It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / LiveVariables.cpp
blob20345669eac58488c41c9dd7d6b10d3389918a67
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass. For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
17 // This class computes live variables using are sparse implementation based on
18 // the machine code SSA form. This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function. It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block). If a physical
24 // register is not register allocatable, it is not tracked. This is useful for
25 // things like the stack pointer and condition codes.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/ADT/DepthFirstIterator.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Config/alloca.h"
41 #include <algorithm>
42 using namespace llvm;
44 char LiveVariables::ID = 0;
45 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
48 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49 AU.addRequiredID(UnreachableMachineBlockElimID);
50 AU.setPreservesAll();
51 MachineFunctionPass::getAnalysisUsage(AU);
54 void LiveVariables::VarInfo::dump() const {
55 cerr << " Alive in blocks: ";
56 for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
57 E = AliveBlocks.end(); I != E; ++I)
58 cerr << *I << ", ";
59 cerr << "\n Killed by:";
60 if (Kills.empty())
61 cerr << " No instructions.\n";
62 else {
63 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
64 cerr << "\n #" << i << ": " << *Kills[i];
65 cerr << "\n";
69 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
70 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
71 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
72 "getVarInfo: not a virtual register!");
73 RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
74 if (RegIdx >= VirtRegInfo.size()) {
75 if (RegIdx >= 2*VirtRegInfo.size())
76 VirtRegInfo.resize(RegIdx*2);
77 else
78 VirtRegInfo.resize(2*VirtRegInfo.size());
80 return VirtRegInfo[RegIdx];
83 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
84 MachineBasicBlock *DefBlock,
85 MachineBasicBlock *MBB,
86 std::vector<MachineBasicBlock*> &WorkList) {
87 unsigned BBNum = MBB->getNumber();
89 // Check to see if this basic block is one of the killing blocks. If so,
90 // remove it.
91 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
92 if (VRInfo.Kills[i]->getParent() == MBB) {
93 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
94 break;
97 if (MBB == DefBlock) return; // Terminate recursion
99 if (VRInfo.AliveBlocks.test(BBNum))
100 return; // We already know the block is live
102 // Mark the variable known alive in this bb
103 VRInfo.AliveBlocks.set(BBNum);
105 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
106 E = MBB->pred_rend(); PI != E; ++PI)
107 WorkList.push_back(*PI);
110 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
111 MachineBasicBlock *DefBlock,
112 MachineBasicBlock *MBB) {
113 std::vector<MachineBasicBlock*> WorkList;
114 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
116 while (!WorkList.empty()) {
117 MachineBasicBlock *Pred = WorkList.back();
118 WorkList.pop_back();
119 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
123 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
124 MachineInstr *MI) {
125 assert(MRI->getVRegDef(reg) && "Register use before def!");
127 unsigned BBNum = MBB->getNumber();
129 VarInfo& VRInfo = getVarInfo(reg);
130 VRInfo.NumUses++;
132 // Check to see if this basic block is already a kill block.
133 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
134 // Yes, this register is killed in this basic block already. Increase the
135 // live range by updating the kill instruction.
136 VRInfo.Kills.back() = MI;
137 return;
140 #ifndef NDEBUG
141 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
142 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
143 #endif
145 // This situation can occur:
147 // ,------.
148 // | |
149 // | v
150 // | t2 = phi ... t1 ...
151 // | |
152 // | v
153 // | t1 = ...
154 // | ... = ... t1 ...
155 // | |
156 // `------'
158 // where there is a use in a PHI node that's a predecessor to the defining
159 // block. We don't want to mark all predecessors as having the value "alive"
160 // in this case.
161 if (MBB == MRI->getVRegDef(reg)->getParent()) return;
163 // Add a new kill entry for this basic block. If this virtual register is
164 // already marked as alive in this basic block, that means it is alive in at
165 // least one of the successor blocks, it's not a kill.
