS()))
435 if (operator()(RC
->getLHS(), LC
->getLHS()))
437 if (operator()(LC
->getRHS(), RC
->getRHS()))
439 if (operator()(RC
->getRHS(), LC
->getRHS()))
444 // Compare cast expressions by operand.
445 if (const SCEVCastExpr
*LC
= dyn_cast
<SCEVCastExpr
>(LHS
)) {
446 const SCEVCastExpr
*RC
= cast
<SCEVCastExpr
>(RHS
);
447 return operator()(LC
->getOperand(), RC
->getOperand());
450 llvm_unreachable("Unknown SCEV kind!");
456 /// GroupByComplexity - Given a list of SCEV objects, order them by their
457 /// complexity, and group objects of the same complexity together by value.
458 /// When this routine is finished, we know that any duplicates in the vector are
459 /// consecutive and that complexity is monotonically increasing.
461 /// Note that we go take special precautions to ensure that we get determinstic
462 /// results from this routine. In other words, we don't want the results of
463 /// this to depend on where the addresses of various SCEV objects happened to
466 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
468 if (Ops
.size() < 2) return; // Noop
469 if (Ops
.size() == 2) {
470 // This is the common case, which also happens to be trivially simple.
472 if (SCEVComplexityCompare(LI
)(Ops
[1], Ops
[0]))
473 std::swap(Ops
[0], Ops
[1]);
477 // Do the rough sort by complexity.
478 std::stable_sort(Ops
.begin(), Ops
.end(), SCEVComplexityCompare(LI
));
480 // Now that we are sorted by complexity, group elements of the same
481 // complexity. Note that this is, at worst, N^2, but the vector is likely to
482 // be extremely short in practice. Note that we take this approach because we
483 // do not want to depend on the addresses of the objects we are grouping.
484 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
485 const SCEV
*S
= Ops
[i
];
486 unsigned Complexity
= S
->getSCEVType();
488 // If there are any objects of the same complexity and same value as this
490 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
491 if (Ops
[j
] == S
) { // Found a duplicate.
492 // Move it to immediately after i'th element.
493 std::swap(Ops
[i
+1], Ops
[j
]);
494 ++i
; // no need to rescan it.
495 if (i
== e
-2) return; // Done!
503 //===----------------------------------------------------------------------===//
504 // Simple SCEV method implementations
505 //===----------------------------------------------------------------------===//
507 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
509 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
511 const Type
* ResultTy
) {
512 // Handle the simplest case efficiently.
514 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
516 // We are using the following formula for BC(It, K):
518 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
520 // Suppose, W is the bitwidth of the return value. We must be prepared for
521 // overflow. Hence, we must assure that the result of our computation is
522 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
523 // safe in modular arithmetic.
525 // However, this code doesn't use exactly that formula; the formula it uses
526 // is something like the following, where T is the number of factors of 2 in
527 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
530 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
532 // This formula is trivially equivalent to the previous formula. However,
533 // this formula can be implemented much more efficiently. The trick is that
534 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
535 // arithmetic. To do exact division in modular arithmetic, all we have
536 // to do is multiply by the inverse. Therefore, this step can be done at
539 // The next issue is how to safely do the division by 2^T. The way this
540 // is done is by doing the multiplication step at a width of at least W + T
541 // bits. This way, the bottom W+T bits of the product are accurate. Then,
542 // when we perform the division by 2^T (which is equivalent to a right shift
543 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
544 // truncated out after the division by 2^T.
546 // In comparison to just directly using the first formula, this technique
547 // is much more efficient; using the first formula requires W * K bits,
548 // but this formula less than W + K bits. Also, the first formula requires
549 // a division step, whereas this formula only requires multiplies and shifts.
551 // It doesn't matter whether the subtraction step is done in the calculation
552 // width or the input iteration count's width; if the subtraction overflows,
553 // the result must be zero anyway. We prefer here to do it in the width of
554 // the induction variable because it helps a lot for certain cases; CodeGen
555 // isn't smart enough to ignore the overflow, which leads to much less
556 // efficient code if the width of the subtraction is wider than the native
559 // (It's possible to not widen at all by pulling out factors of 2 before
560 // the multiplication; for example, K=2 can be calculated as
561 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
562 // extra arithmetic, so it's not an obvious win, and it gets
563 // much more complicated for K > 3.)
565 // Protection from insane SCEVs; this bound is conservative,
566 // but it probably doesn't matter.
568 return SE
.getCouldNotCompute();
570 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
572 // Calculate K! / 2^T and T; we divide out the factors of two before
573 // multiplying for calculating K! / 2^T to avoid overflow.
574 // Other overflow doesn't matter because we only care about the bottom
575 // W bits of the result.
576 APInt
OddFactorial(W
, 1);
578 for (unsigned i
= 3; i
<= K
; ++i
) {
580 unsigned TwoFactors
= Mult
.countTrailingZeros();
582 Mult
= Mult
.lshr(TwoFactors
);
583 OddFactorial
*= Mult
;
586 // We need at least W + T bits for the multiplication step
587 unsigned CalculationBits
= W
+ T
;
589 // Calcuate 2^T, at width T+W.
590 APInt DivFactor
= APInt(CalculationBits
, 1).shl(T
);
592 // Calculate the multiplicative inverse of K! / 2^T;
593 // this multiplication factor will perform the exact division by
595 APInt Mod
= APInt::getSignedMinValue(W
+1);
596 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
597 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
598 MultiplyFactor
= MultiplyFactor
.trunc(W
);
600 // Calculate the product, at width T+W
601 const IntegerType
*CalculationTy
= IntegerType::get(CalculationBits
);
602 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
603 for (unsigned i
= 1; i
!= K
; ++i
) {
604 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getIntegerSCEV(i
, It
->getType()));
605 Dividend
= SE
.getMulExpr(Dividend
,
606 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
610 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
612 // Truncate the result, and divide by K! / 2^T.
614 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
615 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
618 /// evaluateAtIteration - Return the value of this chain of recurrences at
619 /// the specified iteration number. We can evaluate this recurrence by
620 /// multiplying each element in the chain by the binomial coefficient
621 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
623 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
625 /// where BC(It, k) stands for binomial coefficient.
627 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
628 ScalarEvolution
&SE
) const {
629 const SCEV
*Result
= getStart();
630 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
631 // The computation is correct in the face of overflow provided that the
632 // multiplication is performed _after_ the evaluation of the binomial
634 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
635 if (isa
<SCEVCouldNotCompute
>(Coeff
))
638 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
643 //===----------------------------------------------------------------------===//
644 // SCEV Expression folder implementations
645 //===----------------------------------------------------------------------===//
647 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
,
649 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
650 "This is not a truncating conversion!");
651 assert(isSCEVable(Ty
) &&
652 "This is not a conversion to a SCEVable type!");
653 Ty
= getEffectiveSCEVType(Ty
);
656 ID
.AddInteger(scTruncate
);
660 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
662 // Fold if the operand is constant.
663 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
665 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
667 // trunc(trunc(x)) --> trunc(x)
668 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
669 return getTruncateExpr(ST
->getOperand(), Ty
);
671 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
672 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
673 return getTruncateOrSignExtend(SS
->getOperand(), Ty
);
675 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
676 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
677 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
);
679 // If the input value is a chrec scev, truncate the chrec's operands.
680 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
681 SmallVector
<const SCEV
*, 4> Operands
;
682 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
683 Operands
.push_back(getTruncateExpr(AddRec
->getOperand(i
), Ty
));
684 return getAddRecExpr(Operands
, AddRec
->getLoop());
687 // The cast wasn't folded; create an explicit cast node.
688 // Recompute the insert position, as it may have been invalidated.
689 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
690 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVTruncateExpr
>();
691 new (S
) SCEVTruncateExpr(ID
, Op
, Ty
);
692 UniqueSCEVs
.InsertNode(S
, IP
);
696 const SCEV
*ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
,
698 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
699 "This is not an extending conversion!");
700 assert(isSCEVable(Ty
) &&
701 "This is not a conversion to a SCEVable type!");
702 Ty
= getEffectiveSCEVType(Ty
);
704 // Fold if the operand is constant.
705 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
706 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
707 Constant
*C
= ConstantExpr::getZExt(SC
->getValue(), IntTy
);
708 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
709 return getConstant(cast
<ConstantInt
>(C
));
712 // zext(zext(x)) --> zext(x)
713 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
714 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
716 // Before doing any expensive analysis, check to see if we've already
717 // computed a SCEV for this Op and Ty.
719 ID
.AddInteger(scZeroExtend
);
723 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
725 // If the input value is a chrec scev, and we can prove that the value
726 // did not overflow the old, smaller, value, we can zero extend all of the
727 // operands (often constants). This allows analysis of something like
728 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
729 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
730 if (AR
->isAffine()) {
731 const SCEV
*Start
= AR
->getStart();
732 const SCEV
*Step
= AR
->getStepRecurrence(*this);
733 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
734 const Loop
*L
= AR
->getLoop();
736 // If we have special knowledge that this addrec won't overflow,
737 // we don't need to do any further analysis.
738 if (AR
->hasNoUnsignedOverflow())
739 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
740 getZeroExtendExpr(Step
, Ty
),
743 // Check whether the backedge-taken count is SCEVCouldNotCompute.
744 // Note that this serves two purposes: It filters out loops that are
745 // simply not analyzable, and it covers the case where this code is
746 // being called from within backedge-taken count analysis, such that
747 // attempting to ask for the backedge-taken count would likely result
748 // in infinite recursion. In the later case, the analysis code will
749 // cope with a conservative value, and it will take care to purge
750 // that value once it has finished.
751 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
752 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
753 // Manually compute the final value for AR, checking for
756 // Check whether the backedge-taken count can be losslessly casted to
757 // the addrec's type. The count is always unsigned.
758 const SCEV
*CastedMaxBECount
=
759 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
760 const SCEV
*RecastedMaxBECount
=
761 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
762 if (MaxBECount
== RecastedMaxBECount
) {
763 const Type
*WideTy
= IntegerType::get(BitWidth
* 2);
764 // Check whether Start+Step*MaxBECount has no unsigned overflow.
766 getMulExpr(CastedMaxBECount
,
767 getTruncateOrZeroExtend(Step
, Start
->getType()));
768 const SCEV
*Add
= getAddExpr(Start
, ZMul
);
769 const SCEV
*OperandExtendedAdd
=
770 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
771 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
772 getZeroExtendExpr(Step
, WideTy
)));
773 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
774 // Return the expression with the addrec on the outside.
775 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
776 getZeroExtendExpr(Step
, Ty
),
779 // Similar to above, only this time treat the step value as signed.
780 // This covers loops that count down.
782 getMulExpr(CastedMaxBECount
,
783 getTruncateOrSignExtend(Step
, Start
->getType()));
784 Add
= getAddExpr(Start
, SMul
);
786 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
787 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
788 getSignExtendExpr(Step
, WideTy
)));
789 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
790 // Return the expression with the addrec on the outside.
791 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
792 getSignExtendExpr(Step
, Ty
),
796 // If the backedge is guarded by a comparison with the pre-inc value
797 // the addrec is safe. Also, if the entry is guarded by a comparison
798 // with the start value and the backedge is guarded by a comparison
799 // with the post-inc value, the addrec is safe.
800 if (isKnownPositive(Step
)) {
801 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
802 getUnsignedRange(Step
).getUnsignedMax());
803 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
804 (isLoopGuardedByCond(L
, ICmpInst::ICMP_ULT
, Start
, N
) &&
805 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
,
806 AR
->getPostIncExpr(*this), N
)))
807 // Return the expression with the addrec on the outside.
808 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
809 getZeroExtendExpr(Step
, Ty
),
811 } else if (isKnownNegative(Step
)) {
812 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
813 getSignedRange(Step
).getSignedMin());
814 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) &&
815 (isLoopGuardedByCond(L
, ICmpInst::ICMP_UGT
, Start
, N
) ||
816 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
,
817 AR
->getPostIncExpr(*this), N
)))
818 // Return the expression with the addrec on the outside.
819 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
820 getSignExtendExpr(Step
, Ty
),
826 // The cast wasn't folded; create an explicit cast node.
827 // Recompute the insert position, as it may have been invalidated.
828 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
829 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVZeroExtendExpr
>();
830 new (S
) SCEVZeroExtendExpr(ID
, Op
, Ty
);
831 UniqueSCEVs
.InsertNode(S
, IP
);
835 const SCEV
*ScalarEvolution::getSignExtendExpr(const SCEV
*Op
,
837 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
838 "This is not an extending conversion!");
839 assert(isSCEVable(Ty
) &&
840 "This is not a conversion to a SCEVable type!");
841 Ty
= getEffectiveSCEVType(Ty
);
843 // Fold if the operand is constant.
844 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
845 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
846 Constant
*C
= ConstantExpr::getSExt(SC
->getValue(), IntTy
);
847 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
848 return getConstant(cast
<ConstantInt
>(C
));
851 // sext(sext(x)) --> sext(x)
852 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
853 return getSignExtendExpr(SS
->getOperand(), Ty
);
855 // Before doing any expensive analysis, check to see if we've already
856 // computed a SCEV for this Op and Ty.
858 ID
.AddInteger(scSignExtend
);
862 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
864 // If the input value is a chrec scev, and we can prove that the value
865 // did not overflow the old, smaller, value, we can sign extend all of the
866 // operands (often constants). This allows analysis of something like
867 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
868 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
869 if (AR
->isAffine()) {
870 const SCEV
*Start
= AR
->getStart();
871 const SCEV
*Step
= AR
->getStepRecurrence(*this);
872 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
873 const Loop
*L
= AR
->getLoop();
875 // If we have special knowledge that this addrec won't overflow,
876 // we don't need to do any further analysis.
877 if (AR
->hasNoSignedOverflow())
878 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
879 getSignExtendExpr(Step
, Ty
),
882 // Check whether the backedge-taken count is SCEVCouldNotCompute.
883 // Note that this serves two purposes: It filters out loops that are
884 // simply not analyzable, and it covers the case where this code is
885 // being called from within backedge-taken count analysis, such that
886 // attempting to ask for the backedge-taken count would likely result
887 // in infinite recursion. In the later case, the analysis code will
888 // cope with a conservative value, and it will take care to purge
889 // that value once it has finished.
890 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
891 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
892 // Manually compute the final value for AR, checking for
895 // Check whether the backedge-taken count can be losslessly casted to
896 // the addrec's type. The count is always unsigned.
897 const SCEV
*CastedMaxBECount
=
898 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
899 const SCEV
*RecastedMaxBECount
=
900 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
901 if (MaxBECount
== RecastedMaxBECount
) {
902 const Type
*WideTy
= IntegerType::get(BitWidth
* 2);
903 // Check whether Start+Step*MaxBECount has no signed overflow.
905 getMulExpr(CastedMaxBECount
,
906 getTruncateOrSignExtend(Step
, Start
->getType()));
907 const SCEV
*Add
= getAddExpr(Start
, SMul
);
908 const SCEV
*OperandExtendedAdd
=
909 getAddExpr(getSignExtendExpr(Start
, WideTy
),
910 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
911 getSignExtendExpr(Step
, WideTy
)));
912 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
913 // Return the expression with the addrec on the outside.
914 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
915 getSignExtendExpr(Step
, Ty
),
918 // Similar to above, only this time treat the step value as unsigned.
919 // This covers loops that count up with an unsigned step.
921 getMulExpr(CastedMaxBECount
,
922 getTruncateOrZeroExtend(Step
, Start
->getType()));
923 Add
= getAddExpr(Start
, UMul
);
925 getAddExpr(getSignExtendExpr(Start
, WideTy
),
926 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
927 getZeroExtendExpr(Step
, WideTy
)));
928 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
929 // Return the expression with the addrec on the outside.
930 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
931 getZeroExtendExpr(Step
, Ty
),
935 // If the backedge is guarded by a comparison with the pre-inc value
936 // the addrec is safe. Also, if the entry is guarded by a comparison
937 // with the start value and the backedge is guarded by a comparison
938 // with the post-inc value, the addrec is safe.
939 if (isKnownPositive(Step
)) {
940 const SCEV
*N
= getConstant(APInt::getSignedMinValue(BitWidth
) -
941 getSignedRange(Step
).getSignedMax());
942 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SLT
, AR
, N
) ||
943 (isLoopGuardedByCond(L
, ICmpInst::ICMP_SLT
, Start
, N
) &&
944 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SLT
,
945 AR
->getPostIncExpr(*this), N
)))
946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
948 getSignExtendExpr(Step
, Ty
),
950 } else if (isKnownNegative(Step
)) {
951 const SCEV
*N
= getConstant(APInt::getSignedMaxValue(BitWidth
) -
952 getSignedRange(Step
).getSignedMin());
953 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SGT
, AR
, N
) ||
954 (isLoopGuardedByCond(L
, ICmpInst::ICMP_SGT
, Start
, N
) &&
955 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SGT
,
956 AR
->getPostIncExpr(*this), N
)))
957 // Return the expression with the addrec on the outside.
958 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
959 getSignExtendExpr(Step
, Ty
),
965 // The cast wasn't folded; create an explicit cast node.
966 // Recompute the insert position, as it may have been invalidated.
967 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
968 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVSignExtendExpr
>();
969 new (S
) SCEVSignExtendExpr(ID
, Op
, Ty
);
970 UniqueSCEVs
.InsertNode(S
, IP
);
974 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
975 /// unspecified bits out to the given type.
977 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
979 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
980 "This is not an extending conversion!");
981 assert(isSCEVable(Ty
) &&
982 "This is not a conversion to a SCEVable type!");
983 Ty
= getEffectiveSCEVType(Ty
);
985 // Sign-extend negative constants.
986 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
987 if (SC
->getValue()->getValue().isNegative())
988 return getSignExtendExpr(Op
, Ty
);
990 // Peel off a truncate cast.
991 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
992 const SCEV
*NewOp
= T
->getOperand();
993 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
994 return getAnyExtendExpr(NewOp
, Ty
);
995 return getTruncateOrNoop(NewOp
, Ty
);
998 // Next try a zext cast. If the cast is folded, use it.
999 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
1000 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
1003 // Next try a sext cast. If the cast is folded, use it.
1004 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
1005 if (!isa
<SCEVSignExtendExpr
>(SExt
))
1008 // If the expression is obviously signed, use the sext cast value.
1009 if (isa
<SCEVSMaxExpr
>(Op
))
1012 // Absent any other information, use the zext cast value.
1016 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1017 /// a list of operands to be added under the given scale, update the given
1018 /// map. This is a helper function for getAddRecExpr. As an example of
1019 /// what it does, given a sequence of operands that would form an add
1020 /// expression like this:
1022 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1024 /// where A and B are constants, update the map with these values:
1026 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1028 /// and add 13 + A*B*29 to AccumulatedConstant.
1029 /// This will allow getAddRecExpr to produce this:
1031 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1033 /// This form often exposes folding opportunities that are hidden in
1034 /// the original operand list.
1036 /// Return true iff it appears that any interesting folding opportunities
1037 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1038 /// the common case where no interesting opportunities are present, and
1039 /// is also used as a check to avoid infinite recursion.
