It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / MachineInstr.cpp
blobdd2fef7ff0015db1fad32333ae7fec4288d2e94b
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/InlineAsm.h"
17 #include "llvm/Value.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetInstrDesc.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Analysis/DebugInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/FoldingSet.h"
32 using namespace llvm;
34 //===----------------------------------------------------------------------===//
35 // MachineOperand Implementation
36 //===----------------------------------------------------------------------===//
38 /// AddRegOperandToRegInfo - Add this register operand to the specified
39 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
40 /// explicitly nulled out.
41 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
42 assert(isReg() && "Can only add reg operand to use lists");
44 // If the reginfo pointer is null, just explicitly null out or next/prev
45 // pointers, to ensure they are not garbage.
46 if (RegInfo == 0) {
47 Contents.Reg.Prev = 0;
48 Contents.Reg.Next = 0;
49 return;
52 // Otherwise, add this operand to the head of the registers use/def list.
53 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
55 // For SSA values, we prefer to keep the definition at the start of the list.
56 // we do this by skipping over the definition if it is at the head of the
57 // list.
58 if (*Head && (*Head)->isDef())
59 Head = &(*Head)->Contents.Reg.Next;
61 Contents.Reg.Next = *Head;
62 if (Contents.Reg.Next) {
63 assert(getReg() == Contents.Reg.Next->getReg() &&
64 "Different regs on the same list!");
65 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
68 Contents.Reg.Prev = Head;
69 *Head = this;
72 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
73 /// MachineRegisterInfo it is linked with.
74 void MachineOperand::RemoveRegOperandFromRegInfo() {
75 assert(isOnRegUseList() && "Reg operand is not on a use list");
76 // Unlink this from the doubly linked list of operands.
77 MachineOperand *NextOp = Contents.Reg.Next;
78 *Contents.Reg.Prev = NextOp;
79 if (NextOp) {
80 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
81 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
83 Contents.Reg.Prev = 0;
84 Contents.Reg.Next = 0;
87 void MachineOperand::setReg(unsigned Reg) {
88 if (getReg() == Reg) return; // No change.
90 // Otherwise, we have to change the register. If this operand is embedded
91 // into a machine function, we need to update the old and new register's
92 // use/def lists.
93 if (MachineInstr *MI = getParent())
94 if (MachineBasicBlock *MBB = MI->getParent())
95 if (MachineFunction *MF = MBB->getParent()) {
96 RemoveRegOperandFromRegInfo();
97 Contents.Reg.RegNo = Reg;
98 AddRegOperandToRegInfo(&MF->getRegInfo());
99 return;
102 // Otherwise, just change the register, no problem. :)
103 Contents.Reg.RegNo = Reg;
106 /// ChangeToImmediate - Replace this operand with a new immediate operand of
107 /// the specified value. If an operand is known to be an immediate already,
108 /// the setImm method should be used.
109 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
110 // If this operand is currently a register operand, and if this is in a
111 // function, deregister the operand from the register's use/def list.
112 if (isReg() && getParent() && getParent()->getParent() &&
113 getParent()->getParent()->getParent())
114 RemoveRegOperandFromRegInfo();
116 OpKind = MO_Immediate;
117 Contents.ImmVal = ImmVal;
120 /// ChangeToRegister - Replace this operand with a new register operand of
121 /// the specified value. If an operand is known to be an register already,
122 /// the setReg method should be used.
123 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
124 bool isKill, bool isDead, bool isUndef) {
125 // If this operand is already a register operand, use setReg to update the
126 // register's use/def lists.
127 if (isReg()) {
128 assert(!isEarlyClobber());
129 setReg(Reg);
130 } else {
131 // Otherwise, change this to a register and set the reg#.
132 OpKind = MO_Register;
133 Contents.Reg.RegNo = Reg;
135 // If this operand is embedded in a function, add the operand to the
136 // register's use/def list.
137 if (MachineInstr *MI = getParent())
138 if (MachineBasicBlock *MBB = MI->getParent())
139 if (MachineFunction *MF = MBB->getParent())
140 AddRegOperandToRegInfo(&MF->getRegInfo());
143 IsDef = isDef;
144 IsImp = isImp;
145 IsKill = isKill;
146 IsDead = isDead;
147 IsUndef = isUndef;
148 IsEarlyClobber = false;
149 SubReg = 0;
152 /// isIdenticalTo - Return true if this operand is identical to the specified
153 /// operand.
