It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blobec62822e627d0dfde9da81cd00f657b33310ad92
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/DwarfWriter.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCSection.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/Mangler.h"
33 #include "llvm/Target/TargetAsmInfo.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetLoweringObjectFile.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
42 #include <cerrno>
43 using namespace llvm;
45 static cl::opt<cl::boolOrDefault>
46 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
47 cl::init(cl::BOU_UNSET));
49 char AsmPrinter::ID = 0;
50 AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
51 const TargetAsmInfo *T, bool VDef)
52 : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
53 TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
55 OutContext(*new MCContext()),
56 OutStreamer(*createAsmStreamer(OutContext, O)),
58 LastMI(0), LastFn(0), Counter(~0U),
59 PrevDLT(0, ~0U, ~0U) {
60 CurrentSection = 0;
61 DW = 0; MMI = 0;
62 switch (AsmVerbose) {
63 case cl::BOU_UNSET: VerboseAsm = VDef; break;
64 case cl::BOU_TRUE: VerboseAsm = true; break;
65 case cl::BOU_FALSE: VerboseAsm = false; break;
69 AsmPrinter::~AsmPrinter() {
70 for (gcp_iterator I = GCMetadataPrinters.begin(),
71 E = GCMetadataPrinters.end(); I != E; ++I)
72 delete I->second;
74 delete &OutStreamer;
75 delete &OutContext;
78 TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
79 return TM.getTargetLowering()->getObjFileLowering();
82 /// SwitchToSection - Switch to the specified section of the executable if we
83 /// are not already in it! If "NS" is null, then this causes us to exit the
84 /// current section and not reenter another one. This is generally used for
85 /// asmprinter hacks.
86 ///
87 /// FIXME: Remove support for null sections.
88 ///
89 void AsmPrinter::SwitchToSection(const MCSection *NS) {
90 // If we're already in this section, we're done.
91 if (CurrentSection == NS) return;
93 CurrentSection = NS;
95 if (NS == 0) return;
97 // If section is named we need to switch into it via special '.section'
98 // directive and also append funky flags. Otherwise - section name is just
99 // some magic assembler directive.
100 if (!NS->isDirective()) {
101 SmallString<32> FlagsStr;
102 getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr);
104 O << TAI->getSwitchToSectionDirective()
105 << CurrentSection->getName() << FlagsStr.c_str() << '\n';
106 } else {
107 O << CurrentSection->getName() << '\n';
111 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
112 AU.setPreservesAll();
113 MachineFunctionPass::getAnalysisUsage(AU);
114 AU.addRequired<GCModuleInfo>();
117 bool AsmPrinter::doInitialization(Module &M) {
118 // Initialize TargetLoweringObjectFile.
119 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
120 .Initialize(OutContext, TM);
122 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
123 TAI->getLinkerPrivateGlobalPrefix());
125 if (TAI->doesAllowQuotesInName())
126 Mang->setUseQuotes(true);
128 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
129 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
131 if (TAI->hasSingleParameterDotFile()) {
132 /* Very minimal debug info. It is ignored if we emit actual
133 debug info. If we don't, this at helps the user find where
134 a function came from. */
135 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
138 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
139 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
140 MP->beginAssembly(O, *this, *TAI);
142 if (!M.getModuleInlineAsm().empty())
143 O << TAI->getCommentString() << " Start of file scope inline assembly\n"
144 << M.getModuleInlineAsm()
145 << '\n' << TAI->getCommentString()
146 << " End of file scope inline assembly\n";
148 SwitchToSection(0); // Reset back to no section to close off sections.
150 if (TAI->doesSupportDebugInformation() ||
151 TAI->doesSupportExceptionHandling()) {
152 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
153 if (MMI)
154 MMI->AnalyzeModule(M);
155 DW = getAnalysisIfAvailable<DwarfWriter>();
156 if (DW)
157 DW->BeginModule(&M, MMI, O, this, TAI);
160 return false;
163 bool AsmPrinter::doFinalization(Module &M) {
164 // Emit global variables.
165 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
166 I != E; ++I)
167 PrintGlobalVariable(I);
169 // Emit final debug information.
170 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
171 DW->EndModule();
173 // If the target wants to know about weak references, print them all.
174 if (TAI->getWeakRefDirective()) {
175 // FIXME: This is not lazy, it would be nice to only print weak references
176 // to stuff that is actually used. Note that doing so would require targets
177 // to notice uses in operands (due to constant exprs etc). This should
178 // happen with the MC stuff eventually.
179 SwitchToSection(0);
181 // Print out module-level global variables here.
182 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
183 I != E; ++I) {
184 if (I->hasExternalWeakLinkage())
185 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
188 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
189 if (I->hasExternalWeakLinkage())
190 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
194 if (TAI->getSetDirective()) {
195 O << '\n';
196 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
197 I != E; ++I) {
198 std::string Name = Mang->getMangledName(I);
200 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
201 std::string Target = Mang->getMangledName(GV);
203 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
204 O << "\t.globl\t" << Name << '\n';
205 else if (I->hasWeakLinkage())
206 O << TAI->getWeakRefDirective() << Name << '\n';
207 else if (!I->hasLocalLinkage())
208 llvm_unreachable("Invalid alias linkage");
210 printVisibility(Name, I->getVisibility());
212 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
216 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
217 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
218 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
219 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
220 MP->finishAssembly(O, *this, *TAI);
222 // If we don't have any trampolines, then we don't require stack memory
223 // to be executable. Some targets have a directive to declare this.
224 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
225 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
226 if (TAI->getNonexecutableStackDirective())
227 O << TAI->getNonexecutableStackDirective() << '\n';
229 delete Mang; Mang = 0;
230 DW = 0; MMI = 0;
232 OutStreamer.Finish();
233 return false;
236 std::string
237 AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
238 assert(MF && "No machine function?");
239 return Mang->getMangledName(MF->getFunction(), ".eh",
240 TAI->is_EHSymbolPrivate());
243 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
244 // What's my mangled name?
245 CurrentFnName = Mang->getMangledName(MF.getFunction());
246 IncrementFunctionNumber();
249 namespace {
250 // SectionCPs - Keep track the alignment, constpool entries per Section.
251 struct SectionCPs {
252 const MCSection *S;
253 unsigned Alignment;
254 SmallVector<unsigned, 4> CPEs;
255 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
259 /// EmitConstantPool - Print to the current output stream assembly
260 /// representations of the constants in the constant pool MCP. This is
261 /// used to print out constants which have been "spilled to memory" by
262 /// the code generator.