1042 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
1043 SmallVector
<const SCEV
*, 8> &NewOps
,
1044 APInt
&AccumulatedConstant
,
1045 const SmallVectorImpl
<const SCEV
*> &Ops
,
1047 ScalarEvolution
&SE
) {
1048 bool Interesting
= false;
1050 // Iterate over the add operands.
1051 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1052 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
1053 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
1055 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getValue()->getValue();
1056 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
1057 // A multiplication of a constant with another add; recurse.
1059 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1060 cast
<SCEVAddExpr
>(Mul
->getOperand(1))
1064 // A multiplication of a constant with some other value. Update
1066 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin()+1, Mul
->op_end());
1067 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
1068 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1069 M
.insert(std::make_pair(Key
, NewScale
));
1071 NewOps
.push_back(Pair
.first
->first
);
1073 Pair
.first
->second
+= NewScale
;
1074 // The map already had an entry for this value, which may indicate
1075 // a folding opportunity.
1079 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1080 // Pull a buried constant out to the outside.
1081 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->isZero())
1083 AccumulatedConstant
+= Scale
* C
->getValue()->getValue();
1085 // An ordinary operand. Update the map.
1086 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1087 M
.insert(std::make_pair(Ops
[i
], Scale
));
1089 NewOps
.push_back(Pair
.first
->first
);
1091 Pair
.first
->second
+= Scale
;
1092 // The map already had an entry for this value, which may indicate
1093 // a folding opportunity.
1103 struct APIntCompare
{
1104 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
1105 return LHS
.ult(RHS
);
1110 /// getAddExpr - Get a canonical add expression, or something simpler if
1112 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1113 assert(!Ops
.empty() && "Cannot get empty add!");
1114 if (Ops
.size() == 1) return Ops
[0];
1116 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1117 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1118 getEffectiveSCEVType(Ops
[0]->getType()) &&
1119 "SCEVAddExpr operand types don't match!");
1122 // Sort by complexity, this groups all similar expression types together.
1123 GroupByComplexity(Ops
, LI
);
1125 // If there are any constants, fold them together.
1127 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1129 assert(Idx
< Ops
.size());
1130 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1131 // We found two constants, fold them together!
1132 Ops
[0] = getConstant(LHSC
->getValue()->getValue() +
1133 RHSC
->getValue()->getValue());
1134 if (Ops
.size() == 2) return Ops
[0];
1135 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1136 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1139 // If we are left with a constant zero being added, strip it off.
1140 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1141 Ops
.erase(Ops
.begin());
1146 if (Ops
.size() == 1) return Ops
[0];
1148 // Okay, check to see if the same value occurs in the operand list twice. If
1149 // so, merge them together into an multiply expression. Since we sorted the
1150 // list, these values are required to be adjacent.
1151 const Type
*Ty
= Ops
[0]->getType();
1152 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1153 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
1154 // Found a match, merge the two values into a multiply, and add any
1155 // remaining values to the result.
1156 const SCEV
*Two
= getIntegerSCEV(2, Ty
);
1157 const SCEV
*Mul
= getMulExpr(Ops
[i
], Two
);
1158 if (Ops
.size() == 2)
1160 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
1162 return getAddExpr(Ops
);
1165 // Check for truncates. If all the operands are truncated from the same
1166 // type, see if factoring out the truncate would permit the result to be
1167 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1168 // if the contents of the resulting outer trunc fold to something simple.
1169 for (; Idx
< Ops
.size() && isa
<SCEVTruncateExpr
>(Ops
[Idx
]); ++Idx
) {
1170 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(Ops
[Idx
]);
1171 const Type
*DstType
= Trunc
->getType();
1172 const Type
*SrcType
= Trunc
->getOperand()->getType();
1173 SmallVector
<const SCEV
*, 8> LargeOps
;
1175 // Check all the operands to see if they can be represented in the
1176 // source type of the truncate.
1177 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1178 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
1179 if (T
->getOperand()->getType() != SrcType
) {
1183 LargeOps
.push_back(T
->getOperand());
1184 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1185 // This could be either sign or zero extension, but sign extension
1186 // is much more likely to be foldable here.
1187 LargeOps
.push_back(getSignExtendExpr(C
, SrcType
));
1188 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
1189 SmallVector
<const SCEV
*, 8> LargeMulOps
;
1190 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
1191 if (const SCEVTruncateExpr
*T
=
1192 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
1193 if (T
->getOperand()->getType() != SrcType
) {
1197 LargeMulOps
.push_back(T
->getOperand());
1198 } else if (const SCEVConstant
*C
=
1199 dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
1200 // This could be either sign or zero extension, but sign extension
1201 // is much more likely to be foldable here.
1202 LargeMulOps
.push_back(getSignExtendExpr(C
, SrcType
));
1209 LargeOps
.push_back(getMulExpr(LargeMulOps
));
1216 // Evaluate the expression in the larger type.
1217 const SCEV
*Fold
= getAddExpr(LargeOps
);
1218 // If it folds to something simple, use it. Otherwise, don't.
1219 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
1220 return getTruncateExpr(Fold
, DstType
);
1224 // Skip past any other cast SCEVs.
1225 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
1228 // If there are add operands they would be next.
1229 if (Idx
< Ops
.size()) {
1230 bool DeletedAdd
= false;
1231 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
1232 // If we have an add, expand the add operands onto the end of the operands
1234 Ops
.insert(Ops
.end(), Add
->op_begin(), Add
->op_end());
1235 Ops
.erase(Ops
.begin()+Idx
);
1239 // If we deleted at least one add, we added operands to the end of the list,
1240 // and they are not necessarily sorted. Recurse to resort and resimplify
1241 // any operands we just aquired.
1243 return getAddExpr(Ops
);
1246 // Skip over the add expression until we get to a multiply.
1247 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1250 // Check to see if there are any folding opportunities present with
1251 // operands multiplied by constant values.
1252 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
1253 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
1254 DenseMap
<const SCEV
*, APInt
> M
;
1255 SmallVector
<const SCEV
*, 8> NewOps
;
1256 APInt
AccumulatedConstant(BitWidth
, 0);
1257 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1258 Ops
, APInt(BitWidth
, 1), *this)) {
1259 // Some interesting folding opportunity is present, so its worthwhile to
1260 // re-generate the operands list. Group the operands by constant scale,
1261 // to avoid multiplying by the same constant scale multiple times.
1262 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
1263 for (SmallVector
<const SCEV
*, 8>::iterator I
= NewOps
.begin(),
1264 E
= NewOps
.end(); I
!= E
; ++I
)
1265 MulOpLists
[M
.find(*I
)->second
].push_back(*I
);
1266 // Re-generate the operands list.
1268 if (AccumulatedConstant
!= 0)
1269 Ops
.push_back(getConstant(AccumulatedConstant
));
1270 for (std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
>::iterator
1271 I
= MulOpLists
.begin(), E
= MulOpLists
.end(); I
!= E
; ++I
)
1273 Ops
.push_back(getMulExpr(getConstant(I
->first
),
1274 getAddExpr(I
->second
)));
1276 return getIntegerSCEV(0, Ty
);
1277 if (Ops
.size() == 1)
1279 return getAddExpr(Ops
);
1283 // If we are adding something to a multiply expression, make sure the
1284 // something is not already an operand of the multiply. If so, merge it into
1286 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
1287 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
1288 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
1289 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
1290 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
1291 if (MulOpSCEV
== Ops
[AddOp
] && !isa
<SCEVConstant
>(Ops
[AddOp
])) {
1292 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1293 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
1294 if (Mul
->getNumOperands() != 2) {
1295 // If the multiply has more than two operands, we must get the
1297 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(), Mul
->op_end());
1298 MulOps
.erase(MulOps
.begin()+MulOp
);
1299 InnerMul
= getMulExpr(MulOps
);
1301 const SCEV
*One
= getIntegerSCEV(1, Ty
);
1302 const SCEV
*AddOne
= getAddExpr(InnerMul
, One
);
1303 const SCEV
*OuterMul
= getMulExpr(AddOne
, Ops
[AddOp
]);
1304 if (Ops
.size() == 2) return OuterMul
;
1306 Ops
.erase(Ops
.begin()+AddOp
);
1307 Ops
.erase(Ops
.begin()+Idx
-1);
1309 Ops
.erase(Ops
.begin()+Idx
);
1310 Ops
.erase(Ops
.begin()+AddOp
-1);
1312 Ops
.push_back(OuterMul
);
1313 return getAddExpr(Ops
);
1316 // Check this multiply against other multiplies being added together.
1317 for (unsigned OtherMulIdx
= Idx
+1;
1318 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1320 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1321 // If MulOp occurs in OtherMul, we can fold the two multiplies
1323 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
1324 OMulOp
!= e
; ++OMulOp
)
1325 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
1326 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1327 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
1328 if (Mul
->getNumOperands() != 2) {
1329 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
1331 MulOps
.erase(MulOps
.begin()+MulOp
);
1332 InnerMul1
= getMulExpr(MulOps
);
1334 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
1335 if (OtherMul
->getNumOperands() != 2) {
1336 SmallVector
<const SCEV
*, 4> MulOps(OtherMul
->op_begin(),
1337 OtherMul
->op_end());
1338 MulOps
.erase(MulOps
.begin()+OMulOp
);
1339 InnerMul2
= getMulExpr(MulOps
);
1341 const SCEV
*InnerMulSum
= getAddExpr(InnerMul1
,InnerMul2
);
1342 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
);
1343 if (Ops
.size() == 2) return OuterMul
;
1344 Ops
.erase(Ops
.begin()+Idx
);
1345 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
1346 Ops
.push_back(OuterMul
);
1347 return getAddExpr(Ops
);
1353 // If there are any add recurrences in the operands list, see if any other
1354 // added values are loop invariant. If so, we can fold them into the
1356 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1359 // Scan over all recurrences, trying to fold loop invariants into them.
1360 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1361 // Scan all of the other operands to this add and add them to the vector if
1362 // they are loop invariant w.r.t. the recurrence.
1363 SmallVector
<const SCEV
*, 8> LIOps
;
1364 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1365 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1366 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1367 LIOps
.push_back(Ops
[i
]);
1368 Ops
.erase(Ops
.begin()+i
);
1372 // If we found some loop invariants, fold them into the recurrence.
1373 if (!LIOps
.empty()) {
1374 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1375 LIOps
.push_back(AddRec
->getStart());
1377 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
1379 AddRecOps
[0] = getAddExpr(LIOps
);
1381 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop());
1382 // If all of the other operands were loop invariant, we are done.
1383 if (Ops
.size() == 1) return NewRec
;
1385 // Otherwise, add the folded AddRec by the non-liv parts.
1386 for (unsigned i
= 0;; ++i
)
1387 if (Ops
[i
] == AddRec
) {
1391 return getAddExpr(Ops
);
1394 // Okay, if there weren't any loop invariants to be folded, check to see if
1395 // there are multiple AddRec's with the same loop induction variable being
1396 // added together. If so, we can fold them.
1397 for (unsigned OtherIdx
= Idx
+1;
1398 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1399 if (OtherIdx
!= Idx
) {
1400 const SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1401 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1402 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1403 SmallVector
<const SCEV
*, 4> NewOps(AddRec
->op_begin(),
1405 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands(); i
!= e
; ++i
) {
1406 if (i
>= NewOps
.size()) {
1407 NewOps
.insert(NewOps
.end(), OtherAddRec
->op_begin()+i
,
1408 OtherAddRec
->op_end());
1411 NewOps
[i
] = getAddExpr(NewOps
[i
], OtherAddRec
->getOperand(i
));
1413 const SCEV
*NewAddRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1415 if (Ops
.size() == 2) return NewAddRec
;
1417 Ops
.erase(Ops
.begin()+Idx
);
1418 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1419 Ops
.push_back(NewAddRec
);
1420 return getAddExpr(Ops
);
1424 // Otherwise couldn't fold anything into this recurrence. Move onto the
1428 // Okay, it looks like we really DO need an add expr. Check to see if we
1429 // already have one, otherwise create a new one.
1430 FoldingSetNodeID ID
;
1431 ID
.AddInteger(scAddExpr
);
1432 ID
.AddInteger(Ops
.size());
1433 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1434 ID
.AddPointer(Ops
[i
]);
1436 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1437 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAddExpr
>();
1438 new (S
) SCEVAddExpr(ID
, Ops
);
1439 UniqueSCEVs
.InsertNode(S
, IP
);
1444 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1446 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1447 assert(!Ops
.empty() && "Cannot get empty mul!");
1449 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1450 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1451 getEffectiveSCEVType(Ops
[0]->getType()) &&
1452 "SCEVMulExpr operand types don't match!");
1455 // Sort by complexity, this groups all similar expression types together.
1456 GroupByComplexity(Ops
, LI
);
1458 // If there are any constants, fold them together.
1460 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1462 // C1*(C2+V) -> C1*C2 + C1*V
1463 if (Ops
.size() == 2)
1464 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
1465 if (Add
->getNumOperands() == 2 &&
1466 isa
<SCEVConstant
>(Add
->getOperand(0)))
1467 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0)),
1468 getMulExpr(LHSC
, Add
->getOperand(1)));
1472 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1473 // We found two constants, fold them together!
1474 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1475 LHSC
->getValue()->getValue() *
1476 RHSC
->getValue()->getValue());
1477 Ops
[0] = getConstant(Fold
);
1478 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1479 if (Ops
.size() == 1) return Ops
[0];
1480 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1483 // If we are left with a constant one being multiplied, strip it off.
1484 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->equalsInt(1)) {
1485 Ops
.erase(Ops
.begin());
1487 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1488 // If we have a multiply of zero, it will always be zero.
1493 // Skip over the add expression until we get to a multiply.
1494 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1497 if (Ops
.size() == 1)
1500 // If there are mul operands inline them all into this expression.
1501 if (Idx
< Ops
.size()) {
1502 bool DeletedMul
= false;
1503 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
1504 // If we have an mul, expand the mul operands onto the end of the operands
1506 Ops
.insert(Ops
.end(), Mul
->op_begin(), Mul
->op_end());
1507 Ops
.erase(Ops
.begin()+Idx
);
1511 // If we deleted at least one mul, we added operands to the end of the list,
1512 // and they are not necessarily sorted. Recurse to resort and resimplify
1513 // any operands we just aquired.
1515 return getMulExpr(Ops
);
1518 // If there are any add recurrences in the operands list, see if any other
1519 // added values are loop invariant. If so, we can fold them into the
1521 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1524 // Scan over all recurrences, trying to fold loop invariants into them.
1525 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1526 // Scan all of the other operands to this mul and add them to the vector if
1527 // they are loop invariant w.r.t. the recurrence.
1528 SmallVector
<const SCEV
*, 8> LIOps
;
1529 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1530 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1531 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1532 LIOps
.push_back(Ops
[i
]);
1533 Ops
.erase(Ops
.begin()+i
);
1537 // If we found some loop invariants, fold them into the recurrence.
1538 if (!LIOps
.empty()) {
1539 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1540 SmallVector
<const SCEV
*, 4> NewOps
;
1541 NewOps
.reserve(AddRec
->getNumOperands());
1542 if (LIOps
.size() == 1) {
1543 const SCEV
*Scale
= LIOps
[0];
1544 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
1545 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
)));
1547 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
1548 SmallVector
<const SCEV
*, 4> MulOps(LIOps
.begin(), LIOps
.end());
1549 MulOps
.push_back(AddRec
->getOperand(i
));
1550 NewOps
.push_back(getMulExpr(MulOps
));
1554 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1556 // If all of the other operands were loop invariant, we are done.
1557 if (Ops
.size() == 1) return NewRec
;
1559 // Otherwise, multiply the folded AddRec by the non-liv parts.
1560 for (unsigned i
= 0;; ++i
)
1561 if (Ops
[i
] == AddRec
) {
1565 return getMulExpr(Ops
);
1568 // Okay, if there weren't any loop invariants to be folded, check to see if
1569 // there are multiple AddRec's with the same loop induction variable being
1570 // multiplied together. If so, we can fold them.
1571 for (unsigned OtherIdx
= Idx
+1;
1572 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1573 if (OtherIdx
!= Idx
) {
1574 const SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1575 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1576 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1577 const SCEVAddRecExpr
*F
= AddRec
, *G
= OtherAddRec
;
1578 const SCEV
*NewStart
= getMulExpr(F
->getStart(),
1580 const SCEV
*B
= F
->getStepRecurrence(*this);
1581 const SCEV
*D
= G
->getStepRecurrence(*this);
1582 const SCEV
*NewStep
= getAddExpr(getMulExpr(F
, D
),
1585 const SCEV
*NewAddRec
= getAddRecExpr(NewStart
, NewStep
,
1587 if (Ops
.size() == 2) return NewAddRec
;
1589 Ops
.erase(Ops
.begin()+Idx
);
1590 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1591 Ops
.push_back(NewAddRec
);
1592 return getMulExpr(Ops
);
1596 // Otherwise couldn't fold anything into this recurrence. Move onto the
1600 // Okay, it looks like we really DO need an mul expr. Check to see if we
1601 // already have one, otherwise create a new one.
1602 FoldingSetNodeID ID
;
1603 ID
.AddInteger(scMulExpr
);
1604 ID
.AddInteger(Ops
.size());
1605 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1606 ID
.AddPointer(Ops
[i
]);
1608 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1609 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVMulExpr
>();
1610 new (S
) SCEVMulExpr(ID
, Ops
);
1611 UniqueSCEVs
.InsertNode(S
, IP
);
1615 /// getUDivExpr - Get a canonical multiply expression, or something simpler if
1617 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
1619 assert(getEffectiveSCEVType(LHS
->getType()) ==
1620 getEffectiveSCEVType(RHS
->getType()) &&
1621 "SCEVUDivExpr operand types don't match!");
1623 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
1624 if (RHSC
->getValue()->equalsInt(1))
1625 return LHS
; // X udiv 1 --> x
1627 return getIntegerSCEV(0, LHS
->getType()); // value is undefined
1629 // Determine if the division can be folded into the operands of
1631 // TODO: Generalize this to non-constants by using known-bits information.
1632 const Type
*Ty
= LHS
->getType();
1633 unsigned LZ
= RHSC
->getValue()->getValue().countLeadingZeros();
1634 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
;
1635 // For non-power-of-two values, effectively round the value up to the
1636 // nearest power of two.
1637 if (!RHSC
->getValue()->getValue().isPowerOf2())
1639 const IntegerType
*ExtTy
=
1640 IntegerType::get(getTypeSizeInBits(Ty
) + MaxShiftAmt
);
1641 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1642 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
1643 if (const SCEVConstant
*Step
=
1644 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this)))
1645 if (!Step
->getValue()->getValue()
1646 .urem(RHSC
->getValue()->getValue()) &&
1647 getZeroExtendExpr(AR
, ExtTy
) ==
1648 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
1649 getZeroExtendExpr(Step
, ExtTy
),
1651 SmallVector
<const SCEV
*, 4> Operands
;
1652 for (unsigned i
= 0, e
= AR
->getNumOperands(); i
!= e
; ++i
)
1653 Operands
.push_back(getUDivExpr(AR
->getOperand(i
), RHS
));
1654 return getAddRecExpr(Operands
, AR
->getLoop());
1656 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1657 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
1658 SmallVector
<const SCEV
*, 4> Operands
;
1659 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
)
1660 Operands
.push_back(getZeroExtendExpr(M
->getOperand(i
), ExtTy
));
1661 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
1662 // Find an operand that's safely divisible.
