It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / Analysis / ScalarEvolution.cpp
blob03f3cd66ae2f0a43e2d0dc6c2ab8f2c0598a5427
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #define DEBUG_TYPE "scalar-evolution"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/Constants.h"
64 #include "llvm/DerivedTypes.h"
65 #include "llvm/GlobalVariable.h"
66 #include "llvm/Instructions.h"
67 #include "llvm/LLVMContext.h"
68 #include "llvm/Operator.h"
69 #include "llvm/Analysis/ConstantFolding.h"
70 #include "llvm/Analysis/Dominators.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/Assembly/Writer.h"
74 #include "llvm/Target/TargetData.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/GetElementPtrTypeIterator.h"
80 #include "llvm/Support/InstIterator.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/ADT/Statistic.h"
84 #include "llvm/ADT/STLExtras.h"
85 #include "llvm/ADT/SmallPtrSet.h"
86 #include <algorithm>
87 using namespace llvm;
89 STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91 STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93 STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95 STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
98 static cl::opt<unsigned>
99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant "
102 "derived loop"),
103 cl::init(100));
105 static RegisterPass<ScalarEvolution>
106 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107 char ScalarEvolution::ID = 0;
109 //===----------------------------------------------------------------------===//
110 // SCEV class definitions
111 //===----------------------------------------------------------------------===//
113 //===----------------------------------------------------------------------===//
114 // Implementation of the SCEV class.
117 SCEV::~SCEV() {}
119 void SCEV::dump() const {
120 print(errs());
121 errs() << '\n';
124 void SCEV::print(std::ostream &o) const {
125 raw_os_ostream OS(o);
126 print(OS);
129 bool SCEV::isZero() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isZero();
132 return false;
135 bool SCEV::isOne() const {
136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137 return SC->getValue()->isOne();
138 return false;
141 bool SCEV::isAllOnesValue() const {
142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143 return SC->getValue()->isAllOnesValue();
144 return false;
147 SCEVCouldNotCompute::SCEVCouldNotCompute() :
148 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
150 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
152 return false;
155 const Type *SCEVCouldNotCompute::getType() const {
156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
157 return 0;
160 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
162 return false;
165 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
166 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
167 return false;
170 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
171 OS << "***COULDNOTCOMPUTE***";
174 bool SCEVCouldNotCompute::classof(const SCEV *S) {
175 return S->getSCEVType() == scCouldNotCompute;
178 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
179 FoldingSetNodeID ID;
180 ID.AddInteger(scConstant);
181 ID.AddPointer(V);
182 void *IP = 0;
183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
184 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
185 new (S) SCEVConstant(ID, V);
186 UniqueSCEVs.InsertNode(S, IP);
187 return S;
190 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
191 return getConstant(ConstantInt::get(getContext(), Val));
194 const SCEV *
195 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
196 return getConstant(
197 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
200 const Type *SCEVConstant::getType() const { return V->getType(); }
202 void SCEVConstant::print(raw_ostream &OS) const {
203 WriteAsOperand(OS, V, false);
206 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
207 unsigned SCEVTy, const SCEV *op, const Type *ty)
208 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
210 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
211 return Op->dominates(BB, DT);
214 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215 const SCEV *op, const Type *ty)
216 : SCEVCastExpr(ID, scTruncate, op, ty) {
217 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218 (Ty->isInteger() || isa<PointerType>(Ty)) &&
219 "Cannot truncate non-integer value!");
222 void SCEVTruncateExpr::print(raw_ostream &OS) const {
223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
226 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227 const SCEV *op, const Type *ty)
228 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
229 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230 (Ty->isInteger() || isa<PointerType>(Ty)) &&
231 "Cannot zero extend non-integer value!");
234 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
238 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239 const SCEV *op, const Type *ty)
240 : SCEVCastExpr(ID, scSignExtend, op, ty) {
241 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242 (Ty->isInteger() || isa<PointerType>(Ty)) &&
243 "Cannot sign extend non-integer value!");
246 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
250 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252 const char *OpStr = getOperationStr();
253 OS << "(" << *Operands[0];
254 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255 OS << OpStr << *Operands[i];
256 OS << ")";
259 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261 if (!getOperand(i)->dominates(BB, DT))
262 return false;
264 return true;
267 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
268 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
271 void SCEVUDivExpr::print(raw_ostream &OS) const {
272 OS << "(" << *LHS << " /u " << *RHS << ")";
275 const Type *SCEVUDivExpr::getType() const {
276 // In most cases the types of LHS and RHS will be the same, but in some
277 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
278 // depend on the type for correctness, but handling types carefully can
279 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
280 // a pointer type than the RHS, so use the RHS' type here.
281 return RHS->getType();
284 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
285 // Add recurrences are never invariant in the function-body (null loop).
286 if (!QueryLoop)
287 return false;
289 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
290 if (QueryLoop->contains(L->getHeader()))
291 return false;
293 // This recurrence is variant w.r.t. QueryLoop if any of its operands
294 // are variant.
295 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
296 if (!getOperand(i)->isLoopInvariant(QueryLoop))
297 return false;
299 // Otherwise it's loop-invariant.
300 return true;
303 void SCEVAddRecExpr::print(raw_ostream &OS) const {
304 OS << "{" << *Operands[0];
305 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
306 OS << ",+," << *Operands[i];
307 OS << "}<" << L->getHeader()->getName() + ">";
310 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
311 // All non-instruction values are loop invariant. All instructions are loop
312 // invariant if they are not contained in the specified loop.
313 // Instructions are never considered invariant in the function body
314 // (null loop) because they are defined within the "loop".
315 if (Instruction *I = dyn_cast<Instruction>(V))
316 return L && !L->contains(I->getParent());
317 return true;
320 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
321 if (Instruction *I = dyn_cast<Instruction>(getValue()))
322 return DT->dominates(I->getParent(), BB);
323 return true;
326 const Type *SCEVUnknown::getType() const {
327 return V->getType();
330 void SCEVUnknown::print(raw_ostream &OS) const {
331 WriteAsOperand(OS, V, false);
334 //===----------------------------------------------------------------------===//
335 // SCEV Utilities
336 //===----------------------------------------------------------------------===//
338 namespace {
339 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
340 /// than the complexity of the RHS. This comparator is used to canonicalize
341 /// expressions.
342 class VISIBILITY_HIDDEN SCEVComplexityCompare {
343 LoopInfo *LI;
344 public:
345 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
347 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
348 // Primarily, sort the SCEVs by their getSCEVType().
349 if (LHS->getSCEVType() != RHS->getSCEVType())
350 return LHS->getSCEVType() < RHS->getSCEVType();
352 // Aside from the getSCEVType() ordering, the particular ordering
353 // isn't very important except that it's beneficial to be consistent,
354 // so that (a + b) and (b + a) don't end up as different expressions.
356 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
357 // not as complete as it could be.
358 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
359 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
361 // Order pointer values after integer values. This helps SCEVExpander
362 // form GEPs.
363 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
364 return false;
365 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
366 return true;
368 // Compare getValueID values.
369 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
370 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
372 // Sort arguments by their position.
373 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
374 const Argument *RA = cast<Argument>(RU->getValue());
375 return LA->getArgNo() < RA->getArgNo();
378 // For instructions, compare their loop depth, and their opcode.
379 // This is pretty loose.
380 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
381 Instruction *RV = cast<Instruction>(RU->getValue());
383 // Compare loop depths.
384 if (LI->getLoopDepth(LV->getParent()) !=
385 LI->getLoopDepth(RV->getParent()))
386 return LI->getLoopDepth(LV->getParent()) <
387 LI->getLoopDepth(RV->getParent());
389 // Compare opcodes.
390 if (LV->getOpcode() != RV->getOpcode())
391 return LV->getOpcode() < RV->getOpcode();
393 // Compare the number of operands.
394 if (LV->getNumOperands() != RV->getNumOperands())
395 return LV->getNumOperands() < RV->getNumOperands();
398 return false;
401 // Compare constant values.
402 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
403 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
404 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
405 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
406 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
409 // Compare addrec loop depths.
410 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
411 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
412 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
413 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
416 // Lexicographically compare n-ary expressions.
417 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
418 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
419 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
420 if (i >= RC->getNumOperands())
421 return false;
422 if (operator()(LC->getOperand(i), RC->getOperand(i)))
423 return true;
424 if (operator()(RC->getOperand(i), LC->getOperand(i)))
425 return false;
427 return LC->getNumOperands() < RC->getNumOperands();
430 // Lexicographically compare udiv expressions.
431 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
432 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
433 if (operator()(LC->getLHS(), RC->getLHS()))
434 return true;
435 if (operator()(RC->getLHS(), LC->getLHS()))
436 return false;
437 if (operator()(LC->getRHS(), RC->getRHS()))
438 return true;
439 if (operator()(RC->getRHS(), LC->getRHS()))
440 return false;
441 return false;
444 // Compare cast expressions by operand.
445 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
446 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
447 return operator()(LC->getOperand(), RC->getOperand());
450 llvm_unreachable("Unknown SCEV kind!");
451 return false;
456 /// GroupByComplexity - Given a list of SCEV objects, order them by their
457 /// complexity, and group objects of the same complexity together by value.
458 /// When this routine is finished, we know that any duplicates in the vector are
459 /// consecutive and that complexity is monotonically increasing.
461 /// Note that we go take special precautions to ensure that we get determinstic
462 /// results from this routine. In other words, we don't want the results of
463 /// this to depend on where the addresses of various SCEV objects happened to
464 /// land in memory.
466 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
467 LoopInfo *LI) {
468 if (Ops.size() < 2) return; // Noop
469 if (Ops.size() == 2) {
470 // This is the common case, which also happens to be trivially simple.
471 // Special case it.
472 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
473 std::swap(Ops[0], Ops[1]);
474 return;
477 // Do the rough sort by complexity.
478 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
480 // Now that we are sorted by complexity, group elements of the same
481 // complexity. Note that this is, at worst, N^2, but the vector is likely to
482 // be extremely short in practice. Note that we take this approach because we
483 // do not want to depend on the addresses of the objects we are grouping.
484 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
485 const SCEV *S = Ops[i];
486 unsigned Complexity = S->getSCEVType();
488 // If there are any objects of the same complexity and same value as this
489 // one, group them.
490 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
491 if (Ops[j] == S) { // Found a duplicate.
492 // Move it to immediately after i'th element.
493 std::swap(Ops[i+1], Ops[j]);
494 ++i; // no need to rescan it.
495 if (i == e-2) return; // Done!
503 //===----------------------------------------------------------------------===//
504 // Simple SCEV method implementations
505 //===----------------------------------------------------------------------===//
507 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
508 /// Assume, K > 0.
509 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
510 ScalarEvolution &SE,
511 const Type* ResultTy) {
512 // Handle the simplest case efficiently.
513 if (K == 1)
514 return SE.getTruncateOrZeroExtend(It, ResultTy);
516 // We are using the following formula for BC(It, K):
518 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
520 // Suppose, W is the bitwidth of the return value. We must be prepared for
521 // overflow. Hence, we must assure that the result of our computation is
522 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
523 // safe in modular arithmetic.
525 // However, this code doesn't use exactly that formula; the formula it uses
526 // is something like the following, where T is the number of factors of 2 in
527 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
528 // exponentiation:
530 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
532 // This formula is trivially equivalent to the previous formula. However,
533 // this formula can be implemented much more efficiently. The trick is that
534 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
535 // arithmetic. To do exact division in modular arithmetic, all we have
536 // to do is multiply by the inverse. Therefore, this step can be done at
537 // width W.
539 // The next issue is how to safely do the division by 2^T. The way this
540 // is done is by doing the multiplication step at a width of at least W + T
541 // bits. This way, the bottom W+T bits of the product are accurate. Then,
542 // when we perform the division by 2^T (which is equivalent to a right shift
543 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
544 // truncated out after the division by 2^T.
546 // In comparison to just directly using the first formula, this technique
547 // is much more efficient; using the first formula requires W * K bits,
548 // but this formula less than W + K bits. Also, the first formula requires
549 // a division step, whereas this formula only requires multiplies and shifts.
551 // It doesn't matter whether the subtraction step is done in the calculation
552 // width or the input iteration count's width; if the subtraction overflows,
553 // the result must be zero anyway. We prefer here to do it in the width of
554 // the induction variable because it helps a lot for certain cases; CodeGen
555 // isn't smart enough to ignore the overflow, which leads to much less
556 // efficient code if the width of the subtraction is wider than the native
557 // register width.
559 // (It's possible to not widen at all by pulling out factors of 2 before
560 // the multiplication; for example, K=2 can be calculated as
561 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
562 // extra arithmetic, so it's not an obvious win, and it gets
563 // much more complicated for K > 3.)
565 // Protection from insane SCEVs; this bound is conservative,
566 // but it probably doesn't matter.
567 if (K > 1000)
568 return SE.getCouldNotCompute();
570 unsigned W = SE.getTypeSizeInBits(ResultTy);
572 // Calculate K! / 2^T and T; we divide out the factors of two before
573 // multiplying for calculating K! / 2^T to avoid overflow.
574 // Other overflow doesn't matter because we only care about the bottom
575 // W bits of the result.
576 APInt OddFactorial(W, 1);
577 unsigned T = 1;
578 for (unsigned i = 3; i <= K; ++i) {
579 APInt Mult(W, i);
580 unsigned TwoFactors = Mult.countTrailingZeros();
581 T += TwoFactors;
582 Mult = Mult.lshr(TwoFactors);
583 OddFactorial *= Mult;
586 // We need at least W + T bits for the multiplication step
587 unsigned CalculationBits = W + T;
589 // Calcuate 2^T, at width T+W.
590 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
592 // Calculate the multiplicative inverse of K! / 2^T;
593 // this multiplication factor will perform the exact division by
594 // K! / 2^T.
595 APInt Mod = APInt::getSignedMinValue(W+1);
596 APInt MultiplyFactor = OddFactorial.zext(W+1);
597 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
598 MultiplyFactor = MultiplyFactor.trunc(W);
600 // Calculate the product, at width T+W
601 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
602 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
603 for (unsigned i = 1; i != K; ++i) {
604 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
605 Dividend = SE.getMulExpr(Dividend,
606 SE.getTruncateOrZeroExtend(S, CalculationTy));
609 // Divide by 2^T
610 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
612 // Truncate the result, and divide by K! / 2^T.
614 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
615 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
618 /// evaluateAtIteration - Return the value of this chain of recurrences at
619 /// the specified iteration number. We can evaluate this recurrence by
620 /// multiplying each element in the chain by the binomial coefficient
621 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
623 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
625 /// where BC(It, k) stands for binomial coefficient.
627 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
628 ScalarEvolution &SE) const {
629 const SCEV *Result = getStart();
630 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
631 // The computation is correct in the face of overflow provided that the
632 // multiplication is performed _after_ the evaluation of the binomial
633 // coefficient.
634 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
635 if (isa<SCEVCouldNotCompute>(Coeff))
636 return Coeff;
638 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
640 return Result;
643 //===----------------------------------------------------------------------===//
644 // SCEV Expression folder implementations
645 //===----------------------------------------------------------------------===//
647 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
648 const Type *Ty) {
649 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
650 "This is not a truncating conversion!");
651 assert(isSCEVable(Ty) &&
652 "This is not a conversion to a SCEVable type!");
653 Ty = getEffectiveSCEVType(Ty);
655 FoldingSetNodeID ID;
656 ID.AddInteger(scTruncate);
657 ID.AddPointer(Op);
658 ID.AddPointer(Ty);
659 void *IP = 0;
660 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
662 // Fold if the operand is constant.
663 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
664 return getConstant(
665 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
667 // trunc(trunc(x)) --> trunc(x)
668 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
669 return getTruncateExpr(ST->getOperand(), Ty);
671 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
672 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
673 return getTruncateOrSignExtend(SS->getOperand(), Ty);
675 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
676 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
677 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
679 // If the input value is a chrec scev, truncate the chrec's operands.
680 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
681 SmallVector<const SCEV *, 4> Operands;
682 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
683 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
684 return getAddRecExpr(Operands, AddRec->getLoop());
687 // The cast wasn't folded; create an explicit cast node.
688 // Recompute the insert position, as it may have been invalidated.
689 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
690 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
691 new (S) SCEVTruncateExpr(ID, Op, Ty);
692 UniqueSCEVs.InsertNode(S, IP);
693 return S;
696 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
697 const Type *Ty) {
698 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
699 "This is not an extending conversion!");
700 assert(isSCEVable(Ty) &&
701 "This is not a conversion to a SCEVable type!");
702 Ty = getEffectiveSCEVType(Ty);
704 // Fold if the operand is constant.
705 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
706 const Type *IntTy = getEffectiveSCEVType(Ty);
707 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
708 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
709 return getConstant(cast<ConstantInt>(C));
712 // zext(zext(x)) --> zext(x)
713 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
714 return getZeroExtendExpr(SZ->getOperand(), Ty);
716 // Before doing any expensive analysis, check to see if we've already
717 // computed a SCEV for this Op and Ty.
718 FoldingSetNodeID ID;
719 ID.AddInteger(scZeroExtend);
720 ID.AddPointer(Op);
721 ID.AddPointer(Ty);
722 void *IP = 0;
723 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
725 // If the input value is a chrec scev, and we can prove that the value
726 // did not overflow the old, smaller, value, we can zero extend all of the
727 // operands (often constants). This allows analysis of something like
728 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
729 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
730 if (AR->isAffine()) {
731 const SCEV *Start = AR->getStart();
732 const SCEV *Step = AR->getStepRecurrence(*this);
733 unsigned BitWidth = getTypeSizeInBits(AR->getType());
734 const Loop *L = AR->getLoop();
736 // If we have special knowledge that this addrec won't overflow,
737 // we don't need to do any further analysis.
738 if (AR->hasNoUnsignedOverflow())
739 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
740 getZeroExtendExpr(Step, Ty),
743 // Check whether the backedge-taken count is SCEVCouldNotCompute.
744 // Note that this serves two purposes: It filters out loops that are
745 // simply not analyzable, and it covers the case where this code is
746 // being called from within backedge-taken count analysis, such that
747 // attempting to ask for the backedge-taken count would likely result
748 // in infinite recursion. In the later case, the analysis code will
749 // cope with a conservative value, and it will take care to purge
750 // that value once it has finished.
751 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
752 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
753 // Manually compute the final value for AR, checking for
754 // overflow.
756 // Check whether the backedge-taken count can be losslessly casted to
757 // the addrec's type. The count is always unsigned.