154 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
155 if (getType() != Other.getType() ||
156 getTargetFlags() != Other.getTargetFlags())
157 return false;
159 switch (getType()) {
160 default: llvm_unreachable("Unrecognized operand type");
161 case MachineOperand::MO_Register:
162 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
163 getSubReg() == Other.getSubReg();
164 case MachineOperand::MO_Immediate:
165 return getImm() == Other.getImm();
166 case MachineOperand::MO_FPImmediate:
167 return getFPImm() == Other.getFPImm();
168 case MachineOperand::MO_MachineBasicBlock:
169 return getMBB() == Other.getMBB();
170 case MachineOperand::MO_FrameIndex:
171 return getIndex() == Other.getIndex();
172 case MachineOperand::MO_ConstantPoolIndex:
173 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
174 case MachineOperand::MO_JumpTableIndex:
175 return getIndex() == Other.getIndex();
176 case MachineOperand::MO_GlobalAddress:
177 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
178 case MachineOperand::MO_ExternalSymbol:
179 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
180 getOffset() == Other.getOffset();
184 /// print - Print the specified machine operand.
186 void MachineOperand::print(std::ostream &OS, const TargetMachine *TM) const {
187 raw_os_ostream RawOS(OS);
188 print(RawOS, TM);
191 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
192 switch (getType()) {
193 case MachineOperand::MO_Register:
194 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
195 OS << "%reg" << getReg();
196 } else {
197 // If the instruction is embedded into a basic block, we can find the
198 // target info for the instruction.
199 if (TM == 0)
200 if (const MachineInstr *MI = getParent())
201 if (const MachineBasicBlock *MBB = MI->getParent())
202 if (const MachineFunction *MF = MBB->getParent())
203 TM = &MF->getTarget();
205 if (TM)
206 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
207 else
208 OS << "%mreg" << getReg();
211 if (getSubReg() != 0)
212 OS << ':' << getSubReg();
214 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
215 isEarlyClobber()) {
216 OS << '<';
217 bool NeedComma = false;
218 if (isImplicit()) {
219 if (NeedComma) OS << ',';
220 OS << (isDef() ? "imp-def" : "imp-use");
221 NeedComma = true;
222 } else if (isDef()) {
223 if (NeedComma) OS << ',';
224 if (isEarlyClobber())
225 OS << "earlyclobber,";
226 OS << "def";
227 NeedComma = true;
229 if (isKill() || isDead() || isUndef()) {
230 if (NeedComma) OS << ',';
231 if (isKill()) OS << "kill";
232 if (isDead()) OS << "dead";
233 if (isUndef()) {
234 if (isKill() || isDead())
235 OS << ',';
236 OS << "undef";
239 OS << '>';
241 break;
242 case MachineOperand::MO_Immediate:
243 OS << getImm();
244 break;
245 case MachineOperand::MO_FPImmediate:
246 if (getFPImm()->getType() == Type::FloatTy)
247 OS << getFPImm()->getValueAPF().convertToFloat();
248 else
249 OS << getFPImm()->getValueAPF().convertToDouble();
250 break;
251 case MachineOperand::MO_MachineBasicBlock:
252 OS << "mbb<"
253 << ((Value*)getMBB()->getBasicBlock())->getName()
254 << "," << (void*)getMBB() << '>';
255 break;
256 case MachineOperand::MO_FrameIndex:
257 OS << "<fi#" << getIndex() << '>';
258 break;
259 case MachineOperand::MO_ConstantPoolIndex:
260 OS << "<cp#" << getIndex();
261 if (getOffset()) OS << "+" << getOffset();
262 OS << '>';
263 break;
264 case MachineOperand::MO_JumpTableIndex:
265 OS << "<jt#" << getIndex() << '>';
266 break;
267 case MachineOperand::MO_GlobalAddress:
268 OS << "<ga:" << ((Value*)getGlobal())->getName();
269 if (getOffset()) OS << "+" << getOffset();
270 OS << '>';
271 break;
272 case MachineOperand::MO_ExternalSymbol:
273 OS << "<es:" << getSymbolName();
274 if (getOffset()) OS << "+" << getOffset();
275 OS << '>';
276 break;
277 default:
278 llvm_unreachable("Unrecognized operand type");
281 if (unsigned TF = getTargetFlags())
282 OS << "[TF=" << TF << ']';
285 //===----------------------------------------------------------------------===//
286 // MachineMemOperand Implementation
287 //===----------------------------------------------------------------------===//
289 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
290 int64_t o, uint64_t s, unsigned int a)
291 : Offset(o), Size(s), V(v),
292 Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
293 assert(isPowerOf2_32(a) && "Alignment is not a power of 2!");
294 assert((isLoad() || isStore()) && "Not a load/store!");
297 /// Profile - Gather unique data for the object.
