1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
49 STATISTIC(NumIters
, "Number of iterations performed");
50 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
51 STATISTIC(NumCoalesce
, "Number of copies coalesced");
52 STATISTIC(NumDowngrade
, "Number of registers downgraded");
55 NewHeuristic("new-spilling-heuristic",
56 cl::desc("Use new spilling heuristic"),
57 cl::init(false), cl::Hidden
);
60 PreSplitIntervals("pre-alloc-split",
61 cl::desc("Pre-register allocation live interval splitting"),
62 cl::init(false), cl::Hidden
);
65 NewSpillFramework("new-spill-framework",
66 cl::desc("New spilling framework"),
67 cl::init(false), cl::Hidden
);
69 static RegisterRegAlloc
70 linearscanRegAlloc("linearscan", "linear scan register allocator",
71 createLinearScanRegisterAllocator
);
74 struct VISIBILITY_HIDDEN RALinScan
: public MachineFunctionPass
{
76 RALinScan() : MachineFunctionPass(&ID
) {}
78 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
79 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
81 /// RelatedRegClasses - This structure is built the first time a function is
82 /// compiled, and keeps track of which register classes have registers that
83 /// belong to multiple classes or have aliases that are in other classes.
84 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
85 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
87 // NextReloadMap - For each register in the map, it maps to the another
88 // register which is defined by a reload from the same stack slot and
89 // both reloads are in the same basic block.
90 DenseMap
<unsigned, unsigned> NextReloadMap
;
92 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
93 // un-favored for allocation.
94 SmallSet
<unsigned, 8> DowngradedRegs
;
96 // DowngradeMap - A map from virtual registers to physical registers being
97 // downgraded for the virtual registers.
98 DenseMap
<unsigned, unsigned> DowngradeMap
;
100 MachineFunction
* mf_
;
101 MachineRegisterInfo
* mri_
;
102 const TargetMachine
* tm_
;
103 const TargetRegisterInfo
* tri_
;
104 const TargetInstrInfo
* tii_
;
105 BitVector allocatableRegs_
;
108 const MachineLoopInfo
*loopInfo
;
110 /// handled_ - Intervals are added to the handled_ set in the order of their
111 /// start value. This is uses for backtracking.
112 std::vector
<LiveInterval
*> handled_
;
114 /// fixed_ - Intervals that correspond to machine registers.
118 /// active_ - Intervals that are currently being processed, and which have a
119 /// live range active for the current point.
120 IntervalPtrs active_
;
122 /// inactive_ - Intervals that are currently being processed, but which have
123 /// a hold at the current point.
124 IntervalPtrs inactive_
;
126 typedef std::priority_queue
<LiveInterval
*,
127 SmallVector
<LiveInterval
*, 64>,
128 greater_ptr
<LiveInterval
> > IntervalHeap
;
129 IntervalHeap unhandled_
;
131 /// regUse_ - Tracks register usage.
132 SmallVector
<unsigned, 32> regUse_
;
133 SmallVector
<unsigned, 32> regUseBackUp_
;
135 /// vrm_ - Tracks register assignments.
138 std::auto_ptr
<VirtRegRewriter
> rewriter_
;
140 std::auto_ptr
<Spiller
> spiller_
;
143 virtual const char* getPassName() const {
144 return "Linear Scan Register Allocator";
147 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
148 AU
.setPreservesCFG();
149 AU
.addRequired
<LiveIntervals
>();
151 AU
.addRequiredID(StrongPHIEliminationID
);
152 // Make sure PassManager knows which analyses to make available
153 // to coalescing and which analyses coalescing invalidates.
154 AU
.addRequiredTransitive
<RegisterCoalescer
>();
155 if (PreSplitIntervals
)
156 AU
.addRequiredID(PreAllocSplittingID
);
157 AU
.addRequired
<LiveStacks
>();
158 AU
.addPreserved
<LiveStacks
>();
159 AU
.addRequired
<MachineLoopInfo
>();
160 AU
.addPreserved
<MachineLoopInfo
>();
161 AU
.addRequired
<VirtRegMap
>();
162 AU
.addPreserved
<VirtRegMap
>();
163 AU
.addPreservedID(MachineDominatorsID
);
164 MachineFunctionPass::getAnalysisUsage(AU
);
167 /// runOnMachineFunction - register allocate the whole function
168 bool runOnMachineFunction(MachineFunction
&);
171 /// linearScan - the linear scan algorithm
174 /// initIntervalSets - initialize the interval sets.
176 void initIntervalSets();
178 /// processActiveIntervals - expire old intervals and move non-overlapping
179 /// ones to the inactive list.
180 void processActiveIntervals(unsigned CurPoint
);
182 /// processInactiveIntervals - expire old intervals and move overlapping
183 /// ones to the active list.
184 void processInactiveIntervals(unsigned CurPoint
);
186 /// hasNextReloadInterval - Return the next liveinterval that's being
187 /// defined by a reload from the same SS as the specified one.
188 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
190 /// DowngradeRegister - Downgrade a register for allocation.
191 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
193 /// UpgradeRegister - Upgrade a register for allocation.
194 void UpgradeRegister(unsigned Reg
);
196 /// assignRegOrStackSlotAtInterval - assign a register if one
197 /// is available, or spill.