758 const SCEV *CastedMaxBECount =
759 getTruncateOrZeroExtend(MaxBECount, Start->getType());
760 const SCEV *RecastedMaxBECount =
761 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
762 if (MaxBECount == RecastedMaxBECount) {
763 const Type *WideTy = IntegerType::get(BitWidth * 2);
764 // Check whether Start+Step*MaxBECount has no unsigned overflow.
765 const SCEV *ZMul =
766 getMulExpr(CastedMaxBECount,
767 getTruncateOrZeroExtend(Step, Start->getType()));
768 const SCEV *Add = getAddExpr(Start, ZMul);
769 const SCEV *OperandExtendedAdd =
770 getAddExpr(getZeroExtendExpr(Start, WideTy),
771 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
772 getZeroExtendExpr(Step, WideTy)));
773 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
774 // Return the expression with the addrec on the outside.
775 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
776 getZeroExtendExpr(Step, Ty),
779 // Similar to above, only this time treat the step value as signed.
780 // This covers loops that count down.
781 const SCEV *SMul =
782 getMulExpr(CastedMaxBECount,
783 getTruncateOrSignExtend(Step, Start->getType()));
784 Add = getAddExpr(Start, SMul);
785 OperandExtendedAdd =
786 getAddExpr(getZeroExtendExpr(Start, WideTy),
787 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
788 getSignExtendExpr(Step, WideTy)));
789 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
790 // Return the expression with the addrec on the outside.
791 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
792 getSignExtendExpr(Step, Ty),
796 // If the backedge is guarded by a comparison with the pre-inc value
797 // the addrec is safe. Also, if the entry is guarded by a comparison
798 // with the start value and the backedge is guarded by a comparison
799 // with the post-inc value, the addrec is safe.
800 if (isKnownPositive(Step)) {
801 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
802 getUnsignedRange(Step).getUnsignedMax());
803 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
804 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
805 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
806 AR->getPostIncExpr(*this), N)))
807 // Return the expression with the addrec on the outside.
808 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
809 getZeroExtendExpr(Step, Ty),
811 } else if (isKnownNegative(Step)) {
812 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
813 getSignedRange(Step).getSignedMin());
814 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
815 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
816 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
817 AR->getPostIncExpr(*this), N)))
818 // Return the expression with the addrec on the outside.
819 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
820 getSignExtendExpr(Step, Ty),
826 // The cast wasn't folded; create an explicit cast node.
827 // Recompute the insert position, as it may have been invalidated.
828 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
829 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
830 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
831 UniqueSCEVs.InsertNode(S, IP);
832 return S;
835 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
836 const Type *Ty) {
837 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
838 "This is not an extending conversion!");
839 assert(isSCEVable(Ty) &&
840 "This is not a conversion to a SCEVable type!");
841 Ty = getEffectiveSCEVType(Ty);
843 // Fold if the operand is constant.
844 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
845 const Type *IntTy = getEffectiveSCEVType(Ty);
846 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
847 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
848 return getConstant(cast<ConstantInt>(C));
851 // sext(sext(x)) --> sext(x)
852 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
853 return getSignExtendExpr(SS->getOperand(), Ty);
855 // Before doing any expensive analysis, check to see if we've already
856 // computed a SCEV for this Op and Ty.
857 FoldingSetNodeID ID;
858 ID.AddInteger(scSignExtend);
859 ID.AddPointer(Op);
860 ID.AddPointer(Ty);
861 void *IP = 0;
862 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
864 // If the input value is a chrec scev, and we can prove that the value
865 // did not overflow the old, smaller, value, we can sign extend all of the
866 // operands (often constants). This allows analysis of something like
867 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
868 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
869 if (AR->isAffine()) {
870 const SCEV *Start = AR->getStart();
871 const SCEV *Step = AR->getStepRecurrence(*this);
872 unsigned BitWidth = getTypeSizeInBits(AR->getType());
873 const Loop *L = AR->getLoop();
875 // If we have special knowledge that this addrec won't overflow,
876 // we don't need to do any further analysis.
877 if (AR->hasNoSignedOverflow())
878 return getAddRecExpr(getSignExtendExpr(Start, Ty),
879 getSignExtendExpr(Step, Ty),
882 // Check whether the backedge-taken count is SCEVCouldNotCompute.
883 // Note that this serves two purposes: It filters out loops that are
884 // simply not analyzable, and it covers the case where this code is
885 // being called from within backedge-taken count analysis, such that
886 // attempting to ask for the backedge-taken count would likely result
887 // in infinite recursion. In the later case, the analysis code will
888 // cope with a conservative value, and it will take care to purge
889 // that value once it has finished.
890 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
891 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
892 // Manually compute the final value for AR, checking for
893 // overflow.
895 // Check whether the backedge-taken count can be losslessly casted to
896 // the addrec's type. The count is always unsigned.
897 const SCEV *CastedMaxBECount =
898 getTruncateOrZeroExtend(MaxBECount, Start->getType());
899 const SCEV *RecastedMaxBECount =
900 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
901 if (MaxBECount == RecastedMaxBECount) {
902 const Type *WideTy = IntegerType::get(BitWidth * 2);
903 // Check whether Start+Step*MaxBECount has no signed overflow.
904 const SCEV *SMul =
905 getMulExpr(CastedMaxBECount,
906 getTruncateOrSignExtend(Step, Start->getType()));
907 const SCEV *Add = getAddExpr(Start, SMul);
908 const SCEV *OperandExtendedAdd =
909 getAddExpr(getSignExtendExpr(Start, WideTy),
910 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
911 getSignExtendExpr(Step, WideTy)));
912 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
913 // Return the expression with the addrec on the outside.
914 return getAddRecExpr(getSignExtendExpr(Start, Ty),
915 getSignExtendExpr(Step, Ty),
918 // Similar to above, only this time treat the step value as unsigned.
919 // This covers loops that count up with an unsigned step.
920 const SCEV *UMul =
921 getMulExpr(CastedMaxBECount,
922 getTruncateOrZeroExtend(Step, Start->getType()));
923 Add = getAddExpr(Start, UMul);
924 OperandExtendedAdd =
925 getAddExpr(getSignExtendExpr(Start, WideTy),
926 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
927 getZeroExtendExpr(Step, WideTy)));
928 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
929 // Return the expression with the addrec on the outside.
930 return getAddRecExpr(getSignExtendExpr(Start, Ty),
931 getZeroExtendExpr(Step, Ty),
935 // If the backedge is guarded by a comparison with the pre-inc value
936 // the addrec is safe. Also, if the entry is guarded by a comparison
937 // with the start value and the backedge is guarded by a comparison
938 // with the post-inc value, the addrec is safe.
939 if (isKnownPositive(Step)) {
940 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
941 getSignedRange(Step).getSignedMax());
942 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
943 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
944 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
945 AR->getPostIncExpr(*this), N)))
946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getSignExtendExpr(Start, Ty),
948 getSignExtendExpr(Step, Ty),
950 } else if (isKnownNegative(Step)) {
951 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
952 getSignedRange(Step).getSignedMin());
953 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
954 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
955 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
956 AR->getPostIncExpr(*this), N)))
957 // Return the expression with the addrec on the outside.
958 return getAddRecExpr(getSignExtendExpr(Start, Ty),
959 getSignExtendExpr(Step, Ty),
965 // The cast wasn't folded; create an explicit cast node.
966 // Recompute the insert position, as it may have been invalidated.
967 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
968 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
969 new (S) SCEVSignExtendExpr(ID, Op, Ty);
970 UniqueSCEVs.InsertNode(S, IP);
971 return S;
974 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
975 /// unspecified bits out to the given type.
977 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
978 const Type *Ty) {
979 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
980 "This is not an extending conversion!");
981 assert(isSCEVable(Ty) &&
982 "This is not a conversion to a SCEVable type!");
983 Ty = getEffectiveSCEVType(Ty);
985 // Sign-extend negative constants.
986 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
987 if (SC->getValue()->getValue().isNegative())
988 return getSignExtendExpr(Op, Ty);
990 // Peel off a truncate cast.
991 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
992 const SCEV *NewOp = T->getOperand();
993 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
994 return getAnyExtendExpr(NewOp, Ty);
995 return getTruncateOrNoop(NewOp, Ty);
998 // Next try a zext cast. If the cast is folded, use it.
999 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1000 if (!isa<SCEVZeroExtendExpr>(ZExt))
1001 return ZExt;
1003 // Next try a sext cast. If the cast is folded, use it.
1004 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1005 if (!isa<SCEVSignExtendExpr>(SExt))
1006 return SExt;
1008 // If the expression is obviously signed, use the sext cast value.
1009 if (isa<SCEVSMaxExpr>(Op))
1010 return SExt;
1012 // Absent any other information, use the zext cast value.
1013 return ZExt;
1016 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1017 /// a list of operands to be added under the given scale, update the given
1018 /// map. This is a helper function for getAddRecExpr. As an example of
1019 /// what it does, given a sequence of operands that would form an add
1020 /// expression like this:
1022 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1024 /// where A and B are constants, update the map with these values:
1026 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1028 /// and add 13 + A*B*29 to AccumulatedConstant.
1029 /// This will allow getAddRecExpr to produce this:
1031 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1033 /// This form often exposes folding opportunities that are hidden in
1034 /// the original operand list.
1036 /// Return true iff it appears that any interesting folding opportunities
1037 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1038 /// the common case where no interesting opportunities are present, and
1039 /// is also used as a check to avoid infinite recursion.
1041 static bool
1042 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1043 SmallVector<const SCEV *, 8> &NewOps,
1044 APInt &AccumulatedConstant,
1045 const SmallVectorImpl<const SCEV *> &Ops,
1046 const APInt &Scale,
1047 ScalarEvolution &SE) {
1048 bool Interesting = false;
1050 // Iterate over the add operands.
1051 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1052 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1053 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1054 APInt NewScale =
1055 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1056 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1057 // A multiplication of a constant with another add; recurse.
1058 Interesting |=
1059 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1060 cast<SCEVAddExpr>(Mul->getOperand(1))
1061 ->getOperands(),
1062 NewScale, SE);
1063 } else {
1064 // A multiplication of a constant with some other value. Update
1065 // the map.
1066 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1067 const SCEV *Key = SE.getMulExpr(MulOps);
1068 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1069 M.insert(std::make_pair(Key, NewScale));
1070 if (Pair.second) {
1071 NewOps.push_back(Pair.first->first);
1072 } else {
1073 Pair.first->second += NewScale;
1074 // The map already had an entry for this value, which may indicate
1075 // a folding opportunity.
1076 Interesting = true;
1079 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1080 // Pull a buried constant out to the outside.
1081 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1082 Interesting = true;
1083 AccumulatedConstant += Scale * C->getValue()->getValue();
1084 } else {
1085 // An ordinary operand. Update the map.
1086 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1087 M.insert(std::make_pair(Ops[i], Scale));
1088 if (Pair.second) {
1089 NewOps.push_back(Pair.first->first);
1090 } else {
1091 Pair.first->second += Scale;
1092 // The map already had an entry for this value, which may indicate
1093 // a folding opportunity.
1094 Interesting = true;
1099 return Interesting;
1102 namespace {
1103 struct APIntCompare {
1104 bool operator()(const APInt &LHS, const APInt &RHS) const {
1105 return LHS.ult(RHS);
1110 /// getAddExpr - Get a canonical add expression, or something simpler if
1111 /// possible.
1112 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
1113 assert(!Ops.empty() && "Cannot get empty add!");
1114 if (Ops.size() == 1) return Ops[0];
1115 #ifndef NDEBUG
1116 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1117 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1118 getEffectiveSCEVType(Ops[0]->getType()) &&
1119 "SCEVAddExpr operand types don't match!");
1120 #endif
1122 // Sort by complexity, this groups all similar expression types together.
1123 GroupByComplexity(Ops, LI);
1125 // If there are any constants, fold them together.
1126 unsigned Idx = 0;
1127 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1128 ++Idx;
1129 assert(Idx < Ops.size());
1130 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1131 // We found two constants, fold them together!
1132 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1133 RHSC->getValue()->getValue());
1134 if (Ops.size() == 2) return Ops[0];
1135 Ops.erase(Ops.begin()+1); // Erase the folded element
1136 LHSC = cast<SCEVConstant>(Ops[0]);
1139 // If we are left with a constant zero being added, strip it off.
1140 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1141 Ops.erase(Ops.begin());
1142 --Idx;
1146 if (Ops.size() == 1) return Ops[0];
1148 // Okay, check to see if the same value occurs in the operand list twice. If
1149 // so, merge them together into an multiply expression. Since we sorted the
1150 // list, these values are required to be adjacent.
1151 const Type *Ty = Ops[0]->getType();
1152 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1153 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1154 // Found a match, merge the two values into a multiply, and add any
1155 // remaining values to the result.
1156 const SCEV *Two = getIntegerSCEV(2, Ty);
1157 const SCEV *Mul = getMulExpr(Ops[i], Two);
1158 if (Ops.size() == 2)
1159 return Mul;
1160 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1161 Ops.push_back(Mul);
1162 return getAddExpr(Ops);
1165 // Check for truncates. If all the operands are truncated from the same
1166 // type, see if factoring out the truncate would permit the result to be
1167 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1168 // if the contents of the resulting outer trunc fold to something simple.
1169 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1170 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1171 const Type *DstType = Trunc->getType();
1172 const Type *SrcType = Trunc->getOperand()->getType();
1173 SmallVector<const SCEV *, 8> LargeOps;
1174 bool Ok = true;
1175 // Check all the operands to see if they can be represented in the
1176 // source type of the truncate.
1177 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1178 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1179 if (T->getOperand()->getType() != SrcType) {
1180 Ok = false;
1181 break;
1183 LargeOps.push_back(T->getOperand());
1184 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1185 // This could be either sign or zero extension, but sign extension
1186 // is much more likely to be foldable here.
1187 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1188 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1189 SmallVector<const SCEV *, 8> LargeMulOps;
1190 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1191 if (const SCEVTruncateExpr *T =
1192 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1193 if (T->getOperand()->getType() != SrcType) {
1194 Ok = false;
1195 break;
1197 LargeMulOps.push_back(T->getOperand());
1198 } else if (const SCEVConstant *C =
1199 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1200 // This could be either sign or zero extension, but sign extension
1201 // is much more likely to be foldable here.
1202 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1203 } else {
1204 Ok = false;
1205 break;
1208 if (Ok)
1209 LargeOps.push_back(getMulExpr(LargeMulOps));
1210 } else {
1211 Ok = false;
1212 break;
1215 if (Ok) {
1216 // Evaluate the expression in the larger type.
1217 const SCEV *Fold = getAddExpr(LargeOps);
1218 // If it folds to something simple, use it. Otherwise, don't.
1219 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1220 return getTruncateExpr(Fold, DstType);
1224 // Skip past any other cast SCEVs.
1225 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1226 ++Idx;
1228 // If there are add operands they would be next.
1229 if (Idx < Ops.size()) {
1230 bool DeletedAdd = false;
1231 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1232 // If we have an add, expand the add operands onto the end of the operands
1233 // list.
1234 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1235 Ops.erase(Ops.begin()+Idx);
1236 DeletedAdd = true;
1239 // If we deleted at least one add, we added operands to the end of the list,
1240 // and they are not necessarily sorted. Recurse to resort and resimplify
1241 // any operands we just aquired.
1242 if (DeletedAdd)
1243 return getAddExpr(Ops);
1246 // Skip over the add expression until we get to a multiply.
1247 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1248 ++Idx;
1250 // Check to see if there are any folding opportunities present with
1251 // operands multiplied by constant values.
1252 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1253 uint64_t BitWidth = getTypeSizeInBits(Ty);
1254 DenseMap<const SCEV *, APInt> M;
1255 SmallVector<const SCEV *, 8> NewOps;
1256 APInt AccumulatedConstant(BitWidth, 0);
1257 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1258 Ops, APInt(BitWidth, 1), *this)) {
1259 // Some interesting folding opportunity is present, so its worthwhile to
1260 // re-generate the operands list. Group the operands by constant scale,
1261 // to avoid multiplying by the same constant scale multiple times.
1262 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1263 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1264 E = NewOps.end(); I != E; ++I)
1265 MulOpLists[M.find(*I)->second].push_back(*I);
1266 // Re-generate the operands list.
1267 Ops.clear();
1268 if (AccumulatedConstant != 0)
1269 Ops.push_back(getConstant(AccumulatedConstant));
1270 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1271 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1272 if (I->first != 0)
1273 Ops.push_back(getMulExpr(getConstant(I->first),
1274 getAddExpr(I->second)));
1275 if (Ops.empty())
1276 return getIntegerSCEV(0, Ty);
1277 if (Ops.size() == 1)
1278 return Ops[0];
1279 return getAddExpr(Ops);
1283 // If we are adding something to a multiply expression, make sure the
1284 // something is not already an operand of the multiply. If so, merge it into
1285 // the multiply.
1286 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1287 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1288 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1289 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1290 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1291 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1292 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1293 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1294 if (Mul->getNumOperands() != 2) {
1295 // If the multiply has more than two operands, we must get the
1296 // Y*Z term.
1297 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1298 MulOps.erase(MulOps.begin()+MulOp);
1299 InnerMul = getMulExpr(MulOps);
1301 const SCEV *One = getIntegerSCEV(1, Ty);
1302 const SCEV *AddOne = getAddExpr(InnerMul, One);
1303 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1304 if (Ops.size() == 2) return OuterMul;
1305 if (AddOp < Idx) {
1306 Ops.erase(Ops.begin()+AddOp);
1307 Ops.erase(Ops.begin()+Idx-1);
1308 } else {
1309 Ops.erase(Ops.begin()+Idx);
1310 Ops.erase(Ops.begin()+AddOp-1);
1312 Ops.push_back(OuterMul);
1313 return getAddExpr(Ops);
1316 // Check this multiply against other multiplies being added together.
1317 for (unsigned OtherMulIdx = Idx+1;
1318 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1319 ++OtherMulIdx) {
1320 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1321 // If MulOp occurs in OtherMul, we can fold the two multiplies
1322 // together.