299 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
300 ID.AddInteger(Offset);
301 ID.AddInteger(Size);
302 ID.AddPointer(V);
303 ID.AddInteger(Flags);
306 //===----------------------------------------------------------------------===//
307 // MachineInstr Implementation
308 //===----------------------------------------------------------------------===//
310 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
311 /// TID NULL and no operands.
312 MachineInstr::MachineInstr()
313 : TID(0), NumImplicitOps(0), Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
314 // Make sure that we get added to a machine basicblock
315 LeakDetector::addGarbageObject(this);
318 void MachineInstr::addImplicitDefUseOperands() {
319 if (TID->ImplicitDefs)
320 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
321 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
322 if (TID->ImplicitUses)
323 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
324 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
327 /// MachineInstr ctor - This constructor create a MachineInstr and add the
328 /// implicit operands. It reserves space for number of operands specified by
329 /// TargetInstrDesc or the numOperands if it is not zero. (for
330 /// instructions with variable number of operands).
331 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
332 : TID(&tid), NumImplicitOps(0), Parent(0),
333 debugLoc(DebugLoc::getUnknownLoc()) {
334 if (!NoImp && TID->getImplicitDefs())
335 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
336 NumImplicitOps++;
337 if (!NoImp && TID->getImplicitUses())
338 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
339 NumImplicitOps++;
340 Operands.reserve(NumImplicitOps + TID->getNumOperands());
341 if (!NoImp)
342 addImplicitDefUseOperands();
343 // Make sure that we get added to a machine basicblock
344 LeakDetector::addGarbageObject(this);
347 /// MachineInstr ctor - As above, but with a DebugLoc.
348 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
349 bool NoImp)
350 : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
351 if (!NoImp && TID->getImplicitDefs())
352 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
353 NumImplicitOps++;
354 if (!NoImp && TID->getImplicitUses())
355 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
356 NumImplicitOps++;
357 Operands.reserve(NumImplicitOps + TID->getNumOperands());
358 if (!NoImp)
359 addImplicitDefUseOperands();
360 // Make sure that we get added to a machine basicblock
361 LeakDetector::addGarbageObject(this);
364 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
365 /// that the MachineInstr is created and added to the end of the specified
366 /// basic block.
368 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
369 : TID(&tid), NumImplicitOps(0), Parent(0),
370 debugLoc(DebugLoc::getUnknownLoc()) {
371 assert(MBB && "Cannot use inserting ctor with null basic block!");
372 if (TID->ImplicitDefs)
373 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
374 NumImplicitOps++;
375 if (TID->ImplicitUses)
376 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
377 NumImplicitOps++;
378 Operands.reserve(NumImplicitOps + TID->getNumOperands());
379 addImplicitDefUseOperands();
380 // Make sure that we get added to a machine basicblock
381 LeakDetector::addGarbageObject(this);
382 MBB->push_back(this); // Add instruction to end of basic block!
385 /// MachineInstr ctor - As above, but with a DebugLoc.
387 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
388 const TargetInstrDesc &tid)
389 : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
390 assert(MBB && "Cannot use inserting ctor with null basic block!");
391 if (TID->ImplicitDefs)
392 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
393 NumImplicitOps++;
394 if (TID->ImplicitUses)
395 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
396 NumImplicitOps++;
397 Operands.reserve(NumImplicitOps + TID->getNumOperands());
398 addImplicitDefUseOperands();
399 // Make sure that we get added to a machine basicblock
400 LeakDetector::addGarbageObject(this);
401 MBB->push_back(this); // Add instruction to end of basic block!
404 /// MachineInstr ctor - Copies MachineInstr arg exactly
406 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
407 : TID(&MI.getDesc()), NumImplicitOps(0), Parent(0),
408 debugLoc(MI.getDebugLoc()) {
409 Operands.reserve(MI.getNumOperands());
411 // Add operands
412 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
413 addOperand(MI.getOperand(i));
414 NumImplicitOps = MI.NumImplicitOps;
416 // Add memory operands.
417 for (std::list<MachineMemOperand>::const_iterator i = MI.memoperands_begin(),
418 j = MI.memoperands_end(); i != j; ++i)
419 addMemOperand(MF, *i);
421 // Set parent to null.