264 void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
265 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
266 if (CP.empty()) return;
268 // Calculate sections for constant pool entries. We collect entries to go into
269 // the same section together to reduce amount of section switch statements.
270 SmallVector<SectionCPs, 4> CPSections;
271 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
272 const MachineConstantPoolEntry &CPE = CP[i];
273 unsigned Align = CPE.getAlignment();
275 SectionKind Kind;
276 switch (CPE.getRelocationInfo()) {
277 default: llvm_unreachable("Unknown section kind");
278 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
279 case 1:
280 Kind = SectionKind::getReadOnlyWithRelLocal();
281 break;
282 case 0:
283 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
284 case 4: Kind = SectionKind::getMergeableConst4(); break;
285 case 8: Kind = SectionKind::getMergeableConst8(); break;
286 case 16: Kind = SectionKind::getMergeableConst16();break;
287 default: Kind = SectionKind::getMergeableConst(); break;
291 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
293 // The number of sections are small, just do a linear search from the
294 // last section to the first.
295 bool Found = false;
296 unsigned SecIdx = CPSections.size();
297 while (SecIdx != 0) {
298 if (CPSections[--SecIdx].S == S) {
299 Found = true;
300 break;
303 if (!Found) {
304 SecIdx = CPSections.size();
305 CPSections.push_back(SectionCPs(S, Align));
308 if (Align > CPSections[SecIdx].Alignment)
309 CPSections[SecIdx].Alignment = Align;
310 CPSections[SecIdx].CPEs.push_back(i);
313 // Now print stuff into the calculated sections.
314 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
315 SwitchToSection(CPSections[i].S);
316 EmitAlignment(Log2_32(CPSections[i].Alignment));
318 unsigned Offset = 0;
319 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
320 unsigned CPI = CPSections[i].CPEs[j];
321 MachineConstantPoolEntry CPE = CP[CPI];
323 // Emit inter-object padding for alignment.
324 unsigned AlignMask = CPE.getAlignment() - 1;
325 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
326 EmitZeros(NewOffset - Offset);
328 const Type *Ty = CPE.getType();
329 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
331 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
332 << CPI << ":\t\t\t\t\t";
333 if (VerboseAsm) {
334 O << TAI->getCommentString() << ' ';
335 WriteTypeSymbolic(O, CPE.getType(), 0);
337 O << '\n';
338 if (CPE.isMachineConstantPoolEntry())
339 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
340 else
341 EmitGlobalConstant(CPE.Val.ConstVal);
346 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
347 /// by the current function to the current output stream.
349 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
350 MachineFunction &MF) {
351 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
352 if (JT.empty()) return;
354 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
356 // Pick the directive to use to print the jump table entries, and switch to
357 // the appropriate section.
358 TargetLowering *LoweringInfo = TM.getTargetLowering();
360 const Function *F = MF.getFunction();
361 bool JTInDiffSection = false;
362 if (F->isWeakForLinker() ||
363 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
364 // In PIC mode, we need to emit the jump table to the same section as the
365 // function body itself, otherwise the label differences won't make sense.
366 // We should also do if the section name is NULL or function is declared in
367 // discardable section.
368 SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
369 } else {
370 // Otherwise, drop it in the readonly section.
371 const MCSection *ReadOnlySection =
372 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
373 SwitchToSection(ReadOnlySection);
374 JTInDiffSection = true;
377 EmitAlignment(Log2_32(MJTI->getAlignment()));
379 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
380 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
382 // If this jump table was deleted, ignore it.
383 if (JTBBs.empty()) continue;
385 // For PIC codegen, if possible we want to use the SetDirective to reduce
386 // the number of relocations the assembler will generate for the jump table.
387 // Set directives are all printed before the jump table itself.
388 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
389 if (TAI->getSetDirective() && IsPic)
390 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
391 if (EmittedSets.insert(JTBBs[ii]))
392 printPICJumpTableSetLabel(i, JTBBs[ii]);
394 // On some targets (e.g. darwin) we want to emit two consequtive labels
395 // before each jump table. The first label is never referenced, but tells
396 // the assembler and linker the extents of the jump table object. The
397 // second label is actually referenced by the code.
398 if (JTInDiffSection) {
399 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
400 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
403 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
404 << '_' << i << ":\n";
406 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
407 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
408 O << '\n';
413 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
414 const MachineBasicBlock *MBB,
415 unsigned uid) const {
416 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
418 // Use JumpTableDirective otherwise honor the entry size from the jump table
419 // info.
420 const char *JTEntryDirective = TAI->getJumpTableDirective();
421 bool HadJTEntryDirective = JTEntryDirective != NULL;
422 if (!HadJTEntryDirective) {
423 JTEntryDirective = MJTI->getEntrySize() == 4 ?
424 TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
427 O << JTEntryDirective << ' ';
429 // If we have emitted set directives for the jump table entries, print
430 // them rather than the entries themselves. If we're emitting PIC, then
431 // emit the table entries as differences between two text section labels.
432 // If we're emitting non-PIC code, then emit the entries as direct
433 // references to the target basic blocks.
434 if (IsPic) {
435 if (TAI->getSetDirective()) {
436 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
437 << '_' << uid << "_set_" << MBB->getNumber();
438 } else {
439 printBasicBlockLabel(MBB, false, false, false);
440 // If the arch uses custom Jump Table directives, don't calc relative to
441 // JT
442 if (!HadJTEntryDirective)
443 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
444 << getFunctionNumber() << '_' << uid;
446 } else {
447 printBasicBlockLabel(MBB, false, false, false);
452 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
453 /// special global used by LLVM. If so, emit it and return true, otherwise
454 /// do nothing and return false.
455 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
456 if (GV->getName() == "llvm.used") {
457 if (TAI->getUsedDirective() != 0) // No need to emit this at all.
458 EmitLLVMUsedList(GV->getInitializer());
459 return true;
462 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
463 if (GV->getSection() == "llvm.metadata" ||
464 GV->hasAvailableExternallyLinkage())
465 return true;
467 if (!GV->hasAppendingLinkage()) return false;
469 assert(GV->hasInitializer() && "Not a special LLVM global!");
471 const TargetData *TD = TM.getTargetData();
472 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
473 if (GV->getName() == "llvm.global_ctors") {
474 SwitchToSection(getObjFileLowering().getStaticCtorSection());
475 EmitAlignment(Align, 0);
476 EmitXXStructorList(GV->getInitializer());
477 return true;
480 if (GV->getName() == "llvm.global_dtors") {
481 SwitchToSection(getObjFileLowering().getStaticDtorSection());
482 EmitAlignment(Align, 0);
483 EmitXXStructorList(GV->getInitializer());
484 return true;
487 return false;
490 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
491 /// global in the specified llvm.used list for which emitUsedDirectiveFor
492 /// is true, as being used with this directive.