1323 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1324 OMulOp != e; ++OMulOp)
1325 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1326 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1327 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1328 if (Mul->getNumOperands() != 2) {
1329 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1330 Mul->op_end());
1331 MulOps.erase(MulOps.begin()+MulOp);
1332 InnerMul1 = getMulExpr(MulOps);
1334 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1335 if (OtherMul->getNumOperands() != 2) {
1336 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1337 OtherMul->op_end());
1338 MulOps.erase(MulOps.begin()+OMulOp);
1339 InnerMul2 = getMulExpr(MulOps);
1341 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1342 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1343 if (Ops.size() == 2) return OuterMul;
1344 Ops.erase(Ops.begin()+Idx);
1345 Ops.erase(Ops.begin()+OtherMulIdx-1);
1346 Ops.push_back(OuterMul);
1347 return getAddExpr(Ops);
1353 // If there are any add recurrences in the operands list, see if any other
1354 // added values are loop invariant. If so, we can fold them into the
1355 // recurrence.
1356 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1357 ++Idx;
1359 // Scan over all recurrences, trying to fold loop invariants into them.
1360 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1361 // Scan all of the other operands to this add and add them to the vector if
1362 // they are loop invariant w.r.t. the recurrence.
1363 SmallVector<const SCEV *, 8> LIOps;
1364 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1365 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1366 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1367 LIOps.push_back(Ops[i]);
1368 Ops.erase(Ops.begin()+i);
1369 --i; --e;
1372 // If we found some loop invariants, fold them into the recurrence.
1373 if (!LIOps.empty()) {
1374 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1375 LIOps.push_back(AddRec->getStart());
1377 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1378 AddRec->op_end());
1379 AddRecOps[0] = getAddExpr(LIOps);
1381 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1382 // If all of the other operands were loop invariant, we are done.
1383 if (Ops.size() == 1) return NewRec;
1385 // Otherwise, add the folded AddRec by the non-liv parts.
1386 for (unsigned i = 0;; ++i)
1387 if (Ops[i] == AddRec) {
1388 Ops[i] = NewRec;
1389 break;
1391 return getAddExpr(Ops);
1394 // Okay, if there weren't any loop invariants to be folded, check to see if
1395 // there are multiple AddRec's with the same loop induction variable being
1396 // added together. If so, we can fold them.
1397 for (unsigned OtherIdx = Idx+1;
1398 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1399 if (OtherIdx != Idx) {
1400 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1401 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1402 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1403 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1404 AddRec->op_end());
1405 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1406 if (i >= NewOps.size()) {
1407 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1408 OtherAddRec->op_end());
1409 break;
1411 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1413 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1415 if (Ops.size() == 2) return NewAddRec;
1417 Ops.erase(Ops.begin()+Idx);
1418 Ops.erase(Ops.begin()+OtherIdx-1);
1419 Ops.push_back(NewAddRec);
1420 return getAddExpr(Ops);
1424 // Otherwise couldn't fold anything into this recurrence. Move onto the
1425 // next one.
1428 // Okay, it looks like we really DO need an add expr. Check to see if we
1429 // already have one, otherwise create a new one.
1430 FoldingSetNodeID ID;
1431 ID.AddInteger(scAddExpr);
1432 ID.AddInteger(Ops.size());
1433 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1434 ID.AddPointer(Ops[i]);
1435 void *IP = 0;
1436 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1437 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1438 new (S) SCEVAddExpr(ID, Ops);
1439 UniqueSCEVs.InsertNode(S, IP);
1440 return S;
1444 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1445 /// possible.
1446 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
1447 assert(!Ops.empty() && "Cannot get empty mul!");
1448 #ifndef NDEBUG
1449 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1450 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1451 getEffectiveSCEVType(Ops[0]->getType()) &&
1452 "SCEVMulExpr operand types don't match!");
1453 #endif
1455 // Sort by complexity, this groups all similar expression types together.
1456 GroupByComplexity(Ops, LI);
1458 // If there are any constants, fold them together.
1459 unsigned Idx = 0;
1460 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1462 // C1*(C2+V) -> C1*C2 + C1*V
1463 if (Ops.size() == 2)
1464 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1465 if (Add->getNumOperands() == 2 &&
1466 isa<SCEVConstant>(Add->getOperand(0)))
1467 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1468 getMulExpr(LHSC, Add->getOperand(1)));
1471 ++Idx;
1472 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1473 // We found two constants, fold them together!
1474 ConstantInt *Fold = ConstantInt::get(getContext(),
1475 LHSC->getValue()->getValue() *
1476 RHSC->getValue()->getValue());
1477 Ops[0] = getConstant(Fold);
1478 Ops.erase(Ops.begin()+1); // Erase the folded element
1479 if (Ops.size() == 1) return Ops[0];
1480 LHSC = cast<SCEVConstant>(Ops[0]);
1483 // If we are left with a constant one being multiplied, strip it off.
1484 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1485 Ops.erase(Ops.begin());
1486 --Idx;
1487 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1488 // If we have a multiply of zero, it will always be zero.
1489 return Ops[0];
1493 // Skip over the add expression until we get to a multiply.
1494 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1495 ++Idx;
1497 if (Ops.size() == 1)
1498 return Ops[0];
1500 // If there are mul operands inline them all into this expression.
1501 if (Idx < Ops.size()) {
1502 bool DeletedMul = false;
1503 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1504 // If we have an mul, expand the mul operands onto the end of the operands
1505 // list.
1506 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1507 Ops.erase(Ops.begin()+Idx);
1508 DeletedMul = true;
1511 // If we deleted at least one mul, we added operands to the end of the list,
1512 // and they are not necessarily sorted. Recurse to resort and resimplify
1513 // any operands we just aquired.
1514 if (DeletedMul)
1515 return getMulExpr(Ops);
1518 // If there are any add recurrences in the operands list, see if any other
1519 // added values are loop invariant. If so, we can fold them into the
1520 // recurrence.
1521 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1522 ++Idx;
1524 // Scan over all recurrences, trying to fold loop invariants into them.
1525 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1526 // Scan all of the other operands to this mul and add them to the vector if
1527 // they are loop invariant w.r.t. the recurrence.
1528 SmallVector<const SCEV *, 8> LIOps;
1529 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1530 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1531 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1532 LIOps.push_back(Ops[i]);
1533 Ops.erase(Ops.begin()+i);
1534 --i; --e;
1537 // If we found some loop invariants, fold them into the recurrence.
1538 if (!LIOps.empty()) {
1539 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1540 SmallVector<const SCEV *, 4> NewOps;
1541 NewOps.reserve(AddRec->getNumOperands());
1542 if (LIOps.size() == 1) {
1543 const SCEV *Scale = LIOps[0];
1544 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1545 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1546 } else {
1547 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1548 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1549 MulOps.push_back(AddRec->getOperand(i));
1550 NewOps.push_back(getMulExpr(MulOps));
1554 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1556 // If all of the other operands were loop invariant, we are done.
1557 if (Ops.size() == 1) return NewRec;
1559 // Otherwise, multiply the folded AddRec by the non-liv parts.
1560 for (unsigned i = 0;; ++i)
1561 if (Ops[i] == AddRec) {
1562 Ops[i] = NewRec;
1563 break;
1565 return getMulExpr(Ops);
1568 // Okay, if there weren't any loop invariants to be folded, check to see if
1569 // there are multiple AddRec's with the same loop induction variable being
1570 // multiplied together. If so, we can fold them.
1571 for (unsigned OtherIdx = Idx+1;
1572 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1573 if (OtherIdx != Idx) {
1574 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1575 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1576 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1577 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1578 const SCEV *NewStart = getMulExpr(F->getStart(),
1579 G->getStart());
1580 const SCEV *B = F->getStepRecurrence(*this);
1581 const SCEV *D = G->getStepRecurrence(*this);
1582 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1583 getMulExpr(G, B),
1584 getMulExpr(B, D));
1585 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1586 F->getLoop());
1587 if (Ops.size() == 2) return NewAddRec;
1589 Ops.erase(Ops.begin()+Idx);
1590 Ops.erase(Ops.begin()+OtherIdx-1);
1591 Ops.push_back(NewAddRec);
1592 return getMulExpr(Ops);
1596 // Otherwise couldn't fold anything into this recurrence. Move onto the
1597 // next one.
1600 // Okay, it looks like we really DO need an mul expr. Check to see if we
1601 // already have one, otherwise create a new one.
1602 FoldingSetNodeID ID;
1603 ID.AddInteger(scMulExpr);
1604 ID.AddInteger(Ops.size());
1605 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1606 ID.AddPointer(Ops[i]);
1607 void *IP = 0;
1608 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1609 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1610 new (S) SCEVMulExpr(ID, Ops);
1611 UniqueSCEVs.InsertNode(S, IP);
1612 return S;
1615 /// getUDivExpr - Get a canonical multiply expression, or something simpler if
1616 /// possible.
1617 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1618 const SCEV *RHS) {
1619 assert(getEffectiveSCEVType(LHS->getType()) ==
1620 getEffectiveSCEVType(RHS->getType()) &&
1621 "SCEVUDivExpr operand types don't match!");
1623 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1624 if (RHSC->getValue()->equalsInt(1))
1625 return LHS; // X udiv 1 --> x
1626 if (RHSC->isZero())
1627 return getIntegerSCEV(0, LHS->getType()); // value is undefined
1629 // Determine if the division can be folded into the operands of
1630 // its operands.
1631 // TODO: Generalize this to non-constants by using known-bits information.
1632 const Type *Ty = LHS->getType();
1633 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1634 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1635 // For non-power-of-two values, effectively round the value up to the
1636 // nearest power of two.
1637 if (!RHSC->getValue()->getValue().isPowerOf2())
1638 ++MaxShiftAmt;
1639 const IntegerType *ExtTy =
1640 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1641 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1642 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1643 if (const SCEVConstant *Step =
1644 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1645 if (!Step->getValue()->getValue()
1646 .urem(RHSC->getValue()->getValue()) &&
1647 getZeroExtendExpr(AR, ExtTy) ==
1648 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1649 getZeroExtendExpr(Step, ExtTy),
1650 AR->getLoop())) {
1651 SmallVector<const SCEV *, 4> Operands;
1652 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1653 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1654 return getAddRecExpr(Operands, AR->getLoop());
1656 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1657 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1658 SmallVector<const SCEV *, 4> Operands;
1659 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1660 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1661 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1662 // Find an operand that's safely divisible.
1663 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1664 const SCEV *Op = M->getOperand(i);
1665 const SCEV *Div = getUDivExpr(Op, RHSC);
1666 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1667 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1668 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1669 MOperands.end());
1670 Operands[i] = Div;
1671 return getMulExpr(Operands);
1675 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1676 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1677 SmallVector<const SCEV *, 4> Operands;
1678 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1679 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1680 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1681 Operands.clear();
1682 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1683 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1684 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1685 break;
1686 Operands.push_back(Op);
1688 if (Operands.size() == A->getNumOperands())
1689 return getAddExpr(Operands);
1693 // Fold if both operands are constant.
1694 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1695 Constant *LHSCV = LHSC->getValue();
1696 Constant *RHSCV = RHSC->getValue();
1697 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1698 RHSCV)));
1702 FoldingSetNodeID ID;
1703 ID.AddInteger(scUDivExpr);
1704 ID.AddPointer(LHS);
1705 ID.AddPointer(RHS);
1706 void *IP = 0;
1707 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1708 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1709 new (S) SCEVUDivExpr(ID, LHS, RHS);
1710 UniqueSCEVs.InsertNode(S, IP);
1711 return S;
1715 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1716 /// Simplify the expression as much as possible.
1717 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1718 const SCEV *Step, const Loop *L) {
1719 SmallVector<const SCEV *, 4> Operands;
1720 Operands.push_back(Start);
1721 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1722 if (StepChrec->getLoop() == L) {
1723 Operands.insert(Operands.end(), StepChrec->op_begin(),
1724 StepChrec->op_end());
1725 return getAddRecExpr(Operands, L);
1728 Operands.push_back(Step);
1729 return getAddRecExpr(Operands, L);
1732 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1733 /// Simplify the expression as much as possible.
1734 const SCEV *
1735 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1736 const Loop *L) {
1737 if (Operands.size() == 1) return Operands[0];
1738 #ifndef NDEBUG
1739 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1740 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1741 getEffectiveSCEVType(Operands[0]->getType()) &&
1742 "SCEVAddRecExpr operand types don't match!");
1743 #endif
1745 if (Operands.back()->isZero()) {
1746 Operands.pop_back();
1747 return getAddRecExpr(Operands, L); // {X,+,0} --> X
1750 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1751 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1752 const Loop* NestedLoop = NestedAR->getLoop();
1753 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1754 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1755 NestedAR->op_end());
1756 Operands[0] = NestedAR->getStart();
1757 // AddRecs require their operands be loop-invariant with respect to their
1758 // loops. Don't perform this transformation if it would break this
1759 // requirement.
1760 bool AllInvariant = true;
1761 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1762 if (!Operands[i]->isLoopInvariant(L)) {
1763 AllInvariant = false;
1764 break;
1766 if (AllInvariant) {
1767 NestedOperands[0] = getAddRecExpr(Operands, L);
1768 AllInvariant = true;
1769 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1770 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1771 AllInvariant = false;
1772 break;
1774 if (AllInvariant)
1775 // Ok, both add recurrences are valid after the transformation.
1776 return getAddRecExpr(NestedOperands, NestedLoop);
1778 // Reset Operands to its original state.
1779 Operands[0] = NestedAR;
1783 FoldingSetNodeID ID;
1784 ID.AddInteger(scAddRecExpr);
1785 ID.AddInteger(Operands.size());
1786 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1787 ID.AddPointer(Operands[i]);
1788 ID.AddPointer(L);
1789 void *IP = 0;
1790 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1791 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1792 new (S) SCEVAddRecExpr(ID, Operands, L);
1793 UniqueSCEVs.InsertNode(S, IP);
1794 return S;
1797 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1798 const SCEV *RHS) {
1799 SmallVector<const SCEV *, 2> Ops;
1800 Ops.push_back(LHS);
1801 Ops.push_back(RHS);
1802 return getSMaxExpr(Ops);
1805 const SCEV *
1806 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1807 assert(!Ops.empty() && "Cannot get empty smax!");
1808 if (Ops.size() == 1) return Ops[0];
1809 #ifndef NDEBUG
1810 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1811 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1812 getEffectiveSCEVType(Ops[0]->getType()) &&
1813 "SCEVSMaxExpr operand types don't match!");
1814 #endif
1816 // Sort by complexity, this groups all similar expression types together.
1817 GroupByComplexity(Ops, LI);
1819 // If there are any constants, fold them together.
1820 unsigned Idx = 0;
1821 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1822 ++Idx;
1823 assert(Idx < Ops.size());
1824 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1825 // We found two constants, fold them together!
1826 ConstantInt *Fold = ConstantInt::get(getContext(),
1827 APIntOps::smax(LHSC->getValue()->getValue(),
1828 RHSC->getValue()->getValue()));
1829 Ops[0] = getConstant(Fold);
1830 Ops.erase(Ops.begin()+1); // Erase the folded element
1831 if (Ops.size() == 1) return Ops[0];
1832 LHSC = cast<SCEVConstant>(Ops[0]);
1835 // If we are left with a constant minimum-int, strip it off.
1836 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1837 Ops.erase(Ops.begin());
1838 --Idx;
1839 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1840 // If we have an smax with a constant maximum-int, it will always be
1841 // maximum-int.
1842 return Ops[0];
1846 if (Ops.size() == 1) return Ops[0];
1848 // Find the first SMax
1849 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1850 ++Idx;
1852 // Check to see if one of the operands is an SMax. If so, expand its operands
1853 // onto our operand list, and recurse to simplify.
1854 if (Idx < Ops.size()) {
1855 bool DeletedSMax = false;
1856 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1857 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1858 Ops.erase(Ops.begin()+Idx);
1859 DeletedSMax = true;
1862 if (DeletedSMax)
1863 return getSMaxExpr(Ops);
1866 // Okay, check to see if the same value occurs in the operand list twice. If
1867 // so, delete one. Since we sorted the list, these values are required to
1868 // be adjacent.
1869 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1870 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1871 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1872 --i; --e;
1875 if (Ops.size() == 1) return Ops[0];
1877 assert(!Ops.empty() && "Reduced smax down to nothing!");
1879 // Okay, it looks like we really DO need an smax expr. Check to see if we
1880 // already have one, otherwise create a new one.
1881 FoldingSetNodeID ID;
1882 ID.AddInteger(scSMaxExpr);
1883 ID.AddInteger(Ops.size());
1884 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1885 ID.AddPointer(Ops[i]);
1886 void *IP = 0;
1887 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1888 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1889 new (S) SCEVSMaxExpr(ID, Ops);
1890 UniqueSCEVs.InsertNode(S, IP);
1891 return S;
1894 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1895 const SCEV *RHS) {
1896 SmallVector<const SCEV *, 2> Ops;
1897 Ops.push_back(LHS);
1898 Ops.push_back(RHS);
1899 return getUMaxExpr(Ops);
1902 const SCEV *
1903 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1904 assert(!Ops.empty() && "Cannot get empty umax!");
1905 if (Ops.size() == 1) return Ops[0];
1906 #ifndef NDEBUG
1907 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1908 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1909 getEffectiveSCEVType(Ops[0]->getType()) &&
1910 "SCEVUMaxExpr operand types don't match!");
1911 #endif
1913 // Sort by complexity, this groups all similar expression types together.
1914 GroupByComplexity(Ops, LI);
1916 // If there are any constants, fold them together.
1917 unsigned Idx = 0;
1918 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1919 ++Idx;
1920 assert(Idx < Ops.size());
1921 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1922 // We found two constants, fold them together!
1923 ConstantInt *Fold = ConstantInt::get(getContext(),
1924 APIntOps::umax(LHSC->getValue()->getValue(),
1925 RHSC->getValue()->getValue()));
1926 Ops[0] = getConstant(Fold);
1927 Ops.erase(Ops.begin()+1); // Erase the folded element
1928 if (Ops.size() == 1) return Ops[0];
1929 LHSC = cast<SCEVConstant>(Ops[0]);
1932 // If we are left with a constant minimum-int, strip it off.
1933 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1934 Ops.erase(Ops.begin());
1935 --Idx;
1936 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1937 // If we have an umax with a constant maximum-int, it will always be
1938 // maximum-int.
1939 return Ops[0];
1943 if (Ops.size() == 1) return Ops[0];
1945 // Find the first UMax
1946 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1947 ++Idx;
1949 // Check to see if one of the operands is a UMax. If so, expand its operands
1950 // onto our operand list, and recurse to simplify.
1951 if (Idx < Ops.size()) {
1952 bool DeletedUMax = false;
1953 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1954 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1955 Ops.erase(Ops.begin()+Idx);
1956 DeletedUMax = true;
1959 if (DeletedUMax)
1960 return getUMaxExpr(Ops);
1963 // Okay, check to see if the same value occurs in the operand list twice. If
1964 // so, delete one. Since we sorted the list, these values are required to
1965 // be adjacent.