422 Parent = 0;
424 LeakDetector::addGarbageObject(this);
427 MachineInstr::~MachineInstr() {
428 LeakDetector::removeGarbageObject(this);
429 assert(MemOperands.empty() &&
430 "MachineInstr being deleted with live memoperands!");
431 #ifndef NDEBUG
432 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
433 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
434 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
435 "Reg operand def/use list corrupted");
437 #endif
440 /// getRegInfo - If this instruction is embedded into a MachineFunction,
441 /// return the MachineRegisterInfo object for the current function, otherwise
442 /// return null.
443 MachineRegisterInfo *MachineInstr::getRegInfo() {
444 if (MachineBasicBlock *MBB = getParent())
445 return &MBB->getParent()->getRegInfo();
446 return 0;
449 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
450 /// this instruction from their respective use lists. This requires that the
451 /// operands already be on their use lists.
452 void MachineInstr::RemoveRegOperandsFromUseLists() {
453 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
454 if (Operands[i].isReg())
455 Operands[i].RemoveRegOperandFromRegInfo();
459 /// AddRegOperandsToUseLists - Add all of the register operands in
460 /// this instruction from their respective use lists. This requires that the
461 /// operands not be on their use lists yet.
462 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
463 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
464 if (Operands[i].isReg())
465 Operands[i].AddRegOperandToRegInfo(&RegInfo);
470 /// addOperand - Add the specified operand to the instruction. If it is an
471 /// implicit operand, it is added to the end of the operand list. If it is
472 /// an explicit operand it is added at the end of the explicit operand list
473 /// (before the first implicit operand).
474 void MachineInstr::addOperand(const MachineOperand &Op) {
475 bool isImpReg = Op.isReg() && Op.isImplicit();
476 assert((isImpReg || !OperandsComplete()) &&
477 "Trying to add an operand to a machine instr that is already done!");
479 MachineRegisterInfo *RegInfo = getRegInfo();
481 // If we are adding the operand to the end of the list, our job is simpler.
482 // This is true most of the time, so this is a reasonable optimization.
483 if (isImpReg || NumImplicitOps == 0) {
484 // We can only do this optimization if we know that the operand list won't
485 // reallocate.
486 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
487 Operands.push_back(Op);
489 // Set the parent of the operand.
490 Operands.back().ParentMI = this;
492 // If the operand is a register, update the operand's use list.
493 if (Op.isReg())
494 Operands.back().AddRegOperandToRegInfo(RegInfo);
495 return;
499 // Otherwise, we have to insert a real operand before any implicit ones.
500 unsigned OpNo = Operands.size()-NumImplicitOps;
502 // If this instruction isn't embedded into a function, then we don't need to
503 // update any operand lists.
504 if (RegInfo == 0) {
505 // Simple insertion, no reginfo update needed for other register operands.
506 Operands.insert(Operands.begin()+OpNo, Op);
507 Operands[OpNo].ParentMI = this;
509 // Do explicitly set the reginfo for this operand though, to ensure the
510 // next/prev fields are properly nulled out.
511 if (Operands[OpNo].isReg())
512 Operands[OpNo].AddRegOperandToRegInfo(0);
514 } else if (Operands.size()+1 <= Operands.capacity()) {
515 // Otherwise, we have to remove register operands from their register use
516 // list, add the operand, then add the register operands back to their use
517 // list. This also must handle the case when the operand list reallocates
518 // to somewhere else.
520 // If insertion of this operand won't cause reallocation of the operand
521 // list, just remove the implicit operands, add the operand, then re-add all
522 // the rest of the operands.
523 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
524 assert(Operands[i].isReg() && "Should only be an implicit reg!");
525 Operands[i].RemoveRegOperandFromRegInfo();
528 // Add the operand. If it is a register, add it to the reg list.
529 Operands.insert(Operands.begin()+OpNo, Op);
530 Operands[OpNo].ParentMI = this;
532 if (Operands[OpNo].isReg())
533 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
535 // Re-add all the implicit ops.
536 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
537 assert(Operands[i].isReg() && "Should only be an implicit reg!");
538 Operands[i].AddRegOperandToRegInfo(RegInfo);
540 } else {
541 // Otherwise, we will be reallocating the operand list. Remove all reg
542 // operands from their list, then readd them after the operand list is
543 // reallocated.
544 RemoveRegOperandsFromUseLists();
546 Operands.insert(Operands.begin()+OpNo, Op);
547 Operands[OpNo].ParentMI = this;
549 // Re-add all the operands.