1663 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
1664 const SCEV
*Op
= M
->getOperand(i
);
1665 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
1666 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
1667 const SmallVectorImpl
<const SCEV
*> &MOperands
= M
->getOperands();
1668 Operands
= SmallVector
<const SCEV
*, 4>(MOperands
.begin(),
1671 return getMulExpr(Operands
);
1675 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1676 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
1677 SmallVector
<const SCEV
*, 4> Operands
;
1678 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
)
1679 Operands
.push_back(getZeroExtendExpr(A
->getOperand(i
), ExtTy
));
1680 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
1682 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
1683 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
1684 if (isa
<SCEVUDivExpr
>(Op
) || getMulExpr(Op
, RHS
) != A
->getOperand(i
))
1686 Operands
.push_back(Op
);
1688 if (Operands
.size() == A
->getNumOperands())
1689 return getAddExpr(Operands
);
1693 // Fold if both operands are constant.
1694 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
1695 Constant
*LHSCV
= LHSC
->getValue();
1696 Constant
*RHSCV
= RHSC
->getValue();
1697 return getConstant(cast
<ConstantInt
>(ConstantExpr::getUDiv(LHSCV
,
1702 FoldingSetNodeID ID
;
1703 ID
.AddInteger(scUDivExpr
);
1707 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1708 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUDivExpr
>();
1709 new (S
) SCEVUDivExpr(ID
, LHS
, RHS
);
1710 UniqueSCEVs
.InsertNode(S
, IP
);
1715 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1716 /// Simplify the expression as much as possible.
1717 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
,
1718 const SCEV
*Step
, const Loop
*L
) {
1719 SmallVector
<const SCEV
*, 4> Operands
;
1720 Operands
.push_back(Start
);
1721 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
1722 if (StepChrec
->getLoop() == L
) {
1723 Operands
.insert(Operands
.end(), StepChrec
->op_begin(),
1724 StepChrec
->op_end());
1725 return getAddRecExpr(Operands
, L
);
1728 Operands
.push_back(Step
);
1729 return getAddRecExpr(Operands
, L
);
1732 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1733 /// Simplify the expression as much as possible.
1735 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
1737 if (Operands
.size() == 1) return Operands
[0];
1739 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
1740 assert(getEffectiveSCEVType(Operands
[i
]->getType()) ==
1741 getEffectiveSCEVType(Operands
[0]->getType()) &&
1742 "SCEVAddRecExpr operand types don't match!");
1745 if (Operands
.back()->isZero()) {
1746 Operands
.pop_back();
1747 return getAddRecExpr(Operands
, L
); // {X,+,0} --> X
1750 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1751 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
1752 const Loop
* NestedLoop
= NestedAR
->getLoop();
1753 if (L
->getLoopDepth() < NestedLoop
->getLoopDepth()) {
1754 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->op_begin(),
1755 NestedAR
->op_end());
1756 Operands
[0] = NestedAR
->getStart();
1757 // AddRecs require their operands be loop-invariant with respect to their
1758 // loops. Don't perform this transformation if it would break this
1760 bool AllInvariant
= true;
1761 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
1762 if (!Operands
[i
]->isLoopInvariant(L
)) {
1763 AllInvariant
= false;
1767 NestedOperands
[0] = getAddRecExpr(Operands
, L
);
1768 AllInvariant
= true;
1769 for (unsigned i
= 0, e
= NestedOperands
.size(); i
!= e
; ++i
)
1770 if (!NestedOperands
[i
]->isLoopInvariant(NestedLoop
)) {
1771 AllInvariant
= false;
1775 // Ok, both add recurrences are valid after the transformation.
1776 return getAddRecExpr(NestedOperands
, NestedLoop
);
1778 // Reset Operands to its original state.
1779 Operands
[0] = NestedAR
;
1783 FoldingSetNodeID ID
;
1784 ID
.AddInteger(scAddRecExpr
);
1785 ID
.AddInteger(Operands
.size());
1786 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
1787 ID
.AddPointer(Operands
[i
]);
1790 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1791 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAddRecExpr
>();
1792 new (S
) SCEVAddRecExpr(ID
, Operands
, L
);
1793 UniqueSCEVs
.InsertNode(S
, IP
);
1797 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
,
1799 SmallVector
<const SCEV
*, 2> Ops
;
1802 return getSMaxExpr(Ops
);
1806 ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1807 assert(!Ops
.empty() && "Cannot get empty smax!");
1808 if (Ops
.size() == 1) return Ops
[0];
1810 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1811 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1812 getEffectiveSCEVType(Ops
[0]->getType()) &&
1813 "SCEVSMaxExpr operand types don't match!");
1816 // Sort by complexity, this groups all similar expression types together.
1817 GroupByComplexity(Ops
, LI
);
1819 // If there are any constants, fold them together.
1821 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1823 assert(Idx
< Ops
.size());
1824 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1825 // We found two constants, fold them together!
1826 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1827 APIntOps::smax(LHSC
->getValue()->getValue(),
1828 RHSC
->getValue()->getValue()));
1829 Ops
[0] = getConstant(Fold
);
1830 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1831 if (Ops
.size() == 1) return Ops
[0];
1832 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1835 // If we are left with a constant minimum-int, strip it off.
1836 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(true)) {
1837 Ops
.erase(Ops
.begin());
1839 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(true)) {
1840 // If we have an smax with a constant maximum-int, it will always be
1846 if (Ops
.size() == 1) return Ops
[0];
1848 // Find the first SMax
1849 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scSMaxExpr
)
1852 // Check to see if one of the operands is an SMax. If so, expand its operands
1853 // onto our operand list, and recurse to simplify.
1854 if (Idx
< Ops
.size()) {
1855 bool DeletedSMax
= false;
1856 while (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(Ops
[Idx
])) {
1857 Ops
.insert(Ops
.end(), SMax
->op_begin(), SMax
->op_end());
1858 Ops
.erase(Ops
.begin()+Idx
);
1863 return getSMaxExpr(Ops
);
1866 // Okay, check to see if the same value occurs in the operand list twice. If
1867 // so, delete one. Since we sorted the list, these values are required to
1869 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1870 if (Ops
[i
] == Ops
[i
+1]) { // X smax Y smax Y --> X smax Y
1871 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1875 if (Ops
.size() == 1) return Ops
[0];
1877 assert(!Ops
.empty() && "Reduced smax down to nothing!");
1879 // Okay, it looks like we really DO need an smax expr. Check to see if we
1880 // already have one, otherwise create a new one.
1881 FoldingSetNodeID ID
;
1882 ID
.AddInteger(scSMaxExpr
);
1883 ID
.AddInteger(Ops
.size());
1884 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1885 ID
.AddPointer(Ops
[i
]);
1887 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1888 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVSMaxExpr
>();
1889 new (S
) SCEVSMaxExpr(ID
, Ops
);
1890 UniqueSCEVs
.InsertNode(S
, IP
);
1894 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
,
1896 SmallVector
<const SCEV
*, 2> Ops
;
1899 return getUMaxExpr(Ops
);
1903 ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1904 assert(!Ops
.empty() && "Cannot get empty umax!");
1905 if (Ops
.size() == 1) return Ops
[0];
1907 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1908 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1909 getEffectiveSCEVType(Ops
[0]->getType()) &&
1910 "SCEVUMaxExpr operand types don't match!");
1913 // Sort by complexity, this groups all similar expression types together.
1914 GroupByComplexity(Ops
, LI
);
1916 // If there are any constants, fold them together.
1918 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1920 assert(Idx
< Ops
.size());
1921 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1922 // We found two constants, fold them together!
1923 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1924 APIntOps::umax(LHSC
->getValue()->getValue(),
1925 RHSC
->getValue()->getValue()));
1926 Ops
[0] = getConstant(Fold
);
1927 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1928 if (Ops
.size() == 1) return Ops
[0];
1929 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1932 // If we are left with a constant minimum-int, strip it off.
1933 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(false)) {
1934 Ops
.erase(Ops
.begin());
1936 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(false)) {
1937 // If we have an umax with a constant maximum-int, it will always be
1943 if (Ops
.size() == 1) return Ops
[0];
1945 // Find the first UMax
1946 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scUMaxExpr
)
1949 // Check to see if one of the operands is a UMax. If so, expand its operands
1950 // onto our operand list, and recurse to simplify.
1951 if (Idx
< Ops
.size()) {
1952 bool DeletedUMax
= false;
1953 while (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(Ops
[Idx
])) {
1954 Ops
.insert(Ops
.end(), UMax
->op_begin(), UMax
->op_end());
1955 Ops
.erase(Ops
.begin()+Idx
);
1960 return getUMaxExpr(Ops
);
1963 // Okay, check to see if the same value occurs in the operand list twice. If
1964 // so, delete one. Since we sorted the list, these values are required to
1966 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1967 if (Ops
[i
] == Ops
[i
+1]) { // X umax Y umax Y --> X umax Y
1968 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1972 if (Ops
.size() == 1) return Ops
[0];
1974 assert(!Ops
.empty() && "Reduced umax down to nothing!");
1976 // Okay, it looks like we really DO need a umax expr. Check to see if we
1977 // already have one, otherwise create a new one.
1978 FoldingSetNodeID ID
;
1979 ID
.AddInteger(scUMaxExpr
);
1980 ID
.AddInteger(Ops
.size());
1981 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1982 ID
.AddPointer(Ops
[i
]);
1984 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1985 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUMaxExpr
>();
1986 new (S
) SCEVUMaxExpr(ID
, Ops
);
1987 UniqueSCEVs
.InsertNode(S
, IP
);
1991 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
1993 // ~smax(~x, ~y) == smin(x, y).
1994 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
1997 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
,
1999 // ~umax(~x, ~y) == umin(x, y)
2000 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2003 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
2004 // Don't attempt to do anything other than create a SCEVUnknown object
2005 // here. createSCEV only calls getUnknown after checking for all other
2006 // interesting possibilities, and any other code that calls getUnknown
2007 // is doing so in order to hide a value from SCEV canonicalization.
2009 FoldingSetNodeID ID
;
2010 ID
.AddInteger(scUnknown
);
2013 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2014 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUnknown
>();
2015 new (S
) SCEVUnknown(ID
, V
);
2016 UniqueSCEVs
.InsertNode(S
, IP
);
2020 //===----------------------------------------------------------------------===//
2021 // Basic SCEV Analysis and PHI Idiom Recognition Code
2024 /// isSCEVable - Test if values of the given type are analyzable within
2025 /// the SCEV framework. This primarily includes integer types, and it
2026 /// can optionally include pointer types if the ScalarEvolution class
2027 /// has access to target-specific information.
2028 bool ScalarEvolution::isSCEVable(const Type
*Ty
) const {
2029 // Integers are always SCEVable.
2030 if (Ty
->isInteger())
2033 // Pointers are SCEVable if TargetData information is available
2034 // to provide pointer size information.
2035 if (isa
<PointerType
>(Ty
))
2038 // Otherwise it's not SCEVable.
2042 /// getTypeSizeInBits - Return the size in bits of the specified type,
2043 /// for which isSCEVable must return true.
2044 uint64_t ScalarEvolution::getTypeSizeInBits(const Type
*Ty
) const {
2045 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2047 // If we have a TargetData, use it!
2049 return TD
->getTypeSizeInBits(Ty
);
2051 // Otherwise, we support only integer types.
2052 assert(Ty
->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2053 return Ty
->getPrimitiveSizeInBits();
2056 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2057 /// the given type and which represents how SCEV will treat the given
2058 /// type, for which isSCEVable must return true. For pointer types,
2059 /// this is the pointer-sized integer type.
2060 const Type
*ScalarEvolution::getEffectiveSCEVType(const Type
*Ty
) const {
2061 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2063 if (Ty
->isInteger())
2066 assert(isa
<PointerType
>(Ty
) && "Unexpected non-pointer non-integer type!");
2067 return TD
->getIntPtrType();
2070 const SCEV
*ScalarEvolution::getCouldNotCompute() {
2071 return &CouldNotCompute
;
2074 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2075 /// expression and create a new one.
2076 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
2077 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
2079 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator I
= Scalars
.find(V
);
2080 if (I
!= Scalars
.end()) return I
->second
;
2081 const SCEV
*S
= createSCEV(V
);
2082 Scalars
.insert(std::make_pair(SCEVCallbackVH(V
, this), S
));
2086 /// getIntegerSCEV - Given a SCEVable type, create a constant for the
2087 /// specified signed integer value and return a SCEV for the constant.
2088 const SCEV
*ScalarEvolution::getIntegerSCEV(int Val
, const Type
*Ty
) {
2089 const IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
2090 return getConstant(ConstantInt::get(ITy
, Val
));
2093 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2095 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
) {
2096 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2098 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
2100 const Type
*Ty
= V
->getType();
2101 Ty
= getEffectiveSCEVType(Ty
);
2102 return getMulExpr(V
,
2103 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
))));
2106 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2107 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
2108 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2110 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
2112 const Type
*Ty
= V
->getType();
2113 Ty
= getEffectiveSCEVType(Ty
);
2114 const SCEV
*AllOnes
=
2115 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
)));
2116 return getMinusSCEV(AllOnes
, V
);
2119 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2121 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
,
2124 return getAddExpr(LHS
, getNegativeSCEV(RHS
));
2127 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2128 /// input value to the specified type. If the type must be extended, it is zero
2131 ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
,
2133 const Type
*SrcTy
= V
->getType();
2134 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2135 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2136 "Cannot truncate or zero extend with non-integer arguments!");
2137 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2138 return V
; // No conversion
2139 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2140 return getTruncateExpr(V
, Ty
);
2141 return getZeroExtendExpr(V
, Ty
);
2144 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2145 /// input value to the specified type. If the type must be extended, it is sign
2148 ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
,
2150 const Type
*SrcTy
= V
->getType();
2151 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2152 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2153 "Cannot truncate or zero extend with non-integer arguments!");
2154 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2155 return V
; // No conversion
2156 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2157 return getTruncateExpr(V
, Ty
);
2158 return getSignExtendExpr(V
, Ty
);
2161 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2162 /// input value to the specified type. If the type must be extended, it is zero
2163 /// extended. The conversion must not be narrowing.
2165 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, const Type
*Ty
) {
2166 const Type
*SrcTy
= V
->getType();
2167 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2168 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2169 "Cannot noop or zero extend with non-integer arguments!");
2170 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2171 "getNoopOrZeroExtend cannot truncate!");
2172 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2173 return V
; // No conversion
2174 return getZeroExtendExpr(V
, Ty
);
2177 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2178 /// input value to the specified type. If the type must be extended, it is sign
2179 /// extended. The conversion must not be narrowing.
2181 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, const Type
*Ty
) {
2182 const Type
*SrcTy
= V
->getType();
2183 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2184 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2185 "Cannot noop or sign extend with non-integer arguments!");
2186 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2187 "getNoopOrSignExtend cannot truncate!");
2188 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2189 return V
; // No conversion
2190 return getSignExtendExpr(V
, Ty
);
2193 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2194 /// the input value to the specified type. If the type must be extended,
2195 /// it is extended with unspecified bits. The conversion must not be
2198 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, const Type
*Ty
) {
2199 const Type
*SrcTy
= V
->getType();
2200 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2201 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2202 "Cannot noop or any extend with non-integer arguments!");
2203 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2204 "getNoopOrAnyExtend cannot truncate!");
2205 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2206 return V
; // No conversion
2207 return getAnyExtendExpr(V
, Ty
);
2210 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2211 /// input value to the specified type. The conversion must not be widening.
2213 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, const Type
*Ty
) {
2214 const Type
*SrcTy
= V
->getType();
2215 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2216 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2217 "Cannot truncate or noop with non-integer arguments!");
2218 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
2219 "getTruncateOrNoop cannot extend!");
2220 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2221 return V
; // No conversion
2222 return getTruncateExpr(V
, Ty
);
2225 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2226 /// the types using zero-extension, and then perform a umax operation
2228 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
2230 const SCEV
*PromotedLHS
= LHS
;
2231 const SCEV
*PromotedRHS
= RHS
;
2233 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2234 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2236 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2238 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
2241 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2242 /// the types using zero-extension, and then perform a umin operation
2244 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
2246 const SCEV
*PromotedLHS
= LHS
;
2247 const SCEV
*PromotedRHS
= RHS
;
2249 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2250 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2252 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2254 return getUMinExpr(PromotedLHS
, PromotedRHS
);
2257 /// PushDefUseChildren - Push users of the given Instruction
2258 /// onto the given Worklist.
2260 PushDefUseChildren(Instruction
*I
,
2261 SmallVectorImpl
<Instruction
*> &Worklist
) {
2262 // Push the def-use children onto the Worklist stack.
2263 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
2265 Worklist
.push_back(cast
<Instruction
>(UI
));
2268 /// ForgetSymbolicValue - This looks up computed SCEV values for all
2269 /// instructions that depend on the given instruction and removes them from
2270 /// the Scalars map if they reference SymName. This is used during PHI
2273 ScalarEvolution::ForgetSymbolicName(Instruction
*I
, const SCEV
*SymName
) {
2274 SmallVector
<Instruction
*, 16> Worklist
;
2275 PushDefUseChildren(I
, Worklist
);
2277 SmallPtrSet
<Instruction
*, 8> Visited
;
2279 while (!Worklist
.empty()) {
2280 Instruction
*I
= Worklist
.pop_back_val();
2281 if (!Visited
.insert(I
)) continue;
2283 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
2284 Scalars
.find(static_cast<Value
*>(I
));
2285 if (It
!= Scalars
.end()) {
2286 // Short-circuit the def-use traversal if the symbolic name
2287 // ceases to appear in expressions.
2288 if (!It
->second
->hasOperand(SymName
))
2291 // SCEVUnknown for a PHI either means that it has an unrecognized
2292 // structure, or it's a PHI that's in the progress of being computed
2293 // by createNodeForPHI. In the former case, additional loop trip
2294 // count information isn't going to change anything. In the later
2295 // case, createNodeForPHI will perform the necessary updates on its
2296 // own when it gets to that point.
2297 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(It
->second
))
2299 ValuesAtScopes
.erase(I
);
2302 PushDefUseChildren(I
, Worklist
);
2306 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2307 /// a loop header, making it a potential recurrence, or it doesn't.
2309 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
2310 if (PN
->getNumIncomingValues() == 2) // The loops have been canonicalized.
2311 if (const Loop
*L
= LI
->getLoopFor(PN
->getParent()))
2312 if (L
->getHeader() == PN
->getParent()) {
2313 // If it lives in the loop header, it has two incoming values, one
2314 // from outside the loop, and one from inside.