1966 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1967 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1968 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1969 --i; --e;
1972 if (Ops.size() == 1) return Ops[0];
1974 assert(!Ops.empty() && "Reduced umax down to nothing!");
1976 // Okay, it looks like we really DO need a umax expr. Check to see if we
1977 // already have one, otherwise create a new one.
1978 FoldingSetNodeID ID;
1979 ID.AddInteger(scUMaxExpr);
1980 ID.AddInteger(Ops.size());
1981 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1982 ID.AddPointer(Ops[i]);
1983 void *IP = 0;
1984 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1985 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
1986 new (S) SCEVUMaxExpr(ID, Ops);
1987 UniqueSCEVs.InsertNode(S, IP);
1988 return S;
1991 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
1992 const SCEV *RHS) {
1993 // ~smax(~x, ~y) == smin(x, y).
1994 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1997 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
1998 const SCEV *RHS) {
1999 // ~umax(~x, ~y) == umin(x, y)
2000 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2003 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2004 // Don't attempt to do anything other than create a SCEVUnknown object
2005 // here. createSCEV only calls getUnknown after checking for all other
2006 // interesting possibilities, and any other code that calls getUnknown
2007 // is doing so in order to hide a value from SCEV canonicalization.
2009 FoldingSetNodeID ID;
2010 ID.AddInteger(scUnknown);
2011 ID.AddPointer(V);
2012 void *IP = 0;
2013 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2014 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2015 new (S) SCEVUnknown(ID, V);
2016 UniqueSCEVs.InsertNode(S, IP);
2017 return S;
2020 //===----------------------------------------------------------------------===//
2021 // Basic SCEV Analysis and PHI Idiom Recognition Code
2024 /// isSCEVable - Test if values of the given type are analyzable within
2025 /// the SCEV framework. This primarily includes integer types, and it
2026 /// can optionally include pointer types if the ScalarEvolution class
2027 /// has access to target-specific information.
2028 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2029 // Integers are always SCEVable.
2030 if (Ty->isInteger())
2031 return true;
2033 // Pointers are SCEVable if TargetData information is available
2034 // to provide pointer size information.
2035 if (isa<PointerType>(Ty))
2036 return TD != NULL;
2038 // Otherwise it's not SCEVable.
2039 return false;
2042 /// getTypeSizeInBits - Return the size in bits of the specified type,
2043 /// for which isSCEVable must return true.
2044 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2045 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2047 // If we have a TargetData, use it!
2048 if (TD)
2049 return TD->getTypeSizeInBits(Ty);
2051 // Otherwise, we support only integer types.
2052 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2053 return Ty->getPrimitiveSizeInBits();
2056 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2057 /// the given type and which represents how SCEV will treat the given
2058 /// type, for which isSCEVable must return true. For pointer types,
2059 /// this is the pointer-sized integer type.
2060 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2061 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2063 if (Ty->isInteger())
2064 return Ty;
2066 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2067 return TD->getIntPtrType();
2070 const SCEV *ScalarEvolution::getCouldNotCompute() {
2071 return &CouldNotCompute;
2074 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2075 /// expression and create a new one.
2076 const SCEV *ScalarEvolution::getSCEV(Value *V) {
2077 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2079 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2080 if (I != Scalars.end()) return I->second;
2081 const SCEV *S = createSCEV(V);
2082 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2083 return S;
2086 /// getIntegerSCEV - Given a SCEVable type, create a constant for the
2087 /// specified signed integer value and return a SCEV for the constant.
2088 const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2089 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2090 return getConstant(ConstantInt::get(ITy, Val));
2093 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2095 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2096 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2097 return getConstant(
2098 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2100 const Type *Ty = V->getType();
2101 Ty = getEffectiveSCEVType(Ty);
2102 return getMulExpr(V,
2103 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2106 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2107 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2108 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2109 return getConstant(
2110 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2112 const Type *Ty = V->getType();
2113 Ty = getEffectiveSCEVType(Ty);
2114 const SCEV *AllOnes =
2115 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2116 return getMinusSCEV(AllOnes, V);
2119 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2121 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2122 const SCEV *RHS) {
2123 // X - Y --> X + -Y
2124 return getAddExpr(LHS, getNegativeSCEV(RHS));
2127 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2128 /// input value to the specified type. If the type must be extended, it is zero
2129 /// extended.
2130 const SCEV *
2131 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2132 const Type *Ty) {
2133 const Type *SrcTy = V->getType();
2134 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2135 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2136 "Cannot truncate or zero extend with non-integer arguments!");
2137 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2138 return V; // No conversion
2139 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2140 return getTruncateExpr(V, Ty);
2141 return getZeroExtendExpr(V, Ty);
2144 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2145 /// input value to the specified type. If the type must be extended, it is sign
2146 /// extended.
2147 const SCEV *
2148 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2149 const Type *Ty) {
2150 const Type *SrcTy = V->getType();
2151 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2152 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2153 "Cannot truncate or zero extend with non-integer arguments!");
2154 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2155 return V; // No conversion
2156 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2157 return getTruncateExpr(V, Ty);
2158 return getSignExtendExpr(V, Ty);
2161 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2162 /// input value to the specified type. If the type must be extended, it is zero
2163 /// extended. The conversion must not be narrowing.
2164 const SCEV *
2165 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2166 const Type *SrcTy = V->getType();
2167 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2168 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2169 "Cannot noop or zero extend with non-integer arguments!");
2170 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2171 "getNoopOrZeroExtend cannot truncate!");
2172 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2173 return V; // No conversion
2174 return getZeroExtendExpr(V, Ty);
2177 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2178 /// input value to the specified type. If the type must be extended, it is sign
2179 /// extended. The conversion must not be narrowing.
2180 const SCEV *
2181 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2182 const Type *SrcTy = V->getType();
2183 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2184 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2185 "Cannot noop or sign extend with non-integer arguments!");
2186 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2187 "getNoopOrSignExtend cannot truncate!");
2188 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2189 return V; // No conversion
2190 return getSignExtendExpr(V, Ty);
2193 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2194 /// the input value to the specified type. If the type must be extended,
2195 /// it is extended with unspecified bits. The conversion must not be
2196 /// narrowing.
2197 const SCEV *
2198 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2199 const Type *SrcTy = V->getType();
2200 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2201 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2202 "Cannot noop or any extend with non-integer arguments!");
2203 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2204 "getNoopOrAnyExtend cannot truncate!");
2205 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2206 return V; // No conversion
2207 return getAnyExtendExpr(V, Ty);
2210 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2211 /// input value to the specified type. The conversion must not be widening.
2212 const SCEV *
2213 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2214 const Type *SrcTy = V->getType();
2215 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2216 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2217 "Cannot truncate or noop with non-integer arguments!");
2218 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2219 "getTruncateOrNoop cannot extend!");
2220 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2221 return V; // No conversion
2222 return getTruncateExpr(V, Ty);
2225 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2226 /// the types using zero-extension, and then perform a umax operation
2227 /// with them.
2228 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2229 const SCEV *RHS) {
2230 const SCEV *PromotedLHS = LHS;
2231 const SCEV *PromotedRHS = RHS;
2233 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2234 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2235 else
2236 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2238 return getUMaxExpr(PromotedLHS, PromotedRHS);
2241 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2242 /// the types using zero-extension, and then perform a umin operation
2243 /// with them.
2244 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2245 const SCEV *RHS) {
2246 const SCEV *PromotedLHS = LHS;
2247 const SCEV *PromotedRHS = RHS;
2249 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2250 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2251 else
2252 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2254 return getUMinExpr(PromotedLHS, PromotedRHS);
2257 /// PushDefUseChildren - Push users of the given Instruction
2258 /// onto the given Worklist.
2259 static void
2260 PushDefUseChildren(Instruction *I,
2261 SmallVectorImpl<Instruction *> &Worklist) {
2262 // Push the def-use children onto the Worklist stack.
2263 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2264 UI != UE; ++UI)
2265 Worklist.push_back(cast<Instruction>(UI));
2268 /// ForgetSymbolicValue - This looks up computed SCEV values for all
2269 /// instructions that depend on the given instruction and removes them from
2270 /// the Scalars map if they reference SymName. This is used during PHI
2271 /// resolution.
2272 void
2273 ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2274 SmallVector<Instruction *, 16> Worklist;
2275 PushDefUseChildren(I, Worklist);
2277 SmallPtrSet<Instruction *, 8> Visited;
2278 Visited.insert(I);
2279 while (!Worklist.empty()) {
2280 Instruction *I = Worklist.pop_back_val();
2281 if (!Visited.insert(I)) continue;
2283 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2284 Scalars.find(static_cast<Value *>(I));
2285 if (It != Scalars.end()) {
2286 // Short-circuit the def-use traversal if the symbolic name
2287 // ceases to appear in expressions.
2288 if (!It->second->hasOperand(SymName))
2289 continue;
2291 // SCEVUnknown for a PHI either means that it has an unrecognized
2292 // structure, or it's a PHI that's in the progress of being computed
2293 // by createNodeForPHI. In the former case, additional loop trip
2294 // count information isn't going to change anything. In the later
2295 // case, createNodeForPHI will perform the necessary updates on its
2296 // own when it gets to that point.
2297 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
2298 Scalars.erase(It);
2299 ValuesAtScopes.erase(I);
2302 PushDefUseChildren(I, Worklist);
2306 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2307 /// a loop header, making it a potential recurrence, or it doesn't.
2309 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2310 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
2311 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2312 if (L->getHeader() == PN->getParent()) {
2313 // If it lives in the loop header, it has two incoming values, one
2314 // from outside the loop, and one from inside.
2315 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2316 unsigned BackEdge = IncomingEdge^1;
2318 // While we are analyzing this PHI node, handle its value symbolically.
2319 const SCEV *SymbolicName = getUnknown(PN);
2320 assert(Scalars.find(PN) == Scalars.end() &&
2321 "PHI node already processed?");
2322 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2324 // Using this symbolic name for the PHI, analyze the value coming around
2325 // the back-edge.
2326 Value *BEValueV = PN->getIncomingValue(BackEdge);
2327 const SCEV *BEValue = getSCEV(BEValueV);
2329 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2330 // has a special value for the first iteration of the loop.
2332 // If the value coming around the backedge is an add with the symbolic
2333 // value we just inserted, then we found a simple induction variable!
2334 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2335 // If there is a single occurrence of the symbolic value, replace it
2336 // with a recurrence.
2337 unsigned FoundIndex = Add->getNumOperands();
2338 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2339 if (Add->getOperand(i) == SymbolicName)
2340 if (FoundIndex == e) {
2341 FoundIndex = i;
2342 break;
2345 if (FoundIndex != Add->getNumOperands()) {
2346 // Create an add with everything but the specified operand.
2347 SmallVector<const SCEV *, 8> Ops;
2348 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2349 if (i != FoundIndex)
2350 Ops.push_back(Add->getOperand(i));
2351 const SCEV *Accum = getAddExpr(Ops);
2353 // This is not a valid addrec if the step amount is varying each
2354 // loop iteration, but is not itself an addrec in this loop.
2355 if (Accum->isLoopInvariant(L) ||
2356 (isa<SCEVAddRecExpr>(Accum) &&
2357 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2358 const SCEV *StartVal =
2359 getSCEV(PN->getIncomingValue(IncomingEdge));
2360 const SCEVAddRecExpr *PHISCEV =
2361 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2363 // If the increment doesn't overflow, then neither the addrec nor the
2364 // post-increment will overflow.
2365 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2366 if (OBO->getOperand(0) == PN &&
2367 getSCEV(OBO->getOperand(1)) ==
2368 PHISCEV->getStepRecurrence(*this)) {
2369 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
2370 if (OBO->hasNoUnsignedOverflow()) {
2371 const_cast<SCEVAddRecExpr *>(PHISCEV)
2372 ->setHasNoUnsignedOverflow(true);
2373 const_cast<SCEVAddRecExpr *>(PostInc)
2374 ->setHasNoUnsignedOverflow(true);
2376 if (OBO->hasNoSignedOverflow()) {
2377 const_cast<SCEVAddRecExpr *>(PHISCEV)
2378 ->setHasNoSignedOverflow(true);
2379 const_cast<SCEVAddRecExpr *>(PostInc)
2380 ->setHasNoSignedOverflow(true);
2384 // Okay, for the entire analysis of this edge we assumed the PHI
2385 // to be symbolic. We now need to go back and purge all of the
2386 // entries for the scalars that use the symbolic expression.
2387 ForgetSymbolicName(PN, SymbolicName);
2388 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2389 return PHISCEV;
2392 } else if (const SCEVAddRecExpr *AddRec =
2393 dyn_cast<SCEVAddRecExpr>(BEValue)) {
2394 // Otherwise, this could be a loop like this:
2395 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2396 // In this case, j = {1,+,1} and BEValue is j.
2397 // Because the other in-value of i (0) fits the evolution of BEValue
2398 // i really is an addrec evolution.
2399 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2400 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2402 // If StartVal = j.start - j.stride, we can use StartVal as the
2403 // initial step of the addrec evolution.
2404 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2405 AddRec->getOperand(1))) {
2406 const SCEV *PHISCEV =
2407 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2409 // Okay, for the entire analysis of this edge we assumed the PHI
2410 // to be symbolic. We now need to go back and purge all of the
2411 // entries for the scalars that use the symbolic expression.
2412 ForgetSymbolicName(PN, SymbolicName);
2413 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2414 return PHISCEV;
2419 return SymbolicName;
2422 // It's tempting to recognize PHIs with a unique incoming value, however
2423 // this leads passes like indvars to break LCSSA form. Fortunately, such
2424 // PHIs are rare, as instcombine zaps them.
2426 // If it's not a loop phi, we can't handle it yet.
2427 return getUnknown(PN);
2430 /// createNodeForGEP - Expand GEP instructions into add and multiply
2431 /// operations. This allows them to be analyzed by regular SCEV code.
2433 const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
2435 const Type *IntPtrTy = TD->getIntPtrType();
2436 Value *Base = GEP->getOperand(0);
2437 // Don't attempt to analyze GEPs over unsized objects.
2438 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2439 return getUnknown(GEP);
2440 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2441 gep_type_iterator GTI = gep_type_begin(GEP);
2442 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2443 E = GEP->op_end();
2444 I != E; ++I) {
2445 Value *Index = *I;
2446 // Compute the (potentially symbolic) offset in bytes for this index.
2447 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2448 // For a struct, add the member offset.
2449 const StructLayout &SL = *TD->getStructLayout(STy);
2450 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2451 uint64_t Offset = SL.getElementOffset(FieldNo);
2452 TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
2453 } else {
2454 // For an array, add the element offset, explicitly scaled.
2455 const SCEV *LocalOffset = getSCEV(Index);
2456 if (!isa<PointerType>(LocalOffset->getType()))
2457 // Getelementptr indicies are signed.
2458 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2459 LocalOffset =
2460 getMulExpr(LocalOffset,
2461 getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
2462 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2465 return getAddExpr(getSCEV(Base), TotalOffset);
2468 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2469 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2470 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2471 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2472 uint32_t
2473 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2474 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2475 return C->getValue()->getValue().countTrailingZeros();
2477 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2478 return std::min(GetMinTrailingZeros(T->getOperand()),
2479 (uint32_t)getTypeSizeInBits(T->getType()));
2481 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2482 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2483 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2484 getTypeSizeInBits(E->getType()) : OpRes;
2487 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2488 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2489 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2490 getTypeSizeInBits(E->getType()) : OpRes;
2493 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2494 // The result is the min of all operands results.
2495 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2496 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2497 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2498 return MinOpRes;
2501 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2502 // The result is the sum of all operands results.
2503 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2504 uint32_t BitWidth = getTypeSizeInBits(M->getType());
2505 for (unsigned i = 1, e = M->getNumOperands();
2506 SumOpRes != BitWidth && i != e; ++i)
2507 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2508 BitWidth);
2509 return SumOpRes;
2512 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2513 // The result is the min of all operands results.
2514 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2515 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2516 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2517 return MinOpRes;
2520 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2521 // The result is the min of all operands results.
2522 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2523 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2524 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2525 return MinOpRes;
2528 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2529 // The result is the min of all operands results.
2530 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2531 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2532 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2533 return MinOpRes;
2536 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2537 // For a SCEVUnknown, ask ValueTracking.
2538 unsigned BitWidth = getTypeSizeInBits(U->getType());
2539 APInt Mask = APInt::getAllOnesValue(BitWidth);
2540 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2541 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2542 return Zeros.countTrailingOnes();
2545 // SCEVUDivExpr
2546 return 0;
2549 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2551 ConstantRange
2552 ScalarEvolution::getUnsignedRange(const SCEV *S) {
2554 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2555 return ConstantRange(C->getValue()->getValue());
2557 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2558 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2559 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2560 X = X.add(getUnsignedRange(Add->getOperand(i)));
2561 return X;
2564 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2565 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2566 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2567 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2568 return X;
2571 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2572 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2573 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2574 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2575 return X;
2578 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2579 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2580 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2581 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2582 return X;
2585 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2586 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2587 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2588 return X.udiv(Y);
2591 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2592 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2593 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2596 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2597 ConstantRange X = getUnsignedRange(SExt->getOperand());
2598 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2601 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2602 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2603 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2606 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2608 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2609 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2610 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2611 if (!Trip) return FullSet;
2613 // TODO: non-affine addrec
2614 if (AddRec->isAffine()) {
2615 const Type *Ty = AddRec->getType();
2616 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2617 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2618 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2620 const SCEV *Start = AddRec->getStart();
2621 const SCEV *Step = AddRec->getStepRecurrence(*this);
2622 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2624 // Check for overflow.
2625 // TODO: This is very conservative.
2626 if (!(Step->isOne() &&
2627 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2628 !(Step->isAllOnesValue() &&
2629 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2630 return FullSet;
2632 ConstantRange StartRange = getUnsignedRange(Start);
2633 ConstantRange EndRange = getUnsignedRange(End);
2634 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2635 EndRange.getUnsignedMin());
2636 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2637 EndRange.getUnsignedMax());
2638 if (Min.isMinValue() && Max.isMaxValue())
2639 return FullSet;
2640 return ConstantRange(Min, Max+1);
2645 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2646 // For a SCEVUnknown, ask ValueTracking.