550 AddRegOperandsToUseLists(*RegInfo);
554 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
555 /// fewer operand than it started with.
557 void MachineInstr::RemoveOperand(unsigned OpNo) {
558 assert(OpNo < Operands.size() && "Invalid operand number");
560 // Special case removing the last one.
561 if (OpNo == Operands.size()-1) {
562 // If needed, remove from the reg def/use list.
563 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
564 Operands.back().RemoveRegOperandFromRegInfo();
566 Operands.pop_back();
567 return;
570 // Otherwise, we are removing an interior operand. If we have reginfo to
571 // update, remove all operands that will be shifted down from their reg lists,
572 // move everything down, then re-add them.
573 MachineRegisterInfo *RegInfo = getRegInfo();
574 if (RegInfo) {
575 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
576 if (Operands[i].isReg())
577 Operands[i].RemoveRegOperandFromRegInfo();
581 Operands.erase(Operands.begin()+OpNo);
583 if (RegInfo) {
584 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
585 if (Operands[i].isReg())
586 Operands[i].AddRegOperandToRegInfo(RegInfo);
591 /// addMemOperand - Add a MachineMemOperand to the machine instruction,
592 /// referencing arbitrary storage.
593 void MachineInstr::addMemOperand(MachineFunction &MF,
594 const MachineMemOperand &MO) {
595 MemOperands.push_back(MO);
598 /// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands.
599 void MachineInstr::clearMemOperands(MachineFunction &MF) {
600 MemOperands.clear();
604 /// removeFromParent - This method unlinks 'this' from the containing basic
605 /// block, and returns it, but does not delete it.
606 MachineInstr *MachineInstr::removeFromParent() {
607 assert(getParent() && "Not embedded in a basic block!");
608 getParent()->remove(this);
609 return this;
613 /// eraseFromParent - This method unlinks 'this' from the containing basic
614 /// block, and deletes it.
615 void MachineInstr::eraseFromParent() {
616 assert(getParent() && "Not embedded in a basic block!");
617 getParent()->erase(this);
621 /// OperandComplete - Return true if it's illegal to add a new operand
623 bool MachineInstr::OperandsComplete() const {
624 unsigned short NumOperands = TID->getNumOperands();
625 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
626 return true; // Broken: we have all the operands of this instruction!
627 return false;
630 /// getNumExplicitOperands - Returns the number of non-implicit operands.
632 unsigned MachineInstr::getNumExplicitOperands() const {
633 unsigned NumOperands = TID->getNumOperands();
634 if (!TID->isVariadic())
635 return NumOperands;
637 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
638 const MachineOperand &MO = getOperand(i);
639 if (!MO.isReg() || !MO.isImplicit())
640 NumOperands++;
642 return NumOperands;
646 /// isLabel - Returns true if the MachineInstr represents a label.
648 bool MachineInstr::isLabel() const {
649 return getOpcode() == TargetInstrInfo::DBG_LABEL ||
650 getOpcode() == TargetInstrInfo::EH_LABEL ||
651 getOpcode() == TargetInstrInfo::GC_LABEL;
654 /// isDebugLabel - Returns true if the MachineInstr represents a debug label.
656 bool MachineInstr::isDebugLabel() const {
657 return getOpcode() == TargetInstrInfo::DBG_LABEL;
660 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
661 /// the specific register or -1 if it is not found. It further tightening
662 /// the search criteria to a use that kills the register if isKill is true.
663 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
664 const TargetRegisterInfo *TRI) const {
665 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
666 const MachineOperand &MO = getOperand(i);
667 if (!MO.isReg() || !MO.isUse())
668 continue;
669 unsigned MOReg = MO.getReg();
670 if (!MOReg)
671 continue;
672 if (MOReg == Reg ||
673 (TRI &&
674 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
675 TargetRegisterInfo::isPhysicalRegister(Reg) &&
676 TRI->isSubRegister(MOReg, Reg)))
677 if (!isKill || MO.isKill())
678 return i;
680 return -1;
683 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
684 /// the specified register or -1 if it is not found. If isDead is true, defs
685 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
686 /// also checks if there is a def of a super-register.
