It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / Analysis / SparsePropagation.cpp
blob887982b1d79d0ff1bc96a6b54ed95da6473e03f2
1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sparseprop"
16 #include "llvm/Analysis/SparsePropagation.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
25 //===----------------------------------------------------------------------===//
26 // AbstractLatticeFunction Implementation
27 //===----------------------------------------------------------------------===//
29 AbstractLatticeFunction::~AbstractLatticeFunction() {}
31 /// PrintValue - Render the specified lattice value to the specified stream.
32 void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) {
33 if (V == UndefVal)
34 OS << "undefined";
35 else if (V == OverdefinedVal)
36 OS << "overdefined";
37 else if (V == UntrackedVal)
38 OS << "untracked";
39 else
40 OS << "unknown lattice value";
43 //===----------------------------------------------------------------------===//
44 // SparseSolver Implementation
45 //===----------------------------------------------------------------------===//
47 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
48 /// value, initializing the value's state if it hasn't been entered into the
49 /// map yet. This function is necessary because not all values should start
50 /// out in the underdefined state... Arguments should be overdefined, and
51 /// constants should be marked as constants.
52 ///
53 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
54 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
55 if (I != ValueState.end()) return I->second; // Common case, in the map
57 LatticeVal LV;
58 if (LatticeFunc->IsUntrackedValue(V))
59 return LatticeFunc->getUntrackedVal();
60 else if (Constant *C = dyn_cast<Constant>(V))
61 LV = LatticeFunc->ComputeConstant(C);
62 else if (Argument *A = dyn_cast<Argument>(V))
63 LV = LatticeFunc->ComputeArgument(A);
64 else if (!isa<Instruction>(V))
65 // All other non-instructions are overdefined.
66 LV = LatticeFunc->getOverdefinedVal();
67 else
68 // All instructions are underdefined by default.
69 LV = LatticeFunc->getUndefVal();
71 // If this value is untracked, don't add it to the map.
72 if (LV == LatticeFunc->getUntrackedVal())
73 return LV;
74 return ValueState[V] = LV;
77 /// UpdateState - When the state for some instruction is potentially updated,
78 /// this function notices and adds I to the worklist if needed.
79 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
80 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
81 if (I != ValueState.end() && I->second == V)
82 return; // No change.
84 // An update. Visit uses of I.
85 ValueState[&Inst] = V;
86 InstWorkList.push_back(&Inst);
89 /// MarkBlockExecutable - This method can be used by clients to mark all of
90 /// the blocks that are known to be intrinsically live in the processed unit.
91 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
92 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
93 BBExecutable.insert(BB); // Basic block is executable!
94 BBWorkList.push_back(BB); // Add the block to the work list!
97 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
98 /// work list if it is not already executable...
99 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
100 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
101 return; // This edge is already known to be executable!
103 DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
104 << " -> " << Dest->getName() << "\n");
106 if (BBExecutable.count(Dest)) {
107 // The destination is already executable, but we just made an edge
108 // feasible that wasn't before. Revisit the PHI nodes in the block
109 // because they have potentially new operands.
110 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
111 visitPHINode(*cast<PHINode>(I));
113 } else {
114 MarkBlockExecutable(Dest);
119 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
120 /// successors are reachable from a given terminator instruction.
121 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
122 SmallVectorImpl<bool> &Succs,
123 bool AggressiveUndef) {
124 Succs.resize(TI.getNumSuccessors());
125 if (TI.getNumSuccessors() == 0) return;
127 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
128 if (BI->isUnconditional()) {
129 Succs[0] = true;
130 return;
133 LatticeVal BCValue;
134 if (AggressiveUndef)
135 BCValue = getOrInitValueState(BI->getCondition());
136 else
137 BCValue = getLatticeState(BI->getCondition());
139 if (BCValue == LatticeFunc->getOverdefinedVal() ||
140 BCValue == LatticeFunc->getUntrackedVal()) {
141 // Overdefined condition variables can branch either way.
142 Succs[0] = Succs[1] = true;
143 return;
146 // If undefined, neither is feasible yet.
147 if (BCValue == LatticeFunc->getUndefVal())
148 return;
150 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
151 if (C == 0 || !isa<ConstantInt>(C)) {
152 // Non-constant values can go either way.
153 Succs[0] = Succs[1] = true;
154 return;
157 // Constant condition variables mean the branch can only go a single way
158 Succs[C == ConstantInt::getFalse(*Context)] = true;
159 return;
162 if (isa<InvokeInst>(TI)) {
163 // Invoke instructions successors are always executable.
164 // TODO: Could ask the lattice function if the value can throw.