2647 unsigned BitWidth = getTypeSizeInBits(U->getType());
2648 APInt Mask = APInt::getAllOnesValue(BitWidth);
2649 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2650 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2651 if (Ones == ~Zeros + 1)
2652 return FullSet;
2653 return ConstantRange(Ones, ~Zeros + 1);
2656 return FullSet;
2659 /// getSignedRange - Determine the signed range for a particular SCEV.
2661 ConstantRange
2662 ScalarEvolution::getSignedRange(const SCEV *S) {
2664 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2665 return ConstantRange(C->getValue()->getValue());
2667 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2668 ConstantRange X = getSignedRange(Add->getOperand(0));
2669 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2670 X = X.add(getSignedRange(Add->getOperand(i)));
2671 return X;
2674 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2675 ConstantRange X = getSignedRange(Mul->getOperand(0));
2676 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2677 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2678 return X;
2681 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2682 ConstantRange X = getSignedRange(SMax->getOperand(0));
2683 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2684 X = X.smax(getSignedRange(SMax->getOperand(i)));
2685 return X;
2688 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2689 ConstantRange X = getSignedRange(UMax->getOperand(0));
2690 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2691 X = X.umax(getSignedRange(UMax->getOperand(i)));
2692 return X;
2695 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2696 ConstantRange X = getSignedRange(UDiv->getLHS());
2697 ConstantRange Y = getSignedRange(UDiv->getRHS());
2698 return X.udiv(Y);
2701 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2702 ConstantRange X = getSignedRange(ZExt->getOperand());
2703 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2706 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2707 ConstantRange X = getSignedRange(SExt->getOperand());
2708 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2711 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2712 ConstantRange X = getSignedRange(Trunc->getOperand());
2713 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2716 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2718 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2719 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2720 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2721 if (!Trip) return FullSet;
2723 // TODO: non-affine addrec
2724 if (AddRec->isAffine()) {
2725 const Type *Ty = AddRec->getType();
2726 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2727 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2728 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2730 const SCEV *Start = AddRec->getStart();
2731 const SCEV *Step = AddRec->getStepRecurrence(*this);
2732 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2734 // Check for overflow.
2735 // TODO: This is very conservative.
2736 if (!(Step->isOne() &&
2737 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2738 !(Step->isAllOnesValue() &&
2739 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2740 return FullSet;
2742 ConstantRange StartRange = getSignedRange(Start);
2743 ConstantRange EndRange = getSignedRange(End);
2744 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2745 EndRange.getSignedMin());
2746 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2747 EndRange.getSignedMax());
2748 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2749 return FullSet;
2750 return ConstantRange(Min, Max+1);
2755 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2756 // For a SCEVUnknown, ask ValueTracking.
2757 unsigned BitWidth = getTypeSizeInBits(U->getType());
2758 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2759 if (NS == 1)
2760 return FullSet;
2761 return
2762 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2763 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2766 return FullSet;
2769 /// createSCEV - We know that there is no SCEV for the specified value.
2770 /// Analyze the expression.
2772 const SCEV *ScalarEvolution::createSCEV(Value *V) {
2773 if (!isSCEVable(V->getType()))
2774 return getUnknown(V);
2776 unsigned Opcode = Instruction::UserOp1;
2777 if (Instruction *I = dyn_cast<Instruction>(V))
2778 Opcode = I->getOpcode();
2779 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2780 Opcode = CE->getOpcode();
2781 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2782 return getConstant(CI);
2783 else if (isa<ConstantPointerNull>(V))
2784 return getIntegerSCEV(0, V->getType());
2785 else if (isa<UndefValue>(V))
2786 return getIntegerSCEV(0, V->getType());
2787 else
2788 return getUnknown(V);
2790 Operator *U = cast<Operator>(V);
2791 switch (Opcode) {
2792 case Instruction::Add:
2793 return getAddExpr(getSCEV(U->getOperand(0)),
2794 getSCEV(U->getOperand(1)));
2795 case Instruction::Mul:
2796 return getMulExpr(getSCEV(U->getOperand(0)),
2797 getSCEV(U->getOperand(1)));
2798 case Instruction::UDiv:
2799 return getUDivExpr(getSCEV(U->getOperand(0)),
2800 getSCEV(U->getOperand(1)));
2801 case Instruction::Sub:
2802 return getMinusSCEV(getSCEV(U->getOperand(0)),
2803 getSCEV(U->getOperand(1)));
2804 case Instruction::And:
2805 // For an expression like x&255 that merely masks off the high bits,
2806 // use zext(trunc(x)) as the SCEV expression.
2807 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2808 if (CI->isNullValue())
2809 return getSCEV(U->getOperand(1));
2810 if (CI->isAllOnesValue())
2811 return getSCEV(U->getOperand(0));
2812 const APInt &A = CI->getValue();
2814 // Instcombine's ShrinkDemandedConstant may strip bits out of
2815 // constants, obscuring what would otherwise be a low-bits mask.
2816 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2817 // knew about to reconstruct a low-bits mask value.
2818 unsigned LZ = A.countLeadingZeros();
2819 unsigned BitWidth = A.getBitWidth();
2820 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2821 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2822 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2824 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2826 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2827 return
2828 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2829 IntegerType::get(BitWidth - LZ)),
2830 U->getType());
2832 break;
2834 case Instruction::Or:
2835 // If the RHS of the Or is a constant, we may have something like:
2836 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2837 // optimizations will transparently handle this case.
2839 // In order for this transformation to be safe, the LHS must be of the
2840 // form X*(2^n) and the Or constant must be less than 2^n.
2841 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2842 const SCEV *LHS = getSCEV(U->getOperand(0));
2843 const APInt &CIVal = CI->getValue();
2844 if (GetMinTrailingZeros(LHS) >=
2845 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2846 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2848 break;
2849 case Instruction::Xor:
2850 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2851 // If the RHS of the xor is a signbit, then this is just an add.
2852 // Instcombine turns add of signbit into xor as a strength reduction step.
2853 if (CI->getValue().isSignBit())
2854 return getAddExpr(getSCEV(U->getOperand(0)),
2855 getSCEV(U->getOperand(1)));
2857 // If the RHS of xor is -1, then this is a not operation.
2858 if (CI->isAllOnesValue())
2859 return getNotSCEV(getSCEV(U->getOperand(0)));
2861 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2862 // This is a variant of the check for xor with -1, and it handles
2863 // the case where instcombine has trimmed non-demanded bits out
2864 // of an xor with -1.
2865 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2866 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2867 if (BO->getOpcode() == Instruction::And &&
2868 LCI->getValue() == CI->getValue())
2869 if (const SCEVZeroExtendExpr *Z =
2870 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2871 const Type *UTy = U->getType();
2872 const SCEV *Z0 = Z->getOperand();
2873 const Type *Z0Ty = Z0->getType();
2874 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2876 // If C is a low-bits mask, the zero extend is zerving to
2877 // mask off the high bits. Complement the operand and
2878 // re-apply the zext.
2879 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2880 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2882 // If C is a single bit, it may be in the sign-bit position
2883 // before the zero-extend. In this case, represent the xor
2884 // using an add, which is equivalent, and re-apply the zext.
2885 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2886 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2887 Trunc.isSignBit())
2888 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2889 UTy);
2892 break;
2894 case Instruction::Shl:
2895 // Turn shift left of a constant amount into a multiply.
2896 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2897 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2898 Constant *X = ConstantInt::get(getContext(),
2899 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2900 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2902 break;
2904 case Instruction::LShr:
2905 // Turn logical shift right of a constant into a unsigned divide.
2906 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2907 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2908 Constant *X = ConstantInt::get(getContext(),
2909 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2910 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2912 break;
2914 case Instruction::AShr:
2915 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2916 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2917 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2918 if (L->getOpcode() == Instruction::Shl &&
2919 L->getOperand(1) == U->getOperand(1)) {
2920 unsigned BitWidth = getTypeSizeInBits(U->getType());
2921 uint64_t Amt = BitWidth - CI->getZExtValue();
2922 if (Amt == BitWidth)
2923 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2924 if (Amt > BitWidth)
2925 return getIntegerSCEV(0, U->getType()); // value is undefined
2926 return
2927 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2928 IntegerType::get(Amt)),
2929 U->getType());
2931 break;
2933 case Instruction::Trunc:
2934 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2936 case Instruction::ZExt:
2937 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2939 case Instruction::SExt:
2940 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2942 case Instruction::BitCast:
2943 // BitCasts are no-op casts so we just eliminate the cast.
2944 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2945 return getSCEV(U->getOperand(0));
2946 break;
2948 // It's tempting to handle inttoptr and ptrtoint, however this can
2949 // lead to pointer expressions which cannot be expanded to GEPs
2950 // (because they may overflow). For now, the only pointer-typed
2951 // expressions we handle are GEPs and address literals.
2953 case Instruction::GetElementPtr:
2954 if (!TD) break; // Without TD we can't analyze pointers.
2955 return createNodeForGEP(U);
2957 case Instruction::PHI:
2958 return createNodeForPHI(cast<PHINode>(U));
2960 case Instruction::Select:
2961 // This could be a smax or umax that was lowered earlier.
2962 // Try to recover it.
2963 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2964 Value *LHS = ICI->getOperand(0);
2965 Value *RHS = ICI->getOperand(1);
2966 switch (ICI->getPredicate()) {
2967 case ICmpInst::ICMP_SLT:
2968 case ICmpInst::ICMP_SLE:
2969 std::swap(LHS, RHS);
2970 // fall through
2971 case ICmpInst::ICMP_SGT:
2972 case ICmpInst::ICMP_SGE:
2973 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2974 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2975 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2976 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2977 break;
2978 case ICmpInst::ICMP_ULT:
2979 case ICmpInst::ICMP_ULE:
2980 std::swap(LHS, RHS);
2981 // fall through
2982 case ICmpInst::ICMP_UGT:
2983 case ICmpInst::ICMP_UGE:
2984 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2985 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2986 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2987 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2988 break;
2989 case ICmpInst::ICMP_NE:
2990 // n != 0 ? n : 1 -> umax(n, 1)
2991 if (LHS == U->getOperand(1) &&
2992 isa<ConstantInt>(U->getOperand(2)) &&
2993 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2994 isa<ConstantInt>(RHS) &&
2995 cast<ConstantInt>(RHS)->isZero())
2996 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2997 break;
2998 case ICmpInst::ICMP_EQ:
2999 // n == 0 ? 1 : n -> umax(n, 1)
3000 if (LHS == U->getOperand(2) &&
3001 isa<ConstantInt>(U->getOperand(1)) &&
3002 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3003 isa<ConstantInt>(RHS) &&
3004 cast<ConstantInt>(RHS)->isZero())
3005 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3006 break;
3007 default:
3008 break;
3012 default: // We cannot analyze this expression.
3013 break;
3016 return getUnknown(V);
3021 //===----------------------------------------------------------------------===//
3022 // Iteration Count Computation Code
3025 /// getBackedgeTakenCount - If the specified loop has a predictable
3026 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3027 /// object. The backedge-taken count is the number of times the loop header
3028 /// will be branched to from within the loop. This is one less than the
3029 /// trip count of the loop, since it doesn't count the first iteration,
3030 /// when the header is branched to from outside the loop.
3032 /// Note that it is not valid to call this method on a loop without a
3033 /// loop-invariant backedge-taken count (see
3034 /// hasLoopInvariantBackedgeTakenCount).
3036 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3037 return getBackedgeTakenInfo(L).Exact;
3040 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3041 /// return the least SCEV value that is known never to be less than the
3042 /// actual backedge taken count.
3043 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3044 return getBackedgeTakenInfo(L).Max;
3047 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3048 /// onto the given Worklist.
3049 static void
3050 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3051 BasicBlock *Header = L->getHeader();
3053 // Push all Loop-header PHIs onto the Worklist stack.
3054 for (BasicBlock::iterator I = Header->begin();
3055 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3056 Worklist.push_back(PN);
3059 const ScalarEvolution::BackedgeTakenInfo &
3060 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3061 // Initially insert a CouldNotCompute for this loop. If the insertion
3062 // succeeds, procede to actually compute a backedge-taken count and
3063 // update the value. The temporary CouldNotCompute value tells SCEV
3064 // code elsewhere that it shouldn't attempt to request a new
3065 // backedge-taken count, which could result in infinite recursion.
3066 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3067 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3068 if (Pair.second) {
3069 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3070 if (ItCount.Exact != getCouldNotCompute()) {
3071 assert(ItCount.Exact->isLoopInvariant(L) &&
3072 ItCount.Max->isLoopInvariant(L) &&
3073 "Computed trip count isn't loop invariant for loop!");
3074 ++NumTripCountsComputed;
3076 // Update the value in the map.
3077 Pair.first->second = ItCount;
3078 } else {
3079 if (ItCount.Max != getCouldNotCompute())
3080 // Update the value in the map.
3081 Pair.first->second = ItCount;
3082 if (isa<PHINode>(L->getHeader()->begin()))
3083 // Only count loops that have phi nodes as not being computable.
3084 ++NumTripCountsNotComputed;
3087 // Now that we know more about the trip count for this loop, forget any
3088 // existing SCEV values for PHI nodes in this loop since they are only
3089 // conservative estimates made without the benefit of trip count
3090 // information. This is similar to the code in
3091 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3092 // nodes specially.
3093 if (ItCount.hasAnyInfo()) {
3094 SmallVector<Instruction *, 16> Worklist;
3095 PushLoopPHIs(L, Worklist);
3097 SmallPtrSet<Instruction *, 8> Visited;
3098 while (!Worklist.empty()) {
3099 Instruction *I = Worklist.pop_back_val();
3100 if (!Visited.insert(I)) continue;
3102 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3103 Scalars.find(static_cast<Value *>(I));
3104 if (It != Scalars.end()) {
3105 // SCEVUnknown for a PHI either means that it has an unrecognized
3106 // structure, or it's a PHI that's in the progress of being computed
3107 // by createNodeForPHI. In the former case, additional loop trip
3108 // count information isn't going to change anything. In the later
3109 // case, createNodeForPHI will perform the necessary updates on its
3110 // own when it gets to that point.
3111 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3112 Scalars.erase(It);
3113 ValuesAtScopes.erase(I);
3114 if (PHINode *PN = dyn_cast<PHINode>(I))
3115 ConstantEvolutionLoopExitValue.erase(PN);
3118 PushDefUseChildren(I, Worklist);
3122 return Pair.first->second;
3125 /// forgetLoopBackedgeTakenCount - This method should be called by the
3126 /// client when it has changed a loop in a way that may effect
3127 /// ScalarEvolution's ability to compute a trip count, or if the loop
3128 /// is deleted.
3129 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3130 BackedgeTakenCounts.erase(L);
3132 SmallVector<Instruction *, 16> Worklist;
3133 PushLoopPHIs(L, Worklist);
3135 SmallPtrSet<Instruction *, 8> Visited;
3136 while (!Worklist.empty()) {
3137 Instruction *I = Worklist.pop_back_val();
3138 if (!Visited.insert(I)) continue;
3140 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3141 Scalars.find(static_cast<Value *>(I));
3142 if (It != Scalars.end()) {
3143 Scalars.erase(It);
3144 ValuesAtScopes.erase(I);
3145 if (PHINode *PN = dyn_cast<PHINode>(I))
3146 ConstantEvolutionLoopExitValue.erase(PN);
3149 PushDefUseChildren(I, Worklist);
3153 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3154 /// of the specified loop will execute.
3155 ScalarEvolution::BackedgeTakenInfo
3156 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3157 SmallVector<BasicBlock*, 8> ExitingBlocks;
3158 L->getExitingBlocks(ExitingBlocks);
3160 // Examine all exits and pick the most conservative values.
3161 const SCEV *BECount = getCouldNotCompute();
3162 const SCEV *MaxBECount = getCouldNotCompute();
3163 bool CouldNotComputeBECount = false;
3164 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3165 BackedgeTakenInfo NewBTI =
3166 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3168 if (NewBTI.Exact == getCouldNotCompute()) {
3169 // We couldn't compute an exact value for this exit, so
3170 // we won't be able to compute an exact value for the loop.
3171 CouldNotComputeBECount = true;
3172 BECount = getCouldNotCompute();
3173 } else if (!CouldNotComputeBECount) {
3174 if (BECount == getCouldNotCompute())
3175 BECount = NewBTI.Exact;
3176 else
3177 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3179 if (MaxBECount == getCouldNotCompute())
3180 MaxBECount = NewBTI.Max;
3181 else if (NewBTI.Max != getCouldNotCompute())
3182 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3185 return BackedgeTakenInfo(BECount, MaxBECount);
3188 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3189 /// of the specified loop will execute if it exits via the specified block.
3190 ScalarEvolution::BackedgeTakenInfo
3191 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3192 BasicBlock *ExitingBlock) {
3194 // Okay, we've chosen an exiting block. See what condition causes us to
3195 // exit at this block.
3197 // FIXME: we should be able to handle switch instructions (with a single exit)
3198 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3199 if (ExitBr == 0) return getCouldNotCompute();
3200 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3202 // At this point, we know we have a conditional branch that determines whether
3203 // the loop is exited. However, we don't know if the branch is executed each
3204 // time through the loop. If not, then the execution count of the branch will
3205 // not be equal to the trip count of the loop.
3207 // Currently we check for this by checking to see if the Exit branch goes to
3208 // the loop header. If so, we know it will always execute the same number of
3209 // times as the loop. We also handle the case where the exit block *is* the
3210 // loop header. This is common for un-rotated loops.
3212 // If both of those tests fail, walk up the unique predecessor chain to the
3213 // header, stopping if there is an edge that doesn't exit the loop. If the
3214 // header is reached, the execution count of the branch will be equal to the
3215 // trip count of the loop.
3217 // More extensive analysis could be done to handle more cases here.
3219 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3220 ExitBr->getSuccessor(1) != L->getHeader() &&
3221 ExitBr->getParent() != L->getHeader()) {
3222 // The simple checks failed, try climbing the unique predecessor chain
3223 // up to the header.
3224 bool Ok = false;
3225 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3226 BasicBlock *Pred = BB->getUniquePredecessor();
3227 if (!Pred)
3228 return getCouldNotCompute();
3229 TerminatorInst *PredTerm = Pred->getTerminator();
3230 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3231 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3232 if (PredSucc == BB)
3233 continue;
3234 // If the predecessor has a successor that isn't BB and isn't
3235 // outside the loop, assume the worst.
3236 if (L->contains(PredSucc))
3237 return getCouldNotCompute();
3239 if (Pred == L->getHeader()) {
3240 Ok = true;
3241 break;
3243 BB = Pred;
3245 if (!Ok)
3246 return getCouldNotCompute();
3249 // Procede to the next level to examine the exit condition expression.