166 if (!VRInfo.AliveBlocks.test(BBNum))
167 VRInfo.Kills.push_back(MI);
169 // Update all dominating blocks to mark them as "known live".
170 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
171 E = MBB->pred_end(); PI != E; ++PI)
172 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
175 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
176 VarInfo &VRInfo = getVarInfo(Reg);
178 if (VRInfo.AliveBlocks.empty())
179 // If vr is not alive in any block, then defaults to dead.
180 VRInfo.Kills.push_back(MI);
183 /// FindLastPartialDef - Return the last partial def of the specified register.
184 /// Also returns the sub-register that's defined.
185 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
186 unsigned &PartDefReg) {
187 unsigned LastDefReg = 0;
188 unsigned LastDefDist = 0;
189 MachineInstr *LastDef = NULL;
190 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
191 unsigned SubReg = *SubRegs; ++SubRegs) {
192 MachineInstr *Def = PhysRegDef[SubReg];
193 if (!Def)
194 continue;
195 unsigned Dist = DistanceMap[Def];
196 if (Dist > LastDefDist) {
197 LastDefReg = SubReg;
198 LastDef = Def;
199 LastDefDist = Dist;
202 PartDefReg = LastDefReg;
203 return LastDef;
206 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
207 /// implicit defs to a machine instruction if there was an earlier def of its
208 /// super-register.
209 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
210 // If there was a previous use or a "full" def all is well.
211 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
212 // Otherwise, the last sub-register def implicitly defines this register.
213 // e.g.
214 // AH =
215 // AL = ... <imp-def EAX>, <imp-kill AH>
216 // = AH
217 // ...
218 // = EAX
219 // All of the sub-registers must have been defined before the use of Reg!
220 unsigned PartDefReg = 0;
221 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
222 // If LastPartialDef is NULL, it must be using a livein register.
223 if (LastPartialDef) {
224 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
225 true/*IsImp*/));
226 PhysRegDef[Reg] = LastPartialDef;
227 SmallSet<unsigned, 8> Processed;
228 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
229 unsigned SubReg = *SubRegs; ++SubRegs) {
230 if (Processed.count(SubReg))
231 continue;
232 if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
233 continue;
234 // This part of Reg was defined before the last partial def. It's killed
235 // here.
236 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
237 false/*IsDef*/,
238 true/*IsImp*/));
239 PhysRegDef[SubReg] = LastPartialDef;
240 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
241 Processed.insert(*SS);
246 // Remember this use.
247 PhysRegUse[Reg] = MI;
248 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
249 unsigned SubReg = *SubRegs; ++SubRegs)
250 PhysRegUse[SubReg] = MI;
253 /// hasRegisterUseBelow - Return true if the specified register is used after
254 /// the current instruction and before it's next definition.
255 bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
256 MachineBasicBlock::iterator I,
257 MachineBasicBlock *MBB) {
258 if (I == MBB->end())
259 return false;
261 // First find out if there are any uses / defs below.
262 bool hasDistInfo = true;
263 unsigned CurDist = DistanceMap[I];
264 SmallVector<MachineInstr*, 4> Uses;
265 SmallVector<MachineInstr*, 4> Defs;
266 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
267 RE = MRI->reg_end(); RI != RE; ++RI) {
268 MachineOperand &UDO = RI.getOperand();
269 MachineInstr *UDMI = &*RI;
270 if (UDMI->getParent() != MBB)
271 continue;
272 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
273 bool isBelow = false;
274 if (DI == DistanceMap.end()) {
275 // Must be below if it hasn't been assigned a distance yet.
276 isBelow = true;
277 hasDistInfo = false;
278 } else if (DI->second > CurDist)
279 isBelow = true;
280 if (isBelow) {
281 if (UDO.isUse())
282 Uses.push_back(UDMI);
283 if (UDO.isDef())
284 Defs.push_back(UDMI);
288 if (Uses.empty())
289 // No uses below.
290 return false;
291 else if (!Uses.empty() && Defs.empty())
292 // There are uses below but no defs below.