165 Succs[0] = Succs[1] = true;
166 return;
169 SwitchInst &SI = cast<SwitchInst>(TI);
170 LatticeVal SCValue;
171 if (AggressiveUndef)
172 SCValue = getOrInitValueState(SI.getCondition());
173 else
174 SCValue = getLatticeState(SI.getCondition());
176 if (SCValue == LatticeFunc->getOverdefinedVal() ||
177 SCValue == LatticeFunc->getUntrackedVal()) {
178 // All destinations are executable!
179 Succs.assign(TI.getNumSuccessors(), true);
180 return;
183 // If undefined, neither is feasible yet.
184 if (SCValue == LatticeFunc->getUndefVal())
185 return;
187 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
188 if (C == 0 || !isa<ConstantInt>(C)) {
189 // All destinations are executable!
190 Succs.assign(TI.getNumSuccessors(), true);
191 return;
194 Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true;
198 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
199 /// basic block to the 'To' basic block is currently feasible...
200 bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
201 bool AggressiveUndef) {
202 SmallVector<bool, 16> SuccFeasible;
203 TerminatorInst *TI = From->getTerminator();
204 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
206 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
207 if (TI->getSuccessor(i) == To && SuccFeasible[i])
208 return true;
210 return false;
213 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
214 SmallVector<bool, 16> SuccFeasible;
215 getFeasibleSuccessors(TI, SuccFeasible, true);
217 BasicBlock *BB = TI.getParent();
219 // Mark all feasible successors executable...
220 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
221 if (SuccFeasible[i])
222 markEdgeExecutable(BB, TI.getSuccessor(i));
225 void SparseSolver::visitPHINode(PHINode &PN) {
226 LatticeVal PNIV = getOrInitValueState(&PN);
227 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
229 // If this value is already overdefined (common) just return.
230 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
231 return; // Quick exit
233 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
234 // and slow us down a lot. Just mark them overdefined.
235 if (PN.getNumIncomingValues() > 64) {
236 UpdateState(PN, Overdefined);
237 return;
240 // Look at all of the executable operands of the PHI node. If any of them
241 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
242 // transfer function to give us the merge of the incoming values.
243 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
244 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
245 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
246 continue;
248 // Merge in this value.
249 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
250 if (OpVal != PNIV)
251 PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
253 if (PNIV == Overdefined)
254 break; // Rest of input values don't matter.
257 // Update the PHI with the compute value, which is the merge of the inputs.
258 UpdateState(PN, PNIV);
262 void SparseSolver::visitInst(Instruction &I) {
263 // PHIs are handled by the propagation logic, they are never passed into the
264 // transfer functions.
265 if (PHINode *PN = dyn_cast<PHINode>(&I))
266 return visitPHINode(*PN);
268 // Otherwise, ask the transfer function what the result is. If this is
269 // something that we care about, remember it.
270 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
271 if (IV != LatticeFunc->getUntrackedVal())
272 UpdateState(I, IV);
274 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
275 visitTerminatorInst(*TI);
278 void SparseSolver::Solve(Function &F) {
279 MarkBlockExecutable(&F.getEntryBlock());
281 // Process the work lists until they are empty!
282 while (!BBWorkList.empty() || !InstWorkList.empty()) {
283 // Process the instruction work list.
284 while (!InstWorkList.empty()) {
285 Instruction *I = InstWorkList.back();
286 InstWorkList.pop_back();
288 DEBUG(errs() << "\nPopped off I-WL: " << *I);
290 // "I" got into the work list because it made a transition. See if any
291 // users are both live and in need of updating.
292 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
293 UI != E; ++UI) {
294 Instruction *U = cast<Instruction>(*UI);
295 if (BBExecutable.count(U->getParent())) // Inst is executable?
296 visitInst(*U);
300 // Process the basic block work list.
301 while (!BBWorkList.empty()) {
302 BasicBlock *BB = BBWorkList.back();
303 BBWorkList.pop_back();
305 DEBUG(errs() << "\nPopped off BBWL: " << *BB);
307 // Notify all instructions in this basic block that they are newly
308 // executable.
309 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
310 visitInst(*I);
315 void SparseSolver::Print(Function &F, std::ostream &OS) const {
316 OS << "\nFUNCTION: " << F.getNameStr() << "\n";
317 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
318 if (!BBExecutable.count(BB))
319 OS << "INFEASIBLE: ";
320 OS << "\t";
321 if (BB->hasName())
322 OS << BB->getNameStr() << ":\n";
323 else
324 OS << "; anon bb\n";
325 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
326 LatticeFunc->PrintValue(getLatticeState(I), OS);
327 OS << *I;
330 OS << "\n";