493 void AsmPrinter::EmitLLVMUsedList(Constant *List) {
494 const char *Directive = TAI->getUsedDirective();
496 // Should be an array of 'i8*'.
497 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
498 if (InitList == 0) return;
500 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
501 const GlobalValue *GV =
502 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
503 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
504 O << Directive;
505 EmitConstantValueOnly(InitList->getOperand(i));
506 O << '\n';
511 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
512 /// function pointers, ignoring the init priority.
513 void AsmPrinter::EmitXXStructorList(Constant *List) {
514 // Should be an array of '{ int, void ()* }' structs. The first value is the
515 // init priority, which we ignore.
516 if (!isa<ConstantArray>(List)) return;
517 ConstantArray *InitList = cast<ConstantArray>(List);
518 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
519 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
520 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
522 if (CS->getOperand(1)->isNullValue())
523 return; // Found a null terminator, exit printing.
524 // Emit the function pointer.
525 EmitGlobalConstant(CS->getOperand(1));
529 /// getGlobalLinkName - Returns the asm/link name of of the specified
530 /// global variable. Should be overridden by each target asm printer to
531 /// generate the appropriate value.
532 const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
533 std::string &LinkName) const {
534 if (isa<Function>(GV)) {
535 LinkName += TAI->getFunctionAddrPrefix();
536 LinkName += Mang->getMangledName(GV);
537 LinkName += TAI->getFunctionAddrSuffix();
538 } else {
539 LinkName += TAI->getGlobalVarAddrPrefix();
540 LinkName += Mang->getMangledName(GV);
541 LinkName += TAI->getGlobalVarAddrSuffix();
544 return LinkName;
547 /// EmitExternalGlobal - Emit the external reference to a global variable.
548 /// Should be overridden if an indirect reference should be used.
549 void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
550 std::string GLN;
551 O << getGlobalLinkName(GV, GLN);
556 //===----------------------------------------------------------------------===//
557 /// LEB 128 number encoding.
559 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
560 /// representing an unsigned leb128 value.
561 void AsmPrinter::PrintULEB128(unsigned Value) const {
562 char Buffer[20];
563 do {
564 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
565 Value >>= 7;
566 if (Value) Byte |= 0x80;
567 O << "0x" << utohex_buffer(Byte, Buffer+20);
568 if (Value) O << ", ";
569 } while (Value);
572 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
573 /// representing a signed leb128 value.
574 void AsmPrinter::PrintSLEB128(int Value) const {
575 int Sign = Value >> (8 * sizeof(Value) - 1);
576 bool IsMore;
577 char Buffer[20];
579 do {
580 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
581 Value >>= 7;
582 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
583 if (IsMore) Byte |= 0x80;
584 O << "0x" << utohex_buffer(Byte, Buffer+20);
585 if (IsMore) O << ", ";
586 } while (IsMore);
589 //===--------------------------------------------------------------------===//
590 // Emission and print routines
593 /// PrintHex - Print a value as a hexidecimal value.
595 void AsmPrinter::PrintHex(int Value) const {
596 char Buffer[20];
597 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
600 /// EOL - Print a newline character to asm stream. If a comment is present
601 /// then it will be printed first. Comments should not contain '\n'.
602 void AsmPrinter::EOL() const {
603 O << '\n';
606 void AsmPrinter::EOL(const std::string &Comment) const {
607 if (VerboseAsm && !Comment.empty()) {
608 O << '\t'
609 << TAI->getCommentString()
610 << ' '
611 << Comment;
613 O << '\n';
616 void AsmPrinter::EOL(const char* Comment) const {
617 if (VerboseAsm && *Comment) {
618 O << '\t'
619 << TAI->getCommentString()
620 << ' '
621 << Comment;
623 O << '\n';
626 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
627 /// unsigned leb128 value.
628 void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
629 if (TAI->hasLEB128()) {
630 O << "\t.uleb128\t"
631 << Value;
632 } else {
633 O << TAI->getData8bitsDirective();
634 PrintULEB128(Value);
638 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
639 /// signed leb128 value.
640 void AsmPrinter::EmitSLEB128Bytes(int Value) const {
641 if (TAI->hasLEB128()) {
642 O << "\t.sleb128\t"
643 << Value;
644 } else {
645 O << TAI->getData8bitsDirective();
646 PrintSLEB128(Value);
650 /// EmitInt8 - Emit a byte directive and value.
652 void AsmPrinter::EmitInt8(int Value) const {
653 O << TAI->getData8bitsDirective();
654 PrintHex(Value & 0xFF);
657 /// EmitInt16 - Emit a short directive and value.
659 void AsmPrinter::EmitInt16(int Value) const {
660 O << TAI->getData16bitsDirective();
661 PrintHex(Value & 0xFFFF);
664 /// EmitInt32 - Emit a long directive and value.
666 void AsmPrinter::EmitInt32(int Value) const {
667 O << TAI->getData32bitsDirective();
668 PrintHex(Value);
671 /// EmitInt64 - Emit a long long directive and value.
673 void AsmPrinter::EmitInt64(uint64_t Value) const {
674 if (TAI->getData64bitsDirective()) {
675 O << TAI->getData64bitsDirective();
676 PrintHex(Value);
677 } else {
678 if (TM.getTargetData()->isBigEndian()) {
679 EmitInt32(unsigned(Value >> 32)); O << '\n';
680 EmitInt32(unsigned(Value));
681 } else {
682 EmitInt32(unsigned(Value)); O << '\n';
683 EmitInt32(unsigned(Value >> 32));
688 /// toOctal - Convert the low order bits of X into an octal digit.
690 static inline char toOctal(int X) {
691 return (X&7)+'0';
694 /// printStringChar - Print a char, escaped if necessary.
696 static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
697 if (C == '"') {
698 O << "\\\"";
699 } else if (C == '\\') {
700 O << "\\\\";
701 } else if (isprint((unsigned char)C)) {
702 O << C;
703 } else {
704 switch(C) {
705 case '\b': O << "\\b"; break;
706 case '\f': O << "\\f"; break;
707 case '\n': O << "\\n"; break;
708 case '\r': O << "\\r"; break;
709 case '\t': O << "\\t"; break;
710 default:
711 O << '\\';
712 O << toOctal(C >> 6);
713 O << toOctal(C >> 3);
714 O << toOctal(C >> 0);
715 break;
720 /// EmitString - Emit a string with quotes and a null terminator.