2315 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
2316 unsigned BackEdge
= IncomingEdge
^1;
2318 // While we are analyzing this PHI node, handle its value symbolically.
2319 const SCEV
*SymbolicName
= getUnknown(PN
);
2320 assert(Scalars
.find(PN
) == Scalars
.end() &&
2321 "PHI node already processed?");
2322 Scalars
.insert(std::make_pair(SCEVCallbackVH(PN
, this), SymbolicName
));
2324 // Using this symbolic name for the PHI, analyze the value coming around
2326 Value
*BEValueV
= PN
->getIncomingValue(BackEdge
);
2327 const SCEV
*BEValue
= getSCEV(BEValueV
);
2329 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2330 // has a special value for the first iteration of the loop.
2332 // If the value coming around the backedge is an add with the symbolic
2333 // value we just inserted, then we found a simple induction variable!
2334 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
2335 // If there is a single occurrence of the symbolic value, replace it
2336 // with a recurrence.
2337 unsigned FoundIndex
= Add
->getNumOperands();
2338 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2339 if (Add
->getOperand(i
) == SymbolicName
)
2340 if (FoundIndex
== e
) {
2345 if (FoundIndex
!= Add
->getNumOperands()) {
2346 // Create an add with everything but the specified operand.
2347 SmallVector
<const SCEV
*, 8> Ops
;
2348 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2349 if (i
!= FoundIndex
)
2350 Ops
.push_back(Add
->getOperand(i
));
2351 const SCEV
*Accum
= getAddExpr(Ops
);
2353 // This is not a valid addrec if the step amount is varying each
2354 // loop iteration, but is not itself an addrec in this loop.
2355 if (Accum
->isLoopInvariant(L
) ||
2356 (isa
<SCEVAddRecExpr
>(Accum
) &&
2357 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
2358 const SCEV
*StartVal
=
2359 getSCEV(PN
->getIncomingValue(IncomingEdge
));
2360 const SCEVAddRecExpr
*PHISCEV
=
2361 cast
<SCEVAddRecExpr
>(getAddRecExpr(StartVal
, Accum
, L
));
2363 // If the increment doesn't overflow, then neither the addrec nor the
2364 // post-increment will overflow.
2365 if (const AddOperator
*OBO
= dyn_cast
<AddOperator
>(BEValueV
))
2366 if (OBO
->getOperand(0) == PN
&&
2367 getSCEV(OBO
->getOperand(1)) ==
2368 PHISCEV
->getStepRecurrence(*this)) {
2369 const SCEVAddRecExpr
*PostInc
= PHISCEV
->getPostIncExpr(*this);
2370 if (OBO
->hasNoUnsignedOverflow()) {
2371 const_cast<SCEVAddRecExpr
*>(PHISCEV
)
2372 ->setHasNoUnsignedOverflow(true);
2373 const_cast<SCEVAddRecExpr
*>(PostInc
)
2374 ->setHasNoUnsignedOverflow(true);
2376 if (OBO
->hasNoSignedOverflow()) {
2377 const_cast<SCEVAddRecExpr
*>(PHISCEV
)
2378 ->setHasNoSignedOverflow(true);
2379 const_cast<SCEVAddRecExpr
*>(PostInc
)
2380 ->setHasNoSignedOverflow(true);
2384 // Okay, for the entire analysis of this edge we assumed the PHI
2385 // to be symbolic. We now need to go back and purge all of the
2386 // entries for the scalars that use the symbolic expression.
2387 ForgetSymbolicName(PN
, SymbolicName
);
2388 Scalars
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
2392 } else if (const SCEVAddRecExpr
*AddRec
=
2393 dyn_cast
<SCEVAddRecExpr
>(BEValue
)) {
2394 // Otherwise, this could be a loop like this:
2395 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2396 // In this case, j = {1,+,1} and BEValue is j.
2397 // Because the other in-value of i (0) fits the evolution of BEValue
2398 // i really is an addrec evolution.
2399 if (AddRec
->getLoop() == L
&& AddRec
->isAffine()) {
2400 const SCEV
*StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
2402 // If StartVal = j.start - j.stride, we can use StartVal as the
2403 // initial step of the addrec evolution.
2404 if (StartVal
== getMinusSCEV(AddRec
->getOperand(0),
2405 AddRec
->getOperand(1))) {
2406 const SCEV
*PHISCEV
=
2407 getAddRecExpr(StartVal
, AddRec
->getOperand(1), L
);
2409 // Okay, for the entire analysis of this edge we assumed the PHI
2410 // to be symbolic. We now need to go back and purge all of the
2411 // entries for the scalars that use the symbolic expression.
2412 ForgetSymbolicName(PN
, SymbolicName
);
2413 Scalars
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
2419 return SymbolicName
;
2422 // It's tempting to recognize PHIs with a unique incoming value, however
2423 // this leads passes like indvars to break LCSSA form. Fortunately, such
2424 // PHIs are rare, as instcombine zaps them.
2426 // If it's not a loop phi, we can't handle it yet.
2427 return getUnknown(PN
);
2430 /// createNodeForGEP - Expand GEP instructions into add and multiply
2431 /// operations. This allows them to be analyzed by regular SCEV code.
2433 const SCEV
*ScalarEvolution::createNodeForGEP(Operator
*GEP
) {
2435 const Type
*IntPtrTy
= TD
->getIntPtrType();
2436 Value
*Base
= GEP
->getOperand(0);
2437 // Don't attempt to analyze GEPs over unsized objects.
2438 if (!cast
<PointerType
>(Base
->getType())->getElementType()->isSized())
2439 return getUnknown(GEP
);
2440 const SCEV
*TotalOffset
= getIntegerSCEV(0, IntPtrTy
);
2441 gep_type_iterator GTI
= gep_type_begin(GEP
);
2442 for (GetElementPtrInst::op_iterator I
= next(GEP
->op_begin()),
2446 // Compute the (potentially symbolic) offset in bytes for this index.
2447 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
2448 // For a struct, add the member offset.
2449 const StructLayout
&SL
= *TD
->getStructLayout(STy
);
2450 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
2451 uint64_t Offset
= SL
.getElementOffset(FieldNo
);
2452 TotalOffset
= getAddExpr(TotalOffset
, getIntegerSCEV(Offset
, IntPtrTy
));
2454 // For an array, add the element offset, explicitly scaled.
2455 const SCEV
*LocalOffset
= getSCEV(Index
);
2456 if (!isa
<PointerType
>(LocalOffset
->getType()))
2457 // Getelementptr indicies are signed.
2458 LocalOffset
= getTruncateOrSignExtend(LocalOffset
, IntPtrTy
);
2460 getMulExpr(LocalOffset
,
2461 getIntegerSCEV(TD
->getTypeAllocSize(*GTI
), IntPtrTy
));
2462 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
2465 return getAddExpr(getSCEV(Base
), TotalOffset
);
2468 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2469 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2470 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2471 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2473 ScalarEvolution::GetMinTrailingZeros(const SCEV
*S
) {
2474 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2475 return C
->getValue()->getValue().countTrailingZeros();
2477 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
2478 return std::min(GetMinTrailingZeros(T
->getOperand()),
2479 (uint32_t)getTypeSizeInBits(T
->getType()));
2481 if (const SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2482 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
2483 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
2484 getTypeSizeInBits(E
->getType()) : OpRes
;
2487 if (const SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2488 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
2489 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
2490 getTypeSizeInBits(E
->getType()) : OpRes
;
2493 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
2494 // The result is the min of all operands results.
2495 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
2496 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2497 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
2501 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
2502 // The result is the sum of all operands results.
2503 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2504 uint32_t BitWidth
= getTypeSizeInBits(M
->getType());
2505 for (unsigned i
= 1, e
= M
->getNumOperands();
2506 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
2507 SumOpRes
= std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
)),
2512 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2513 // The result is the min of all operands results.
2514 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
2515 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2516 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
2520 if (const SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2521 // The result is the min of all operands results.
2522 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2523 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2524 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
2528 if (const SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2529 // The result is the min of all operands results.
2530 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2531 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2532 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
2536 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2537 // For a SCEVUnknown, ask ValueTracking.
2538 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2539 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
2540 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
2541 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
);
2542 return Zeros
.countTrailingOnes();
2549 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2552 ScalarEvolution::getUnsignedRange(const SCEV
*S
) {
2554 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2555 return ConstantRange(C
->getValue()->getValue());
2557 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2558 ConstantRange X
= getUnsignedRange(Add
->getOperand(0));
2559 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2560 X
= X
.add(getUnsignedRange(Add
->getOperand(i
)));
2564 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2565 ConstantRange X
= getUnsignedRange(Mul
->getOperand(0));
2566 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
2567 X
= X
.multiply(getUnsignedRange(Mul
->getOperand(i
)));
2571 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2572 ConstantRange X
= getUnsignedRange(SMax
->getOperand(0));
2573 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
2574 X
= X
.smax(getUnsignedRange(SMax
->getOperand(i
)));
2578 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2579 ConstantRange X
= getUnsignedRange(UMax
->getOperand(0));
2580 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
2581 X
= X
.umax(getUnsignedRange(UMax
->getOperand(i
)));
2585 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2586 ConstantRange X
= getUnsignedRange(UDiv
->getLHS());
2587 ConstantRange Y
= getUnsignedRange(UDiv
->getRHS());
2591 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2592 ConstantRange X
= getUnsignedRange(ZExt
->getOperand());
2593 return X
.zeroExtend(cast
<IntegerType
>(ZExt
->getType())->getBitWidth());
2596 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2597 ConstantRange X
= getUnsignedRange(SExt
->getOperand());
2598 return X
.signExtend(cast
<IntegerType
>(SExt
->getType())->getBitWidth());
2601 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
2602 ConstantRange X
= getUnsignedRange(Trunc
->getOperand());
2603 return X
.truncate(cast
<IntegerType
>(Trunc
->getType())->getBitWidth());
2606 ConstantRange
FullSet(getTypeSizeInBits(S
->getType()), true);
2608 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2609 const SCEV
*T
= getBackedgeTakenCount(AddRec
->getLoop());
2610 const SCEVConstant
*Trip
= dyn_cast
<SCEVConstant
>(T
);
2611 if (!Trip
) return FullSet
;
2613 // TODO: non-affine addrec
2614 if (AddRec
->isAffine()) {
2615 const Type
*Ty
= AddRec
->getType();
2616 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
2617 if (getTypeSizeInBits(MaxBECount
->getType()) <= getTypeSizeInBits(Ty
)) {
2618 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
2620 const SCEV
*Start
= AddRec
->getStart();
2621 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
2622 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
2624 // Check for overflow.
2625 // TODO: This is very conservative.
2626 if (!(Step
->isOne() &&
2627 isKnownPredicate(ICmpInst::ICMP_ULT
, Start
, End
)) &&
2628 !(Step
->isAllOnesValue() &&
2629 isKnownPredicate(ICmpInst::ICMP_UGT
, Start
, End
)))
2632 ConstantRange StartRange
= getUnsignedRange(Start
);
2633 ConstantRange EndRange
= getUnsignedRange(End
);
2634 APInt Min
= APIntOps::umin(StartRange
.getUnsignedMin(),
2635 EndRange
.getUnsignedMin());
2636 APInt Max
= APIntOps::umax(StartRange
.getUnsignedMax(),
2637 EndRange
.getUnsignedMax());
2638 if (Min
.isMinValue() && Max
.isMaxValue())
2640 return ConstantRange(Min
, Max
+1);
2645 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2646 // For a SCEVUnknown, ask ValueTracking.
2647 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2648 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
2649 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
2650 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
, TD
);
2651 if (Ones
== ~Zeros
+ 1)
2653 return ConstantRange(Ones
, ~Zeros
+ 1);
2659 /// getSignedRange - Determine the signed range for a particular SCEV.
2662 ScalarEvolution::getSignedRange(const SCEV
*S
) {
2664 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2665 return ConstantRange(C
->getValue()->getValue());
2667 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2668 ConstantRange X
= getSignedRange(Add
->getOperand(0));
2669 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2670 X
= X
.add(getSignedRange(Add
->getOperand(i
)));
2674 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2675 ConstantRange X
= getSignedRange(Mul
->getOperand(0));
2676 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
2677 X
= X
.multiply(getSignedRange(Mul
->getOperand(i
)));
2681 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2682 ConstantRange X
= getSignedRange(SMax
->getOperand(0));
2683 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
2684 X
= X
.smax(getSignedRange(SMax
->getOperand(i
)));
2688 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2689 ConstantRange X
= getSignedRange(UMax
->getOperand(0));
2690 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
2691 X
= X
.umax(getSignedRange(UMax
->getOperand(i
)));
2695 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2696 ConstantRange X
= getSignedRange(UDiv
->getLHS());
2697 ConstantRange Y
= getSignedRange(UDiv
->getRHS());
2701 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2702 ConstantRange X
= getSignedRange(ZExt
->getOperand());
2703 return X
.zeroExtend(cast
<IntegerType
>(ZExt
->getType())->getBitWidth());
2706 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2707 ConstantRange X
= getSignedRange(SExt
->getOperand());
2708 return X
.signExtend(cast
<IntegerType
>(SExt
->getType())->getBitWidth());
2711 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
2712 ConstantRange X
= getSignedRange(Trunc
->getOperand());
2713 return X
.truncate(cast
<IntegerType
>(Trunc
->getType())->getBitWidth());
2716 ConstantRange
FullSet(getTypeSizeInBits(S
->getType()), true);
2718 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2719 const SCEV
*T
= getBackedgeTakenCount(AddRec
->getLoop());
2720 const SCEVConstant
*Trip
= dyn_cast
<SCEVConstant
>(T
);
2721 if (!Trip
) return FullSet
;
2723 // TODO: non-affine addrec
2724 if (AddRec
->isAffine()) {
2725 const Type
*Ty
= AddRec
->getType();
2726 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
2727 if (getTypeSizeInBits(MaxBECount
->getType()) <= getTypeSizeInBits(Ty
)) {
2728 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
2730 const SCEV
*Start
= AddRec
->getStart();
2731 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
2732 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
2734 // Check for overflow.
2735 // TODO: This is very conservative.
2736 if (!(Step
->isOne() &&
2737 isKnownPredicate(ICmpInst::ICMP_SLT
, Start
, End
)) &&
2738 !(Step
->isAllOnesValue() &&
2739 isKnownPredicate(ICmpInst::ICMP_SGT
, Start
, End
)))
2742 ConstantRange StartRange
= getSignedRange(Start
);
2743 ConstantRange EndRange
= getSignedRange(End
);
2744 APInt Min
= APIntOps::smin(StartRange
.getSignedMin(),
2745 EndRange
.getSignedMin());
2746 APInt Max
= APIntOps::smax(StartRange
.getSignedMax(),
2747 EndRange
.getSignedMax());
2748 if (Min
.isMinSignedValue() && Max
.isMaxSignedValue())
2750 return ConstantRange(Min
, Max
+1);
2755 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2756 // For a SCEVUnknown, ask ValueTracking.
2757 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2758 unsigned NS
= ComputeNumSignBits(U
->getValue(), TD
);
2762 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
2763 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1)+1);
2769 /// createSCEV - We know that there is no SCEV for the specified value.
2770 /// Analyze the expression.
2772 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
2773 if (!isSCEVable(V
->getType()))
2774 return getUnknown(V
);
2776 unsigned Opcode
= Instruction::UserOp1
;
2777 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
2778 Opcode
= I
->getOpcode();
2779 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
2780 Opcode
= CE
->getOpcode();
2781 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
2782 return getConstant(CI
);
2783 else if (isa
<ConstantPointerNull
>(V
))
2784 return getIntegerSCEV(0, V
->getType());
2785 else if (isa
<UndefValue
>(V
))
2786 return getIntegerSCEV(0, V
->getType());
2788 return getUnknown(V
);
2790 Operator
*U
= cast
<Operator
>(V
);
2792 case Instruction::Add
:
2793 return getAddExpr(getSCEV(U
->getOperand(0)),
2794 getSCEV(U
->getOperand(1)));
2795 case Instruction::Mul
:
2796 return getMulExpr(getSCEV(U
->getOperand(0)),
2797 getSCEV(U
->getOperand(1)));
2798 case Instruction::UDiv
:
2799 return getUDivExpr(getSCEV(U
->getOperand(0)),
2800 getSCEV(U
->getOperand(1)));
2801 case Instruction::Sub
:
2802 return getMinusSCEV(getSCEV(U
->getOperand(0)),
2803 getSCEV(U
->getOperand(1)));
2804 case Instruction::And
:
2805 // For an expression like x&255 that merely masks off the high bits,
2806 // use zext(trunc(x)) as the SCEV expression.
2807 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2808 if (CI
->isNullValue())
2809 return getSCEV(U
->getOperand(1));
2810 if (CI
->isAllOnesValue())
2811 return getSCEV(U
->getOperand(0));
2812 const APInt
&A
= CI
->getValue();
2814 // Instcombine's ShrinkDemandedConstant may strip bits out of
2815 // constants, obscuring what would otherwise be a low-bits mask.
2816 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2817 // knew about to reconstruct a low-bits mask value.
2818 unsigned LZ
= A
.countLeadingZeros();
2819 unsigned BitWidth
= A
.getBitWidth();
2820 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
2821 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
2822 ComputeMaskedBits(U
->getOperand(0), AllOnes
, KnownZero
, KnownOne
, TD
);
2824 APInt EffectiveMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
);
2826 if (LZ
!= 0 && !((~A
& ~KnownZero
) & EffectiveMask
))
2828 getZeroExtendExpr(getTruncateExpr(getSCEV(U
->getOperand(0)),
2829 IntegerType::get(BitWidth
- LZ
)),
2834 case Instruction::Or
:
2835 // If the RHS of the Or is a constant, we may have something like:
2836 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2837 // optimizations will transparently handle this case.
2839 // In order for this transformation to be safe, the LHS must be of the
2840 // form X*(2^n) and the Or constant must be less than 2^n.
2841 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2842 const SCEV
*LHS
= getSCEV(U
->getOperand(0));
2843 const APInt
&CIVal
= CI
->getValue();
2844 if (GetMinTrailingZeros(LHS
) >=
2845 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros()))
2846 return getAddExpr(LHS
, getSCEV(U
->getOperand(1)));
2849 case Instruction::Xor
:
2850 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2851 // If the RHS of the xor is a signbit, then this is just an add.
2852 // Instcombine turns add of signbit into xor as a strength reduction step.
2853 if (CI
->getValue().isSignBit())
2854 return getAddExpr(getSCEV(U
->getOperand(0)),
2855 getSCEV(U
->getOperand(1)));
2857 // If the RHS of xor is -1, then this is a not operation.
2858 if (CI
->isAllOnesValue())
2859 return getNotSCEV(getSCEV(U
->getOperand(0)));
2861 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2862 // This is a variant of the check for xor with -1, and it handles
2863 // the case where instcombine has trimmed non-demanded bits out
2864 // of an xor with -1.