687 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
688 const TargetRegisterInfo *TRI) const {
689 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
690 const MachineOperand &MO = getOperand(i);
691 if (!MO.isReg() || !MO.isDef())
692 continue;
693 unsigned MOReg = MO.getReg();
694 if (MOReg == Reg ||
695 (TRI &&
696 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
697 TargetRegisterInfo::isPhysicalRegister(Reg) &&
698 TRI->isSubRegister(MOReg, Reg)))
699 if (!isDead || MO.isDead())
700 return i;
702 return -1;
705 /// findFirstPredOperandIdx() - Find the index of the first operand in the
706 /// operand list that is used to represent the predicate. It returns -1 if
707 /// none is found.
708 int MachineInstr::findFirstPredOperandIdx() const {
709 const TargetInstrDesc &TID = getDesc();
710 if (TID.isPredicable()) {
711 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
712 if (TID.OpInfo[i].isPredicate())
713 return i;
716 return -1;
719 /// isRegTiedToUseOperand - Given the index of a register def operand,
720 /// check if the register def is tied to a source operand, due to either
721 /// two-address elimination or inline assembly constraints. Returns the
722 /// first tied use operand index by reference is UseOpIdx is not null.
723 bool MachineInstr::
724 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
725 if (getOpcode() == TargetInstrInfo::INLINEASM) {
726 assert(DefOpIdx >= 2);
727 const MachineOperand &MO = getOperand(DefOpIdx);
728 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
729 return false;
730 // Determine the actual operand index that corresponds to this index.
731 unsigned DefNo = 0;
732 unsigned DefPart = 0;
733 for (unsigned i = 1, e = getNumOperands(); i < e; ) {
734 const MachineOperand &FMO = getOperand(i);
735 // After the normal asm operands there may be additional imp-def regs.
736 if (!FMO.isImm())
737 return false;
738 // Skip over this def.
739 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
740 unsigned PrevDef = i + 1;
741 i = PrevDef + NumOps;
742 if (i > DefOpIdx) {
743 DefPart = DefOpIdx - PrevDef;
744 break;
746 ++DefNo;
748 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
749 const MachineOperand &FMO = getOperand(i);
750 if (!FMO.isImm())
751 continue;
752 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
753 continue;
754 unsigned Idx;
755 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
756 Idx == DefNo) {
757 if (UseOpIdx)
758 *UseOpIdx = (unsigned)i + 1 + DefPart;
759 return true;
762 return false;
765 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
766 const TargetInstrDesc &TID = getDesc();
767 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
768 const MachineOperand &MO = getOperand(i);
769 if (MO.isReg() && MO.isUse() &&
770 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
771 if (UseOpIdx)
772 *UseOpIdx = (unsigned)i;
773 return true;
776 return false;
779 /// isRegTiedToDefOperand - Return true if the operand of the specified index
780 /// is a register use and it is tied to an def operand. It also returns the def
781 /// operand index by reference.
782 bool MachineInstr::
783 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
784 if (getOpcode() == TargetInstrInfo::INLINEASM) {
785 const MachineOperand &MO = getOperand(UseOpIdx);
786 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
787 return false;
789 // Find the flag operand corresponding to UseOpIdx
790 unsigned FlagIdx, NumOps=0;
791 for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
792 const MachineOperand &UFMO = getOperand(FlagIdx);
793 // After the normal asm operands there may be additional imp-def regs.
794 if (!UFMO.isImm())
795 return false;
796 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
797 assert(NumOps < getNumOperands() && "Invalid inline asm flag");
798 if (UseOpIdx < FlagIdx+NumOps+1)
799 break;
801 if (FlagIdx >= UseOpIdx)
802 return false;
803 const MachineOperand &UFMO = getOperand(FlagIdx);
804 unsigned DefNo;
805 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
806 if (!DefOpIdx)
807 return true;
809 unsigned DefIdx = 1;
810 // Remember to adjust the index. First operand is asm string, then there
811 // is a flag for each.
812 while (DefNo) {
813 const MachineOperand &FMO = getOperand(DefIdx);
814 assert(FMO.isImm());
815 // Skip over this def.
816 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
817 --DefNo;
819 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
820 return true;
822 return false;
825 const TargetInstrDesc &TID = getDesc();
826 if (UseOpIdx >= TID.getNumOperands())
827 return false;
828 const MachineOperand &MO = getOperand(UseOpIdx);
829 if (!MO.isReg() || !MO.isUse())
830 return false;
831 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
832 if (DefIdx == -1)
833 return false;
834 if (DefOpIdx)
835 *DefOpIdx = (unsigned)DefIdx;
836 return true;
839 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
841 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
842 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
843 const MachineOperand &MO = MI->getOperand(i);
844 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
845 continue;
846 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
847 MachineOperand &MOp = getOperand(j);
848 if (!MOp.isIdenticalTo(MO))
849 continue;
850 if (MO.isKill())
851 MOp.setIsKill();
852 else
853 MOp.setIsDead();
854 break;
859 /// copyPredicates - Copies predicate operand(s) from MI.