721 /// Special characters are emitted properly.
722 /// \literal (Eg. '\t') \endliteral
723 void AsmPrinter::EmitString(const std::string &String) const {
724 EmitString(String.c_str(), String.size());
727 void AsmPrinter::EmitString(const char *String, unsigned Size) const {
728 const char* AscizDirective = TAI->getAscizDirective();
729 if (AscizDirective)
730 O << AscizDirective;
731 else
732 O << TAI->getAsciiDirective();
733 O << '\"';
734 for (unsigned i = 0; i < Size; ++i)
735 printStringChar(O, String[i]);
736 if (AscizDirective)
737 O << '\"';
738 else
739 O << "\\0\"";
743 /// EmitFile - Emit a .file directive.
744 void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
745 O << "\t.file\t" << Number << " \"";
746 for (unsigned i = 0, N = Name.size(); i < N; ++i)
747 printStringChar(O, Name[i]);
748 O << '\"';
752 //===----------------------------------------------------------------------===//
754 // EmitAlignment - Emit an alignment directive to the specified power of
755 // two boundary. For example, if you pass in 3 here, you will get an 8
756 // byte alignment. If a global value is specified, and if that global has
757 // an explicit alignment requested, it will unconditionally override the
758 // alignment request. However, if ForcedAlignBits is specified, this value
759 // has final say: the ultimate alignment will be the max of ForcedAlignBits
760 // and the alignment computed with NumBits and the global.
762 // The algorithm is:
763 // Align = NumBits;
764 // if (GV && GV->hasalignment) Align = GV->getalignment();
765 // Align = std::max(Align, ForcedAlignBits);
767 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
768 unsigned ForcedAlignBits,
769 bool UseFillExpr) const {
770 if (GV && GV->getAlignment())
771 NumBits = Log2_32(GV->getAlignment());
772 NumBits = std::max(NumBits, ForcedAlignBits);
774 if (NumBits == 0) return; // No need to emit alignment.
775 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
776 O << TAI->getAlignDirective() << NumBits;
778 if (CurrentSection && CurrentSection->getKind().isText())
779 if (unsigned FillValue = TAI->getTextAlignFillValue()) {
780 O << ',';
781 PrintHex(FillValue);
783 O << '\n';
786 /// getOperandColumn - Return the output column number (zero-based)
787 /// for operand % "operand." If TargetAsmInfo has FirstOperandColumn
788 /// == 0 or MaxOperandLength == 0, return 0, meaning column alignment
789 /// is disabled.
790 unsigned AsmPrinter::getOperandColumn(int operand) const {
791 if (TAI->getFirstOperandColumn() > 0 && TAI->getMaxOperandLength() > 0) {
792 return TAI->getFirstOperandColumn()
793 + (TAI->getMaxOperandLength()+1)*(operand-1);
795 else {
796 return 0;
800 /// PadToColumn - This gets called every time a tab is emitted. If
801 /// column padding is turned on, we replace the tab with the
802 /// appropriate amount of padding. If not, we replace the tab with a
803 /// space, except for the first operand so that initial operands are
804 /// always lined up by tabs.
805 void AsmPrinter::PadToColumn(unsigned Operand) const {
806 if (getOperandColumn(Operand) > 0) {
807 O.PadToColumn(getOperandColumn(Operand), 1);
809 else {
810 if (Operand == 1) {
811 // Emit the tab after the mnemonic.
812 O << '\t';
814 else {
815 // Replace the tab with a space.
816 O << ' ';
821 /// EmitZeros - Emit a block of zeros.
823 void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
824 if (NumZeros) {
825 if (TAI->getZeroDirective()) {
826 O << TAI->getZeroDirective() << NumZeros;
827 if (TAI->getZeroDirectiveSuffix())
828 O << TAI->getZeroDirectiveSuffix();
829 O << '\n';
830 } else {
831 for (; NumZeros; --NumZeros)
832 O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
837 // Print out the specified constant, without a storage class. Only the
838 // constants valid in constant expressions can occur here.
839 void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
840 if (CV->isNullValue() || isa<UndefValue>(CV))
841 O << '0';
842 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
843 O << CI->getZExtValue();
844 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
845 // This is a constant address for a global variable or function. Use the
846 // name of the variable or function as the address value, possibly
847 // decorating it with GlobalVarAddrPrefix/Suffix or
848 // FunctionAddrPrefix/Suffix (these all default to "" )
849 if (isa<Function>(GV)) {
850 O << TAI->getFunctionAddrPrefix()
851 << Mang->getMangledName(GV)
852 << TAI->getFunctionAddrSuffix();
853 } else {
854 O << TAI->getGlobalVarAddrPrefix()
855 << Mang->getMangledName(GV)
856 << TAI->getGlobalVarAddrSuffix();
858 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
859 const TargetData *TD = TM.getTargetData();
860 unsigned Opcode = CE->getOpcode();
861 switch (Opcode) {
862 case Instruction::Trunc:
863 case Instruction::ZExt:
864 case Instruction::SExt:
865 case Instruction::FPTrunc:
866 case Instruction::FPExt:
867 case Instruction::UIToFP:
868 case Instruction::SIToFP:
869 case Instruction::FPToUI:
870 case Instruction::FPToSI:
871 llvm_unreachable("FIXME: Don't support this constant cast expr");
872 case Instruction::GetElementPtr: {
873 // generate a symbolic expression for the byte address
874 const Constant *ptrVal = CE->getOperand(0);
875 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
876 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
877 idxVec.size())) {
878 // Truncate/sext the offset to the pointer size.
879 if (TD->getPointerSizeInBits() != 64) {
880 int SExtAmount = 64-TD->getPointerSizeInBits();
881 Offset = (Offset << SExtAmount) >> SExtAmount;
884 if (Offset)
885 O << '(';
886 EmitConstantValueOnly(ptrVal);
887 if (Offset > 0)
888 O << ") + " << Offset;
889 else if (Offset < 0)
890 O << ") - " << -Offset;
891 } else {
892 EmitConstantValueOnly(ptrVal);
894 break;
896 case Instruction::BitCast:
897 return EmitConstantValueOnly(CE->getOperand(0));
899 case Instruction::IntToPtr: {
900 // Handle casts to pointers by changing them into casts to the appropriate
901 // integer type. This promotes constant folding and simplifies this code.
902 Constant *Op = CE->getOperand(0);
903 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
904 return EmitConstantValueOnly(Op);
908 case Instruction::PtrToInt: {
909 // Support only foldable casts to/from pointers that can be eliminated by
910 // changing the pointer to the appropriately sized integer type.
