1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sparseprop"
16 #include "llvm/Analysis/SparsePropagation.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
25 //===----------------------------------------------------------------------===//
26 // AbstractLatticeFunction Implementation
27 //===----------------------------------------------------------------------===//
29 AbstractLatticeFunction::~AbstractLatticeFunction() {}
31 /// PrintValue - Render the specified lattice value to the specified stream.
32 void AbstractLatticeFunction::PrintValue(LatticeVal V
, std::ostream
&OS
) {
35 else if (V
== OverdefinedVal
)
37 else if (V
== UntrackedVal
)
40 OS
<< "unknown lattice value";
43 //===----------------------------------------------------------------------===//
44 // SparseSolver Implementation
45 //===----------------------------------------------------------------------===//
47 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
48 /// value, initializing the value's state if it hasn't been entered into the
49 /// map yet. This function is necessary because not all values should start
50 /// out in the underdefined state... Arguments should be overdefined, and
51 /// constants should be marked as constants.
53 SparseSolver::LatticeVal
SparseSolver::getOrInitValueState(Value
*V
) {
54 DenseMap
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(V
);
55 if (I
!= ValueState
.end()) return I
->second
; // Common case, in the map
58 if (LatticeFunc
->IsUntrackedValue(V
))
59 return LatticeFunc
->getUntrackedVal();
60 else if (Constant
*C
= dyn_cast
<Constant
>(V
))
61 LV
= LatticeFunc
->ComputeConstant(C
);
62 else if (Argument
*A
= dyn_cast
<Argument
>(V
))
63 LV
= LatticeFunc
->ComputeArgument(A
);
64 else if (!isa
<Instruction
>(V
))
65 // All other non-instructions are overdefined.
66 LV
= LatticeFunc
->getOverdefinedVal();
68 // All instructions are underdefined by default.
69 LV
= LatticeFunc
->getUndefVal();
71 // If this value is untracked, don't add it to the map.
72 if (LV
== LatticeFunc
->getUntrackedVal())
74 return ValueState
[V
] = LV
;
77 /// UpdateState - When the state for some instruction is potentially updated,
78 /// this function notices and adds I to the worklist if needed.
79 void SparseSolver::UpdateState(Instruction
&Inst
, LatticeVal V
) {
80 DenseMap
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(&Inst
);
81 if (I
!= ValueState
.end() && I
->second
== V
)
84 // An update. Visit uses of I.
85 ValueState
[&Inst
] = V
;
86 InstWorkList
.push_back(&Inst
);
89 /// MarkBlockExecutable - This method can be used by clients to mark all of
90 /// the blocks that are known to be intrinsically live in the processed unit.
91 void SparseSolver::MarkBlockExecutable(BasicBlock
*BB
) {
92 DEBUG(errs() << "Marking Block Executable: " << BB
->getName() << "\n");
93 BBExecutable
.insert(BB
); // Basic block is executable!
94 BBWorkList
.push_back(BB
); // Add the block to the work list!
97 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
98 /// work list if it is not already executable...
99 void SparseSolver::markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
100 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
101 return; // This edge is already known to be executable!
103 DEBUG(errs() << "Marking Edge Executable: " << Source
->getName()
104 << " -> " << Dest
->getName() << "\n");
106 if (BBExecutable
.count(Dest
)) {
107 // The destination is already executable, but we just made an edge
108 // feasible that wasn't before. Revisit the PHI nodes in the block
109 // because they have potentially new operands.
110 for (BasicBlock::iterator I
= Dest
->begin(); isa
<PHINode
>(I
); ++I
)
111 visitPHINode(*cast
<PHINode
>(I
));
114 MarkBlockExecutable(Dest
);
119 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
120 /// successors are reachable from a given terminator instruction.
121 void SparseSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
122 SmallVectorImpl
<bool> &Succs
,
123 bool AggressiveUndef
) {
124 Succs
.resize(TI
.getNumSuccessors());
125 if (TI
.getNumSuccessors() == 0) return;
127 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
128 if (BI
->isUnconditional()) {
135 BCValue
= getOrInitValueState(BI
->getCondition());
137 BCValue
= getLatticeState(BI
->getCondition());
139 if (BCValue
== LatticeFunc
->getOverdefinedVal() ||
140 BCValue
== LatticeFunc
->getUntrackedVal()) {
141 // Overdefined condition variables can branch either way.
142 Succs
[0] = Succs
[1] = true;
146 // If undefined, neither is feasible yet.
147 if (BCValue
== LatticeFunc
->getUndefVal())
150 Constant
*C
= LatticeFunc
->GetConstant(BCValue
, BI
->getCondition(), *this);
151 if (C
== 0 || !isa
<ConstantInt
>(C
)) {
152 // Non-constant values can go either way.
153 Succs
[0] = Succs
[1] = true;
157 // Constant condition variables mean the branch can only go a single way
158 Succs
[C
== ConstantInt::getFalse(*Context
)] = true;
162 if (isa
<InvokeInst
>(TI
)) {
163 // Invoke instructions successors are always executable.
164 // TODO: Could ask the lattice function if the value can throw.