293 return true;
294 // There are both uses and defs below. We need to know which comes first.
295 if (!hasDistInfo) {
296 // Complete DistanceMap for this MBB. This information is computed only
297 // once per MBB.
298 ++I;
299 ++CurDist;
300 for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
301 DistanceMap.insert(std::make_pair(I, CurDist));
304 unsigned EarliestUse = DistanceMap[Uses[0]];
305 for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
306 unsigned Dist = DistanceMap[Uses[i]];
307 if (Dist < EarliestUse)
308 EarliestUse = Dist;
310 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
311 unsigned Dist = DistanceMap[Defs[i]];
312 if (Dist < EarliestUse)
313 // The register is defined before its first use below.
314 return false;
316 return true;
319 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
320 if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
321 return false;
323 MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
324 ? PhysRegUse[Reg] : PhysRegDef[Reg];
325 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
326 // The whole register is used.
327 // AL =
328 // AH =
330 // = AX
331 // = AL, AX<imp-use, kill>
332 // AX =
334 // Or whole register is defined, but not used at all.
335 // AX<dead> =
336 // ...
337 // AX =
339 // Or whole register is defined, but only partly used.
340 // AX<dead> = AL<imp-def>
341 // = AL<kill>
342 // AX =
343 SmallSet<unsigned, 8> PartUses;
344 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
345 unsigned SubReg = *SubRegs; ++SubRegs) {
346 if (MachineInstr *Use = PhysRegUse[SubReg]) {
347 PartUses.insert(SubReg);
348 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
349 PartUses.insert(*SS);
350 unsigned Dist = DistanceMap[Use];
351 if (Dist > LastRefOrPartRefDist) {
352 LastRefOrPartRefDist = Dist;
353 LastRefOrPartRef = Use;
358 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
359 // If the last reference is the last def, then it's not used at all.
360 // That is, unless we are currently processing the last reference itself.
361 LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
363 // Partial uses. Mark register def dead and add implicit def of
364 // sub-registers which are used.
365 // EAX<dead> = op AL<imp-def>
366 // That is, EAX def is dead but AL def extends pass it.
367 // Enable this after live interval analysis is fixed to improve codegen!
368 else if (!PhysRegUse[Reg]) {
369 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
371 unsigned SubReg = *SubRegs; ++SubRegs) {
372 if (PartUses.count(SubReg)) {
373 bool NeedDef = true;
374 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
375 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
376 if (MO) {
377 NeedDef = false;
378 assert(!MO->isDead());
381 if (NeedDef)
382 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
383 true, true));
384 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
385 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
386 PartUses.erase(*SS);
390 else
391 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
392 return true;
395 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
396 // What parts of the register are previously defined?
397 SmallSet<unsigned, 32> Live;
398 if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
399 Live.insert(Reg);
400 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
401 Live.insert(*SS);
402 } else {
403 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
404 unsigned SubReg = *SubRegs; ++SubRegs) {
405 // If a register isn't itself defined, but all parts that make up of it
406 // are defined, then consider it also defined.
407 // e.g.
408 // AL =
409 // AH =
410 // = AX
411 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
412 Live.insert(SubReg);
413 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
414 Live.insert(*SS);
419 // Start from the largest piece, find the last time any part of the register
420 // is referenced.
421 if (!HandlePhysRegKill(Reg, MI)) {
422 // Only some of the sub-registers are used.
423 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
424 unsigned SubReg = *SubRegs; ++SubRegs) {
425 if (!Live.count(SubReg))
426 // Skip if this sub-register isn't defined.
427 continue;
428 if (HandlePhysRegKill(SubReg, MI)) {
429 Live.erase(SubReg);
430 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
431 Live.erase(*SS);
434 assert(Live.empty() && "Not all defined registers are killed / dead?");
437 if (MI) {
438 // Does this extend the live range of a super-register?