2865 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
->getOperand(0)))
2866 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2867 if (BO
->getOpcode() == Instruction::And
&&
2868 LCI
->getValue() == CI
->getValue())
2869 if (const SCEVZeroExtendExpr
*Z
=
2870 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(U
->getOperand(0)))) {
2871 const Type
*UTy
= U
->getType();
2872 const SCEV
*Z0
= Z
->getOperand();
2873 const Type
*Z0Ty
= Z0
->getType();
2874 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
2876 // If C is a low-bits mask, the zero extend is zerving to
2877 // mask off the high bits. Complement the operand and
2878 // re-apply the zext.
2879 if (APIntOps::isMask(Z0TySize
, CI
->getValue()))
2880 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
2882 // If C is a single bit, it may be in the sign-bit position
2883 // before the zero-extend. In this case, represent the xor
2884 // using an add, which is equivalent, and re-apply the zext.
2885 APInt Trunc
= APInt(CI
->getValue()).trunc(Z0TySize
);
2886 if (APInt(Trunc
).zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
2888 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
2894 case Instruction::Shl
:
2895 // Turn shift left of a constant amount into a multiply.
2896 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2897 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2898 Constant
*X
= ConstantInt::get(getContext(),
2899 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
2900 return getMulExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
2904 case Instruction::LShr
:
2905 // Turn logical shift right of a constant into a unsigned divide.
2906 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2907 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2908 Constant
*X
= ConstantInt::get(getContext(),
2909 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
2910 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
2914 case Instruction::AShr
:
2915 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2916 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
2917 if (Instruction
*L
= dyn_cast
<Instruction
>(U
->getOperand(0)))
2918 if (L
->getOpcode() == Instruction::Shl
&&
2919 L
->getOperand(1) == U
->getOperand(1)) {
2920 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2921 uint64_t Amt
= BitWidth
- CI
->getZExtValue();
2922 if (Amt
== BitWidth
)
2923 return getSCEV(L
->getOperand(0)); // shift by zero --> noop
2925 return getIntegerSCEV(0, U
->getType()); // value is undefined
2927 getSignExtendExpr(getTruncateExpr(getSCEV(L
->getOperand(0)),
2928 IntegerType::get(Amt
)),
2933 case Instruction::Trunc
:
2934 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
2936 case Instruction::ZExt
:
2937 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
2939 case Instruction::SExt
:
2940 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
2942 case Instruction::BitCast
:
2943 // BitCasts are no-op casts so we just eliminate the cast.
2944 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
2945 return getSCEV(U
->getOperand(0));
2948 // It's tempting to handle inttoptr and ptrtoint, however this can
2949 // lead to pointer expressions which cannot be expanded to GEPs
2950 // (because they may overflow). For now, the only pointer-typed
2951 // expressions we handle are GEPs and address literals.
2953 case Instruction::GetElementPtr
:
2954 if (!TD
) break; // Without TD we can't analyze pointers.
2955 return createNodeForGEP(U
);
2957 case Instruction::PHI
:
2958 return createNodeForPHI(cast
<PHINode
>(U
));
2960 case Instruction::Select
:
2961 // This could be a smax or umax that was lowered earlier.
2962 // Try to recover it.
2963 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0))) {
2964 Value
*LHS
= ICI
->getOperand(0);
2965 Value
*RHS
= ICI
->getOperand(1);
2966 switch (ICI
->getPredicate()) {
2967 case ICmpInst::ICMP_SLT
:
2968 case ICmpInst::ICMP_SLE
:
2969 std::swap(LHS
, RHS
);
2971 case ICmpInst::ICMP_SGT
:
2972 case ICmpInst::ICMP_SGE
:
2973 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2974 return getSMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2975 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2976 return getSMinExpr(getSCEV(LHS
), getSCEV(RHS
));
2978 case ICmpInst::ICMP_ULT
:
2979 case ICmpInst::ICMP_ULE
:
2980 std::swap(LHS
, RHS
);
2982 case ICmpInst::ICMP_UGT
:
2983 case ICmpInst::ICMP_UGE
:
2984 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2985 return getUMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2986 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2987 return getUMinExpr(getSCEV(LHS
), getSCEV(RHS
));
2989 case ICmpInst::ICMP_NE
:
2990 // n != 0 ? n : 1 -> umax(n, 1)
2991 if (LHS
== U
->getOperand(1) &&
2992 isa
<ConstantInt
>(U
->getOperand(2)) &&
2993 cast
<ConstantInt
>(U
->getOperand(2))->isOne() &&
2994 isa
<ConstantInt
>(RHS
) &&
2995 cast
<ConstantInt
>(RHS
)->isZero())
2996 return getUMaxExpr(getSCEV(LHS
), getSCEV(U
->getOperand(2)));
2998 case ICmpInst::ICMP_EQ
:
2999 // n == 0 ? 1 : n -> umax(n, 1)
3000 if (LHS
== U
->getOperand(2) &&
3001 isa
<ConstantInt
>(U
->getOperand(1)) &&
3002 cast
<ConstantInt
>(U
->getOperand(1))->isOne() &&
3003 isa
<ConstantInt
>(RHS
) &&
3004 cast
<ConstantInt
>(RHS
)->isZero())
3005 return getUMaxExpr(getSCEV(LHS
), getSCEV(U
->getOperand(1)));
3012 default: // We cannot analyze this expression.
3016 return getUnknown(V
);
3021 //===----------------------------------------------------------------------===//
3022 // Iteration Count Computation Code
3025 /// getBackedgeTakenCount - If the specified loop has a predictable
3026 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3027 /// object. The backedge-taken count is the number of times the loop header
3028 /// will be branched to from within the loop. This is one less than the
3029 /// trip count of the loop, since it doesn't count the first iteration,
3030 /// when the header is branched to from outside the loop.
3032 /// Note that it is not valid to call this method on a loop without a
3033 /// loop-invariant backedge-taken count (see
3034 /// hasLoopInvariantBackedgeTakenCount).
3036 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
3037 return getBackedgeTakenInfo(L
).Exact
;
3040 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3041 /// return the least SCEV value that is known never to be less than the
3042 /// actual backedge taken count.
3043 const SCEV
*ScalarEvolution::getMaxBackedgeTakenCount(const Loop
*L
) {
3044 return getBackedgeTakenInfo(L
).Max
;
3047 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3048 /// onto the given Worklist.
3050 PushLoopPHIs(const Loop
*L
, SmallVectorImpl
<Instruction
*> &Worklist
) {
3051 BasicBlock
*Header
= L
->getHeader();
3053 // Push all Loop-header PHIs onto the Worklist stack.
3054 for (BasicBlock::iterator I
= Header
->begin();
3055 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
3056 Worklist
.push_back(PN
);
3059 const ScalarEvolution::BackedgeTakenInfo
&
3060 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
3061 // Initially insert a CouldNotCompute for this loop. If the insertion
3062 // succeeds, procede to actually compute a backedge-taken count and
3063 // update the value. The temporary CouldNotCompute value tells SCEV
3064 // code elsewhere that it shouldn't attempt to request a new
3065 // backedge-taken count, which could result in infinite recursion.
3066 std::pair
<std::map
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
3067 BackedgeTakenCounts
.insert(std::make_pair(L
, getCouldNotCompute()));
3069 BackedgeTakenInfo ItCount
= ComputeBackedgeTakenCount(L
);
3070 if (ItCount
.Exact
!= getCouldNotCompute()) {
3071 assert(ItCount
.Exact
->isLoopInvariant(L
) &&
3072 ItCount
.Max
->isLoopInvariant(L
) &&
3073 "Computed trip count isn't loop invariant for loop!");
3074 ++NumTripCountsComputed
;
3076 // Update the value in the map.
3077 Pair
.first
->second
= ItCount
;
3079 if (ItCount
.Max
!= getCouldNotCompute())
3080 // Update the value in the map.
3081 Pair
.first
->second
= ItCount
;
3082 if (isa
<PHINode
>(L
->getHeader()->begin()))
3083 // Only count loops that have phi nodes as not being computable.
3084 ++NumTripCountsNotComputed
;
3087 // Now that we know more about the trip count for this loop, forget any
3088 // existing SCEV values for PHI nodes in this loop since they are only
3089 // conservative estimates made without the benefit of trip count
3090 // information. This is similar to the code in
3091 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3093 if (ItCount
.hasAnyInfo()) {
3094 SmallVector
<Instruction
*, 16> Worklist
;
3095 PushLoopPHIs(L
, Worklist
);
3097 SmallPtrSet
<Instruction
*, 8> Visited
;
3098 while (!Worklist
.empty()) {
3099 Instruction
*I
= Worklist
.pop_back_val();
3100 if (!Visited
.insert(I
)) continue;
3102 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
3103 Scalars
.find(static_cast<Value
*>(I
));
3104 if (It
!= Scalars
.end()) {
3105 // SCEVUnknown for a PHI either means that it has an unrecognized
3106 // structure, or it's a PHI that's in the progress of being computed
3107 // by createNodeForPHI. In the former case, additional loop trip
3108 // count information isn't going to change anything. In the later
3109 // case, createNodeForPHI will perform the necessary updates on its
3110 // own when it gets to that point.
3111 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(It
->second
))
3113 ValuesAtScopes
.erase(I
);
3114 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3115 ConstantEvolutionLoopExitValue
.erase(PN
);
3118 PushDefUseChildren(I
, Worklist
);
3122 return Pair
.first
->second
;
3125 /// forgetLoopBackedgeTakenCount - This method should be called by the
3126 /// client when it has changed a loop in a way that may effect
3127 /// ScalarEvolution's ability to compute a trip count, or if the loop
3129 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop
*L
) {
3130 BackedgeTakenCounts
.erase(L
);
3132 SmallVector
<Instruction
*, 16> Worklist
;
3133 PushLoopPHIs(L
, Worklist
);
3135 SmallPtrSet
<Instruction
*, 8> Visited
;
3136 while (!Worklist
.empty()) {
3137 Instruction
*I
= Worklist
.pop_back_val();
3138 if (!Visited
.insert(I
)) continue;
3140 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
3141 Scalars
.find(static_cast<Value
*>(I
));
3142 if (It
!= Scalars
.end()) {
3144 ValuesAtScopes
.erase(I
);
3145 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3146 ConstantEvolutionLoopExitValue
.erase(PN
);
3149 PushDefUseChildren(I
, Worklist
);
3153 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3154 /// of the specified loop will execute.
3155 ScalarEvolution::BackedgeTakenInfo
3156 ScalarEvolution::ComputeBackedgeTakenCount(const Loop
*L
) {
3157 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
3158 L
->getExitingBlocks(ExitingBlocks
);
3160 // Examine all exits and pick the most conservative values.
3161 const SCEV
*BECount
= getCouldNotCompute();
3162 const SCEV
*MaxBECount
= getCouldNotCompute();
3163 bool CouldNotComputeBECount
= false;
3164 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
3165 BackedgeTakenInfo NewBTI
=
3166 ComputeBackedgeTakenCountFromExit(L
, ExitingBlocks
[i
]);
3168 if (NewBTI
.Exact
== getCouldNotCompute()) {
3169 // We couldn't compute an exact value for this exit, so
3170 // we won't be able to compute an exact value for the loop.
3171 CouldNotComputeBECount
= true;
3172 BECount
= getCouldNotCompute();
3173 } else if (!CouldNotComputeBECount
) {
3174 if (BECount
== getCouldNotCompute())
3175 BECount
= NewBTI
.Exact
;
3177 BECount
= getUMinFromMismatchedTypes(BECount
, NewBTI
.Exact
);
3179 if (MaxBECount
== getCouldNotCompute())
3180 MaxBECount
= NewBTI
.Max
;
3181 else if (NewBTI
.Max
!= getCouldNotCompute())
3182 MaxBECount
= getUMinFromMismatchedTypes(MaxBECount
, NewBTI
.Max
);
3185 return BackedgeTakenInfo(BECount
, MaxBECount
);
3188 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3189 /// of the specified loop will execute if it exits via the specified block.
3190 ScalarEvolution::BackedgeTakenInfo
3191 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop
*L
,
3192 BasicBlock
*ExitingBlock
) {
3194 // Okay, we've chosen an exiting block. See what condition causes us to
3195 // exit at this block.
3197 // FIXME: we should be able to handle switch instructions (with a single exit)
3198 BranchInst
*ExitBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
3199 if (ExitBr
== 0) return getCouldNotCompute();
3200 assert(ExitBr
->isConditional() && "If unconditional, it can't be in loop!");
3202 // At this point, we know we have a conditional branch that determines whether
3203 // the loop is exited. However, we don't know if the branch is executed each
3204 // time through the loop. If not, then the execution count of the branch will
3205 // not be equal to the trip count of the loop.
3207 // Currently we check for this by checking to see if the Exit branch goes to
3208 // the loop header. If so, we know it will always execute the same number of
3209 // times as the loop. We also handle the case where the exit block *is* the
3210 // loop header. This is common for un-rotated loops.
3212 // If both of those tests fail, walk up the unique predecessor chain to the
3213 // header, stopping if there is an edge that doesn't exit the loop. If the
3214 // header is reached, the execution count of the branch will be equal to the
3215 // trip count of the loop.
3217 // More extensive analysis could be done to handle more cases here.
3219 if (ExitBr
->getSuccessor(0) != L
->getHeader() &&
3220 ExitBr
->getSuccessor(1) != L
->getHeader() &&
3221 ExitBr
->getParent() != L
->getHeader()) {
3222 // The simple checks failed, try climbing the unique predecessor chain
3223 // up to the header.
3225 for (BasicBlock
*BB
= ExitBr
->getParent(); BB
; ) {
3226 BasicBlock
*Pred
= BB
->getUniquePredecessor();
3228 return getCouldNotCompute();
3229 TerminatorInst
*PredTerm
= Pred
->getTerminator();
3230 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
) {
3231 BasicBlock
*PredSucc
= PredTerm
->getSuccessor(i
);
3234 // If the predecessor has a successor that isn't BB and isn't
3235 // outside the loop, assume the worst.
3236 if (L
->contains(PredSucc
))
3237 return getCouldNotCompute();
3239 if (Pred
== L
->getHeader()) {
3246 return getCouldNotCompute();
3249 // Procede to the next level to examine the exit condition expression.
3250 return ComputeBackedgeTakenCountFromExitCond(L
, ExitBr
->getCondition(),
3251 ExitBr
->getSuccessor(0),
3252 ExitBr
->getSuccessor(1));
3255 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3256 /// backedge of the specified loop will execute if its exit condition
3257 /// were a conditional branch of ExitCond, TBB, and FBB.
3258 ScalarEvolution::BackedgeTakenInfo
3259 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop
*L
,
3263 // Check if the controlling expression for this loop is an And or Or.
3264 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(ExitCond
)) {
3265 if (BO
->getOpcode() == Instruction::And
) {
3266 // Recurse on the operands of the and.
3267 BackedgeTakenInfo BTI0
=
3268 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
3269 BackedgeTakenInfo BTI1
=
3270 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
3271 const SCEV
*BECount
= getCouldNotCompute();
3272 const SCEV
*MaxBECount
= getCouldNotCompute();
3273 if (L
->contains(TBB
)) {
3274 // Both conditions must be true for the loop to continue executing.
3275 // Choose the less conservative count.
3276 if (BTI0
.Exact
== getCouldNotCompute() ||
3277 BTI1
.Exact
== getCouldNotCompute())
3278 BECount
= getCouldNotCompute();
3280 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3281 if (BTI0
.Max
== getCouldNotCompute())
3282 MaxBECount
= BTI1
.Max
;
3283 else if (BTI1
.Max
== getCouldNotCompute())
3284 MaxBECount
= BTI0
.Max
;
3286 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3288 // Both conditions must be true for the loop to exit.
3289 assert(L
->contains(FBB
) && "Loop block has no successor in loop!");
3290 if (BTI0
.Exact
!= getCouldNotCompute() &&
3291 BTI1
.Exact
!= getCouldNotCompute())
3292 BECount
= getUMaxFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3293 if (BTI0
.Max
!= getCouldNotCompute() &&
3294 BTI1
.Max
!= getCouldNotCompute())
3295 MaxBECount
= getUMaxFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3298 return BackedgeTakenInfo(BECount
, MaxBECount
);
3300 if (BO
->getOpcode() == Instruction::Or
) {
3301 // Recurse on the operands of the or.
3302 BackedgeTakenInfo BTI0
=
3303 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
3304 BackedgeTakenInfo BTI1
=
3305 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
3306 const SCEV
*BECount
= getCouldNotCompute();
3307 const SCEV
*MaxBECount
= getCouldNotCompute();
3308 if (L
->contains(FBB
)) {
3309 // Both conditions must be false for the loop to continue executing.
3310 // Choose the less conservative count.
3311 if (BTI0
.Exact
== getCouldNotCompute() ||
3312 BTI1
.Exact
== getCouldNotCompute())
3313 BECount
= getCouldNotCompute();
3315 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3316 if (BTI0
.Max
== getCouldNotCompute())
3317 MaxBECount
= BTI1
.Max
;
3318 else if (BTI1
.Max
== getCouldNotCompute())
3319 MaxBECount
= BTI0
.Max
;
3321 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3323 // Both conditions must be false for the loop to exit.
3324 assert(L
->contains(TBB
) && "Loop block has no successor in loop!");
3325 if (BTI0
.Exact
!= getCouldNotCompute() &&
3326 BTI1
.Exact
!= getCouldNotCompute())
3327 BECount
= getUMaxFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3328 if (BTI0
.Max
!= getCouldNotCompute() &&
3329 BTI1
.Max
!= getCouldNotCompute())
3330 MaxBECount
= getUMaxFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3333 return BackedgeTakenInfo(BECount
, MaxBECount
);
3337 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3338 // Procede to the next level to examine the icmp.
3339 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
))
3340 return ComputeBackedgeTakenCountFromExitCondICmp(L
, ExitCondICmp
, TBB
, FBB
);
3342 // If it's not an integer or pointer comparison then compute it the hard way.
3343 return ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
3346 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3347 /// backedge of the specified loop will execute if its exit condition
3348 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3349 ScalarEvolution::BackedgeTakenInfo
3350 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop
*L
,
3355 // If the condition was exit on true, convert the condition to exit on false
3356 ICmpInst::Predicate Cond
;
3357 if (!L
->contains(FBB
))
3358 Cond
= ExitCond
->getPredicate();
3360 Cond
= ExitCond
->getInversePredicate();
3362 // Handle common loops like: for (X = "string"; *X; ++X)
3363 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
3364 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
3366 ComputeLoadConstantCompareBackedgeTakenCount(LI
, RHS
, L
, Cond
);
3367 if (!isa
<SCEVCouldNotCompute
>(ItCnt
)) {
3368 unsigned BitWidth
= getTypeSizeInBits(ItCnt
->getType());
3369 return BackedgeTakenInfo(ItCnt
,
3370 isa
<SCEVConstant
>(ItCnt
) ? ItCnt
:
3371 getConstant(APInt::getMaxValue(BitWidth
)-1));
3375 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
3376 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
3378 // Try to evaluate any dependencies out of the loop.