3250 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3251 ExitBr->getSuccessor(0),
3252 ExitBr->getSuccessor(1));
3255 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3256 /// backedge of the specified loop will execute if its exit condition
3257 /// were a conditional branch of ExitCond, TBB, and FBB.
3258 ScalarEvolution::BackedgeTakenInfo
3259 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3260 Value *ExitCond,
3261 BasicBlock *TBB,
3262 BasicBlock *FBB) {
3263 // Check if the controlling expression for this loop is an And or Or.
3264 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3265 if (BO->getOpcode() == Instruction::And) {
3266 // Recurse on the operands of the and.
3267 BackedgeTakenInfo BTI0 =
3268 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3269 BackedgeTakenInfo BTI1 =
3270 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3271 const SCEV *BECount = getCouldNotCompute();
3272 const SCEV *MaxBECount = getCouldNotCompute();
3273 if (L->contains(TBB)) {
3274 // Both conditions must be true for the loop to continue executing.
3275 // Choose the less conservative count.
3276 if (BTI0.Exact == getCouldNotCompute() ||
3277 BTI1.Exact == getCouldNotCompute())
3278 BECount = getCouldNotCompute();
3279 else
3280 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3281 if (BTI0.Max == getCouldNotCompute())
3282 MaxBECount = BTI1.Max;
3283 else if (BTI1.Max == getCouldNotCompute())
3284 MaxBECount = BTI0.Max;
3285 else
3286 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3287 } else {
3288 // Both conditions must be true for the loop to exit.
3289 assert(L->contains(FBB) && "Loop block has no successor in loop!");
3290 if (BTI0.Exact != getCouldNotCompute() &&
3291 BTI1.Exact != getCouldNotCompute())
3292 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3293 if (BTI0.Max != getCouldNotCompute() &&
3294 BTI1.Max != getCouldNotCompute())
3295 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3298 return BackedgeTakenInfo(BECount, MaxBECount);
3300 if (BO->getOpcode() == Instruction::Or) {
3301 // Recurse on the operands of the or.
3302 BackedgeTakenInfo BTI0 =
3303 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3304 BackedgeTakenInfo BTI1 =
3305 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3306 const SCEV *BECount = getCouldNotCompute();
3307 const SCEV *MaxBECount = getCouldNotCompute();
3308 if (L->contains(FBB)) {
3309 // Both conditions must be false for the loop to continue executing.
3310 // Choose the less conservative count.
3311 if (BTI0.Exact == getCouldNotCompute() ||
3312 BTI1.Exact == getCouldNotCompute())
3313 BECount = getCouldNotCompute();
3314 else
3315 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3316 if (BTI0.Max == getCouldNotCompute())
3317 MaxBECount = BTI1.Max;
3318 else if (BTI1.Max == getCouldNotCompute())
3319 MaxBECount = BTI0.Max;
3320 else
3321 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3322 } else {
3323 // Both conditions must be false for the loop to exit.
3324 assert(L->contains(TBB) && "Loop block has no successor in loop!");
3325 if (BTI0.Exact != getCouldNotCompute() &&
3326 BTI1.Exact != getCouldNotCompute())
3327 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3328 if (BTI0.Max != getCouldNotCompute() &&
3329 BTI1.Max != getCouldNotCompute())
3330 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3333 return BackedgeTakenInfo(BECount, MaxBECount);
3337 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3338 // Procede to the next level to examine the icmp.
3339 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3340 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3342 // If it's not an integer or pointer comparison then compute it the hard way.
3343 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3346 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3347 /// backedge of the specified loop will execute if its exit condition
3348 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3349 ScalarEvolution::BackedgeTakenInfo
3350 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3351 ICmpInst *ExitCond,
3352 BasicBlock *TBB,
3353 BasicBlock *FBB) {
3355 // If the condition was exit on true, convert the condition to exit on false
3356 ICmpInst::Predicate Cond;
3357 if (!L->contains(FBB))
3358 Cond = ExitCond->getPredicate();
3359 else
3360 Cond = ExitCond->getInversePredicate();
3362 // Handle common loops like: for (X = "string"; *X; ++X)
3363 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3364 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3365 const SCEV *ItCnt =
3366 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3367 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3368 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3369 return BackedgeTakenInfo(ItCnt,
3370 isa<SCEVConstant>(ItCnt) ? ItCnt :
3371 getConstant(APInt::getMaxValue(BitWidth)-1));
3375 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3376 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3378 // Try to evaluate any dependencies out of the loop.
3379 LHS = getSCEVAtScope(LHS, L);
3380 RHS = getSCEVAtScope(RHS, L);
3382 // At this point, we would like to compute how many iterations of the
3383 // loop the predicate will return true for these inputs.
3384 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3385 // If there is a loop-invariant, force it into the RHS.
3386 std::swap(LHS, RHS);
3387 Cond = ICmpInst::getSwappedPredicate(Cond);
3390 // If we have a comparison of a chrec against a constant, try to use value
3391 // ranges to answer this query.
3392 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3393 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3394 if (AddRec->getLoop() == L) {
3395 // Form the constant range.
3396 ConstantRange CompRange(
3397 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3399 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3400 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3403 switch (Cond) {
3404 case ICmpInst::ICMP_NE: { // while (X != Y)
3405 // Convert to: while (X-Y != 0)
3406 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3407 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3408 break;
3410 case ICmpInst::ICMP_EQ: {
3411 // Convert to: while (X-Y == 0) // while (X == Y)
3412 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3413 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3414 break;
3416 case ICmpInst::ICMP_SLT: {
3417 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3418 if (BTI.hasAnyInfo()) return BTI;
3419 break;
3421 case ICmpInst::ICMP_SGT: {
3422 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3423 getNotSCEV(RHS), L, true);
3424 if (BTI.hasAnyInfo()) return BTI;
3425 break;
3427 case ICmpInst::ICMP_ULT: {
3428 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3429 if (BTI.hasAnyInfo()) return BTI;
3430 break;
3432 case ICmpInst::ICMP_UGT: {
3433 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3434 getNotSCEV(RHS), L, false);
3435 if (BTI.hasAnyInfo()) return BTI;
3436 break;
3438 default:
3439 #if 0
3440 errs() << "ComputeBackedgeTakenCount ";
3441 if (ExitCond->getOperand(0)->getType()->isUnsigned())
3442 errs() << "[unsigned] ";
3443 errs() << *LHS << " "
3444 << Instruction::getOpcodeName(Instruction::ICmp)
3445 << " " << *RHS << "\n";
3446 #endif
3447 break;
3449 return
3450 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3453 static ConstantInt *
3454 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3455 ScalarEvolution &SE) {
3456 const SCEV *InVal = SE.getConstant(C);
3457 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3458 assert(isa<SCEVConstant>(Val) &&
3459 "Evaluation of SCEV at constant didn't fold correctly?");
3460 return cast<SCEVConstant>(Val)->getValue();
3463 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3464 /// and a GEP expression (missing the pointer index) indexing into it, return
3465 /// the addressed element of the initializer or null if the index expression is
3466 /// invalid.
3467 static Constant *
3468 GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
3469 const std::vector<ConstantInt*> &Indices) {
3470 Constant *Init = GV->getInitializer();
3471 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3472 uint64_t Idx = Indices[i]->getZExtValue();
3473 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3474 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3475 Init = cast<Constant>(CS->getOperand(Idx));
3476 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3477 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3478 Init = cast<Constant>(CA->getOperand(Idx));
3479 } else if (isa<ConstantAggregateZero>(Init)) {
3480 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3481 assert(Idx < STy->getNumElements() && "Bad struct index!");
3482 Init = Constant::getNullValue(STy->getElementType(Idx));
3483 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3484 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
3485 Init = Constant::getNullValue(ATy->getElementType());
3486 } else {
3487 llvm_unreachable("Unknown constant aggregate type!");
3489 return 0;
3490 } else {
3491 return 0; // Unknown initializer type
3494 return Init;
3497 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3498 /// 'icmp op load X, cst', try to see if we can compute the backedge
3499 /// execution count.
3500 const SCEV *
3501 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3502 LoadInst *LI,
3503 Constant *RHS,
3504 const Loop *L,
3505 ICmpInst::Predicate predicate) {
3506 if (LI->isVolatile()) return getCouldNotCompute();
3508 // Check to see if the loaded pointer is a getelementptr of a global.
3509 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3510 if (!GEP) return getCouldNotCompute();
3512 // Make sure that it is really a constant global we are gepping, with an
3513 // initializer, and make sure the first IDX is really 0.
3514 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3515 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3516 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3517 !cast<Constant>(GEP->getOperand(1))->isNullValue())
3518 return getCouldNotCompute();
3520 // Okay, we allow one non-constant index into the GEP instruction.
3521 Value *VarIdx = 0;
3522 std::vector<ConstantInt*> Indexes;
3523 unsigned VarIdxNum = 0;
3524 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3525 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3526 Indexes.push_back(CI);
3527 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3528 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
3529 VarIdx = GEP->getOperand(i);
3530 VarIdxNum = i-2;
3531 Indexes.push_back(0);
3534 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3535 // Check to see if X is a loop variant variable value now.
3536 const SCEV *Idx = getSCEV(VarIdx);
3537 Idx = getSCEVAtScope(Idx, L);
3539 // We can only recognize very limited forms of loop index expressions, in
3540 // particular, only affine AddRec's like {C1,+,C2}.
3541 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3542 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3543 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3544 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3545 return getCouldNotCompute();
3547 unsigned MaxSteps = MaxBruteForceIterations;
3548 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3549 ConstantInt *ItCst = ConstantInt::get(
3550 cast<IntegerType>(IdxExpr->getType()), IterationNum);
3551 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3553 // Form the GEP offset.
3554 Indexes[VarIdxNum] = Val;
3556 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
3557 if (Result == 0) break; // Cannot compute!
3559 // Evaluate the condition for this iteration.
3560 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3561 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3562 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3563 #if 0
3564 errs() << "\n***\n*** Computed loop count " << *ItCst
3565 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3566 << "***\n";
3567 #endif
3568 ++NumArrayLenItCounts;
3569 return getConstant(ItCst); // Found terminating iteration!
3572 return getCouldNotCompute();
3576 /// CanConstantFold - Return true if we can constant fold an instruction of the
3577 /// specified type, assuming that all operands were constants.
3578 static bool CanConstantFold(const Instruction *I) {
3579 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3580 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3581 return true;
3583 if (const CallInst *CI = dyn_cast<CallInst>(I))
3584 if (const Function *F = CI->getCalledFunction())
3585 return canConstantFoldCallTo(F);
3586 return false;
3589 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3590 /// in the loop that V is derived from. We allow arbitrary operations along the
3591 /// way, but the operands of an operation must either be constants or a value
3592 /// derived from a constant PHI. If this expression does not fit with these
3593 /// constraints, return null.
3594 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3595 // If this is not an instruction, or if this is an instruction outside of the
3596 // loop, it can't be derived from a loop PHI.
3597 Instruction *I = dyn_cast<Instruction>(V);
3598 if (I == 0 || !L->contains(I->getParent())) return 0;
3600 if (PHINode *PN = dyn_cast<PHINode>(I)) {
3601 if (L->getHeader() == I->getParent())
3602 return PN;
3603 else
3604 // We don't currently keep track of the control flow needed to evaluate
3605 // PHIs, so we cannot handle PHIs inside of loops.
3606 return 0;
3609 // If we won't be able to constant fold this expression even if the operands
3610 // are constants, return early.
3611 if (!CanConstantFold(I)) return 0;
3613 // Otherwise, we can evaluate this instruction if all of its operands are
3614 // constant or derived from a PHI node themselves.
3615 PHINode *PHI = 0;
3616 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3617 if (!(isa<Constant>(I->getOperand(Op)) ||
3618 isa<GlobalValue>(I->getOperand(Op)))) {
3619 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3620 if (P == 0) return 0; // Not evolving from PHI
3621 if (PHI == 0)
3622 PHI = P;
3623 else if (PHI != P)
3624 return 0; // Evolving from multiple different PHIs.
3627 // This is a expression evolving from a constant PHI!
3628 return PHI;
3631 /// EvaluateExpression - Given an expression that passes the
3632 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3633 /// in the loop has the value PHIVal. If we can't fold this expression for some
3634 /// reason, return null.
3635 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3636 if (isa<PHINode>(V)) return PHIVal;
3637 if (Constant *C = dyn_cast<Constant>(V)) return C;
3638 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3639 Instruction *I = cast<Instruction>(V);
3640 LLVMContext &Context = I->getParent()->getContext();
3642 std::vector<Constant*> Operands;
3643 Operands.resize(I->getNumOperands());
3645 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3646 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3647 if (Operands[i] == 0) return 0;
3650 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3651 return ConstantFoldCompareInstOperands(CI->getPredicate(),
3652 &Operands[0], Operands.size(),
3653 Context);
3654 else
3655 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3656 &Operands[0], Operands.size(),
3657 Context);
3660 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3661 /// in the header of its containing loop, we know the loop executes a
3662 /// constant number of times, and the PHI node is just a recurrence
3663 /// involving constants, fold it.
3664 Constant *
3665 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3666 const APInt& BEs,
3667 const Loop *L) {
3668 std::map<PHINode*, Constant*>::iterator I =
3669 ConstantEvolutionLoopExitValue.find(PN);
3670 if (I != ConstantEvolutionLoopExitValue.end())
3671 return I->second;
3673 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3674 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3676 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3678 // Since the loop is canonicalized, the PHI node must have two entries. One
3679 // entry must be a constant (coming in from outside of the loop), and the
3680 // second must be derived from the same PHI.
3681 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3682 Constant *StartCST =
3683 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3684 if (StartCST == 0)
3685 return RetVal = 0; // Must be a constant.
3687 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3688 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3689 if (PN2 != PN)
3690 return RetVal = 0; // Not derived from same PHI.
3692 // Execute the loop symbolically to determine the exit value.
3693 if (BEs.getActiveBits() >= 32)
3694 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3696 unsigned NumIterations = BEs.getZExtValue(); // must be in range
3697 unsigned IterationNum = 0;
3698 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3699 if (IterationNum == NumIterations)
3700 return RetVal = PHIVal; // Got exit value!
3702 // Compute the value of the PHI node for the next iteration.
3703 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3704 if (NextPHI == PHIVal)
3705 return RetVal = NextPHI; // Stopped evolving!
3706 if (NextPHI == 0)
3707 return 0; // Couldn't evaluate!
3708 PHIVal = NextPHI;
3712 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3713 /// constant number of times (the condition evolves only from constants),
3714 /// try to evaluate a few iterations of the loop until we get the exit
3715 /// condition gets a value of ExitWhen (true or false). If we cannot
3716 /// evaluate the trip count of the loop, return getCouldNotCompute().
3717 const SCEV *
3718 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3719 Value *Cond,
3720 bool ExitWhen) {
3721 PHINode *PN = getConstantEvolvingPHI(Cond, L);
3722 if (PN == 0) return getCouldNotCompute();
3724 // Since the loop is canonicalized, the PHI node must have two entries. One
3725 // entry must be a constant (coming in from outside of the loop), and the
3726 // second must be derived from the same PHI.
3727 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3728 Constant *StartCST =
3729 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3730 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
3732 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3733 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3734 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
3736 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3737 // the loop symbolically to determine when the condition gets a value of
3738 // "ExitWhen".
3739 unsigned IterationNum = 0;
3740 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3741 for (Constant *PHIVal = StartCST;
3742 IterationNum != MaxIterations; ++IterationNum) {
3743 ConstantInt *CondVal =
3744 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3746 // Couldn't symbolically evaluate.
3747 if (!CondVal) return getCouldNotCompute();
3749 if (CondVal->getValue() == uint64_t(ExitWhen)) {
3750 ++NumBruteForceTripCountsComputed;
3751 return getConstant(Type::Int32Ty, IterationNum);
3754 // Compute the value of the PHI node for the next iteration.
3755 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3756 if (NextPHI == 0 || NextPHI == PHIVal)
3757 return getCouldNotCompute();// Couldn't evaluate or not making progress...
3758 PHIVal = NextPHI;
3761 // Too many iterations were needed to evaluate.
3762 return getCouldNotCompute();
3765 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
3766 /// at the specified scope in the program. The L value specifies a loop
3767 /// nest to evaluate the expression at, where null is the top-level or a
3768 /// specified loop is immediately inside of the loop.
3770 /// This method can be used to compute the exit value for a variable defined
3771 /// in a loop by querying what the value will hold in the parent loop.
3773 /// In the case that a relevant loop exit value cannot be computed, the
3774 /// original value V is returned.
3775 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3776 // FIXME: this should be turned into a virtual method on SCEV!
3778 if (isa<SCEVConstant>(V)) return V;
3780 // If this instruction is evolved from a constant-evolving PHI, compute the
3781 // exit value from the loop without using SCEVs.
3782 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3783 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3784 const Loop *LI = (*this->LI)[I->getParent()];
3785 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3786 if (PHINode *PN = dyn_cast<PHINode>(I))
3787 if (PN->getParent() == LI->getHeader()) {
3788 // Okay, there is no closed form solution for the PHI node. Check
3789 // to see if the loop that contains it has a known backedge-taken
3790 // count. If so, we may be able to force computation of the exit
3791 // value.
3792 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3793 if (const SCEVConstant *BTCC =
3794 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3795 // Okay, we know how many times the containing loop executes. If
3796 // this is a constant evolving PHI node, get the final value at
3797 // the specified iteration number.
3798 Constant *RV = getConstantEvolutionLoopExitValue(PN,
3799 BTCC->getValue()->getValue(),
3800 LI);
3801 if (RV) return getSCEV(RV);
3805 // Okay, this is an expression that we cannot symbolically evaluate
3806 // into a SCEV. Check to see if it's possible to symbolically evaluate
3807 // the arguments into constants, and if so, try to constant propagate the
3808 // result. This is particularly useful for computing loop exit values.
3809 if (CanConstantFold(I)) {
3810 // Check to see if we've folded this instruction at this loop before.
3811 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3812 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3813 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3814 if (!Pair.second)
3815 return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
3817 std::vector<Constant*> Operands;
3818 Operands.reserve(I->getNumOperands());
3819 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3820 Value *Op = I->getOperand(i);
3821 if (Constant *C = dyn_cast<Constant>(Op)) {
3822 Operands.push_back(C);
3823 } else {
3824 // If any of the operands is non-constant and if they are
3825 // non-integer and non-pointer, don't even try to analyze them
3826 // with scev techniques.
