1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIElimination.h"
18 #include "llvm/BasicBlock.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/CodeGen/LiveVariables.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/Compiler.h"
35 STATISTIC(NumAtomic
, "Number of atomic phis lowered");
37 char PHIElimination::ID
= 0;
38 static RegisterPass
<PHIElimination
>
39 X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
41 const PassInfo
*const llvm::PHIEliminationID
= &X
;
43 void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
45 AU
.addPreserved
<LiveVariables
>();
46 AU
.addPreservedID(MachineLoopInfoID
);
47 AU
.addPreservedID(MachineDominatorsID
);
48 MachineFunctionPass::getAnalysisUsage(AU
);
51 bool llvm::PHIElimination::runOnMachineFunction(MachineFunction
&Fn
) {
52 MRI
= &Fn
.getRegInfo();
60 // Eliminate PHI instructions by inserting copies into predecessor blocks.
61 for (MachineFunction::iterator I
= Fn
.begin(), E
= Fn
.end(); I
!= E
; ++I
)
62 Changed
|= EliminatePHINodes(Fn
, *I
);
64 // Remove dead IMPLICIT_DEF instructions.
65 for (SmallPtrSet
<MachineInstr
*,4>::iterator I
= ImpDefs
.begin(),
66 E
= ImpDefs
.end(); I
!= E
; ++I
) {
67 MachineInstr
*DefMI
= *I
;
68 unsigned DefReg
= DefMI
->getOperand(0).getReg();
69 if (MRI
->use_empty(DefReg
))
70 DefMI
->eraseFromParent();
74 VRegPHIUseCount
.clear();
79 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
80 /// predecessor basic blocks.
82 bool llvm::PHIElimination::EliminatePHINodes(MachineFunction
&MF
,
83 MachineBasicBlock
&MBB
) {
84 if (MBB
.empty() || MBB
.front().getOpcode() != TargetInstrInfo::PHI
)
85 return false; // Quick exit for basic blocks without PHIs.
87 // Get an iterator to the first instruction after the last PHI node (this may
88 // also be the end of the basic block).
89 MachineBasicBlock::iterator AfterPHIsIt
= SkipPHIsAndLabels(MBB
, MBB
.begin());
91 while (MBB
.front().getOpcode() == TargetInstrInfo::PHI
)
92 LowerAtomicPHINode(MBB
, AfterPHIsIt
);
97 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
98 /// are implicit_def's.
99 static bool isSourceDefinedByImplicitDef(const MachineInstr
*MPhi
,
100 const MachineRegisterInfo
*MRI
) {
101 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2) {
102 unsigned SrcReg
= MPhi
->getOperand(i
).getReg();
103 const MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
104 if (!DefMI
|| DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
)
110 // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
111 // This needs to be after any def or uses of SrcReg, but before any subsequent
112 // point where control flow might jump out of the basic block.
113 MachineBasicBlock::iterator
114 llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock
&MBB
,
116 // Handle the trivial case trivially.
120 // If this basic block does not contain an invoke, then control flow always
121 // reaches the end of it, so place the copy there. The logic below works in
122 // this case too, but is more expensive.
123 if (!isa
<InvokeInst
>(MBB
.getBasicBlock()->getTerminator()))
124 return MBB
.getFirstTerminator();
126 // Discover any definition/uses in this basic block.
127 SmallPtrSet
<MachineInstr
*, 8> DefUsesInMBB
;
128 for (MachineRegisterInfo::reg_iterator RI
= MRI
->reg_begin(SrcReg
),
129 RE
= MRI
->reg_end(); RI
!= RE
; ++RI
) {
130 MachineInstr
*DefUseMI
= &*RI
;
131 if (DefUseMI
->getParent() == &MBB
)
132 DefUsesInMBB
.insert(DefUseMI
);
135 MachineBasicBlock::iterator InsertPoint
;
136 if (DefUsesInMBB
.empty()) {
137 // No def/uses. Insert the copy at the start of the basic block.
138 InsertPoint
= MBB
.begin();
139 } else if (DefUsesInMBB
.size() == 1) {
140 // Insert the copy immediately after the definition/use.
141 InsertPoint
= *DefUsesInMBB
.begin();
144 // Insert the copy immediately after the last definition/use.
145 InsertPoint
= MBB
.end();
146 while (!DefUsesInMBB
.count(&*--InsertPoint
)) {}
150 // Make sure the copy goes after any phi nodes however.