439 SmallSet<unsigned, 8> Processed;
440 for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
441 unsigned SuperReg = *SuperRegs; ++SuperRegs) {
442 if (Processed.count(SuperReg))
443 continue;
444 MachineInstr *LastRef = PhysRegUse[SuperReg]
445 ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
446 if (LastRef && LastRef != MI) {
447 // The larger register is previously defined. Now a smaller part is
448 // being re-defined. Treat it as read/mod/write if there are uses
449 // below.
450 // EAX =
451 // AX = EAX<imp-use,kill>, EAX<imp-def>
452 // ...
453 /// = EAX
454 if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
455 MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
456 true/*IsImp*/,true/*IsKill*/));
457 MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
458 true/*IsImp*/));
459 PhysRegDef[SuperReg] = MI;
460 PhysRegUse[SuperReg] = NULL;
461 Processed.insert(SuperReg);
462 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
463 PhysRegDef[*SS] = MI;
464 PhysRegUse[*SS] = NULL;
465 Processed.insert(*SS);
467 } else {
468 // Otherwise, the super register is killed.
469 if (HandlePhysRegKill(SuperReg, MI)) {
470 PhysRegDef[SuperReg] = NULL;
471 PhysRegUse[SuperReg] = NULL;
472 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
473 PhysRegDef[*SS] = NULL;
474 PhysRegUse[*SS] = NULL;
475 Processed.insert(*SS);
482 // Remember this def.
483 PhysRegDef[Reg] = MI;
484 PhysRegUse[Reg] = NULL;
485 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
486 unsigned SubReg = *SubRegs; ++SubRegs) {
487 PhysRegDef[SubReg] = MI;
488 PhysRegUse[SubReg] = NULL;
493 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
494 MF = &mf;
495 MRI = &mf.getRegInfo();
496 TRI = MF->getTarget().getRegisterInfo();
498 ReservedRegisters = TRI->getReservedRegs(mf);
500 unsigned NumRegs = TRI->getNumRegs();
501 PhysRegDef = new MachineInstr*[NumRegs];
502 PhysRegUse = new MachineInstr*[NumRegs];
503 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
504 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
505 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
507 /// Get some space for a respectable number of registers.
508 VirtRegInfo.resize(64);
510 analyzePHINodes(mf);
512 // Calculate live variable information in depth first order on the CFG of the
513 // function. This guarantees that we will see the definition of a virtual
514 // register before its uses due to dominance properties of SSA (except for PHI
515 // nodes, which are treated as a special case).
516 MachineBasicBlock *Entry = MF->begin();
517 SmallPtrSet<MachineBasicBlock*,16> Visited;
519 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
520 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
521 DFI != E; ++DFI) {
522 MachineBasicBlock *MBB = *DFI;
524 // Mark live-in registers as live-in.
525 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
526 EE = MBB->livein_end(); II != EE; ++II) {
527 assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
528 "Cannot have a live-in virtual register!");
529 HandlePhysRegDef(*II, 0);
532 // Loop over all of the instructions, processing them.
533 DistanceMap.clear();
534 unsigned Dist = 0;
535 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
536 I != E; ++I) {
537 MachineInstr *MI = I;
538 DistanceMap.insert(std::make_pair(MI, Dist++));
540 // Process all of the operands of the instruction...
541 unsigned NumOperandsToProcess = MI->getNumOperands();
543 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
544 // of the uses. They will be handled in other basic blocks.
545 if (MI->getOpcode() == TargetInstrInfo::PHI)
546 NumOperandsToProcess = 1;
548 SmallVector<unsigned, 4> UseRegs;
549 SmallVector<unsigned, 4> DefRegs;
550 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
551 const MachineOperand &MO = MI->getOperand(i);
552 if (!MO.isReg() || MO.getReg() == 0)
553 continue;
554 unsigned MOReg = MO.getReg();
555 if (MO.isUse())
556 UseRegs.push_back(MOReg);
557 if (MO.isDef())
558 DefRegs.push_back(MOReg);
561 // Process all uses.