911 Constant *Op = CE->getOperand(0);
912 const Type *Ty = CE->getType();
914 // We can emit the pointer value into this slot if the slot is an
915 // integer slot greater or equal to the size of the pointer.
916 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
917 return EmitConstantValueOnly(Op);
919 O << "((";
920 EmitConstantValueOnly(Op);
921 APInt ptrMask =
922 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
924 SmallString<40> S;
925 ptrMask.toStringUnsigned(S);
926 O << ") & " << S.c_str() << ')';
927 break;
929 case Instruction::Add:
930 case Instruction::Sub:
931 case Instruction::And:
932 case Instruction::Or:
933 case Instruction::Xor:
934 O << '(';
935 EmitConstantValueOnly(CE->getOperand(0));
936 O << ')';
937 switch (Opcode) {
938 case Instruction::Add:
939 O << " + ";
940 break;
941 case Instruction::Sub:
942 O << " - ";
943 break;
944 case Instruction::And:
945 O << " & ";
946 break;
947 case Instruction::Or:
948 O << " | ";
949 break;
950 case Instruction::Xor:
951 O << " ^ ";
952 break;
953 default:
954 break;
956 O << '(';
957 EmitConstantValueOnly(CE->getOperand(1));
958 O << ')';
959 break;
960 default:
961 llvm_unreachable("Unsupported operator!");
963 } else {
964 llvm_unreachable("Unknown constant value!");
968 /// printAsCString - Print the specified array as a C compatible string, only if
969 /// the predicate isString is true.
971 static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
972 unsigned LastElt) {
973 assert(CVA->isString() && "Array is not string compatible!");
975 O << '\"';
976 for (unsigned i = 0; i != LastElt; ++i) {
977 unsigned char C =
978 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
979 printStringChar(O, C);
981 O << '\"';
984 /// EmitString - Emit a zero-byte-terminated string constant.
986 void AsmPrinter::EmitString(const ConstantArray *CVA) const {
987 unsigned NumElts = CVA->getNumOperands();
988 if (TAI->getAscizDirective() && NumElts &&
989 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
990 O << TAI->getAscizDirective();
991 printAsCString(O, CVA, NumElts-1);
992 } else {
993 O << TAI->getAsciiDirective();
994 printAsCString(O, CVA, NumElts);
996 O << '\n';
999 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
1000 unsigned AddrSpace) {
1001 if (CVA->isString()) {
1002 EmitString(CVA);
1003 } else { // Not a string. Print the values in successive locations
1004 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
1005 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
1009 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
1010 const VectorType *PTy = CP->getType();
1012 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1013 EmitGlobalConstant(CP->getOperand(I));
1016 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1017 unsigned AddrSpace) {
1018 // Print the fields in successive locations. Pad to align if needed!
1019 const TargetData *TD = TM.getTargetData();
1020 unsigned Size = TD->getTypeAllocSize(CVS->getType());
1021 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1022 uint64_t sizeSoFar = 0;
1023 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1024 const Constant* field = CVS->getOperand(i);
1026 // Check if padding is needed and insert one or more 0s.
1027 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1028 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1029 - cvsLayout->getElementOffset(i)) - fieldSize;
1030 sizeSoFar += fieldSize + padSize;
1032 // Now print the actual field value.
1033 EmitGlobalConstant(field, AddrSpace);
1035 // Insert padding - this may include padding to increase the size of the
1036 // current field up to the ABI size (if the struct is not packed) as well
1037 // as padding to ensure that the next field starts at the right offset.
1038 EmitZeros(padSize, AddrSpace);
1040 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1041 "Layout of constant struct may be incorrect!");
1044 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1045 unsigned AddrSpace) {
1046 // FP Constants are printed as integer constants to avoid losing
1047 // precision...
1048 const TargetData *TD = TM.getTargetData();
1049 if (CFP->getType() == Type::DoubleTy) {
1050 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1051 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1052 if (TAI->getData64bitsDirective(AddrSpace)) {
1053 O << TAI->getData64bitsDirective(AddrSpace) << i;
1054 if (VerboseAsm)
1055 O << '\t' << TAI->getCommentString() << " double value: " << Val;
1056 O << '\n';
1057 } else if (TD->isBigEndian()) {
1058 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1059 if (VerboseAsm)
1060 O << '\t' << TAI->getCommentString()
1061 << " double most significant word " << Val;
1062 O << '\n';
1063 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1064 if (VerboseAsm)
1065 O << '\t' << TAI->getCommentString()
1066 << " double least significant word " << Val;
1067 O << '\n';
1068 } else {
1069 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1070 if (VerboseAsm)
1071 O << '\t' << TAI->getCommentString()
1072 << " double least significant word " << Val;
1073 O << '\n';
1074 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1075 if (VerboseAsm)
1076 O << '\t' << TAI->getCommentString()
1077 << " double most significant word " << Val;
1078 O << '\n';
1080 return;
1081 } else if (CFP->getType() == Type::FloatTy) {
1082 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1083 O << TAI->getData32bitsDirective(AddrSpace)
1084 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1085 if (VerboseAsm)
1086 O << '\t' << TAI->getCommentString() << " float " << Val;
1087 O << '\n';
1088 return;
1089 } else if (CFP->getType() == Type::X86_FP80Ty) {
1090 // all long double variants are printed as hex
1091 // api needed to prevent premature destruction
1092 APInt api = CFP->getValueAPF().bitcastToAPInt();
1093 const uint64_t *p = api.getRawData();
1094 // Convert to double so we can print the approximate val as a comment.
