It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / MachineSink.cpp
blobd158c481ee18ba1dbc5528314904f4562afa144a
1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks, when possible, so that
11 // they aren't executed on paths where their results aren't needed.
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "machine-sink"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 using namespace llvm;
31 STATISTIC(NumSunk, "Number of machine instructions sunk");
33 namespace {
34 class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
35 const TargetMachine *TM;
36 const TargetInstrInfo *TII;
37 MachineFunction *CurMF; // Current MachineFunction
38 MachineRegisterInfo *RegInfo; // Machine register information
39 MachineDominatorTree *DT; // Machine dominator tree
41 public:
42 static char ID; // Pass identification
43 MachineSinking() : MachineFunctionPass(&ID) {}
45 virtual bool runOnMachineFunction(MachineFunction &MF);
47 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
48 AU.setPreservesCFG();
49 MachineFunctionPass::getAnalysisUsage(AU);
50 AU.addRequired<MachineDominatorTree>();
51 AU.addPreserved<MachineDominatorTree>();
53 private:
54 bool ProcessBlock(MachineBasicBlock &MBB);
55 bool SinkInstruction(MachineInstr *MI, bool &SawStore);
56 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
58 } // end anonymous namespace
60 char MachineSinking::ID = 0;
61 static RegisterPass<MachineSinking>
62 X("machine-sink", "Machine code sinking");
64 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
66 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
67 /// occur in blocks dominated by the specified block.
68 bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
69 MachineBasicBlock *MBB) const {
70 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
71 "Only makes sense for vregs");
72 for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
73 E = RegInfo->reg_end(); I != E; ++I) {
74 if (I.getOperand().isDef()) continue; // ignore def.
76 // Determine the block of the use.
77 MachineInstr *UseInst = &*I;
78 MachineBasicBlock *UseBlock = UseInst->getParent();
79 if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
80 // PHI nodes use the operand in the predecessor block, not the block with
81 // the PHI.
82 UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
84 // Check that it dominates.
85 if (!DT->dominates(MBB, UseBlock))
86 return false;
88 return true;
93 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
94 DOUT << "******** Machine Sinking ********\n";
96 CurMF = &MF;
97 TM = &CurMF->getTarget();
98 TII = TM->getInstrInfo();
99 RegInfo = &CurMF->getRegInfo();
100 DT = &getAnalysis<MachineDominatorTree>();
102 bool EverMadeChange = false;
104 while (1) {
105 bool MadeChange = false;
107 // Process all basic blocks.
108 for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end();
109 I != E; ++I)
110 MadeChange |= ProcessBlock(*I);
112 // If this iteration over the code changed anything, keep iterating.
113 if (!MadeChange) break;
114 EverMadeChange = true;
116 return EverMadeChange;
119 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
120 // Can't sink anything out of a block that has less than two successors.
121 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
123 bool MadeChange = false;
125 // Walk the basic block bottom-up. Remember if we saw a store.
126 MachineBasicBlock::iterator I = MBB.end();
127 --I;
128 bool ProcessedBegin, SawStore = false;
129 do {
130 MachineInstr *MI = I; // The instruction to sink.
132 // Predecrement I (if it's not begin) so that it isn't invalidated by
133 // sinking.
134 ProcessedBegin = I == MBB.begin();
135 if (!ProcessedBegin)
136 --I;
138 if (SinkInstruction(MI, SawStore))
139 ++NumSunk, MadeChange = true;
141 // If we just processed the first instruction in the block, we're done.
142 } while (!ProcessedBegin);
144 return MadeChange;
147 /// SinkInstruction - Determine whether it is safe to sink the specified machine
148 /// instruction out of its current block into a successor.
149 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
150 // Check if it's safe to move the instruction.
151 if (!MI->isSafeToMove(TII, SawStore))
152 return false;
154 // FIXME: This should include support for sinking instructions within the
155 // block they are currently in to shorten the live ranges. We often get
156 // instructions sunk into the top of a large block, but it would be better to
157 // also sink them down before their first use in the block. This xform has to
158 // be careful not to *increase* register pressure though, e.g. sinking
159 // "x = y + z" down if it kills y and z would increase the live ranges of y
160 // and z and only shrink the live range of x.
162 // Loop over all the operands of the specified instruction. If there is
163 // anything we can't handle, bail out.
164 MachineBasicBlock *ParentBlock = MI->getParent();
166 // SuccToSinkTo - This is the successor to sink this instruction to, once we
167 // decide.
168 MachineBasicBlock *SuccToSinkTo = 0;
170 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
171 const MachineOperand &MO = MI->getOperand(i);
172 if (!MO.isReg()) continue; // Ignore non-register operands.
174 unsigned Reg = MO.getReg();
175 if (Reg == 0) continue;
177 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
178 // If this is a physical register use, we can't move it. If it is a def,
179 // we can move it, but only if the def is dead.
180 if (MO.isUse() || !MO.isDead())
181 return false;
182 } else {
183 // Virtual register uses are always safe to sink.
184 if (MO.isUse()) continue;
186 // If it's not safe to move defs of the register class, then abort.
187 if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
188 return false;
190 // FIXME: This picks a successor to sink into based on having one
191 // successor that dominates all the uses. However, there are cases where
192 // sinking can happen but where the sink point isn't a successor. For
193 // example:
194 // x = computation
195 // if () {} else {}
196 // use x
197 // the instruction could be sunk over the whole diamond for the
198 // if/then/else (or loop, etc), allowing it to be sunk into other blocks
199 // after that.
201 // Virtual register defs can only be sunk if all their uses are in blocks
202 // dominated by one of the successors.
203 if (SuccToSinkTo) {
204 // If a previous operand picked a block to sink to, then this operand
205 // must be sinkable to the same block.
206 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
207 return false;
208 continue;
211 // Otherwise, we should look at all the successors and decide which one
212 // we should sink to.
213 for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
214 E = ParentBlock->succ_end(); SI != E; ++SI) {
215 if (AllUsesDominatedByBlock(Reg, *SI)) {
216 SuccToSinkTo = *SI;
217 break;
221 // If we couldn't find a block to sink to, ignore this instruction.
222 if (SuccToSinkTo == 0)
223 return false;
227 // If there are no outputs, it must have side-effects.
228 if (SuccToSinkTo == 0)
229 return false;
231 // It's not safe to sink instructions to EH landing pad. Control flow into
232 // landing pad is implicitly defined.
233 if (SuccToSinkTo->isLandingPad())
234 return false;
236 // If is not possible to sink an instruction into its own block. This can
237 // happen with loops.
238 if (MI->getParent() == SuccToSinkTo)
239 return false;
241 DEBUG(cerr << "Sink instr " << *MI);
242 DEBUG(cerr << "to block " << *SuccToSinkTo);
244 // If the block has multiple predecessors, this would introduce computation on
245 // a path that it doesn't already exist. We could split the critical edge,
246 // but for now we just punt.
247 // FIXME: Split critical edges if not backedges.
248 if (SuccToSinkTo->pred_size() > 1) {
249 DEBUG(cerr << " *** PUNTING: Critical edge found\n");
250 return false;
253 // Determine where to insert into. Skip phi nodes.
254 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
255 while (InsertPos != SuccToSinkTo->end() &&
256 InsertPos->getOpcode() == TargetInstrInfo::PHI)
257 ++InsertPos;
259 // Move the instruction.
260 SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
261 ++MachineBasicBlock::iterator(MI));
262 return true;