562 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
563 unsigned MOReg = UseRegs[i];
564 if (TargetRegisterInfo::isVirtualRegister(MOReg))
565 HandleVirtRegUse(MOReg, MBB, MI);
566 else if (!ReservedRegisters[MOReg])
567 HandlePhysRegUse(MOReg, MI);
570 // Process all defs.
571 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
572 unsigned MOReg = DefRegs[i];
573 if (TargetRegisterInfo::isVirtualRegister(MOReg))
574 HandleVirtRegDef(MOReg, MI);
575 else if (!ReservedRegisters[MOReg])
576 HandlePhysRegDef(MOReg, MI);
580 // Handle any virtual assignments from PHI nodes which might be at the
581 // bottom of this basic block. We check all of our successor blocks to see
582 // if they have PHI nodes, and if so, we simulate an assignment at the end
583 // of the current block.
584 if (!PHIVarInfo[MBB->getNumber()].empty()) {
585 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
587 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
588 E = VarInfoVec.end(); I != E; ++I)
589 // Mark it alive only in the block we are representing.
590 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
591 MBB);
594 // Finally, if the last instruction in the block is a return, make sure to
595 // mark it as using all of the live-out values in the function.
596 if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
597 MachineInstr *Ret = &MBB->back();
599 for (MachineRegisterInfo::liveout_iterator
600 I = MF->getRegInfo().liveout_begin(),
601 E = MF->getRegInfo().liveout_end(); I != E; ++I) {
602 assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
603 "Cannot have a live-out virtual register!");
604 HandlePhysRegUse(*I, Ret);
606 // Add live-out registers as implicit uses.
607 if (!Ret->readsRegister(*I))
608 Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
612 // Loop over PhysRegDef / PhysRegUse, killing any registers that are
613 // available at the end of the basic block.
614 for (unsigned i = 0; i != NumRegs; ++i)
615 if (PhysRegDef[i] || PhysRegUse[i])
616 HandlePhysRegDef(i, 0);
618 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
619 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
622 // Convert and transfer the dead / killed information we have gathered into
623 // VirtRegInfo onto MI's.
624 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
625 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
626 if (VirtRegInfo[i].Kills[j] ==
627 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
628 VirtRegInfo[i]
629 .Kills[j]->addRegisterDead(i +
630 TargetRegisterInfo::FirstVirtualRegister,
631 TRI);
632 else
633 VirtRegInfo[i]
634 .Kills[j]->addRegisterKilled(i +
635 TargetRegisterInfo::FirstVirtualRegister,
636 TRI);
638 // Check to make sure there are no unreachable blocks in the MC CFG for the
639 // function. If so, it is due to a bug in the instruction selector or some
640 // other part of the code generator if this happens.
641 #ifndef NDEBUG
642 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
643 assert(Visited.count(&*i) != 0 && "unreachable basic block found");
644 #endif
646 delete[] PhysRegDef;
647 delete[] PhysRegUse;
648 delete[] PHIVarInfo;
650 return false;
653 /// replaceKillInstruction - Update register kill info by replacing a kill
654 /// instruction with a new one.
655 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
656 MachineInstr *NewMI) {
657 VarInfo &VI = getVarInfo(Reg);
658 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
661 /// removeVirtualRegistersKilled - Remove all killed info for the specified
662 /// instruction.
663 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
664 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
665 MachineOperand &MO = MI->getOperand(i);
666 if (MO.isReg() && MO.isKill()) {
667 MO.setIsKill(false);
668 unsigned Reg = MO.getReg();
669 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
670 bool removed = getVarInfo(Reg).removeKill(MI);
671 assert(removed && "kill not in register's VarInfo?");
672 removed = true;
678 /// analyzePHINodes - Gather information about the PHI nodes in here. In
679 /// particular, we want to map the variable information of a virtual register
680 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
682 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
683 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
684 I != E; ++I)
685 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
686 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
687 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
688 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
689 .push_back(BBI->getOperand(i).getReg());