3827 if (!isSCEVable(Op->getType()))
3828 return V;
3830 const SCEV* OpV = getSCEVAtScope(Op, L);
3831 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3832 Constant *C = SC->getValue();
3833 if (C->getType() != Op->getType())
3834 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3835 Op->getType(),
3836 false),
3837 C, Op->getType());
3838 Operands.push_back(C);
3839 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3840 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3841 if (C->getType() != Op->getType())
3843 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3844 Op->getType(),
3845 false),
3846 C, Op->getType());
3847 Operands.push_back(C);
3848 } else
3849 return V;
3850 } else {
3851 return V;
3856 Constant *C;
3857 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3858 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3859 &Operands[0], Operands.size(),
3860 getContext());
3861 else
3862 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3863 &Operands[0], Operands.size(),
3864 getContext());
3865 Pair.first->second = C;
3866 return getSCEV(C);
3870 // This is some other type of SCEVUnknown, just return it.
3871 return V;
3874 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3875 // Avoid performing the look-up in the common case where the specified
3876 // expression has no loop-variant portions.
3877 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3878 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3879 if (OpAtScope != Comm->getOperand(i)) {
3880 // Okay, at least one of these operands is loop variant but might be
3881 // foldable. Build a new instance of the folded commutative expression.
3882 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3883 Comm->op_begin()+i);
3884 NewOps.push_back(OpAtScope);
3886 for (++i; i != e; ++i) {
3887 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3888 NewOps.push_back(OpAtScope);
3890 if (isa<SCEVAddExpr>(Comm))
3891 return getAddExpr(NewOps);
3892 if (isa<SCEVMulExpr>(Comm))
3893 return getMulExpr(NewOps);
3894 if (isa<SCEVSMaxExpr>(Comm))
3895 return getSMaxExpr(NewOps);
3896 if (isa<SCEVUMaxExpr>(Comm))
3897 return getUMaxExpr(NewOps);
3898 llvm_unreachable("Unknown commutative SCEV type!");
3901 // If we got here, all operands are loop invariant.
3902 return Comm;
3905 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3906 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3907 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
3908 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3909 return Div; // must be loop invariant
3910 return getUDivExpr(LHS, RHS);
3913 // If this is a loop recurrence for a loop that does not contain L, then we
3914 // are dealing with the final value computed by the loop.
3915 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3916 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3917 // To evaluate this recurrence, we need to know how many times the AddRec
3918 // loop iterates. Compute this now.
3919 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3920 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
3922 // Then, evaluate the AddRec.
3923 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3925 return AddRec;
3928 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3929 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3930 if (Op == Cast->getOperand())
3931 return Cast; // must be loop invariant
3932 return getZeroExtendExpr(Op, Cast->getType());
3935 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3936 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3937 if (Op == Cast->getOperand())
3938 return Cast; // must be loop invariant
3939 return getSignExtendExpr(Op, Cast->getType());
3942 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3943 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3944 if (Op == Cast->getOperand())
3945 return Cast; // must be loop invariant
3946 return getTruncateExpr(Op, Cast->getType());
3949 llvm_unreachable("Unknown SCEV type!");
3950 return 0;
3953 /// getSCEVAtScope - This is a convenience function which does
3954 /// getSCEVAtScope(getSCEV(V), L).
3955 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3956 return getSCEVAtScope(getSCEV(V), L);
3959 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3960 /// following equation:
3962 /// A * X = B (mod N)
3964 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3965 /// A and B isn't important.
3967 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3968 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3969 ScalarEvolution &SE) {
3970 uint32_t BW = A.getBitWidth();
3971 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3972 assert(A != 0 && "A must be non-zero.");
3974 // 1. D = gcd(A, N)
3976 // The gcd of A and N may have only one prime factor: 2. The number of
3977 // trailing zeros in A is its multiplicity
3978 uint32_t Mult2 = A.countTrailingZeros();
3979 // D = 2^Mult2
3981 // 2. Check if B is divisible by D.
3983 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3984 // is not less than multiplicity of this prime factor for D.
3985 if (B.countTrailingZeros() < Mult2)
3986 return SE.getCouldNotCompute();
3988 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3989 // modulo (N / D).
3991 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3992 // bit width during computations.
3993 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3994 APInt Mod(BW + 1, 0);
3995 Mod.set(BW - Mult2); // Mod = N / D
3996 APInt I = AD.multiplicativeInverse(Mod);
3998 // 4. Compute the minimum unsigned root of the equation:
3999 // I * (B / D) mod (N / D)
4000 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4002 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4003 // bits.
4004 return SE.getConstant(Result.trunc(BW));
4007 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4008 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4009 /// might be the same) or two SCEVCouldNotCompute objects.
4011 static std::pair<const SCEV *,const SCEV *>
4012 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4013 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4014 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4015 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4016 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4018 // We currently can only solve this if the coefficients are constants.
4019 if (!LC || !MC || !NC) {
4020 const SCEV *CNC = SE.getCouldNotCompute();
4021 return std::make_pair(CNC, CNC);
4024 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4025 const APInt &L = LC->getValue()->getValue();
4026 const APInt &M = MC->getValue()->getValue();
4027 const APInt &N = NC->getValue()->getValue();
4028 APInt Two(BitWidth, 2);
4029 APInt Four(BitWidth, 4);
4032 using namespace APIntOps;
4033 const APInt& C = L;
4034 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4035 // The B coefficient is M-N/2
4036 APInt B(M);
4037 B -= sdiv(N,Two);
4039 // The A coefficient is N/2
4040 APInt A(N.sdiv(Two));
4042 // Compute the B^2-4ac term.
4043 APInt SqrtTerm(B);
4044 SqrtTerm *= B;
4045 SqrtTerm -= Four * (A * C);
4047 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4048 // integer value or else APInt::sqrt() will assert.
4049 APInt SqrtVal(SqrtTerm.sqrt());
4051 // Compute the two solutions for the quadratic formula.
4052 // The divisions must be performed as signed divisions.
4053 APInt NegB(-B);
4054 APInt TwoA( A << 1 );
4055 if (TwoA.isMinValue()) {
4056 const SCEV *CNC = SE.getCouldNotCompute();
4057 return std::make_pair(CNC, CNC);
4060 LLVMContext &Context = SE.getContext();
4062 ConstantInt *Solution1 =
4063 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4064 ConstantInt *Solution2 =
4065 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4067 return std::make_pair(SE.getConstant(Solution1),
4068 SE.getConstant(Solution2));
4069 } // end APIntOps namespace
4072 /// HowFarToZero - Return the number of times a backedge comparing the specified
4073 /// value to zero will execute. If not computable, return CouldNotCompute.
4074 const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4075 // If the value is a constant
4076 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4077 // If the value is already zero, the branch will execute zero times.
4078 if (C->getValue()->isZero()) return C;
4079 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4082 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4083 if (!AddRec || AddRec->getLoop() != L)
4084 return getCouldNotCompute();
4086 if (AddRec->isAffine()) {
4087 // If this is an affine expression, the execution count of this branch is
4088 // the minimum unsigned root of the following equation:
4090 // Start + Step*N = 0 (mod 2^BW)
4092 // equivalent to:
4094 // Step*N = -Start (mod 2^BW)
4096 // where BW is the common bit width of Start and Step.
4098 // Get the initial value for the loop.
4099 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4100 L->getParentLoop());
4101 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4102 L->getParentLoop());
4104 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4105 // For now we handle only constant steps.
4107 // First, handle unitary steps.
4108 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4109 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4110 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4111 return Start; // N = Start (as unsigned)
4113 // Then, try to solve the above equation provided that Start is constant.
4114 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4115 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4116 -StartC->getValue()->getValue(),
4117 *this);
4119 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4120 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4121 // the quadratic equation to solve it.
4122 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4123 *this);
4124 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4125 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4126 if (R1) {
4127 #if 0
4128 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4129 << " sol#2: " << *R2 << "\n";
4130 #endif
4131 // Pick the smallest positive root value.
4132 if (ConstantInt *CB =
4133 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4134 R1->getValue(), R2->getValue()))) {
4135 if (CB->getZExtValue() == false)
4136 std::swap(R1, R2); // R1 is the minimum root now.
4138 // We can only use this value if the chrec ends up with an exact zero
4139 // value at this index. When solving for "X*X != 5", for example, we
4140 // should not accept a root of 2.
4141 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4142 if (Val->isZero())
4143 return R1; // We found a quadratic root!
4148 return getCouldNotCompute();
4151 /// HowFarToNonZero - Return the number of times a backedge checking the
4152 /// specified value for nonzero will execute. If not computable, return
4153 /// CouldNotCompute
4154 const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4155 // Loops that look like: while (X == 0) are very strange indeed. We don't
4156 // handle them yet except for the trivial case. This could be expanded in the
4157 // future as needed.
4159 // If the value is a constant, check to see if it is known to be non-zero
4160 // already. If so, the backedge will execute zero times.
4161 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4162 if (!C->getValue()->isNullValue())
4163 return getIntegerSCEV(0, C->getType());
4164 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4167 // We could implement others, but I really doubt anyone writes loops like
4168 // this, and if they did, they would already be constant folded.
4169 return getCouldNotCompute();
4172 /// getLoopPredecessor - If the given loop's header has exactly one unique
4173 /// predecessor outside the loop, return it. Otherwise return null.
4175 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4176 BasicBlock *Header = L->getHeader();
4177 BasicBlock *Pred = 0;
4178 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4179 PI != E; ++PI)
4180 if (!L->contains(*PI)) {
4181 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4182 Pred = *PI;
4184 return Pred;
4187 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4188 /// (which may not be an immediate predecessor) which has exactly one
4189 /// successor from which BB is reachable, or null if no such block is
4190 /// found.
4192 BasicBlock *
4193 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4194 // If the block has a unique predecessor, then there is no path from the
4195 // predecessor to the block that does not go through the direct edge
4196 // from the predecessor to the block.
4197 if (BasicBlock *Pred = BB->getSinglePredecessor())
4198 return Pred;
4200 // A loop's header is defined to be a block that dominates the loop.
4201 // If the header has a unique predecessor outside the loop, it must be
4202 // a block that has exactly one successor that can reach the loop.
4203 if (Loop *L = LI->getLoopFor(BB))
4204 return getLoopPredecessor(L);
4206 return 0;
4209 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4210 /// testing whether two expressions are equal, however for the purposes of
4211 /// looking for a condition guarding a loop, it can be useful to be a little
4212 /// more general, since a front-end may have replicated the controlling
4213 /// expression.
4215 static bool HasSameValue(const SCEV *A, const SCEV *B) {
4216 // Quick check to see if they are the same SCEV.
4217 if (A == B) return true;
4219 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4220 // two different instructions with the same value. Check for this case.
4221 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4222 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4223 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4224 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4225 if (AI->isIdenticalTo(BI))
4226 return true;
4228 // Otherwise assume they may have a different value.
4229 return false;
4232 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4233 return getSignedRange(S).getSignedMax().isNegative();
4236 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4237 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4240 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4241 return !getSignedRange(S).getSignedMin().isNegative();
4244 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4245 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4248 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4249 return isKnownNegative(S) || isKnownPositive(S);
4252 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4253 const SCEV *LHS, const SCEV *RHS) {
4255 if (HasSameValue(LHS, RHS))
4256 return ICmpInst::isTrueWhenEqual(Pred);
4258 switch (Pred) {
4259 default:
4260 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4261 break;
4262 case ICmpInst::ICMP_SGT:
4263 Pred = ICmpInst::ICMP_SLT;
4264 std::swap(LHS, RHS);
4265 case ICmpInst::ICMP_SLT: {
4266 ConstantRange LHSRange = getSignedRange(LHS);
4267 ConstantRange RHSRange = getSignedRange(RHS);
4268 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4269 return true;
4270 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4271 return false;
4272 break;
4274 case ICmpInst::ICMP_SGE:
4275 Pred = ICmpInst::ICMP_SLE;
4276 std::swap(LHS, RHS);
4277 case ICmpInst::ICMP_SLE: {
4278 ConstantRange LHSRange = getSignedRange(LHS);
4279 ConstantRange RHSRange = getSignedRange(RHS);
4280 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4281 return true;
4282 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4283 return false;
4284 break;
4286 case ICmpInst::ICMP_UGT:
4287 Pred = ICmpInst::ICMP_ULT;
4288 std::swap(LHS, RHS);
4289 case ICmpInst::ICMP_ULT: {
4290 ConstantRange LHSRange = getUnsignedRange(LHS);
4291 ConstantRange RHSRange = getUnsignedRange(RHS);
4292 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4293 return true;
4294 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4295 return false;
4296 break;
4298 case ICmpInst::ICMP_UGE:
4299 Pred = ICmpInst::ICMP_ULE;
4300 std::swap(LHS, RHS);
4301 case ICmpInst::ICMP_ULE: {
4302 ConstantRange LHSRange = getUnsignedRange(LHS);
4303 ConstantRange RHSRange = getUnsignedRange(RHS);
4304 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4305 return true;
4306 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4307 return false;
4308 break;
4310 case ICmpInst::ICMP_NE: {
4311 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4312 return true;
4313 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4314 return true;
4316 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4317 if (isKnownNonZero(Diff))
4318 return true;
4319 break;
4321 case ICmpInst::ICMP_EQ:
4322 // The check at the top of the function catches the case where
4323 // the values are known to be equal.
4324 break;
4326 return false;
4329 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4330 /// protected by a conditional between LHS and RHS. This is used to
4331 /// to eliminate casts.
4332 bool
4333 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4334 ICmpInst::Predicate Pred,
4335 const SCEV *LHS, const SCEV *RHS) {
4336 // Interpret a null as meaning no loop, where there is obviously no guard
4337 // (interprocedural conditions notwithstanding).
4338 if (!L) return true;
4340 BasicBlock *Latch = L->getLoopLatch();
4341 if (!Latch)
4342 return false;
4344 BranchInst *LoopContinuePredicate =
4345 dyn_cast<BranchInst>(Latch->getTerminator());
4346 if (!LoopContinuePredicate ||
4347 LoopContinuePredicate->isUnconditional())
4348 return false;
4350 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4351 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4354 /// isLoopGuardedByCond - Test whether entry to the loop is protected
4355 /// by a conditional between LHS and RHS. This is used to help avoid max
4356 /// expressions in loop trip counts, and to eliminate casts.
4357 bool
4358 ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4359 ICmpInst::Predicate Pred,
4360 const SCEV *LHS, const SCEV *RHS) {
4361 // Interpret a null as meaning no loop, where there is obviously no guard
4362 // (interprocedural conditions notwithstanding).
4363 if (!L) return false;
4365 BasicBlock *Predecessor = getLoopPredecessor(L);
4366 BasicBlock *PredecessorDest = L->getHeader();
4368 // Starting at the loop predecessor, climb up the predecessor chain, as long
4369 // as there are predecessors that can be found that have unique successors
4370 // leading to the original header.
4371 for (; Predecessor;
4372 PredecessorDest = Predecessor,
4373 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4375 BranchInst *LoopEntryPredicate =
4376 dyn_cast<BranchInst>(Predecessor->getTerminator());
4377 if (!LoopEntryPredicate ||
4378 LoopEntryPredicate->isUnconditional())
4379 continue;
4381 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4382 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4383 return true;
4386 return false;
4389 /// isImpliedCond - Test whether the condition described by Pred, LHS,
4390 /// and RHS is true whenever the given Cond value evaluates to true.
4391 bool ScalarEvolution::isImpliedCond(Value *CondValue,
4392 ICmpInst::Predicate Pred,
4393 const SCEV *LHS, const SCEV *RHS,
4394 bool Inverse) {
4395 // Recursivly handle And and Or conditions.
4396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4397 if (BO->getOpcode() == Instruction::And) {
4398 if (!Inverse)
4399 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4400 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4401 } else if (BO->getOpcode() == Instruction::Or) {
4402 if (Inverse)
4403 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4404 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4408 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4409 if (!ICI) return false;
4411 // Bail if the ICmp's operands' types are wider than the needed type
4412 // before attempting to call getSCEV on them. This avoids infinite
4413 // recursion, since the analysis of widening casts can require loop
4414 // exit condition information for overflow checking, which would
4415 // lead back here.
4416 if (getTypeSizeInBits(LHS->getType()) <
4417 getTypeSizeInBits(ICI->getOperand(0)->getType()))
4418 return false;
4420 // Now that we found a conditional branch that dominates the loop, check to
4421 // see if it is the comparison we are looking for.
4422 ICmpInst::Predicate FoundPred;
4423 if (Inverse)
4424 FoundPred = ICI->getInversePredicate();
4425 else
4426 FoundPred = ICI->getPredicate();
4428 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4429 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4431 // Balance the types. The case where FoundLHS' type is wider than
4432 // LHS' type is checked for above.
4433 if (getTypeSizeInBits(LHS->getType()) >
4434 getTypeSizeInBits(FoundLHS->getType())) {
4435 if (CmpInst::isSigned(Pred)) {
4436 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4437 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4438 } else {
4439 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4440 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4444 // Canonicalize the query to match the way instcombine will have
4445 // canonicalized the comparison.
4446 // First, put a constant operand on the right.
4447 if (isa<SCEVConstant>(LHS)) {
4448 std::swap(LHS, RHS);
4449 Pred = ICmpInst::getSwappedPredicate(Pred);
4451 // Then, canonicalize comparisons with boundary cases.
