It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / PHIElimination.cpp
blob8071b0a81a89bf0223fa6bf41b221ed7e334faf2
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIElimination.h"
18 #include "llvm/BasicBlock.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/CodeGen/LiveVariables.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/Compiler.h"
31 #include <algorithm>
32 #include <map>
33 using namespace llvm;
35 STATISTIC(NumAtomic, "Number of atomic phis lowered");
37 char PHIElimination::ID = 0;
38 static RegisterPass<PHIElimination>
39 X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
41 const PassInfo *const llvm::PHIEliminationID = &X;
43 void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
44 AU.setPreservesCFG();
45 AU.addPreserved<LiveVariables>();
46 AU.addPreservedID(MachineLoopInfoID);
47 AU.addPreservedID(MachineDominatorsID);
48 MachineFunctionPass::getAnalysisUsage(AU);
51 bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
52 MRI = &Fn.getRegInfo();
54 PHIDefs.clear();
55 PHIKills.clear();
56 analyzePHINodes(Fn);
58 bool Changed = false;
60 // Eliminate PHI instructions by inserting copies into predecessor blocks.
61 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
62 Changed |= EliminatePHINodes(Fn, *I);
64 // Remove dead IMPLICIT_DEF instructions.
65 for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
66 E = ImpDefs.end(); I != E; ++I) {
67 MachineInstr *DefMI = *I;
68 unsigned DefReg = DefMI->getOperand(0).getReg();
69 if (MRI->use_empty(DefReg))
70 DefMI->eraseFromParent();
73 ImpDefs.clear();
74 VRegPHIUseCount.clear();
75 return Changed;
79 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
80 /// predecessor basic blocks.
81 ///
82 bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
83 MachineBasicBlock &MBB) {
84 if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
85 return false; // Quick exit for basic blocks without PHIs.
87 // Get an iterator to the first instruction after the last PHI node (this may
88 // also be the end of the basic block).
89 MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
91 while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
92 LowerAtomicPHINode(MBB, AfterPHIsIt);
94 return true;
97 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
98 /// are implicit_def's.
99 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
100 const MachineRegisterInfo *MRI) {
101 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
102 unsigned SrcReg = MPhi->getOperand(i).getReg();
103 const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
104 if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
105 return false;
107 return true;
110 // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
111 // This needs to be after any def or uses of SrcReg, but before any subsequent
112 // point where control flow might jump out of the basic block.
113 MachineBasicBlock::iterator
114 llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
115 unsigned SrcReg) {
116 // Handle the trivial case trivially.
117 if (MBB.empty())
118 return MBB.begin();
120 // If this basic block does not contain an invoke, then control flow always
121 // reaches the end of it, so place the copy there. The logic below works in
122 // this case too, but is more expensive.
123 if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator()))
124 return MBB.getFirstTerminator();
126 // Discover any definition/uses in this basic block.
127 SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
128 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
129 RE = MRI->reg_end(); RI != RE; ++RI) {
130 MachineInstr *DefUseMI = &*RI;
131 if (DefUseMI->getParent() == &MBB)
132 DefUsesInMBB.insert(DefUseMI);
135 MachineBasicBlock::iterator InsertPoint;
136 if (DefUsesInMBB.empty()) {
137 // No def/uses. Insert the copy at the start of the basic block.
138 InsertPoint = MBB.begin();
139 } else if (DefUsesInMBB.size() == 1) {
140 // Insert the copy immediately after the definition/use.
141 InsertPoint = *DefUsesInMBB.begin();
142 ++InsertPoint;
143 } else {
144 // Insert the copy immediately after the last definition/use.
145 InsertPoint = MBB.end();
146 while (!DefUsesInMBB.count(&*--InsertPoint)) {}
147 ++InsertPoint;
150 // Make sure the copy goes after any phi nodes however.
151 return SkipPHIsAndLabels(MBB, InsertPoint);
154 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
155 /// under the assuption that it needs to be lowered in a way that supports
156 /// atomic execution of PHIs. This lowering method is always correct all of the
157 /// time.
158 ///
159 void llvm::PHIElimination::LowerAtomicPHINode(
160 MachineBasicBlock &MBB,
161 MachineBasicBlock::iterator AfterPHIsIt) {
162 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
163 MachineInstr *MPhi = MBB.remove(MBB.begin());
165 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
166 unsigned DestReg = MPhi->getOperand(0).getReg();
167 bool isDead = MPhi->getOperand(0).isDead();
169 // Create a new register for the incoming PHI arguments.
170 MachineFunction &MF = *MBB.getParent();
171 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
172 unsigned IncomingReg = 0;
174 // Insert a register to register copy at the top of the current block (but
175 // after any remaining phi nodes) which copies the new incoming register
176 // into the phi node destination.
177 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
178 if (isSourceDefinedByImplicitDef(MPhi, MRI))
179 // If all sources of a PHI node are implicit_def, just emit an
180 // implicit_def instead of a copy.
181 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
182 TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
183 else {
184 IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
185 TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
188 // Record PHI def.
189 assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
190 PHIDefs[DestReg] = &MBB;
192 // Update live variable information if there is any.
193 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
194 if (LV) {
195 MachineInstr *PHICopy = prior(AfterPHIsIt);
197 if (IncomingReg) {
198 // Increment use count of the newly created virtual register.
199 LV->getVarInfo(IncomingReg).NumUses++;
201 // Add information to LiveVariables to know that the incoming value is
202 // killed. Note that because the value is defined in several places (once
203 // each for each incoming block), the "def" block and instruction fields
204 // for the VarInfo is not filled in.