3379 LHS
= getSCEVAtScope(LHS
, L
);
3380 RHS
= getSCEVAtScope(RHS
, L
);
3382 // At this point, we would like to compute how many iterations of the
3383 // loop the predicate will return true for these inputs.
3384 if (LHS
->isLoopInvariant(L
) && !RHS
->isLoopInvariant(L
)) {
3385 // If there is a loop-invariant, force it into the RHS.
3386 std::swap(LHS
, RHS
);
3387 Cond
= ICmpInst::getSwappedPredicate(Cond
);
3390 // If we have a comparison of a chrec against a constant, try to use value
3391 // ranges to answer this query.
3392 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
3393 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3394 if (AddRec
->getLoop() == L
) {
3395 // Form the constant range.
3396 ConstantRange
CompRange(
3397 ICmpInst::makeConstantRange(Cond
, RHSC
->getValue()->getValue()));
3399 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
3400 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
3404 case ICmpInst::ICMP_NE
: { // while (X != Y)
3405 // Convert to: while (X-Y != 0)
3406 const SCEV
*TC
= HowFarToZero(getMinusSCEV(LHS
, RHS
), L
);
3407 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
3410 case ICmpInst::ICMP_EQ
: {
3411 // Convert to: while (X-Y == 0) // while (X == Y)
3412 const SCEV
*TC
= HowFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
3413 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
3416 case ICmpInst::ICMP_SLT
: {
3417 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, true);
3418 if (BTI
.hasAnyInfo()) return BTI
;
3421 case ICmpInst::ICMP_SGT
: {
3422 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
3423 getNotSCEV(RHS
), L
, true);
3424 if (BTI
.hasAnyInfo()) return BTI
;
3427 case ICmpInst::ICMP_ULT
: {
3428 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, false);
3429 if (BTI
.hasAnyInfo()) return BTI
;
3432 case ICmpInst::ICMP_UGT
: {
3433 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
3434 getNotSCEV(RHS
), L
, false);
3435 if (BTI
.hasAnyInfo()) return BTI
;
3440 errs() << "ComputeBackedgeTakenCount ";
3441 if (ExitCond
->getOperand(0)->getType()->isUnsigned())
3442 errs() << "[unsigned] ";
3443 errs() << *LHS
<< " "
3444 << Instruction::getOpcodeName(Instruction::ICmp
)
3445 << " " << *RHS
<< "\n";
3450 ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
3453 static ConstantInt
*
3454 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
3455 ScalarEvolution
&SE
) {
3456 const SCEV
*InVal
= SE
.getConstant(C
);
3457 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
3458 assert(isa
<SCEVConstant
>(Val
) &&
3459 "Evaluation of SCEV at constant didn't fold correctly?");
3460 return cast
<SCEVConstant
>(Val
)->getValue();
3463 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3464 /// and a GEP expression (missing the pointer index) indexing into it, return
3465 /// the addressed element of the initializer or null if the index expression is
3468 GetAddressedElementFromGlobal(LLVMContext
&Context
, GlobalVariable
*GV
,
3469 const std::vector
<ConstantInt
*> &Indices
) {
3470 Constant
*Init
= GV
->getInitializer();
3471 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
) {
3472 uint64_t Idx
= Indices
[i
]->getZExtValue();
3473 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
3474 assert(Idx
< CS
->getNumOperands() && "Bad struct index!");
3475 Init
= cast
<Constant
>(CS
->getOperand(Idx
));
3476 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
3477 if (Idx
>= CA
->getNumOperands()) return 0; // Bogus program
3478 Init
= cast
<Constant
>(CA
->getOperand(Idx
));
3479 } else if (isa
<ConstantAggregateZero
>(Init
)) {
3480 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
3481 assert(Idx
< STy
->getNumElements() && "Bad struct index!");
3482 Init
= Constant::getNullValue(STy
->getElementType(Idx
));
3483 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType())) {
3484 if (Idx
>= ATy
->getNumElements()) return 0; // Bogus program
3485 Init
= Constant::getNullValue(ATy
->getElementType());
3487 llvm_unreachable("Unknown constant aggregate type!");
3491 return 0; // Unknown initializer type
3497 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3498 /// 'icmp op load X, cst', try to see if we can compute the backedge
3499 /// execution count.
3501 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3505 ICmpInst::Predicate predicate
) {
3506 if (LI
->isVolatile()) return getCouldNotCompute();
3508 // Check to see if the loaded pointer is a getelementptr of a global.
3509 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
3510 if (!GEP
) return getCouldNotCompute();
3512 // Make sure that it is really a constant global we are gepping, with an
3513 // initializer, and make sure the first IDX is really 0.
3514 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
3515 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer() ||
3516 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
3517 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
3518 return getCouldNotCompute();
3520 // Okay, we allow one non-constant index into the GEP instruction.
3522 std::vector
<ConstantInt
*> Indexes
;
3523 unsigned VarIdxNum
= 0;
3524 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
3525 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
3526 Indexes
.push_back(CI
);
3527 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
3528 if (VarIdx
) return getCouldNotCompute(); // Multiple non-constant idx's.
3529 VarIdx
= GEP
->getOperand(i
);
3531 Indexes
.push_back(0);
3534 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3535 // Check to see if X is a loop variant variable value now.
3536 const SCEV
*Idx
= getSCEV(VarIdx
);
3537 Idx
= getSCEVAtScope(Idx
, L
);
3539 // We can only recognize very limited forms of loop index expressions, in
3540 // particular, only affine AddRec's like {C1,+,C2}.
3541 const SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
3542 if (!IdxExpr
|| !IdxExpr
->isAffine() || IdxExpr
->isLoopInvariant(L
) ||
3543 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
3544 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
3545 return getCouldNotCompute();
3547 unsigned MaxSteps
= MaxBruteForceIterations
;
3548 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
3549 ConstantInt
*ItCst
= ConstantInt::get(
3550 cast
<IntegerType
>(IdxExpr
->getType()), IterationNum
);
3551 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
3553 // Form the GEP offset.
3554 Indexes
[VarIdxNum
] = Val
;
3556 Constant
*Result
= GetAddressedElementFromGlobal(getContext(), GV
, Indexes
);
3557 if (Result
== 0) break; // Cannot compute!
3559 // Evaluate the condition for this iteration.
3560 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
3561 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
3562 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
3564 errs() << "\n***\n*** Computed loop count " << *ItCst
3565 << "\n*** From global " << *GV
<< "*** BB: " << *L
->getHeader()
3568 ++NumArrayLenItCounts
;
3569 return getConstant(ItCst
); // Found terminating iteration!
3572 return getCouldNotCompute();
3576 /// CanConstantFold - Return true if we can constant fold an instruction of the
3577 /// specified type, assuming that all operands were constants.
3578 static bool CanConstantFold(const Instruction
*I
) {
3579 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
3580 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
))
3583 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
3584 if (const Function
*F
= CI
->getCalledFunction())
3585 return canConstantFoldCallTo(F
);
3589 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3590 /// in the loop that V is derived from. We allow arbitrary operations along the
3591 /// way, but the operands of an operation must either be constants or a value
3592 /// derived from a constant PHI. If this expression does not fit with these
3593 /// constraints, return null.
3594 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
3595 // If this is not an instruction, or if this is an instruction outside of the
3596 // loop, it can't be derived from a loop PHI.
3597 Instruction
*I
= dyn_cast
<Instruction
>(V
);
3598 if (I
== 0 || !L
->contains(I
->getParent())) return 0;
3600 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
3601 if (L
->getHeader() == I
->getParent())
3604 // We don't currently keep track of the control flow needed to evaluate
3605 // PHIs, so we cannot handle PHIs inside of loops.
3609 // If we won't be able to constant fold this expression even if the operands
3610 // are constants, return early.
3611 if (!CanConstantFold(I
)) return 0;
3613 // Otherwise, we can evaluate this instruction if all of its operands are
3614 // constant or derived from a PHI node themselves.
3616 for (unsigned Op
= 0, e
= I
->getNumOperands(); Op
!= e
; ++Op
)
3617 if (!(isa
<Constant
>(I
->getOperand(Op
)) ||
3618 isa
<GlobalValue
>(I
->getOperand(Op
)))) {
3619 PHINode
*P
= getConstantEvolvingPHI(I
->getOperand(Op
), L
);
3620 if (P
== 0) return 0; // Not evolving from PHI
3624 return 0; // Evolving from multiple different PHIs.
3627 // This is a expression evolving from a constant PHI!
3631 /// EvaluateExpression - Given an expression that passes the
3632 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3633 /// in the loop has the value PHIVal. If we can't fold this expression for some
3634 /// reason, return null.
3635 static Constant
*EvaluateExpression(Value
*V
, Constant
*PHIVal
) {
3636 if (isa
<PHINode
>(V
)) return PHIVal
;
3637 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
3638 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) return GV
;
3639 Instruction
*I
= cast
<Instruction
>(V
);
3640 LLVMContext
&Context
= I
->getParent()->getContext();
3642 std::vector
<Constant
*> Operands
;
3643 Operands
.resize(I
->getNumOperands());
3645 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3646 Operands
[i
] = EvaluateExpression(I
->getOperand(i
), PHIVal
);
3647 if (Operands
[i
] == 0) return 0;
3650 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
3651 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
3652 &Operands
[0], Operands
.size(),
3655 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
3656 &Operands
[0], Operands
.size(),
3660 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3661 /// in the header of its containing loop, we know the loop executes a
3662 /// constant number of times, and the PHI node is just a recurrence
3663 /// involving constants, fold it.
3665 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
3668 std::map
<PHINode
*, Constant
*>::iterator I
=
3669 ConstantEvolutionLoopExitValue
.find(PN
);
3670 if (I
!= ConstantEvolutionLoopExitValue
.end())
3673 if (BEs
.ugt(APInt(BEs
.getBitWidth(),MaxBruteForceIterations
)))
3674 return ConstantEvolutionLoopExitValue
[PN
] = 0; // Not going to evaluate it.
3676 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
3678 // Since the loop is canonicalized, the PHI node must have two entries. One
3679 // entry must be a constant (coming in from outside of the loop), and the
3680 // second must be derived from the same PHI.
3681 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
3682 Constant
*StartCST
=
3683 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
3685 return RetVal
= 0; // Must be a constant.
3687 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
3688 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
3690 return RetVal
= 0; // Not derived from same PHI.
3692 // Execute the loop symbolically to determine the exit value.
3693 if (BEs
.getActiveBits() >= 32)
3694 return RetVal
= 0; // More than 2^32-1 iterations?? Not doing it!
3696 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
3697 unsigned IterationNum
= 0;
3698 for (Constant
*PHIVal
= StartCST
; ; ++IterationNum
) {
3699 if (IterationNum
== NumIterations
)
3700 return RetVal
= PHIVal
; // Got exit value!
3702 // Compute the value of the PHI node for the next iteration.
3703 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
3704 if (NextPHI
== PHIVal
)
3705 return RetVal
= NextPHI
; // Stopped evolving!
3707 return 0; // Couldn't evaluate!
3712 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3713 /// constant number of times (the condition evolves only from constants),
3714 /// try to evaluate a few iterations of the loop until we get the exit
3715 /// condition gets a value of ExitWhen (true or false). If we cannot
3716 /// evaluate the trip count of the loop, return getCouldNotCompute().
3718 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop
*L
,
3721 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
3722 if (PN
== 0) return getCouldNotCompute();
3724 // Since the loop is canonicalized, the PHI node must have two entries. One
3725 // entry must be a constant (coming in from outside of the loop), and the
3726 // second must be derived from the same PHI.
3727 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
3728 Constant
*StartCST
=
3729 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
3730 if (StartCST
== 0) return getCouldNotCompute(); // Must be a constant.
3732 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
3733 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
3734 if (PN2
!= PN
) return getCouldNotCompute(); // Not derived from same PHI.
3736 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3737 // the loop symbolically to determine when the condition gets a value of
3739 unsigned IterationNum
= 0;
3740 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
3741 for (Constant
*PHIVal
= StartCST
;
3742 IterationNum
!= MaxIterations
; ++IterationNum
) {
3743 ConstantInt
*CondVal
=
3744 dyn_cast_or_null
<ConstantInt
>(EvaluateExpression(Cond
, PHIVal
));
3746 // Couldn't symbolically evaluate.
3747 if (!CondVal
) return getCouldNotCompute();
3749 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
3750 ++NumBruteForceTripCountsComputed
;
3751 return getConstant(Type::Int32Ty
, IterationNum
);
3754 // Compute the value of the PHI node for the next iteration.
3755 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
3756 if (NextPHI
== 0 || NextPHI
== PHIVal
)
3757 return getCouldNotCompute();// Couldn't evaluate or not making progress...
3761 // Too many iterations were needed to evaluate.
3762 return getCouldNotCompute();
3765 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
3766 /// at the specified scope in the program. The L value specifies a loop
3767 /// nest to evaluate the expression at, where null is the top-level or a
3768 /// specified loop is immediately inside of the loop.
3770 /// This method can be used to compute the exit value for a variable defined
3771 /// in a loop by querying what the value will hold in the parent loop.
3773 /// In the case that a relevant loop exit value cannot be computed, the
3774 /// original value V is returned.
3775 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
3776 // FIXME: this should be turned into a virtual method on SCEV!
3778 if (isa
<SCEVConstant
>(V
)) return V
;
3780 // If this instruction is evolved from a constant-evolving PHI, compute the
3781 // exit value from the loop without using SCEVs.
3782 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
3783 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
3784 const Loop
*LI
= (*this->LI
)[I
->getParent()];
3785 if (LI
&& LI
->getParentLoop() == L
) // Looking for loop exit value.
3786 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3787 if (PN
->getParent() == LI
->getHeader()) {
3788 // Okay, there is no closed form solution for the PHI node. Check
3789 // to see if the loop that contains it has a known backedge-taken
3790 // count. If so, we may be able to force computation of the exit
3792 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(LI
);
3793 if (const SCEVConstant
*BTCC
=
3794 dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
3795 // Okay, we know how many times the containing loop executes. If
3796 // this is a constant evolving PHI node, get the final value at
3797 // the specified iteration number.
3798 Constant
*RV
= getConstantEvolutionLoopExitValue(PN
,
3799 BTCC
->getValue()->getValue(),
3801 if (RV
) return getSCEV(RV
);
3805 // Okay, this is an expression that we cannot symbolically evaluate
3806 // into a SCEV. Check to see if it's possible to symbolically evaluate
3807 // the arguments into constants, and if so, try to constant propagate the
3808 // result. This is particularly useful for computing loop exit values.
3809 if (CanConstantFold(I
)) {
3810 // Check to see if we've folded this instruction at this loop before.
3811 std::map
<const Loop
*, Constant
*> &Values
= ValuesAtScopes
[I
];
3812 std::pair
<std::map
<const Loop
*, Constant
*>::iterator
, bool> Pair
=
3813 Values
.insert(std::make_pair(L
, static_cast<Constant
*>(0)));
3815 return Pair
.first
->second
? &*getSCEV(Pair
.first
->second
) : V
;
3817 std::vector
<Constant
*> Operands
;
3818 Operands
.reserve(I
->getNumOperands());
3819 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3820 Value
*Op
= I
->getOperand(i
);
3821 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
3822 Operands
.push_back(C
);
3824 // If any of the operands is non-constant and if they are
3825 // non-integer and non-pointer, don't even try to analyze them
3826 // with scev techniques.
3827 if (!isSCEVable(Op
->getType()))
3830 const SCEV
* OpV
= getSCEVAtScope(Op
, L
);
3831 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(OpV
)) {
3832 Constant
*C
= SC
->getValue();
3833 if (C
->getType() != Op
->getType())
3834 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3838 Operands
.push_back(C
);
3839 } else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(OpV
)) {
3840 if (Constant
*C
= dyn_cast
<Constant
>(SU
->getValue())) {
3841 if (C
->getType() != Op
->getType())
3843 ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3847 Operands
.push_back(C
);
3857 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
3858 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(),
3859 &Operands
[0], Operands
.size(),
3862 C
= ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
3863 &Operands
[0], Operands
.size(),
3865 Pair
.first
->second
= C
;
3870 // This is some other type of SCEVUnknown, just return it.
3874 if (const SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
3875 // Avoid performing the look-up in the common case where the specified
3876 // expression has no loop-variant portions.
3877 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
3878 const SCEV
*OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
3879 if (OpAtScope
!= Comm
->getOperand(i
)) {
3880 // Okay, at least one of these operands is loop variant but might be
3881 // foldable. Build a new instance of the folded commutative expression.
3882 SmallVector
<const SCEV
*, 8> NewOps(Comm
->op_begin(),
3883 Comm
->op_begin()+i
);
3884 NewOps
.push_back(OpAtScope
);
3886 for (++i
; i
!= e
; ++i
) {
3887 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
3888 NewOps
.push_back(OpAtScope
);
3890 if (isa
<SCEVAddExpr
>(Comm
))
3891 return getAddExpr(NewOps
);
3892 if (isa
<SCEVMulExpr
>(Comm
))
3893 return getMulExpr(NewOps
);
3894 if (isa
<SCEVSMaxExpr
>(Comm
))
3895 return getSMaxExpr(NewOps
);
3896 if (isa
<SCEVUMaxExpr
>(Comm
))
3897 return getUMaxExpr(NewOps
);
3898 llvm_unreachable("Unknown commutative SCEV type!");
3901 // If we got here, all operands are loop invariant.
3905 if (const SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
3906 const SCEV
*LHS
= getSCEVAtScope(Div
->getLHS(), L
);
3907 const SCEV
*RHS
= getSCEVAtScope(Div
->getRHS(), L
);
3908 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
3909 return Div
; // must be loop invariant
3910 return getUDivExpr(LHS
, RHS
);
3913 // If this is a loop recurrence for a loop that does not contain L, then we
3914 // are dealing with the final value computed by the loop.
3915 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
3916 if (!L
|| !AddRec
->getLoop()->contains(L
->getHeader())) {
3917 // To evaluate this recurrence, we need to know how many times the AddRec
3918 // loop iterates. Compute this now.
3919 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
3920 if (BackedgeTakenCount
== getCouldNotCompute()) return AddRec
;
3922 // Then, evaluate the AddRec.
3923 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
3928 if (const SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
3929 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
3930 if (Op
== Cast
->getOperand())
3931 return Cast
; // must be loop invariant
3932 return getZeroExtendExpr(Op
, Cast
->getType());
3935 if (const SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
3936 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
3937 if (Op
== Cast
->getOperand())
3938 return Cast
; // must be loop invariant
3939 return getSignExtendExpr(Op
, Cast
->getType());
3942 if (const SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
3943 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
3944 if (Op
== Cast
->getOperand())
3945 return Cast
; // must be loop invariant
3946 return getTruncateExpr(Op
, Cast
->getType());
3949 llvm_unreachable("Unknown SCEV type!");
3953 /// getSCEVAtScope - This is a convenience function which does
3954 /// getSCEVAtScope(getSCEV(V), L).