4452 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4453 const APInt &RA = RC->getValue()->getValue();
4454 switch (Pred) {
4455 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4456 case ICmpInst::ICMP_EQ:
4457 case ICmpInst::ICMP_NE:
4458 break;
4459 case ICmpInst::ICMP_UGE:
4460 if ((RA - 1).isMinValue()) {
4461 Pred = ICmpInst::ICMP_NE;
4462 RHS = getConstant(RA - 1);
4463 break;
4465 if (RA.isMaxValue()) {
4466 Pred = ICmpInst::ICMP_EQ;
4467 break;
4469 if (RA.isMinValue()) return true;
4470 break;
4471 case ICmpInst::ICMP_ULE:
4472 if ((RA + 1).isMaxValue()) {
4473 Pred = ICmpInst::ICMP_NE;
4474 RHS = getConstant(RA + 1);
4475 break;
4477 if (RA.isMinValue()) {
4478 Pred = ICmpInst::ICMP_EQ;
4479 break;
4481 if (RA.isMaxValue()) return true;
4482 break;
4483 case ICmpInst::ICMP_SGE:
4484 if ((RA - 1).isMinSignedValue()) {
4485 Pred = ICmpInst::ICMP_NE;
4486 RHS = getConstant(RA - 1);
4487 break;
4489 if (RA.isMaxSignedValue()) {
4490 Pred = ICmpInst::ICMP_EQ;
4491 break;
4493 if (RA.isMinSignedValue()) return true;
4494 break;
4495 case ICmpInst::ICMP_SLE:
4496 if ((RA + 1).isMaxSignedValue()) {
4497 Pred = ICmpInst::ICMP_NE;
4498 RHS = getConstant(RA + 1);
4499 break;
4501 if (RA.isMinSignedValue()) {
4502 Pred = ICmpInst::ICMP_EQ;
4503 break;
4505 if (RA.isMaxSignedValue()) return true;
4506 break;
4507 case ICmpInst::ICMP_UGT:
4508 if (RA.isMinValue()) {
4509 Pred = ICmpInst::ICMP_NE;
4510 break;
4512 if ((RA + 1).isMaxValue()) {
4513 Pred = ICmpInst::ICMP_EQ;
4514 RHS = getConstant(RA + 1);
4515 break;
4517 if (RA.isMaxValue()) return false;
4518 break;
4519 case ICmpInst::ICMP_ULT:
4520 if (RA.isMaxValue()) {
4521 Pred = ICmpInst::ICMP_NE;
4522 break;
4524 if ((RA - 1).isMinValue()) {
4525 Pred = ICmpInst::ICMP_EQ;
4526 RHS = getConstant(RA - 1);
4527 break;
4529 if (RA.isMinValue()) return false;
4530 break;
4531 case ICmpInst::ICMP_SGT:
4532 if (RA.isMinSignedValue()) {
4533 Pred = ICmpInst::ICMP_NE;
4534 break;
4536 if ((RA + 1).isMaxSignedValue()) {
4537 Pred = ICmpInst::ICMP_EQ;
4538 RHS = getConstant(RA + 1);
4539 break;
4541 if (RA.isMaxSignedValue()) return false;
4542 break;
4543 case ICmpInst::ICMP_SLT:
4544 if (RA.isMaxSignedValue()) {
4545 Pred = ICmpInst::ICMP_NE;
4546 break;
4548 if ((RA - 1).isMinSignedValue()) {
4549 Pred = ICmpInst::ICMP_EQ;
4550 RHS = getConstant(RA - 1);
4551 break;
4553 if (RA.isMinSignedValue()) return false;
4554 break;
4558 // Check to see if we can make the LHS or RHS match.
4559 if (LHS == FoundRHS || RHS == FoundLHS) {
4560 if (isa<SCEVConstant>(RHS)) {
4561 std::swap(FoundLHS, FoundRHS);
4562 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4563 } else {
4564 std::swap(LHS, RHS);
4565 Pred = ICmpInst::getSwappedPredicate(Pred);
4569 // Check whether the found predicate is the same as the desired predicate.
4570 if (FoundPred == Pred)
4571 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4573 // Check whether swapping the found predicate makes it the same as the
4574 // desired predicate.
4575 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4576 if (isa<SCEVConstant>(RHS))
4577 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4578 else
4579 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4580 RHS, LHS, FoundLHS, FoundRHS);
4583 // Check whether the actual condition is beyond sufficient.
4584 if (FoundPred == ICmpInst::ICMP_EQ)
4585 if (ICmpInst::isTrueWhenEqual(Pred))
4586 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4587 return true;
4588 if (Pred == ICmpInst::ICMP_NE)
4589 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4590 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4591 return true;
4593 // Otherwise assume the worst.
4594 return false;
4597 /// isImpliedCondOperands - Test whether the condition described by Pred,
4598 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4599 /// and FoundRHS is true.
4600 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4601 const SCEV *LHS, const SCEV *RHS,
4602 const SCEV *FoundLHS,
4603 const SCEV *FoundRHS) {
4604 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4605 FoundLHS, FoundRHS) ||
4606 // ~x < ~y --> x > y
4607 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4608 getNotSCEV(FoundRHS),
4609 getNotSCEV(FoundLHS));
4612 /// isImpliedCondOperandsHelper - Test whether the condition described by
4613 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4614 /// FoundLHS, and FoundRHS is true.
4615 bool
4616 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4617 const SCEV *LHS, const SCEV *RHS,
4618 const SCEV *FoundLHS,
4619 const SCEV *FoundRHS) {
4620 switch (Pred) {
4621 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4622 case ICmpInst::ICMP_EQ:
4623 case ICmpInst::ICMP_NE:
4624 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4625 return true;
4626 break;
4627 case ICmpInst::ICMP_SLT:
4628 case ICmpInst::ICMP_SLE:
4629 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4630 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4631 return true;
4632 break;
4633 case ICmpInst::ICMP_SGT:
4634 case ICmpInst::ICMP_SGE:
4635 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4636 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4637 return true;
4638 break;
4639 case ICmpInst::ICMP_ULT:
4640 case ICmpInst::ICMP_ULE:
4641 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4642 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4643 return true;
4644 break;
4645 case ICmpInst::ICMP_UGT:
4646 case ICmpInst::ICMP_UGE:
4647 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4648 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4649 return true;
4650 break;
4653 return false;
4656 /// getBECount - Subtract the end and start values and divide by the step,
4657 /// rounding up, to get the number of times the backedge is executed. Return
4658 /// CouldNotCompute if an intermediate computation overflows.
4659 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4660 const SCEV *End,
4661 const SCEV *Step) {
4662 const Type *Ty = Start->getType();
4663 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4664 const SCEV *Diff = getMinusSCEV(End, Start);
4665 const SCEV *RoundUp = getAddExpr(Step, NegOne);
4667 // Add an adjustment to the difference between End and Start so that
4668 // the division will effectively round up.
4669 const SCEV *Add = getAddExpr(Diff, RoundUp);
4671 // Check Add for unsigned overflow.
4672 // TODO: More sophisticated things could be done here.
4673 const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
4674 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4675 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4676 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4677 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4678 return getCouldNotCompute();
4680 return getUDivExpr(Add, Step);
4683 /// HowManyLessThans - Return the number of times a backedge containing the
4684 /// specified less-than comparison will execute. If not computable, return
4685 /// CouldNotCompute.
4686 ScalarEvolution::BackedgeTakenInfo
4687 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4688 const Loop *L, bool isSigned) {
4689 // Only handle: "ADDREC < LoopInvariant".
4690 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4692 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4693 if (!AddRec || AddRec->getLoop() != L)
4694 return getCouldNotCompute();
4696 if (AddRec->isAffine()) {
4697 // FORNOW: We only support unit strides.
4698 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4699 const SCEV *Step = AddRec->getStepRecurrence(*this);
4701 // TODO: handle non-constant strides.
4702 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4703 if (!CStep || CStep->isZero())
4704 return getCouldNotCompute();
4705 if (CStep->isOne()) {
4706 // With unit stride, the iteration never steps past the limit value.
4707 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4708 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4709 // Test whether a positive iteration iteration can step past the limit
4710 // value and past the maximum value for its type in a single step.
4711 if (isSigned) {
4712 APInt Max = APInt::getSignedMaxValue(BitWidth);
4713 if ((Max - CStep->getValue()->getValue())
4714 .slt(CLimit->getValue()->getValue()))
4715 return getCouldNotCompute();
4716 } else {
4717 APInt Max = APInt::getMaxValue(BitWidth);
4718 if ((Max - CStep->getValue()->getValue())
4719 .ult(CLimit->getValue()->getValue()))
4720 return getCouldNotCompute();
4722 } else
4723 // TODO: handle non-constant limit values below.
4724 return getCouldNotCompute();
4725 } else
4726 // TODO: handle negative strides below.
4727 return getCouldNotCompute();
4729 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4730 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4731 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4732 // treat m-n as signed nor unsigned due to overflow possibility.
4734 // First, we get the value of the LHS in the first iteration: n
4735 const SCEV *Start = AddRec->getOperand(0);
4737 // Determine the minimum constant start value.
4738 const SCEV *MinStart = getConstant(isSigned ?
4739 getSignedRange(Start).getSignedMin() :
4740 getUnsignedRange(Start).getUnsignedMin());
4742 // If we know that the condition is true in order to enter the loop,
4743 // then we know that it will run exactly (m-n)/s times. Otherwise, we
4744 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4745 // the division must round up.
4746 const SCEV *End = RHS;
4747 if (!isLoopGuardedByCond(L,
4748 isSigned ? ICmpInst::ICMP_SLT :
4749 ICmpInst::ICMP_ULT,
4750 getMinusSCEV(Start, Step), RHS))
4751 End = isSigned ? getSMaxExpr(RHS, Start)
4752 : getUMaxExpr(RHS, Start);
4754 // Determine the maximum constant end value.
4755 const SCEV *MaxEnd = getConstant(isSigned ?
4756 getSignedRange(End).getSignedMax() :
4757 getUnsignedRange(End).getUnsignedMax());
4759 // Finally, we subtract these two values and divide, rounding up, to get
4760 // the number of times the backedge is executed.
4761 const SCEV *BECount = getBECount(Start, End, Step);
4763 // The maximum backedge count is similar, except using the minimum start
4764 // value and the maximum end value.
4765 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
4767 return BackedgeTakenInfo(BECount, MaxBECount);
4770 return getCouldNotCompute();
4773 /// getNumIterationsInRange - Return the number of iterations of this loop that
4774 /// produce values in the specified constant range. Another way of looking at
4775 /// this is that it returns the first iteration number where the value is not in
4776 /// the condition, thus computing the exit count. If the iteration count can't
4777 /// be computed, an instance of SCEVCouldNotCompute is returned.
4778 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4779 ScalarEvolution &SE) const {
4780 if (Range.isFullSet()) // Infinite loop.
4781 return SE.getCouldNotCompute();
4783 // If the start is a non-zero constant, shift the range to simplify things.
4784 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4785 if (!SC->getValue()->isZero()) {
4786 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4787 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4788 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4789 if (const SCEVAddRecExpr *ShiftedAddRec =
4790 dyn_cast<SCEVAddRecExpr>(Shifted))
4791 return ShiftedAddRec->getNumIterationsInRange(
4792 Range.subtract(SC->getValue()->getValue()), SE);
4793 // This is strange and shouldn't happen.
4794 return SE.getCouldNotCompute();
4797 // The only time we can solve this is when we have all constant indices.
4798 // Otherwise, we cannot determine the overflow conditions.
4799 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4800 if (!isa<SCEVConstant>(getOperand(i)))
4801 return SE.getCouldNotCompute();
4804 // Okay at this point we know that all elements of the chrec are constants and
4805 // that the start element is zero.
4807 // First check to see if the range contains zero. If not, the first
4808 // iteration exits.
4809 unsigned BitWidth = SE.getTypeSizeInBits(getType());
4810 if (!Range.contains(APInt(BitWidth, 0)))
4811 return SE.getIntegerSCEV(0, getType());
4813 if (isAffine()) {
4814 // If this is an affine expression then we have this situation:
4815 // Solve {0,+,A} in Range === Ax in Range
4817 // We know that zero is in the range. If A is positive then we know that
4818 // the upper value of the range must be the first possible exit value.
4819 // If A is negative then the lower of the range is the last possible loop
4820 // value. Also note that we already checked for a full range.
4821 APInt One(BitWidth,1);
4822 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4823 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4825 // The exit value should be (End+A)/A.
4826 APInt ExitVal = (End + A).udiv(A);
4827 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
4829 // Evaluate at the exit value. If we really did fall out of the valid
4830 // range, then we computed our trip count, otherwise wrap around or other
4831 // things must have happened.
4832 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4833 if (Range.contains(Val->getValue()))
4834 return SE.getCouldNotCompute(); // Something strange happened
4836 // Ensure that the previous value is in the range. This is a sanity check.
4837 assert(Range.contains(
4838 EvaluateConstantChrecAtConstant(this,
4839 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
4840 "Linear scev computation is off in a bad way!");
4841 return SE.getConstant(ExitValue);
4842 } else if (isQuadratic()) {
4843 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4844 // quadratic equation to solve it. To do this, we must frame our problem in
4845 // terms of figuring out when zero is crossed, instead of when
4846 // Range.getUpper() is crossed.
4847 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
4848 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4849 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4851 // Next, solve the constructed addrec
4852 std::pair<const SCEV *,const SCEV *> Roots =
4853 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4854 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4855 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4856 if (R1) {
4857 // Pick the smallest positive root value.
4858 if (ConstantInt *CB =
4859 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4860 R1->getValue(), R2->getValue()))) {
4861 if (CB->getZExtValue() == false)
4862 std::swap(R1, R2); // R1 is the minimum root now.
4864 // Make sure the root is not off by one. The returned iteration should
4865 // not be in the range, but the previous one should be. When solving
4866 // for "X*X < 5", for example, we should not return a root of 2.
4867 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4868 R1->getValue(),
4869 SE);
4870 if (Range.contains(R1Val->getValue())) {
4871 // The next iteration must be out of the range...
4872 ConstantInt *NextVal =
4873 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
4875 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4876 if (!Range.contains(R1Val->getValue()))
4877 return SE.getConstant(NextVal);
4878 return SE.getCouldNotCompute(); // Something strange happened
4881 // If R1 was not in the range, then it is a good return value. Make
4882 // sure that R1-1 WAS in the range though, just in case.
4883 ConstantInt *NextVal =
4884 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
4885 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4886 if (Range.contains(R1Val->getValue()))
4887 return R1;
4888 return SE.getCouldNotCompute(); // Something strange happened
4893 return SE.getCouldNotCompute();
4898 //===----------------------------------------------------------------------===//
4899 // SCEVCallbackVH Class Implementation
4900 //===----------------------------------------------------------------------===//
4902 void ScalarEvolution::SCEVCallbackVH::deleted() {
4903 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4904 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4905 SE->ConstantEvolutionLoopExitValue.erase(PN);
4906 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4907 SE->ValuesAtScopes.erase(I);
4908 SE->Scalars.erase(getValPtr());
4909 // this now dangles!
4912 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4913 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4915 // Forget all the expressions associated with users of the old value,
4916 // so that future queries will recompute the expressions using the new
4917 // value.
4918 SmallVector<User *, 16> Worklist;
4919 SmallPtrSet<User *, 8> Visited;
4920 Value *Old = getValPtr();
4921 bool DeleteOld = false;
4922 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4923 UI != UE; ++UI)
4924 Worklist.push_back(*UI);
4925 while (!Worklist.empty()) {
4926 User *U = Worklist.pop_back_val();
4927 // Deleting the Old value will cause this to dangle. Postpone
4928 // that until everything else is done.
4929 if (U == Old) {
4930 DeleteOld = true;
4931 continue;
4933 if (!Visited.insert(U))
4934 continue;
4935 if (PHINode *PN = dyn_cast<PHINode>(U))
4936 SE->ConstantEvolutionLoopExitValue.erase(PN);
4937 if (Instruction *I = dyn_cast<Instruction>(U))
4938 SE->ValuesAtScopes.erase(I);
4939 SE->Scalars.erase(U);
4940 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4941 UI != UE; ++UI)
4942 Worklist.push_back(*UI);
4944 // Delete the Old value if it (indirectly) references itself.
4945 if (DeleteOld) {
4946 if (PHINode *PN = dyn_cast<PHINode>(Old))
4947 SE->ConstantEvolutionLoopExitValue.erase(PN);
4948 if (Instruction *I = dyn_cast<Instruction>(Old))
4949 SE->ValuesAtScopes.erase(I);
4950 SE->Scalars.erase(Old);
4951 // this now dangles!
4953 // this may dangle!
4956 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4957 : CallbackVH(V), SE(se) {}
4959 //===----------------------------------------------------------------------===//
4960 // ScalarEvolution Class Implementation
4961 //===----------------------------------------------------------------------===//
4963 ScalarEvolution::ScalarEvolution()
4964 : FunctionPass(&ID) {
4967 bool ScalarEvolution::runOnFunction(Function &F) {
4968 this->F = &F;
4969 LI = &getAnalysis<LoopInfo>();
4970 TD = getAnalysisIfAvailable<TargetData>();
4971 return false;
4974 void ScalarEvolution::releaseMemory() {
4975 Scalars.clear();
4976 BackedgeTakenCounts.clear();
4977 ConstantEvolutionLoopExitValue.clear();
4978 ValuesAtScopes.clear();
4979 UniqueSCEVs.clear();
4980 SCEVAllocator.Reset();
4983 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4984 AU.setPreservesAll();
4985 AU.addRequiredTransitive<LoopInfo>();
4988 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4989 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4992 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4993 const Loop *L) {
4994 // Print all inner loops first
4995 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4996 PrintLoopInfo(OS, SE, *I);
4998 OS << "Loop " << L->getHeader()->getName() << ": ";
5000 SmallVector<BasicBlock*, 8> ExitBlocks;
5001 L->getExitBlocks(ExitBlocks);
5002 if (ExitBlocks.size() != 1)
5003 OS << "<multiple exits> ";
5005 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5006 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5007 } else {
5008 OS << "Unpredictable backedge-taken count. ";
5011 OS << "\n";
5012 OS << "Loop " << L->getHeader()->getName() << ": ";
5014 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5015 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5016 } else {
5017 OS << "Unpredictable max backedge-taken count. ";
5020 OS << "\n";
5023 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
5024 // ScalarEvolution's implementaiton of the print method is to print
5025 // out SCEV values of all instructions that are interesting. Doing
5026 // this potentially causes it to create new SCEV objects though,
5027 // which technically conflicts with the const qualifier. This isn't
5028 // observable from outside the class though, so casting away the
5029 // const isn't dangerous.
5030 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
5032 OS << "Classifying expressions for: " << F->getName() << "\n";
5033 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5034 if (isSCEVable(I->getType())) {
5035 OS << *I << '\n';
5036 OS << " --> ";
5037 const SCEV *SV = SE.getSCEV(&*I);
5038 SV->print(OS);
5040 const Loop *L = LI->getLoopFor((*I).getParent());
5042 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5043 if (AtUse != SV) {
5044 OS << " --> ";
5045 AtUse->print(OS);
5048 if (L) {
5049 OS << "\t\t" "Exits: ";
5050 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5051 if (!ExitValue->isLoopInvariant(L)) {
5052 OS << "<<Unknown>>";
5053 } else {
5054 OS << *ExitValue;
5058 OS << "\n";
5061 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5062 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5063 PrintLoopInfo(OS, &SE, *I);
5066 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
5067 raw_os_ostream OS(o);
5068 print(OS, M);