1095 APFloat DoubleVal = CFP->getValueAPF();
1096 bool ignored;
1097 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1098 &ignored);
1099 if (TD->isBigEndian()) {
1100 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1101 if (VerboseAsm)
1102 O << '\t' << TAI->getCommentString()
1103 << " long double most significant halfword of ~"
1104 << DoubleVal.convertToDouble();
1105 O << '\n';
1106 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1107 if (VerboseAsm)
1108 O << '\t' << TAI->getCommentString() << " long double next halfword";
1109 O << '\n';
1110 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1111 if (VerboseAsm)
1112 O << '\t' << TAI->getCommentString() << " long double next halfword";
1113 O << '\n';
1114 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1115 if (VerboseAsm)
1116 O << '\t' << TAI->getCommentString() << " long double next halfword";
1117 O << '\n';
1118 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1119 if (VerboseAsm)
1120 O << '\t' << TAI->getCommentString()
1121 << " long double least significant halfword";
1122 O << '\n';
1123 } else {
1124 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1125 if (VerboseAsm)
1126 O << '\t' << TAI->getCommentString()
1127 << " long double least significant halfword of ~"
1128 << DoubleVal.convertToDouble();
1129 O << '\n';
1130 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1131 if (VerboseAsm)
1132 O << '\t' << TAI->getCommentString()
1133 << " long double next halfword";
1134 O << '\n';
1135 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1136 if (VerboseAsm)
1137 O << '\t' << TAI->getCommentString()
1138 << " long double next halfword";
1139 O << '\n';
1140 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1141 if (VerboseAsm)
1142 O << '\t' << TAI->getCommentString()
1143 << " long double next halfword";
1144 O << '\n';
1145 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1146 if (VerboseAsm)
1147 O << '\t' << TAI->getCommentString()
1148 << " long double most significant halfword";
1149 O << '\n';
1151 EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1152 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1153 return;
1154 } else if (CFP->getType() == Type::PPC_FP128Ty) {
1155 // all long double variants are printed as hex
1156 // api needed to prevent premature destruction
1157 APInt api = CFP->getValueAPF().bitcastToAPInt();
1158 const uint64_t *p = api.getRawData();
1159 if (TD->isBigEndian()) {
1160 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1161 if (VerboseAsm)
1162 O << '\t' << TAI->getCommentString()
1163 << " long double most significant word";
1164 O << '\n';
1165 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1166 if (VerboseAsm)
1167 O << '\t' << TAI->getCommentString()
1168 << " long double next word";
1169 O << '\n';
1170 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1171 if (VerboseAsm)
1172 O << '\t' << TAI->getCommentString()
1173 << " long double next word";
1174 O << '\n';
1175 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1176 if (VerboseAsm)
1177 O << '\t' << TAI->getCommentString()
1178 << " long double least significant word";
1179 O << '\n';
1180 } else {
1181 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1182 if (VerboseAsm)
1183 O << '\t' << TAI->getCommentString()
1184 << " long double least significant word";
1185 O << '\n';
1186 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1187 if (VerboseAsm)
1188 O << '\t' << TAI->getCommentString()
1189 << " long double next word";
1190 O << '\n';
1191 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1192 if (VerboseAsm)
1193 O << '\t' << TAI->getCommentString()
1194 << " long double next word";
1195 O << '\n';
1196 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1197 if (VerboseAsm)
1198 O << '\t' << TAI->getCommentString()
1199 << " long double most significant word";
1200 O << '\n';
1202 return;
1203 } else llvm_unreachable("Floating point constant type not handled");
1206 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1207 unsigned AddrSpace) {
1208 const TargetData *TD = TM.getTargetData();
1209 unsigned BitWidth = CI->getBitWidth();
1210 assert(isPowerOf2_32(BitWidth) &&
1211 "Non-power-of-2-sized integers not handled!");
1213 // We don't expect assemblers to support integer data directives
1214 // for more than 64 bits, so we emit the data in at most 64-bit
1215 // quantities at a time.
1216 const uint64_t *RawData = CI->getValue().getRawData();
1217 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1218 uint64_t Val;
1219 if (TD->isBigEndian())
1220 Val = RawData[e - i - 1];
1221 else
1222 Val = RawData[i];
1224 if (TAI->getData64bitsDirective(AddrSpace))
1225 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1226 else if (TD->isBigEndian()) {
1227 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1228 if (VerboseAsm)
1229 O << '\t' << TAI->getCommentString()
1230 << " Double-word most significant word " << Val;
1231 O << '\n';
1232 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1233 if (VerboseAsm)
1234 O << '\t' << TAI->getCommentString()
1235 << " Double-word least significant word " << Val;
1236 O << '\n';
1237 } else {
1238 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1239 if (VerboseAsm)
1240 O << '\t' << TAI->getCommentString()
1241 << " Double-word least significant word " << Val;
1242 O << '\n';
1243 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1244 if (VerboseAsm)
1245 O << '\t' << TAI->getCommentString()
1246 << " Double-word most significant word " << Val;
1247 O << '\n';
1252 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1253 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1254 const TargetData *TD = TM.getTargetData();
1255 const Type *type = CV->getType();
1256 unsigned Size = TD->getTypeAllocSize(type);
1258 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1259 EmitZeros(Size, AddrSpace);
1260 return;
1261 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1262 EmitGlobalConstantArray(CVA , AddrSpace);
1263 return;
1264 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1265 EmitGlobalConstantStruct(CVS, AddrSpace);
1266 return;
1267 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1268 EmitGlobalConstantFP(CFP, AddrSpace);
1269 return;
1270 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1271 // Small integers are handled below; large integers are handled here.
1272 if (Size > 4) {
1273 EmitGlobalConstantLargeInt(CI, AddrSpace);
1274 return;
1276 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1277 EmitGlobalConstantVector(CP);
1278 return;
1281 printDataDirective(type, AddrSpace);
1282 EmitConstantValueOnly(CV);
1283 if (VerboseAsm) {
1284 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1285 SmallString<40> S;
1286 CI->getValue().toStringUnsigned(S, 16);
1287 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1290 O << '\n';
1293 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1294 // Target doesn't support this yet!
1295 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1298 /// PrintSpecial - Print information related to the specified machine instr
1299 /// that is independent of the operand, and may be independent of the instr
1300 /// itself. This can be useful for portably encoding the comment character
1301 /// or other bits of target-specific knowledge into the asmstrings. The
1302 /// syntax used is ${:comment}. Targets can override this to add support
1303 /// for their own strange codes.
1304 void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1305 if (!strcmp(Code, "private")) {
1306 O << TAI->getPrivateGlobalPrefix();
1307 } else if (!strcmp(Code, "comment")) {
1308 if (VerboseAsm)
1309 O << TAI->getCommentString();
1310 } else if (!strcmp(Code, "uid")) {
1311 // Comparing the address of MI isn't sufficient, because machineinstrs may
1312 // be allocated to the same address across functions.
1313 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1315 // If this is a new LastFn instruction, bump the counter.
1316 if (LastMI != MI || LastFn != ThisF) {
1317 ++Counter;
1318 LastMI = MI;
1319 LastFn = ThisF;
1321 O << Counter;
1322 } else {
1323 std::string msg;
1324 raw_string_ostream Msg(msg);
1325 Msg << "Unknown special formatter '" << Code
1326 << "' for machine instr: " << *MI;
1327 llvm_report_error(Msg.str());
1331 /// processDebugLoc - Processes the debug information of each machine
1332 /// instruction's DebugLoc.