3955 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
3956 return getSCEVAtScope(getSCEV(V
), L
);
3959 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3960 /// following equation:
3962 /// A * X = B (mod N)
3964 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3965 /// A and B isn't important.
3967 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3968 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const APInt
&B
,
3969 ScalarEvolution
&SE
) {
3970 uint32_t BW
= A
.getBitWidth();
3971 assert(BW
== B
.getBitWidth() && "Bit widths must be the same.");
3972 assert(A
!= 0 && "A must be non-zero.");
3976 // The gcd of A and N may have only one prime factor: 2. The number of
3977 // trailing zeros in A is its multiplicity
3978 uint32_t Mult2
= A
.countTrailingZeros();
3981 // 2. Check if B is divisible by D.
3983 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3984 // is not less than multiplicity of this prime factor for D.
3985 if (B
.countTrailingZeros() < Mult2
)
3986 return SE
.getCouldNotCompute();
3988 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3991 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3992 // bit width during computations.
3993 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
3994 APInt
Mod(BW
+ 1, 0);
3995 Mod
.set(BW
- Mult2
); // Mod = N / D
3996 APInt I
= AD
.multiplicativeInverse(Mod
);
3998 // 4. Compute the minimum unsigned root of the equation:
3999 // I * (B / D) mod (N / D)
4000 APInt Result
= (I
* B
.lshr(Mult2
).zext(BW
+ 1)).urem(Mod
);
4002 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4004 return SE
.getConstant(Result
.trunc(BW
));
4007 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4008 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4009 /// might be the same) or two SCEVCouldNotCompute objects.
4011 static std::pair
<const SCEV
*,const SCEV
*>
4012 SolveQuadraticEquation(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
4013 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
4014 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
4015 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
4016 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
4018 // We currently can only solve this if the coefficients are constants.
4019 if (!LC
|| !MC
|| !NC
) {
4020 const SCEV
*CNC
= SE
.getCouldNotCompute();
4021 return std::make_pair(CNC
, CNC
);
4024 uint32_t BitWidth
= LC
->getValue()->getValue().getBitWidth();
4025 const APInt
&L
= LC
->getValue()->getValue();
4026 const APInt
&M
= MC
->getValue()->getValue();
4027 const APInt
&N
= NC
->getValue()->getValue();
4028 APInt
Two(BitWidth
, 2);
4029 APInt
Four(BitWidth
, 4);
4032 using namespace APIntOps
;
4034 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4035 // The B coefficient is M-N/2
4039 // The A coefficient is N/2
4040 APInt
A(N
.sdiv(Two
));
4042 // Compute the B^2-4ac term.
4045 SqrtTerm
-= Four
* (A
* C
);
4047 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4048 // integer value or else APInt::sqrt() will assert.
4049 APInt
SqrtVal(SqrtTerm
.sqrt());
4051 // Compute the two solutions for the quadratic formula.
4052 // The divisions must be performed as signed divisions.
4054 APInt
TwoA( A
<< 1 );
4055 if (TwoA
.isMinValue()) {
4056 const SCEV
*CNC
= SE
.getCouldNotCompute();
4057 return std::make_pair(CNC
, CNC
);
4060 LLVMContext
&Context
= SE
.getContext();
4062 ConstantInt
*Solution1
=
4063 ConstantInt::get(Context
, (NegB
+ SqrtVal
).sdiv(TwoA
));
4064 ConstantInt
*Solution2
=
4065 ConstantInt::get(Context
, (NegB
- SqrtVal
).sdiv(TwoA
));
4067 return std::make_pair(SE
.getConstant(Solution1
),
4068 SE
.getConstant(Solution2
));
4069 } // end APIntOps namespace
4072 /// HowFarToZero - Return the number of times a backedge comparing the specified
4073 /// value to zero will execute. If not computable, return CouldNotCompute.
4074 const SCEV
*ScalarEvolution::HowFarToZero(const SCEV
*V
, const Loop
*L
) {
4075 // If the value is a constant
4076 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4077 // If the value is already zero, the branch will execute zero times.
4078 if (C
->getValue()->isZero()) return C
;
4079 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4082 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
);
4083 if (!AddRec
|| AddRec
->getLoop() != L
)
4084 return getCouldNotCompute();
4086 if (AddRec
->isAffine()) {
4087 // If this is an affine expression, the execution count of this branch is
4088 // the minimum unsigned root of the following equation:
4090 // Start + Step*N = 0 (mod 2^BW)
4094 // Step*N = -Start (mod 2^BW)
4096 // where BW is the common bit width of Start and Step.
4098 // Get the initial value for the loop.
4099 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(),
4100 L
->getParentLoop());
4101 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1),
4102 L
->getParentLoop());
4104 if (const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
)) {
4105 // For now we handle only constant steps.
4107 // First, handle unitary steps.
4108 if (StepC
->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4109 return getNegativeSCEV(Start
); // N = -Start (as unsigned)
4110 if (StepC
->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4111 return Start
; // N = Start (as unsigned)
4113 // Then, try to solve the above equation provided that Start is constant.
4114 if (const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
))
4115 return SolveLinEquationWithOverflow(StepC
->getValue()->getValue(),
4116 -StartC
->getValue()->getValue(),
4119 } else if (AddRec
->isQuadratic() && AddRec
->getType()->isInteger()) {
4120 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4121 // the quadratic equation to solve it.
4122 std::pair
<const SCEV
*,const SCEV
*> Roots
= SolveQuadraticEquation(AddRec
,
4124 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4125 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4128 errs() << "HFTZ: " << *V
<< " - sol#1: " << *R1
4129 << " sol#2: " << *R2
<< "\n";
4131 // Pick the smallest positive root value.
4132 if (ConstantInt
*CB
=
4133 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
4134 R1
->getValue(), R2
->getValue()))) {
4135 if (CB
->getZExtValue() == false)
4136 std::swap(R1
, R2
); // R1 is the minimum root now.
4138 // We can only use this value if the chrec ends up with an exact zero
4139 // value at this index. When solving for "X*X != 5", for example, we
4140 // should not accept a root of 2.
4141 const SCEV
*Val
= AddRec
->evaluateAtIteration(R1
, *this);
4143 return R1
; // We found a quadratic root!
4148 return getCouldNotCompute();
4151 /// HowFarToNonZero - Return the number of times a backedge checking the
4152 /// specified value for nonzero will execute. If not computable, return
4154 const SCEV
*ScalarEvolution::HowFarToNonZero(const SCEV
*V
, const Loop
*L
) {
4155 // Loops that look like: while (X == 0) are very strange indeed. We don't
4156 // handle them yet except for the trivial case. This could be expanded in the
4157 // future as needed.
4159 // If the value is a constant, check to see if it is known to be non-zero
4160 // already. If so, the backedge will execute zero times.
4161 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4162 if (!C
->getValue()->isNullValue())
4163 return getIntegerSCEV(0, C
->getType());
4164 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4167 // We could implement others, but I really doubt anyone writes loops like
4168 // this, and if they did, they would already be constant folded.
4169 return getCouldNotCompute();
4172 /// getLoopPredecessor - If the given loop's header has exactly one unique
4173 /// predecessor outside the loop, return it. Otherwise return null.
4175 BasicBlock
*ScalarEvolution::getLoopPredecessor(const Loop
*L
) {
4176 BasicBlock
*Header
= L
->getHeader();
4177 BasicBlock
*Pred
= 0;
4178 for (pred_iterator PI
= pred_begin(Header
), E
= pred_end(Header
);
4180 if (!L
->contains(*PI
)) {
4181 if (Pred
&& Pred
!= *PI
) return 0; // Multiple predecessors.
4187 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4188 /// (which may not be an immediate predecessor) which has exactly one
4189 /// successor from which BB is reachable, or null if no such block is
4193 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
4194 // If the block has a unique predecessor, then there is no path from the
4195 // predecessor to the block that does not go through the direct edge
4196 // from the predecessor to the block.
4197 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
4200 // A loop's header is defined to be a block that dominates the loop.
4201 // If the header has a unique predecessor outside the loop, it must be
4202 // a block that has exactly one successor that can reach the loop.
4203 if (Loop
*L
= LI
->getLoopFor(BB
))
4204 return getLoopPredecessor(L
);
4209 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4210 /// testing whether two expressions are equal, however for the purposes of
4211 /// looking for a condition guarding a loop, it can be useful to be a little
4212 /// more general, since a front-end may have replicated the controlling
4215 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
4216 // Quick check to see if they are the same SCEV.
4217 if (A
== B
) return true;
4219 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4220 // two different instructions with the same value. Check for this case.
4221 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
4222 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
4223 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
4224 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
4225 if (AI
->isIdenticalTo(BI
))
4228 // Otherwise assume they may have a different value.
4232 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
4233 return getSignedRange(S
).getSignedMax().isNegative();
4236 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
4237 return getSignedRange(S
).getSignedMin().isStrictlyPositive();
4240 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
4241 return !getSignedRange(S
).getSignedMin().isNegative();
4244 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
4245 return !getSignedRange(S
).getSignedMax().isStrictlyPositive();
4248 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
4249 return isKnownNegative(S
) || isKnownPositive(S
);
4252 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
4253 const SCEV
*LHS
, const SCEV
*RHS
) {
4255 if (HasSameValue(LHS
, RHS
))
4256 return ICmpInst::isTrueWhenEqual(Pred
);
4260 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4262 case ICmpInst::ICMP_SGT
:
4263 Pred
= ICmpInst::ICMP_SLT
;
4264 std::swap(LHS
, RHS
);
4265 case ICmpInst::ICMP_SLT
: {
4266 ConstantRange LHSRange
= getSignedRange(LHS
);
4267 ConstantRange RHSRange
= getSignedRange(RHS
);
4268 if (LHSRange
.getSignedMax().slt(RHSRange
.getSignedMin()))
4270 if (LHSRange
.getSignedMin().sge(RHSRange
.getSignedMax()))
4274 case ICmpInst::ICMP_SGE
:
4275 Pred
= ICmpInst::ICMP_SLE
;
4276 std::swap(LHS
, RHS
);
4277 case ICmpInst::ICMP_SLE
: {
4278 ConstantRange LHSRange
= getSignedRange(LHS
);
4279 ConstantRange RHSRange
= getSignedRange(RHS
);
4280 if (LHSRange
.getSignedMax().sle(RHSRange
.getSignedMin()))
4282 if (LHSRange
.getSignedMin().sgt(RHSRange
.getSignedMax()))
4286 case ICmpInst::ICMP_UGT
:
4287 Pred
= ICmpInst::ICMP_ULT
;
4288 std::swap(LHS
, RHS
);
4289 case ICmpInst::ICMP_ULT
: {
4290 ConstantRange LHSRange
= getUnsignedRange(LHS
);
4291 ConstantRange RHSRange
= getUnsignedRange(RHS
);
4292 if (LHSRange
.getUnsignedMax().ult(RHSRange
.getUnsignedMin()))
4294 if (LHSRange
.getUnsignedMin().uge(RHSRange
.getUnsignedMax()))
4298 case ICmpInst::ICMP_UGE
:
4299 Pred
= ICmpInst::ICMP_ULE
;
4300 std::swap(LHS
, RHS
);
4301 case ICmpInst::ICMP_ULE
: {
4302 ConstantRange LHSRange
= getUnsignedRange(LHS
);
4303 ConstantRange RHSRange
= getUnsignedRange(RHS
);
4304 if (LHSRange
.getUnsignedMax().ule(RHSRange
.getUnsignedMin()))
4306 if (LHSRange
.getUnsignedMin().ugt(RHSRange
.getUnsignedMax()))
4310 case ICmpInst::ICMP_NE
: {
4311 if (getUnsignedRange(LHS
).intersectWith(getUnsignedRange(RHS
)).isEmptySet())
4313 if (getSignedRange(LHS
).intersectWith(getSignedRange(RHS
)).isEmptySet())
4316 const SCEV
*Diff
= getMinusSCEV(LHS
, RHS
);
4317 if (isKnownNonZero(Diff
))
4321 case ICmpInst::ICMP_EQ
:
4322 // The check at the top of the function catches the case where
4323 // the values are known to be equal.
4329 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4330 /// protected by a conditional between LHS and RHS. This is used to
4331 /// to eliminate casts.
4333 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
4334 ICmpInst::Predicate Pred
,
4335 const SCEV
*LHS
, const SCEV
*RHS
) {
4336 // Interpret a null as meaning no loop, where there is obviously no guard
4337 // (interprocedural conditions notwithstanding).
4338 if (!L
) return true;
4340 BasicBlock
*Latch
= L
->getLoopLatch();
4344 BranchInst
*LoopContinuePredicate
=
4345 dyn_cast
<BranchInst
>(Latch
->getTerminator());
4346 if (!LoopContinuePredicate
||
4347 LoopContinuePredicate
->isUnconditional())
4350 return isImpliedCond(LoopContinuePredicate
->getCondition(), Pred
, LHS
, RHS
,
4351 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader());
4354 /// isLoopGuardedByCond - Test whether entry to the loop is protected
4355 /// by a conditional between LHS and RHS. This is used to help avoid max
4356 /// expressions in loop trip counts, and to eliminate casts.
4358 ScalarEvolution::isLoopGuardedByCond(const Loop
*L
,
4359 ICmpInst::Predicate Pred
,
4360 const SCEV
*LHS
, const SCEV
*RHS
) {
4361 // Interpret a null as meaning no loop, where there is obviously no guard
4362 // (interprocedural conditions notwithstanding).
4363 if (!L
) return false;
4365 BasicBlock
*Predecessor
= getLoopPredecessor(L
);
4366 BasicBlock
*PredecessorDest
= L
->getHeader();
4368 // Starting at the loop predecessor, climb up the predecessor chain, as long
4369 // as there are predecessors that can be found that have unique successors
4370 // leading to the original header.
4372 PredecessorDest
= Predecessor
,
4373 Predecessor
= getPredecessorWithUniqueSuccessorForBB(Predecessor
)) {
4375 BranchInst
*LoopEntryPredicate
=
4376 dyn_cast
<BranchInst
>(Predecessor
->getTerminator());
4377 if (!LoopEntryPredicate
||
4378 LoopEntryPredicate
->isUnconditional())
4381 if (isImpliedCond(LoopEntryPredicate
->getCondition(), Pred
, LHS
, RHS
,
4382 LoopEntryPredicate
->getSuccessor(0) != PredecessorDest
))
4389 /// isImpliedCond - Test whether the condition described by Pred, LHS,
4390 /// and RHS is true whenever the given Cond value evaluates to true.
4391 bool ScalarEvolution::isImpliedCond(Value
*CondValue
,
4392 ICmpInst::Predicate Pred
,
4393 const SCEV
*LHS
, const SCEV
*RHS
,
4395 // Recursivly handle And and Or conditions.
4396 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CondValue
)) {
4397 if (BO
->getOpcode() == Instruction::And
) {
4399 return isImpliedCond(BO
->getOperand(0), Pred
, LHS
, RHS
, Inverse
) ||
4400 isImpliedCond(BO
->getOperand(1), Pred
, LHS
, RHS
, Inverse
);
4401 } else if (BO
->getOpcode() == Instruction::Or
) {
4403 return isImpliedCond(BO
->getOperand(0), Pred
, LHS
, RHS
, Inverse
) ||
4404 isImpliedCond(BO
->getOperand(1), Pred
, LHS
, RHS
, Inverse
);
4408 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondValue
);
4409 if (!ICI
) return false;
4411 // Bail if the ICmp's operands' types are wider than the needed type
4412 // before attempting to call getSCEV on them. This avoids infinite
4413 // recursion, since the analysis of widening casts can require loop
4414 // exit condition information for overflow checking, which would
4416 if (getTypeSizeInBits(LHS
->getType()) <
4417 getTypeSizeInBits(ICI
->getOperand(0)->getType()))
4420 // Now that we found a conditional branch that dominates the loop, check to
4421 // see if it is the comparison we are looking for.
4422 ICmpInst::Predicate FoundPred
;
4424 FoundPred
= ICI
->getInversePredicate();
4426 FoundPred
= ICI
->getPredicate();
4428 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
4429 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
4431 // Balance the types. The case where FoundLHS' type is wider than
4432 // LHS' type is checked for above.
4433 if (getTypeSizeInBits(LHS
->getType()) >
4434 getTypeSizeInBits(FoundLHS
->getType())) {
4435 if (CmpInst::isSigned(Pred
)) {
4436 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
4437 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
4439 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
4440 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
4444 // Canonicalize the query to match the way instcombine will have
4445 // canonicalized the comparison.
4446 // First, put a constant operand on the right.
4447 if (isa
<SCEVConstant
>(LHS
)) {
4448 std::swap(LHS
, RHS
);
4449 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4451 // Then, canonicalize comparisons with boundary cases.
4452 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
4453 const APInt
&RA
= RC
->getValue()->getValue();
4455 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4456 case ICmpInst::ICMP_EQ
:
4457 case ICmpInst::ICMP_NE
:
4459 case ICmpInst::ICMP_UGE
:
4460 if ((RA
- 1).isMinValue()) {
4461 Pred
= ICmpInst::ICMP_NE
;
4462 RHS
= getConstant(RA
- 1);
4465 if (RA
.isMaxValue()) {
4466 Pred
= ICmpInst::ICMP_EQ
;
4469 if (RA
.isMinValue()) return true;
4471 case ICmpInst::ICMP_ULE
:
4472 if ((RA
+ 1).isMaxValue()) {
4473 Pred
= ICmpInst::ICMP_NE
;
4474 RHS
= getConstant(RA
+ 1);
4477 if (RA
.isMinValue()) {
4478 Pred
= ICmpInst::ICMP_EQ
;
4481 if (RA
.isMaxValue()) return true;
4483 case ICmpInst::ICMP_SGE
:
4484 if ((RA
- 1).isMinSignedValue()) {
4485 Pred
= ICmpInst::ICMP_NE
;
4486 RHS
= getConstant(RA
- 1);
4489 if (RA
.isMaxSignedValue()) {
4490 Pred
= ICmpInst::ICMP_EQ
;
4493 if (RA
.isMinSignedValue()) return true;
4495 case ICmpInst::ICMP_SLE
:
4496 if ((RA
+ 1).isMaxSignedValue()) {
4497 Pred
= ICmpInst::ICMP_NE
;
4498 RHS
= getConstant(RA
+ 1);
4501 if (RA
.isMinSignedValue()) {
4502 Pred
= ICmpInst::ICMP_EQ
;
4505 if (RA
.isMaxSignedValue()) return true;
4507 case ICmpInst::ICMP_UGT
:
4508 if (RA
.isMinValue()) {
4509 Pred
= ICmpInst::ICMP_NE
;
4512 if ((RA
+ 1).isMaxValue()) {
4513 Pred
= ICmpInst::ICMP_EQ
;
4514 RHS
= getConstant(RA
+ 1);
4517 if (RA
.isMaxValue()) return false;
4519 case ICmpInst::ICMP_ULT
:
4520 if (RA
.isMaxValue()) {
4521 Pred
= ICmpInst::ICMP_NE
;
4524 if ((RA
- 1).isMinValue()) {
4525 Pred
= ICmpInst::ICMP_EQ
;
4526 RHS
= getConstant(RA
- 1);
4529 if (RA
.isMinValue()) return false;
4531 case ICmpInst::ICMP_SGT
:
4532 if (RA
.isMinSignedValue()) {
4533 Pred
= ICmpInst::ICMP_NE
;
4536 if ((RA
+ 1).isMaxSignedValue()) {
4537 Pred
= ICmpInst::ICMP_EQ
;
4538 RHS
= getConstant(RA
+ 1);
4541 if (RA
.isMaxSignedValue()) return false;
4543 case ICmpInst::ICMP_SLT
:
4544 if (RA
.isMaxSignedValue()) {
4545 Pred
= ICmpInst::ICMP_NE
;
4548 if ((RA
- 1).isMinSignedValue()) {
4549 Pred
= ICmpInst::ICMP_EQ
;
4550 RHS
= getConstant(RA
- 1);
4553 if (RA
.isMinSignedValue()) return false;
4558 // Check to see if we can make the LHS or RHS match.