860 void MachineInstr::copyPredicates(const MachineInstr *MI) {
861 const TargetInstrDesc &TID = MI->getDesc();
862 if (!TID.isPredicable())
863 return;
864 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
865 if (TID.OpInfo[i].isPredicate()) {
866 // Predicated operands must be last operands.
867 addOperand(MI->getOperand(i));
872 /// isSafeToMove - Return true if it is safe to move this instruction. If
873 /// SawStore is set to true, it means that there is a store (or call) between
874 /// the instruction's location and its intended destination.
875 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
876 bool &SawStore) const {
877 // Ignore stuff that we obviously can't move.
878 if (TID->mayStore() || TID->isCall()) {
879 SawStore = true;
880 return false;
882 if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
883 return false;
885 // See if this instruction does a load. If so, we have to guarantee that the
886 // loaded value doesn't change between the load and the its intended
887 // destination. The check for isInvariantLoad gives the targe the chance to
888 // classify the load as always returning a constant, e.g. a constant pool
889 // load.
890 if (TID->mayLoad() && !TII->isInvariantLoad(this))
891 // Otherwise, this is a real load. If there is a store between the load and
892 // end of block, or if the load is volatile, we can't move it.
893 return !SawStore && !hasVolatileMemoryRef();
895 return true;
898 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
899 /// instruction which defined the specified register instead of copying it.
900 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
901 unsigned DstReg) const {
902 bool SawStore = false;
903 if (!getDesc().isRematerializable() ||
904 !TII->isTriviallyReMaterializable(this) ||
905 !isSafeToMove(TII, SawStore))
906 return false;
907 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
908 const MachineOperand &MO = getOperand(i);
909 if (!MO.isReg())
910 continue;
911 // FIXME: For now, do not remat any instruction with register operands.
912 // Later on, we can loosen the restriction is the register operands have
913 // not been modified between the def and use. Note, this is different from
914 // MachineSink because the code is no longer in two-address form (at least
915 // partially).
916 if (MO.isUse())
917 return false;
918 else if (!MO.isDead() && MO.getReg() != DstReg)
919 return false;
921 return true;
924 /// hasVolatileMemoryRef - Return true if this instruction may have a
925 /// volatile memory reference, or if the information describing the
926 /// memory reference is not available. Return false if it is known to
927 /// have no volatile memory references.
928 bool MachineInstr::hasVolatileMemoryRef() const {
929 // An instruction known never to access memory won't have a volatile access.
930 if (!TID->mayStore() &&
931 !TID->mayLoad() &&
932 !TID->isCall() &&
933 !TID->hasUnmodeledSideEffects())
934 return false;
936 // Otherwise, if the instruction has no memory reference information,
937 // conservatively assume it wasn't preserved.
938 if (memoperands_empty())
939 return true;
941 // Check the memory reference information for volatile references.
942 for (std::list<MachineMemOperand>::const_iterator I = memoperands_begin(),
943 E = memoperands_end(); I != E; ++I)
944 if (I->isVolatile())
945 return true;
947 return false;
950 void MachineInstr::dump() const {
951 cerr << " " << *this;
954 void MachineInstr::print(std::ostream &OS, const TargetMachine *TM) const {
955 raw_os_ostream RawOS(OS);
956 print(RawOS, TM);
959 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
960 // Specialize printing if op#0 is definition
961 unsigned StartOp = 0;
962 if (getNumOperands() && getOperand(0).isReg() && getOperand(0).isDef()) {
963 getOperand(0).print(OS, TM);
964 OS << " = ";
965 ++StartOp; // Don't print this operand again!