1333 void AsmPrinter::processDebugLoc(DebugLoc DL) {
1334 if (!TAI || !DW)
1335 return;
1337 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1338 if (!DL.isUnknown()) {
1339 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1341 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1342 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1343 DICompileUnit(CurDLT.CompileUnit)));
1345 PrevDLT = CurDLT;
1350 /// printInlineAsm - This method formats and prints the specified machine
1351 /// instruction that is an inline asm.
1352 void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1353 unsigned NumOperands = MI->getNumOperands();
1355 // Count the number of register definitions.
1356 unsigned NumDefs = 0;
1357 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1358 ++NumDefs)
1359 assert(NumDefs != NumOperands-1 && "No asm string?");
1361 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1363 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1364 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1366 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1367 // These are useful to see where empty asm's wound up.
1368 if (AsmStr[0] == 0) {
1369 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1370 return;
1373 O << TAI->getInlineAsmStart() << "\n\t";
1375 // The variant of the current asmprinter.
1376 int AsmPrinterVariant = TAI->getAssemblerDialect();
1378 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1379 const char *LastEmitted = AsmStr; // One past the last character emitted.
1381 while (*LastEmitted) {
1382 switch (*LastEmitted) {
1383 default: {
1384 // Not a special case, emit the string section literally.
1385 const char *LiteralEnd = LastEmitted+1;
1386 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1387 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1388 ++LiteralEnd;
1389 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1390 O.write(LastEmitted, LiteralEnd-LastEmitted);
1391 LastEmitted = LiteralEnd;
1392 break;
1394 case '\n':
1395 ++LastEmitted; // Consume newline character.
1396 O << '\n'; // Indent code with newline.
1397 break;
1398 case '$': {
1399 ++LastEmitted; // Consume '$' character.
1400 bool Done = true;
1402 // Handle escapes.
1403 switch (*LastEmitted) {
1404 default: Done = false; break;
1405 case '$': // $$ -> $
1406 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1407 O << '$';
1408 ++LastEmitted; // Consume second '$' character.
1409 break;
1410 case '(': // $( -> same as GCC's { character.
1411 ++LastEmitted; // Consume '(' character.
1412 if (CurVariant != -1) {
1413 llvm_report_error("Nested variants found in inline asm string: '"
1414 + std::string(AsmStr) + "'");
1416 CurVariant = 0; // We're in the first variant now.
1417 break;
1418 case '|':
1419 ++LastEmitted; // consume '|' character.
1420 if (CurVariant == -1)
1421 O << '|'; // this is gcc's behavior for | outside a variant
1422 else
1423 ++CurVariant; // We're in the next variant.
1424 break;
1425 case ')': // $) -> same as GCC's } char.
1426 ++LastEmitted; // consume ')' character.
1427 if (CurVariant == -1)
1428 O << '}'; // this is gcc's behavior for } outside a variant
1429 else
1430 CurVariant = -1;
1431 break;
1433 if (Done) break;
1435 bool HasCurlyBraces = false;
1436 if (*LastEmitted == '{') { // ${variable}
1437 ++LastEmitted; // Consume '{' character.
1438 HasCurlyBraces = true;
1441 // If we have ${:foo}, then this is not a real operand reference, it is a
1442 // "magic" string reference, just like in .td files. Arrange to call
1443 // PrintSpecial.
1444 if (HasCurlyBraces && *LastEmitted == ':') {
1445 ++LastEmitted;
1446 const char *StrStart = LastEmitted;
1447 const char *StrEnd = strchr(StrStart, '}');
1448 if (StrEnd == 0) {
1449 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1450 + std::string(AsmStr) + "'");
1453 std::string Val(StrStart, StrEnd);
1454 PrintSpecial(MI, Val.c_str());
1455 LastEmitted = StrEnd+1;
1456 break;
1459 const char *IDStart = LastEmitted;
1460 char *IDEnd;
1461 errno = 0;
1462 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1463 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1464 llvm_report_error("Bad $ operand number in inline asm string: '"
1465 + std::string(AsmStr) + "'");
1467 LastEmitted = IDEnd;
1469 char Modifier[2] = { 0, 0 };
1471 if (HasCurlyBraces) {
1472 // If we have curly braces, check for a modifier character. This
1473 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1474 if (*LastEmitted == ':') {
1475 ++LastEmitted; // Consume ':' character.
1476 if (*LastEmitted == 0) {
1477 llvm_report_error("Bad ${:} expression in inline asm string: '"
1478 + std::string(AsmStr) + "'");
1481 Modifier[0] = *LastEmitted;
1482 ++LastEmitted; // Consume modifier character.
1485 if (*LastEmitted != '}') {
1486 llvm_report_error("Bad ${} expression in inline asm string: '"
1487 + std::string(AsmStr) + "'");
1489 ++LastEmitted; // Consume '}' character.
1492 if ((unsigned)Val >= NumOperands-1) {
1493 llvm_report_error("Invalid $ operand number in inline asm string: '"
1494 + std::string(AsmStr) + "'");
1497 // Okay, we finally have a value number. Ask the target to print this
1498 // operand!
1499 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1500 unsigned OpNo = 1;
1502 bool Error = false;
1504 // Scan to find the machine operand number for the operand.
1505 for (; Val; --Val) {
1506 if (OpNo >= MI->getNumOperands()) break;
1507 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1508 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1511 if (OpNo >= MI->getNumOperands()) {
1512 Error = true;
1513 } else {
1514 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1515 ++OpNo; // Skip over the ID number.
1517 if (Modifier[0]=='l') // labels are target independent
1518 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1519 false, false, false);
1520 else {
1521 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1522 if ((OpFlags & 7) == 4) {
1523 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1524 Modifier[0] ? Modifier : 0);
1525 } else {
1526 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1527 Modifier[0] ? Modifier : 0);
1531 if (Error) {
1532 std::string msg;
1533 raw_string_ostream Msg(msg);
1534 Msg << "Invalid operand found in inline asm: '"
1535 << AsmStr << "'\n";
1536 MI->print(Msg);
1537 llvm_report_error(Msg.str());
1540 break;
1544 O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1547 /// printImplicitDef - This method prints the specified machine instruction
1548 /// that is an implicit def.
1549 void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1550 if (VerboseAsm)
1551 O << '\t' << TAI->getCommentString() << " implicit-def: "
1552 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1555 /// printLabel - This method prints a local label used by debug and
1556 /// exception handling tables.
1557 void AsmPrinter::printLabel(const MachineInstr *MI) const {
1558 printLabel(MI->getOperand(0).getImm());
1561 void AsmPrinter::printLabel(unsigned Id) const {
1562 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1565 /// printDeclare - This method prints a local variable declaration used by
1566 /// debug tables.