205 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
208 // Since we are going to be deleting the PHI node, if it is the last use of
209 // any registers, or if the value itself is dead, we need to move this
210 // information over to the new copy we just inserted.
211 LV->removeVirtualRegistersKilled(MPhi);
213 // If the result is dead, update LV.
214 if (isDead) {
215 LV->addVirtualRegisterDead(DestReg, PHICopy);
216 LV->removeVirtualRegisterDead(DestReg, MPhi);
220 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
221 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
222 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
223 MPhi->getOperand(i).getReg())];
225 // Now loop over all of the incoming arguments, changing them to copy into the
226 // IncomingReg register in the corresponding predecessor basic block.
227 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
228 for (int i = NumSrcs - 1; i >= 0; --i) {
229 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
230 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
231 "Machine PHI Operands must all be virtual registers!");
233 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
234 // path the PHI.
235 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
237 // Record the kill.
238 PHIKills[SrcReg].insert(&opBlock);
240 // If source is defined by an implicit def, there is no need to insert a
241 // copy.
242 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
243 if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
244 ImpDefs.insert(DefMI);
245 continue;
248 // Check to make sure we haven't already emitted the copy for this block.
249 // This can happen because PHI nodes may have multiple entries for the same
250 // basic block.
251 if (!MBBsInsertedInto.insert(&opBlock))
252 continue; // If the copy has already been emitted, we're done.
254 // Find a safe location to insert the copy, this may be the first terminator
255 // in the block (or end()).
256 MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
258 // Insert the copy.
259 TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
261 // Now update live variable information if we have it. Otherwise we're done
262 if (!LV) continue;
264 // We want to be able to insert a kill of the register if this PHI (aka, the
265 // copy we just inserted) is the last use of the source value. Live
266 // variable analysis conservatively handles this by saying that the value is
267 // live until the end of the block the PHI entry lives in. If the value
268 // really is dead at the PHI copy, there will be no successor blocks which
269 // have the value live-in.
271 // Check to see if the copy is the last use, and if so, update the live
272 // variables information so that it knows the copy source instruction kills
273 // the incoming value.
274 LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
276 // Loop over all of the successors of the basic block, checking to see if
277 // the value is either live in the block, or if it is killed in the block.
278 // Also check to see if this register is in use by another PHI node which
279 // has not yet been eliminated. If so, it will be killed at an appropriate
280 // point later.
282 // Is it used by any PHI instructions in this block?
283 bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
285 std::vector<MachineBasicBlock*> OpSuccBlocks;
287 // Otherwise, scan successors, including the BB the PHI node lives in.
288 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
289 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
290 MachineBasicBlock *SuccMBB = *SI;
292 // Is it alive in this successor?
293 unsigned SuccIdx = SuccMBB->getNumber();
294 if (InRegVI.AliveBlocks.test(SuccIdx)) {
295 ValueIsLive = true;
296 break;
299 OpSuccBlocks.push_back(SuccMBB);
302 // Check to see if this value is live because there is a use in a successor
303 // that kills it.
304 if (!ValueIsLive) {
305 switch (OpSuccBlocks.size()) {
306 case 1: {
307 MachineBasicBlock *MBB = OpSuccBlocks[0];
308 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
309 if (InRegVI.Kills[i]->getParent() == MBB) {
310 ValueIsLive = true;
311 break;
313 break;
315 case 2: {
316 MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
317 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
318 if (InRegVI.Kills[i]->getParent() == MBB1 ||
319 InRegVI.Kills[i]->getParent() == MBB2) {
320 ValueIsLive = true;
321 break;
323 break;
325 default:
326 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
327 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
328 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
329 InRegVI.Kills[i]->getParent())) {
330 ValueIsLive = true;
331 break;
336 // Okay, if we now know that the value is not live out of the block, we can
337 // add a kill marker in this block saying that it kills the incoming value!
338 if (!ValueIsLive) {
339 // In our final twist, we have to decide which instruction kills the
340 // register. In most cases this is the copy, however, the first
341 // terminator instruction at the end of the block may also use the value.
342 // In this case, we should mark *it* as being the killing block, not the
343 // copy.
344 MachineBasicBlock::iterator KillInst = prior(InsertPos);
345 MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
346 if (Term != opBlock.end()) {
347 if (Term->readsRegister(SrcReg))
348 KillInst = Term;
350 // Check that no other terminators use values.
351 #ifndef NDEBUG
352 for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
353 ++TI) {
354 assert(!TI->readsRegister(SrcReg) &&
355 "Terminator instructions cannot use virtual registers unless"
356 "they are the first terminator in a block!");
358 #endif
361 // Finally, mark it killed.
362 LV->addVirtualRegisterKilled(SrcReg, KillInst);
364 // This vreg no longer lives all of the way through opBlock.
365 unsigned opBlockNum = opBlock.getNumber();
366 InRegVI.AliveBlocks.reset(opBlockNum);
370 // Really delete the PHI instruction now!
371 MF.DeleteMachineInstr(MPhi);
372 ++NumAtomic;
375 /// analyzePHINodes - Gather information about the PHI nodes in here. In
376 /// particular, we want to map the number of uses of a virtual register which is
377 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
378 /// used later to determine when the vreg is killed in the BB.
380 void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
381 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
382 I != E; ++I)
383 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
384 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
385 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
386 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
387 BBI->getOperand(i).getReg())];