968 OS << getDesc().getName();
970 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
971 if (i != StartOp)
972 OS << ",";
973 OS << " ";
974 getOperand(i).print(OS, TM);
977 if (!memoperands_empty()) {
978 OS << ", Mem:";
979 for (std::list<MachineMemOperand>::const_iterator i = memoperands_begin(),
980 e = memoperands_end(); i != e; ++i) {
981 const MachineMemOperand &MRO = *i;
982 const Value *V = MRO.getValue();
984 assert((MRO.isLoad() || MRO.isStore()) &&
985 "SV has to be a load, store or both.");
987 if (MRO.isVolatile())
988 OS << "Volatile ";
990 if (MRO.isLoad())
991 OS << "LD";
992 if (MRO.isStore())
993 OS << "ST";
995 OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") [";
997 if (!V)
998 OS << "<unknown>";
999 else if (!V->getName().empty())
1000 OS << V->getName();
1001 else if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
1002 PSV->print(OS);
1003 } else
1004 OS << V;
1006 OS << " + " << MRO.getOffset() << "]";
1010 if (!debugLoc.isUnknown()) {
1011 const MachineFunction *MF = getParent()->getParent();
1012 DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
1013 DICompileUnit CU(DLT.CompileUnit);
1014 std::string Dir, Fn;
1015 OS << " [dbg: "
1016 << CU.getDirectory(Dir) << '/' << CU.getFilename(Fn) << ","
1017 << DLT.Line << ","
1018 << DLT.Col << "]";
1021 OS << "\n";
1024 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1025 const TargetRegisterInfo *RegInfo,
1026 bool AddIfNotFound) {
1027 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1028 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1029 bool Found = false;
1030 SmallVector<unsigned,4> DeadOps;
1031 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1032 MachineOperand &MO = getOperand(i);
1033 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1034 continue;
1035 unsigned Reg = MO.getReg();
1036 if (!Reg)
1037 continue;
1039 if (Reg == IncomingReg) {
1040 if (!Found) {
1041 if (MO.isKill())
1042 // The register is already marked kill.
1043 return true;
1044 if (isPhysReg && isRegTiedToDefOperand(i))
1045 // Two-address uses of physregs must not be marked kill.
1046 return true;
1047 MO.setIsKill();
1048 Found = true;
1050 } else if (hasAliases && MO.isKill() &&
1051 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1052 // A super-register kill already exists.
1053 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1054 return true;
1055 if (RegInfo->isSubRegister(IncomingReg, Reg))
1056 DeadOps.push_back(i);
1060 // Trim unneeded kill operands.
1061 while (!DeadOps.empty()) {
1062 unsigned OpIdx = DeadOps.back();
1063 if (getOperand(OpIdx).isImplicit())
1064 RemoveOperand(OpIdx);
1065 else
1066 getOperand(OpIdx).setIsKill(false);
1067 DeadOps.pop_back();
1070 // If not found, this means an alias of one of the operands is killed. Add a
1071 // new implicit operand if required.
1072 if (!Found && AddIfNotFound) {
1073 addOperand(MachineOperand::CreateReg(IncomingReg,
1074 false /*IsDef*/,
1075 true /*IsImp*/,
1076 true /*IsKill*/));
1077 return true;
1079 return Found;
1082 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1083 const TargetRegisterInfo *RegInfo,
1084 bool AddIfNotFound) {
1085 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1086 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1087 bool Found = false;
1088 SmallVector<unsigned,4> DeadOps;
1089 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1090 MachineOperand &MO = getOperand(i);
1091 if (!MO.isReg() || !MO.isDef())
1092 continue;
1093 unsigned Reg = MO.getReg();
1094 if (!Reg)
1095 continue;
1097 if (Reg == IncomingReg) {
1098 if (!Found) {
1099 if (MO.isDead())
1100 // The register is already marked dead.
1101 return true;
1102 MO.setIsDead();
1103 Found = true;
1105 } else if (hasAliases && MO.isDead() &&
1106 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1107 // There exists a super-register that's marked dead.
1108 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1109 return true;
1110 if (RegInfo->getSubRegisters(IncomingReg) &&
1111 RegInfo->getSuperRegisters(Reg) &&
1112 RegInfo->isSubRegister(IncomingReg, Reg))
1113 DeadOps.push_back(i);
1117 // Trim unneeded dead operands.
1118 while (!DeadOps.empty()) {
1119 unsigned OpIdx = DeadOps.back();
1120 if (getOperand(OpIdx).isImplicit())
1121 RemoveOperand(OpIdx);
1122 else
1123 getOperand(OpIdx).setIsDead(false);
1124 DeadOps.pop_back();
1127 // If not found, this means an alias of one of the operands is dead. Add a
1128 // new implicit operand if required.
1129 if (Found || !AddIfNotFound)
1130 return Found;
1132 addOperand(MachineOperand::CreateReg(IncomingReg,
1133 true /*IsDef*/,
1134 true /*IsImp*/,
1135 false /*IsKill*/,
1136 true /*IsDead*/));
1137 return true;