151 return SkipPHIsAndLabels(MBB
, InsertPoint
);
154 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
155 /// under the assuption that it needs to be lowered in a way that supports
156 /// atomic execution of PHIs. This lowering method is always correct all of the
159 void llvm::PHIElimination::LowerAtomicPHINode(
160 MachineBasicBlock
&MBB
,
161 MachineBasicBlock::iterator AfterPHIsIt
) {
162 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
163 MachineInstr
*MPhi
= MBB
.remove(MBB
.begin());
165 unsigned NumSrcs
= (MPhi
->getNumOperands() - 1) / 2;
166 unsigned DestReg
= MPhi
->getOperand(0).getReg();
167 bool isDead
= MPhi
->getOperand(0).isDead();
169 // Create a new register for the incoming PHI arguments.
170 MachineFunction
&MF
= *MBB
.getParent();
171 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(DestReg
);
172 unsigned IncomingReg
= 0;
174 // Insert a register to register copy at the top of the current block (but
175 // after any remaining phi nodes) which copies the new incoming register
176 // into the phi node destination.
177 const TargetInstrInfo
*TII
= MF
.getTarget().getInstrInfo();
178 if (isSourceDefinedByImplicitDef(MPhi
, MRI
))
179 // If all sources of a PHI node are implicit_def, just emit an
180 // implicit_def instead of a copy.
181 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
182 TII
->get(TargetInstrInfo::IMPLICIT_DEF
), DestReg
);
184 IncomingReg
= MF
.getRegInfo().createVirtualRegister(RC
);
185 TII
->copyRegToReg(MBB
, AfterPHIsIt
, DestReg
, IncomingReg
, RC
, RC
);
189 assert(!hasPHIDef(DestReg
) && "Vreg has multiple phi-defs?");
190 PHIDefs
[DestReg
] = &MBB
;
192 // Update live variable information if there is any.
193 LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>();
195 MachineInstr
*PHICopy
= prior(AfterPHIsIt
);
198 // Increment use count of the newly created virtual register.
199 LV
->getVarInfo(IncomingReg
).NumUses
++;
201 // Add information to LiveVariables to know that the incoming value is
202 // killed. Note that because the value is defined in several places (once
203 // each for each incoming block), the "def" block and instruction fields
204 // for the VarInfo is not filled in.
205 LV
->addVirtualRegisterKilled(IncomingReg
, PHICopy
);
208 // Since we are going to be deleting the PHI node, if it is the last use of
209 // any registers, or if the value itself is dead, we need to move this
210 // information over to the new copy we just inserted.
211 LV
->removeVirtualRegistersKilled(MPhi
);
213 // If the result is dead, update LV.
215 LV
->addVirtualRegisterDead(DestReg
, PHICopy
);
216 LV
->removeVirtualRegisterDead(DestReg
, MPhi
);
220 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
221 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
222 --VRegPHIUseCount
[BBVRegPair(MPhi
->getOperand(i
+ 1).getMBB(),
223 MPhi
->getOperand(i
).getReg())];
225 // Now loop over all of the incoming arguments, changing them to copy into the
226 // IncomingReg register in the corresponding predecessor basic block.
227 SmallPtrSet
<MachineBasicBlock
*, 8> MBBsInsertedInto
;
228 for (int i
= NumSrcs
- 1; i
>= 0; --i
) {
229 unsigned SrcReg
= MPhi
->getOperand(i
*2+1).getReg();
230 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
231 "Machine PHI Operands must all be virtual registers!");
233 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
235 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
*2+2).getMBB();
238 PHIKills
[SrcReg
].insert(&opBlock
);
240 // If source is defined by an implicit def, there is no need to insert a
242 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
243 if (DefMI
->getOpcode() == TargetInstrInfo::IMPLICIT_DEF
) {
244 ImpDefs
.insert(DefMI
);
248 // Check to make sure we haven't already emitted the copy for this block.
249 // This can happen because PHI nodes may have multiple entries for the same
251 if (!MBBsInsertedInto
.insert(&opBlock
))
252 continue; // If the copy has already been emitted, we're done.
254 // Find a safe location to insert the copy, this may be the first terminator
255 // in the block (or end()).
256 MachineBasicBlock::iterator InsertPos
= FindCopyInsertPoint(opBlock
, SrcReg
);
259 TII
->copyRegToReg(opBlock
, InsertPos
, IncomingReg
, SrcReg
, RC
, RC
);
261 // Now update live variable information if we have it. Otherwise we're done
264 // We want to be able to insert a kill of the register if this PHI (aka, the
265 // copy we just inserted) is the last use of the source value. Live
266 // variable analysis conservatively handles this by saying that the value is
267 // live until the end of the block the PHI entry lives in. If the value
268 // really is dead at the PHI copy, there will be no successor blocks which
269 // have the value live-in.