1567 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1568 /// entry into dwarf table.
1569 void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1570 unsigned FI = MI->getOperand(0).getIndex();
1571 GlobalValue *GV = MI->getOperand(1).getGlobal();
1572 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1575 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1576 /// instruction, using the specified assembler variant. Targets should
1577 /// overried this to format as appropriate.
1578 bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1579 unsigned AsmVariant, const char *ExtraCode) {
1580 // Target doesn't support this yet!
1581 return true;
1584 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1585 unsigned AsmVariant,
1586 const char *ExtraCode) {
1587 // Target doesn't support this yet!
1588 return true;
1591 /// printBasicBlockLabel - This method prints the label for the specified
1592 /// MachineBasicBlock
1593 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1594 bool printAlign,
1595 bool printColon,
1596 bool printComment) const {
1597 if (printAlign) {
1598 unsigned Align = MBB->getAlignment();
1599 if (Align)
1600 EmitAlignment(Log2_32(Align));
1603 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1604 << MBB->getNumber();
1605 if (printColon)
1606 O << ':';
1607 if (printComment && MBB->getBasicBlock())
1608 O << '\t' << TAI->getCommentString() << ' '
1609 << MBB->getBasicBlock()->getNameStr();
1612 /// printPICJumpTableSetLabel - This method prints a set label for the
1613 /// specified MachineBasicBlock for a jumptable entry.
1614 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1615 const MachineBasicBlock *MBB) const {
1616 if (!TAI->getSetDirective())
1617 return;
1619 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1620 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1621 printBasicBlockLabel(MBB, false, false, false);
1622 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1623 << '_' << uid << '\n';
1626 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1627 const MachineBasicBlock *MBB) const {
1628 if (!TAI->getSetDirective())
1629 return;
1631 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1632 << getFunctionNumber() << '_' << uid << '_' << uid2
1633 << "_set_" << MBB->getNumber() << ',';
1634 printBasicBlockLabel(MBB, false, false, false);
1635 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1636 << '_' << uid << '_' << uid2 << '\n';
1639 /// printDataDirective - This method prints the asm directive for the
1640 /// specified type.
1641 void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1642 const TargetData *TD = TM.getTargetData();
1643 switch (type->getTypeID()) {
1644 case Type::FloatTyID: case Type::DoubleTyID:
1645 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1646 assert(0 && "Should have already output floating point constant.");
1647 default:
1648 assert(0 && "Can't handle printing this type of thing");
1649 case Type::IntegerTyID: {
1650 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1651 if (BitWidth <= 8)
1652 O << TAI->getData8bitsDirective(AddrSpace);
1653 else if (BitWidth <= 16)
1654 O << TAI->getData16bitsDirective(AddrSpace);
1655 else if (BitWidth <= 32)
1656 O << TAI->getData32bitsDirective(AddrSpace);
1657 else if (BitWidth <= 64) {
1658 assert(TAI->getData64bitsDirective(AddrSpace) &&
1659 "Target cannot handle 64-bit constant exprs!");
1660 O << TAI->getData64bitsDirective(AddrSpace);
1661 } else {
1662 llvm_unreachable("Target cannot handle given data directive width!");
1664 break;
1666 case Type::PointerTyID:
1667 if (TD->getPointerSize() == 8) {
1668 assert(TAI->getData64bitsDirective(AddrSpace) &&
1669 "Target cannot handle 64-bit pointer exprs!");
1670 O << TAI->getData64bitsDirective(AddrSpace);
1671 } else if (TD->getPointerSize() == 2) {
1672 O << TAI->getData16bitsDirective(AddrSpace);
1673 } else if (TD->getPointerSize() == 1) {
1674 O << TAI->getData8bitsDirective(AddrSpace);
1675 } else {
1676 O << TAI->getData32bitsDirective(AddrSpace);
1678 break;
1682 void AsmPrinter::printVisibility(const std::string& Name,
1683 unsigned Visibility) const {
1684 if (Visibility == GlobalValue::HiddenVisibility) {
1685 if (const char *Directive = TAI->getHiddenDirective())
1686 O << Directive << Name << '\n';
1687 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1688 if (const char *Directive = TAI->getProtectedDirective())
1689 O << Directive << Name << '\n';
1693 void AsmPrinter::printOffset(int64_t Offset) const {
1694 if (Offset > 0)
1695 O << '+' << Offset;
1696 else if (Offset < 0)
1697 O << Offset;
1700 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1701 if (!S->usesMetadata())
1702 return 0;
1704 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1705 if (GCPI != GCMetadataPrinters.end())
1706 return GCPI->second;
1708 const char *Name = S->getName().c_str();
1710 for (GCMetadataPrinterRegistry::iterator
1711 I = GCMetadataPrinterRegistry::begin(),
1712 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1713 if (strcmp(Name, I->getName()) == 0) {
1714 GCMetadataPrinter *GMP = I->instantiate();
1715 GMP->S = S;
1716 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1717 return GMP;
1720 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1721 llvm_unreachable(0);
1724 /// EmitComments - Pretty-print comments for instructions
1725 void AsmPrinter::EmitComments(const MachineInstr &MI) const
1727 if (VerboseAsm) {
1728 if (!MI.getDebugLoc().isUnknown()) {
1729 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1731 // Print source line info
1732 O.PadToColumn(TAI->getCommentColumn(), 1);
1733 O << TAI->getCommentString() << " SrcLine ";
1734 if (DLT.CompileUnit->hasInitializer()) {
1735 Constant *Name = DLT.CompileUnit->getInitializer();
1736 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1737 if (NameString->isString()) {
1738 O << NameString->getAsString() << " ";
1741 O << DLT.Line;
1742 if (DLT.Col != 0)
1743 O << ":" << DLT.Col;
1748 /// EmitComments - Pretty-print comments for instructions
1749 void AsmPrinter::EmitComments(const MCInst &MI) const
1751 if (VerboseAsm) {
1752 if (!MI.getDebugLoc().isUnknown()) {
1753 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1755 // Print source line info
1756 O.PadToColumn(TAI->getCommentColumn(), 1);
1757 O << TAI->getCommentString() << " SrcLine ";
1758 if (DLT.CompileUnit->hasInitializer()) {
1759 Constant *Name = DLT.CompileUnit->getInitializer();
1760 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1761 if (NameString->isString()) {
1762 O << NameString->getAsString() << " ";
1765 O << DLT.Line;
1766 if (DLT.Col != 0)
1767 O << ":" << DLT.Col;