4559 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
4560 if (isa
<SCEVConstant
>(RHS
)) {
4561 std::swap(FoundLHS
, FoundRHS
);
4562 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
4564 std::swap(LHS
, RHS
);
4565 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4569 // Check whether the found predicate is the same as the desired predicate.
4570 if (FoundPred
== Pred
)
4571 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
);
4573 // Check whether swapping the found predicate makes it the same as the
4574 // desired predicate.
4575 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
4576 if (isa
<SCEVConstant
>(RHS
))
4577 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
);
4579 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred
),
4580 RHS
, LHS
, FoundLHS
, FoundRHS
);
4583 // Check whether the actual condition is beyond sufficient.
4584 if (FoundPred
== ICmpInst::ICMP_EQ
)
4585 if (ICmpInst::isTrueWhenEqual(Pred
))
4586 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
4588 if (Pred
== ICmpInst::ICMP_NE
)
4589 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
4590 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
4593 // Otherwise assume the worst.
4597 /// isImpliedCondOperands - Test whether the condition described by Pred,
4598 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4599 /// and FoundRHS is true.
4600 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
4601 const SCEV
*LHS
, const SCEV
*RHS
,
4602 const SCEV
*FoundLHS
,
4603 const SCEV
*FoundRHS
) {
4604 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
4605 FoundLHS
, FoundRHS
) ||
4606 // ~x < ~y --> x > y
4607 isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
4608 getNotSCEV(FoundRHS
),
4609 getNotSCEV(FoundLHS
));
4612 /// isImpliedCondOperandsHelper - Test whether the condition described by
4613 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4614 /// FoundLHS, and FoundRHS is true.
4616 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
4617 const SCEV
*LHS
, const SCEV
*RHS
,
4618 const SCEV
*FoundLHS
,
4619 const SCEV
*FoundRHS
) {
4621 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4622 case ICmpInst::ICMP_EQ
:
4623 case ICmpInst::ICMP_NE
:
4624 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
4627 case ICmpInst::ICMP_SLT
:
4628 case ICmpInst::ICMP_SLE
:
4629 if (isKnownPredicate(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
4630 isKnownPredicate(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
4633 case ICmpInst::ICMP_SGT
:
4634 case ICmpInst::ICMP_SGE
:
4635 if (isKnownPredicate(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
4636 isKnownPredicate(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
4639 case ICmpInst::ICMP_ULT
:
4640 case ICmpInst::ICMP_ULE
:
4641 if (isKnownPredicate(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
4642 isKnownPredicate(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
4645 case ICmpInst::ICMP_UGT
:
4646 case ICmpInst::ICMP_UGE
:
4647 if (isKnownPredicate(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
4648 isKnownPredicate(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
4656 /// getBECount - Subtract the end and start values and divide by the step,
4657 /// rounding up, to get the number of times the backedge is executed. Return
4658 /// CouldNotCompute if an intermediate computation overflows.
4659 const SCEV
*ScalarEvolution::getBECount(const SCEV
*Start
,
4662 const Type
*Ty
= Start
->getType();
4663 const SCEV
*NegOne
= getIntegerSCEV(-1, Ty
);
4664 const SCEV
*Diff
= getMinusSCEV(End
, Start
);
4665 const SCEV
*RoundUp
= getAddExpr(Step
, NegOne
);
4667 // Add an adjustment to the difference between End and Start so that
4668 // the division will effectively round up.
4669 const SCEV
*Add
= getAddExpr(Diff
, RoundUp
);
4671 // Check Add for unsigned overflow.
4672 // TODO: More sophisticated things could be done here.
4673 const Type
*WideTy
= IntegerType::get(getTypeSizeInBits(Ty
) + 1);
4674 const SCEV
*EDiff
= getZeroExtendExpr(Diff
, WideTy
);
4675 const SCEV
*ERoundUp
= getZeroExtendExpr(RoundUp
, WideTy
);
4676 const SCEV
*OperandExtendedAdd
= getAddExpr(EDiff
, ERoundUp
);
4677 if (getZeroExtendExpr(Add
, WideTy
) != OperandExtendedAdd
)
4678 return getCouldNotCompute();
4680 return getUDivExpr(Add
, Step
);
4683 /// HowManyLessThans - Return the number of times a backedge containing the
4684 /// specified less-than comparison will execute. If not computable, return
4685 /// CouldNotCompute.
4686 ScalarEvolution::BackedgeTakenInfo
4687 ScalarEvolution::HowManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
4688 const Loop
*L
, bool isSigned
) {
4689 // Only handle: "ADDREC < LoopInvariant".
4690 if (!RHS
->isLoopInvariant(L
)) return getCouldNotCompute();
4692 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
4693 if (!AddRec
|| AddRec
->getLoop() != L
)
4694 return getCouldNotCompute();
4696 if (AddRec
->isAffine()) {
4697 // FORNOW: We only support unit strides.
4698 unsigned BitWidth
= getTypeSizeInBits(AddRec
->getType());
4699 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
4701 // TODO: handle non-constant strides.
4702 const SCEVConstant
*CStep
= dyn_cast
<SCEVConstant
>(Step
);
4703 if (!CStep
|| CStep
->isZero())
4704 return getCouldNotCompute();
4705 if (CStep
->isOne()) {
4706 // With unit stride, the iteration never steps past the limit value.
4707 } else if (CStep
->getValue()->getValue().isStrictlyPositive()) {
4708 if (const SCEVConstant
*CLimit
= dyn_cast
<SCEVConstant
>(RHS
)) {
4709 // Test whether a positive iteration iteration can step past the limit
4710 // value and past the maximum value for its type in a single step.
4712 APInt Max
= APInt::getSignedMaxValue(BitWidth
);
4713 if ((Max
- CStep
->getValue()->getValue())
4714 .slt(CLimit
->getValue()->getValue()))
4715 return getCouldNotCompute();
4717 APInt Max
= APInt::getMaxValue(BitWidth
);
4718 if ((Max
- CStep
->getValue()->getValue())
4719 .ult(CLimit
->getValue()->getValue()))
4720 return getCouldNotCompute();
4723 // TODO: handle non-constant limit values below.
4724 return getCouldNotCompute();
4726 // TODO: handle negative strides below.
4727 return getCouldNotCompute();
4729 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4730 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4731 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4732 // treat m-n as signed nor unsigned due to overflow possibility.
4734 // First, we get the value of the LHS in the first iteration: n
4735 const SCEV
*Start
= AddRec
->getOperand(0);
4737 // Determine the minimum constant start value.
4738 const SCEV
*MinStart
= getConstant(isSigned
?
4739 getSignedRange(Start
).getSignedMin() :
4740 getUnsignedRange(Start
).getUnsignedMin());
4742 // If we know that the condition is true in order to enter the loop,
4743 // then we know that it will run exactly (m-n)/s times. Otherwise, we
4744 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4745 // the division must round up.
4746 const SCEV
*End
= RHS
;
4747 if (!isLoopGuardedByCond(L
,
4748 isSigned
? ICmpInst::ICMP_SLT
:
4750 getMinusSCEV(Start
, Step
), RHS
))
4751 End
= isSigned
? getSMaxExpr(RHS
, Start
)
4752 : getUMaxExpr(RHS
, Start
);
4754 // Determine the maximum constant end value.
4755 const SCEV
*MaxEnd
= getConstant(isSigned
?
4756 getSignedRange(End
).getSignedMax() :
4757 getUnsignedRange(End
).getUnsignedMax());
4759 // Finally, we subtract these two values and divide, rounding up, to get
4760 // the number of times the backedge is executed.
4761 const SCEV
*BECount
= getBECount(Start
, End
, Step
);
4763 // The maximum backedge count is similar, except using the minimum start
4764 // value and the maximum end value.
4765 const SCEV
*MaxBECount
= getBECount(MinStart
, MaxEnd
, Step
);
4767 return BackedgeTakenInfo(BECount
, MaxBECount
);
4770 return getCouldNotCompute();
4773 /// getNumIterationsInRange - Return the number of iterations of this loop that
4774 /// produce values in the specified constant range. Another way of looking at
4775 /// this is that it returns the first iteration number where the value is not in
4776 /// the condition, thus computing the exit count. If the iteration count can't
4777 /// be computed, an instance of SCEVCouldNotCompute is returned.
4778 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range
,
4779 ScalarEvolution
&SE
) const {
4780 if (Range
.isFullSet()) // Infinite loop.
4781 return SE
.getCouldNotCompute();
4783 // If the start is a non-zero constant, shift the range to simplify things.
4784 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
4785 if (!SC
->getValue()->isZero()) {
4786 SmallVector
<const SCEV
*, 4> Operands(op_begin(), op_end());
4787 Operands
[0] = SE
.getIntegerSCEV(0, SC
->getType());
4788 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop());
4789 if (const SCEVAddRecExpr
*ShiftedAddRec
=
4790 dyn_cast
<SCEVAddRecExpr
>(Shifted
))
4791 return ShiftedAddRec
->getNumIterationsInRange(
4792 Range
.subtract(SC
->getValue()->getValue()), SE
);
4793 // This is strange and shouldn't happen.
4794 return SE
.getCouldNotCompute();
4797 // The only time we can solve this is when we have all constant indices.
4798 // Otherwise, we cannot determine the overflow conditions.
4799 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
4800 if (!isa
<SCEVConstant
>(getOperand(i
)))
4801 return SE
.getCouldNotCompute();
4804 // Okay at this point we know that all elements of the chrec are constants and
4805 // that the start element is zero.
4807 // First check to see if the range contains zero. If not, the first
4809 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
4810 if (!Range
.contains(APInt(BitWidth
, 0)))
4811 return SE
.getIntegerSCEV(0, getType());
4814 // If this is an affine expression then we have this situation:
4815 // Solve {0,+,A} in Range === Ax in Range
4817 // We know that zero is in the range. If A is positive then we know that
4818 // the upper value of the range must be the first possible exit value.
4819 // If A is negative then the lower of the range is the last possible loop
4820 // value. Also note that we already checked for a full range.
4821 APInt
One(BitWidth
,1);
4822 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getValue()->getValue();
4823 APInt End
= A
.sge(One
) ? (Range
.getUpper() - One
) : Range
.getLower();
4825 // The exit value should be (End+A)/A.
4826 APInt ExitVal
= (End
+ A
).udiv(A
);
4827 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
4829 // Evaluate at the exit value. If we really did fall out of the valid
4830 // range, then we computed our trip count, otherwise wrap around or other
4831 // things must have happened.
4832 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
4833 if (Range
.contains(Val
->getValue()))
4834 return SE
.getCouldNotCompute(); // Something strange happened
4836 // Ensure that the previous value is in the range. This is a sanity check.
4837 assert(Range
.contains(
4838 EvaluateConstantChrecAtConstant(this,
4839 ConstantInt::get(SE
.getContext(), ExitVal
- One
), SE
)->getValue()) &&
4840 "Linear scev computation is off in a bad way!");
4841 return SE
.getConstant(ExitValue
);
4842 } else if (isQuadratic()) {
4843 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4844 // quadratic equation to solve it. To do this, we must frame our problem in
4845 // terms of figuring out when zero is crossed, instead of when
4846 // Range.getUpper() is crossed.
4847 SmallVector
<const SCEV
*, 4> NewOps(op_begin(), op_end());
4848 NewOps
[0] = SE
.getNegativeSCEV(SE
.getConstant(Range
.getUpper()));
4849 const SCEV
*NewAddRec
= SE
.getAddRecExpr(NewOps
, getLoop());
4851 // Next, solve the constructed addrec
4852 std::pair
<const SCEV
*,const SCEV
*> Roots
=
4853 SolveQuadraticEquation(cast
<SCEVAddRecExpr
>(NewAddRec
), SE
);
4854 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4855 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4857 // Pick the smallest positive root value.
4858 if (ConstantInt
*CB
=
4859 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
4860 R1
->getValue(), R2
->getValue()))) {
4861 if (CB
->getZExtValue() == false)
4862 std::swap(R1
, R2
); // R1 is the minimum root now.
4864 // Make sure the root is not off by one. The returned iteration should
4865 // not be in the range, but the previous one should be. When solving
4866 // for "X*X < 5", for example, we should not return a root of 2.
4867 ConstantInt
*R1Val
= EvaluateConstantChrecAtConstant(this,
4870 if (Range
.contains(R1Val
->getValue())) {
4871 // The next iteration must be out of the range...
4872 ConstantInt
*NextVal
=
4873 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()+1);
4875 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
4876 if (!Range
.contains(R1Val
->getValue()))
4877 return SE
.getConstant(NextVal
);
4878 return SE
.getCouldNotCompute(); // Something strange happened
4881 // If R1 was not in the range, then it is a good return value. Make
4882 // sure that R1-1 WAS in the range though, just in case.
4883 ConstantInt
*NextVal
=
4884 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()-1);
4885 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
4886 if (Range
.contains(R1Val
->getValue()))
4888 return SE
.getCouldNotCompute(); // Something strange happened
4893 return SE
.getCouldNotCompute();
4898 //===----------------------------------------------------------------------===//
4899 // SCEVCallbackVH Class Implementation
4900 //===----------------------------------------------------------------------===//
4902 void ScalarEvolution::SCEVCallbackVH::deleted() {
4903 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
4904 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
4905 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
4906 if (Instruction
*I
= dyn_cast
<Instruction
>(getValPtr()))
4907 SE
->ValuesAtScopes
.erase(I
);
4908 SE
->Scalars
.erase(getValPtr());
4909 // this now dangles!
4912 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*) {
4913 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
4915 // Forget all the expressions associated with users of the old value,
4916 // so that future queries will recompute the expressions using the new
4918 SmallVector
<User
*, 16> Worklist
;
4919 SmallPtrSet
<User
*, 8> Visited
;
4920 Value
*Old
= getValPtr();
4921 bool DeleteOld
= false;
4922 for (Value::use_iterator UI
= Old
->use_begin(), UE
= Old
->use_end();
4924 Worklist
.push_back(*UI
);
4925 while (!Worklist
.empty()) {
4926 User
*U
= Worklist
.pop_back_val();
4927 // Deleting the Old value will cause this to dangle. Postpone
4928 // that until everything else is done.
4933 if (!Visited
.insert(U
))
4935 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
4936 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
4937 if (Instruction
*I
= dyn_cast
<Instruction
>(U
))
4938 SE
->ValuesAtScopes
.erase(I
);
4939 SE
->Scalars
.erase(U
);
4940 for (Value::use_iterator UI
= U
->use_begin(), UE
= U
->use_end();
4942 Worklist
.push_back(*UI
);
4944 // Delete the Old value if it (indirectly) references itself.
4946 if (PHINode
*PN
= dyn_cast
<PHINode
>(Old
))
4947 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
4948 if (Instruction
*I
= dyn_cast
<Instruction
>(Old
))
4949 SE
->ValuesAtScopes
.erase(I
);
4950 SE
->Scalars
.erase(Old
);
4951 // this now dangles!
4956 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
4957 : CallbackVH(V
), SE(se
) {}
4959 //===----------------------------------------------------------------------===//
4960 // ScalarEvolution Class Implementation
4961 //===----------------------------------------------------------------------===//
4963 ScalarEvolution::ScalarEvolution()
4964 : FunctionPass(&ID
) {
4967 bool ScalarEvolution::runOnFunction(Function
&F
) {
4969 LI
= &getAnalysis
<LoopInfo
>();
4970 TD
= getAnalysisIfAvailable
<TargetData
>();
4974 void ScalarEvolution::releaseMemory() {
4976 BackedgeTakenCounts
.clear();
4977 ConstantEvolutionLoopExitValue
.clear();
4978 ValuesAtScopes
.clear();
4979 UniqueSCEVs
.clear();
4980 SCEVAllocator
.Reset();
4983 void ScalarEvolution::getAnalysisUsage(AnalysisUsage
&AU
) const {
4984 AU
.setPreservesAll();
4985 AU
.addRequiredTransitive
<LoopInfo
>();
4988 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
4989 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
4992 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
4994 // Print all inner loops first
4995 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
4996 PrintLoopInfo(OS
, SE
, *I
);
4998 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
5000 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
5001 L
->getExitBlocks(ExitBlocks
);
5002 if (ExitBlocks
.size() != 1)
5003 OS
<< "<multiple exits> ";
5005 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
5006 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
);
5008 OS
<< "Unpredictable backedge-taken count. ";
5012 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
5014 if (!isa
<SCEVCouldNotCompute
>(SE
->getMaxBackedgeTakenCount(L
))) {
5015 OS
<< "max backedge-taken count is " << *SE
->getMaxBackedgeTakenCount(L
);
5017 OS
<< "Unpredictable max backedge-taken count. ";
5023 void ScalarEvolution::print(raw_ostream
&OS
, const Module
* ) const {
5024 // ScalarEvolution's implementaiton of the print method is to print
5025 // out SCEV values of all instructions that are interesting. Doing
5026 // this potentially causes it to create new SCEV objects though,
5027 // which technically conflicts with the const qualifier. This isn't
5028 // observable from outside the class though, so casting away the
5029 // const isn't dangerous.
5030 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
5032 OS
<< "Classifying expressions for: " << F
->getName() << "\n";
5033 for (inst_iterator I
= inst_begin(F
), E
= inst_end(F
); I
!= E
; ++I
)
5034 if (isSCEVable(I
->getType())) {
5037 const SCEV
*SV
= SE
.getSCEV(&*I
);
5040 const Loop
*L
= LI
->getLoopFor((*I
).getParent());
5042 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
5049 OS
<< "\t\t" "Exits: ";
5050 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
5051 if (!ExitValue
->isLoopInvariant(L
)) {
5052 OS
<< "<<Unknown>>";
5061 OS
<< "Determining loop execution counts for: " << F
->getName() << "\n";
5062 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
5063 PrintLoopInfo(OS
, &SE
, *I
);
5066 void ScalarEvolution::print(std::ostream
&o
, const Module
*M
) const {
5067 raw_os_ostream
OS(o
);