165 Succs
[0] = Succs
[1] = true;
169 SwitchInst
&SI
= cast
<SwitchInst
>(TI
);
172 SCValue
= getOrInitValueState(SI
.getCondition());
174 SCValue
= getLatticeState(SI
.getCondition());
176 if (SCValue
== LatticeFunc
->getOverdefinedVal() ||
177 SCValue
== LatticeFunc
->getUntrackedVal()) {
178 // All destinations are executable!
179 Succs
.assign(TI
.getNumSuccessors(), true);
183 // If undefined, neither is feasible yet.
184 if (SCValue
== LatticeFunc
->getUndefVal())
187 Constant
*C
= LatticeFunc
->GetConstant(SCValue
, SI
.getCondition(), *this);
188 if (C
== 0 || !isa
<ConstantInt
>(C
)) {
189 // All destinations are executable!
190 Succs
.assign(TI
.getNumSuccessors(), true);
194 Succs
[SI
.findCaseValue(cast
<ConstantInt
>(C
))] = true;
198 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
199 /// basic block to the 'To' basic block is currently feasible...
200 bool SparseSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
,
201 bool AggressiveUndef
) {
202 SmallVector
<bool, 16> SuccFeasible
;
203 TerminatorInst
*TI
= From
->getTerminator();
204 getFeasibleSuccessors(*TI
, SuccFeasible
, AggressiveUndef
);
206 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
207 if (TI
->getSuccessor(i
) == To
&& SuccFeasible
[i
])
213 void SparseSolver::visitTerminatorInst(TerminatorInst
&TI
) {
214 SmallVector
<bool, 16> SuccFeasible
;
215 getFeasibleSuccessors(TI
, SuccFeasible
, true);
217 BasicBlock
*BB
= TI
.getParent();
219 // Mark all feasible successors executable...
220 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
222 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
225 void SparseSolver::visitPHINode(PHINode
&PN
) {
226 LatticeVal PNIV
= getOrInitValueState(&PN
);
227 LatticeVal Overdefined
= LatticeFunc
->getOverdefinedVal();
229 // If this value is already overdefined (common) just return.
230 if (PNIV
== Overdefined
|| PNIV
== LatticeFunc
->getUntrackedVal())
231 return; // Quick exit
233 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
234 // and slow us down a lot. Just mark them overdefined.
235 if (PN
.getNumIncomingValues() > 64) {
236 UpdateState(PN
, Overdefined
);
240 // Look at all of the executable operands of the PHI node. If any of them
241 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
242 // transfer function to give us the merge of the incoming values.
243 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
244 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
245 if (!isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent(), true))
248 // Merge in this value.
249 LatticeVal OpVal
= getOrInitValueState(PN
.getIncomingValue(i
));
251 PNIV
= LatticeFunc
->MergeValues(PNIV
, OpVal
);
253 if (PNIV
== Overdefined
)
254 break; // Rest of input values don't matter.
257 // Update the PHI with the compute value, which is the merge of the inputs.
258 UpdateState(PN
, PNIV
);
262 void SparseSolver::visitInst(Instruction
&I
) {
263 // PHIs are handled by the propagation logic, they are never passed into the
264 // transfer functions.
265 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
))
266 return visitPHINode(*PN
);
268 // Otherwise, ask the transfer function what the result is. If this is
269 // something that we care about, remember it.
270 LatticeVal IV
= LatticeFunc
->ComputeInstructionState(I
, *this);
271 if (IV
!= LatticeFunc
->getUntrackedVal())
274 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(&I
))
275 visitTerminatorInst(*TI
);
278 void SparseSolver::Solve(Function
&F
) {
279 MarkBlockExecutable(&F
.getEntryBlock());
281 // Process the work lists until they are empty!
282 while (!BBWorkList
.empty() || !InstWorkList
.empty()) {
283 // Process the instruction work list.
284 while (!InstWorkList
.empty()) {
285 Instruction
*I
= InstWorkList
.back();
286 InstWorkList
.pop_back();
288 DEBUG(errs() << "\nPopped off I-WL: " << *I
);
290 // "I" got into the work list because it made a transition. See if any
291 // users are both live and in need of updating.
292 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
294 Instruction
*U
= cast
<Instruction
>(*UI
);
295 if (BBExecutable
.count(U
->getParent())) // Inst is executable?
300 // Process the basic block work list.
301 while (!BBWorkList
.empty()) {
302 BasicBlock
*BB
= BBWorkList
.back();
303 BBWorkList
.pop_back();
305 DEBUG(errs() << "\nPopped off BBWL: " << *BB
);
307 // Notify all instructions in this basic block that they are newly
309 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
315 void SparseSolver::Print(Function
&F
, std::ostream
&OS
) const {
316 OS
<< "\nFUNCTION: " << F
.getNameStr() << "\n";
317 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
318 if (!BBExecutable
.count(BB
))
319 OS
<< "INFEASIBLE: ";
322 OS
<< BB
->getNameStr() << ":\n";
325 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
326 LatticeFunc
->PrintValue(getLatticeState(I
), OS
);