271 // Check to see if the copy is the last use, and if so, update the live
272 // variables information so that it knows the copy source instruction kills
273 // the incoming value.
274 LiveVariables::VarInfo
&InRegVI
= LV
->getVarInfo(SrcReg
);
276 // Loop over all of the successors of the basic block, checking to see if
277 // the value is either live in the block, or if it is killed in the block.
278 // Also check to see if this register is in use by another PHI node which
279 // has not yet been eliminated. If so, it will be killed at an appropriate
282 // Is it used by any PHI instructions in this block?
283 bool ValueIsLive
= VRegPHIUseCount
[BBVRegPair(&opBlock
, SrcReg
)] != 0;
285 std::vector
<MachineBasicBlock
*> OpSuccBlocks
;
287 // Otherwise, scan successors, including the BB the PHI node lives in.
288 for (MachineBasicBlock::succ_iterator SI
= opBlock
.succ_begin(),
289 E
= opBlock
.succ_end(); SI
!= E
&& !ValueIsLive
; ++SI
) {
290 MachineBasicBlock
*SuccMBB
= *SI
;
292 // Is it alive in this successor?
293 unsigned SuccIdx
= SuccMBB
->getNumber();
294 if (InRegVI
.AliveBlocks
.test(SuccIdx
)) {
299 OpSuccBlocks
.push_back(SuccMBB
);
302 // Check to see if this value is live because there is a use in a successor
305 switch (OpSuccBlocks
.size()) {
307 MachineBasicBlock
*MBB
= OpSuccBlocks
[0];
308 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
309 if (InRegVI
.Kills
[i
]->getParent() == MBB
) {
316 MachineBasicBlock
*MBB1
= OpSuccBlocks
[0], *MBB2
= OpSuccBlocks
[1];
317 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
318 if (InRegVI
.Kills
[i
]->getParent() == MBB1
||
319 InRegVI
.Kills
[i
]->getParent() == MBB2
) {
326 std::sort(OpSuccBlocks
.begin(), OpSuccBlocks
.end());
327 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
328 if (std::binary_search(OpSuccBlocks
.begin(), OpSuccBlocks
.end(),
329 InRegVI
.Kills
[i
]->getParent())) {
336 // Okay, if we now know that the value is not live out of the block, we can
337 // add a kill marker in this block saying that it kills the incoming value!
339 // In our final twist, we have to decide which instruction kills the
340 // register. In most cases this is the copy, however, the first
341 // terminator instruction at the end of the block may also use the value.
342 // In this case, we should mark *it* as being the killing block, not the
344 MachineBasicBlock::iterator KillInst
= prior(InsertPos
);
345 MachineBasicBlock::iterator Term
= opBlock
.getFirstTerminator();
346 if (Term
!= opBlock
.end()) {
347 if (Term
->readsRegister(SrcReg
))
350 // Check that no other terminators use values.
352 for (MachineBasicBlock::iterator TI
= next(Term
); TI
!= opBlock
.end();
354 assert(!TI
->readsRegister(SrcReg
) &&
355 "Terminator instructions cannot use virtual registers unless"
356 "they are the first terminator in a block!");
361 // Finally, mark it killed.
362 LV
->addVirtualRegisterKilled(SrcReg
, KillInst
);
364 // This vreg no longer lives all of the way through opBlock.
365 unsigned opBlockNum
= opBlock
.getNumber();
366 InRegVI
.AliveBlocks
.reset(opBlockNum
);
370 // Really delete the PHI instruction now!
371 MF
.DeleteMachineInstr(MPhi
);
375 /// analyzePHINodes - Gather information about the PHI nodes in here. In
376 /// particular, we want to map the number of uses of a virtual register which is
377 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
378 /// used later to determine when the vreg is killed in the BB.
380 void llvm::PHIElimination::analyzePHINodes(const MachineFunction
& Fn
) {
381 for (MachineFunction::const_iterator I
= Fn
.begin(), E
= Fn
.end();
383 for (MachineBasicBlock::const_iterator BBI
= I
->begin(), BBE
= I
->end();
384 BBI
!= BBE
&& BBI
->getOpcode() == TargetInstrInfo::PHI
; ++BBI
)
385 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2)
386 ++VRegPHIUseCount
[BBVRegPair(BBI
->getOperand(i
+ 1).getMBB(),
387 BBI
->getOperand(i
).getReg())];