198 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
200 void updateSpillWeights(std::vector
<float> &Weights
,
201 unsigned reg
, float weight
,
202 const TargetRegisterClass
*RC
);
204 /// findIntervalsToSpill - Determine the intervals to spill for the
205 /// specified interval. It's passed the physical registers whose spill
206 /// weight is the lowest among all the registers whose live intervals
207 /// conflict with the interval.
208 void findIntervalsToSpill(LiveInterval
*cur
,
209 std::vector
<std::pair
<unsigned,float> > &Candidates
,
211 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
213 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
214 /// try allocate the definition the same register as the source register
215 /// if the register is not defined during live time of the interval. This
216 /// eliminate a copy. This is used to coalesce copies which were not
217 /// coalesced away before allocation either due to dest and src being in
218 /// different register classes or because the coalescer was overly
220 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
223 /// Register usage / availability tracking helpers.
227 regUse_
.resize(tri_
->getNumRegs(), 0);
228 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
231 void finalizeRegUses() {
233 // Verify all the registers are "freed".
235 for (unsigned i
= 0, e
= tri_
->getNumRegs(); i
!= e
; ++i
) {
236 if (regUse_
[i
] != 0) {
237 cerr
<< tri_
->getName(i
) << " is still in use!\n";
245 regUseBackUp_
.clear();
248 void addRegUse(unsigned physReg
) {
249 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
250 "should be physical register!");
252 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
256 void delRegUse(unsigned physReg
) {
257 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
258 "should be physical register!");
259 assert(regUse_
[physReg
] != 0);
261 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
262 assert(regUse_
[*as
] != 0);
267 bool isRegAvail(unsigned physReg
) const {
268 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
269 "should be physical register!");
270 return regUse_
[physReg
] == 0;
273 void backUpRegUses() {
274 regUseBackUp_
= regUse_
;
277 void restoreRegUses() {
278 regUse_
= regUseBackUp_
;
282 /// Register handling helpers.
285 /// getFreePhysReg - return a free physical register for this virtual
286 /// register interval if we have one, otherwise return 0.
287 unsigned getFreePhysReg(LiveInterval
* cur
);
288 unsigned getFreePhysReg(LiveInterval
* cur
,
289 const TargetRegisterClass
*RC
,
290 unsigned MaxInactiveCount
,
291 SmallVector
<unsigned, 256> &inactiveCounts
,
294 /// assignVirt2StackSlot - assigns this virtual register to a
295 /// stack slot. returns the stack slot
296 int assignVirt2StackSlot(unsigned virtReg
);
298 void ComputeRelatedRegClasses();
300 template <typename ItTy
>
301 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
302 if (str
) DOUT
<< str
<< " intervals:\n";
303 for (; i
!= e
; ++i
) {
304 DOUT
<< "\t" << *i
->first
<< " -> ";
305 unsigned reg
= i
->first
->reg
;
306 if (TargetRegisterInfo::isVirtualRegister(reg
)) {
307 reg
= vrm_
->getPhys(reg
);
309 DOUT
<< tri_
->getName(reg
) << '\n';
313 char RALinScan::ID
= 0;
316 static RegisterPass
<RALinScan
>
317 X("linearscan-regalloc", "Linear Scan Register Allocator");
319 void RALinScan::ComputeRelatedRegClasses() {
320 // First pass, add all reg classes to the union, and determine at least one
321 // reg class that each register is in.
322 bool HasAliases
= false;
323 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
324 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
325 RelatedRegClasses
.insert(*RCI
);
326 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
328 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
330 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
332 // Already processed this register. Just make sure we know that
333 // multiple register classes share a register.
334 RelatedRegClasses
.unionSets(PRC
, *RCI
);
341 // Second pass, now that we know conservatively what register classes each reg
342 // belongs to, add info about aliases. We don't need to do this for targets
343 // without register aliases.
345 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
346 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
348 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
)
349 RelatedRegClasses
.unionSets(I
->second
, OneClassForEachPhysReg
[*AS
]);
352 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
353 /// try allocate the definition the same register as the source register
354 /// if the register is not defined during live time of the interval. This
355 /// eliminate a copy. This is used to coalesce copies which were not
356 /// coalesced away before allocation either due to dest and src being in
357 /// different register classes or because the coalescer was overly
359 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
360 unsigned Preference
= vrm_
->getRegAllocPref(cur
.reg
);
361 if ((Preference
&& Preference
== Reg
) || !cur
.containsOneValue())
364 VNInfo
*vni
= cur
.begin()->valno
;
365 if (!vni
->def
|| vni
->isUnused() || !vni
->isDefAccurate())
367 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
368 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
, PhysReg
;
370 !tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
373 if (TargetRegisterInfo::isVirtualRegister(SrcReg
)) {
374 if (!vrm_
->isAssignedReg(SrcReg
))
376 PhysReg
= vrm_
->getPhys(SrcReg
);
381 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
382 if (!RC
->contains(PhysReg
))
386 if (!li_
->conflictsWithPhysRegDef(cur
, *vrm_
, PhysReg
)) {
387 DOUT
<< "Coalescing: " << cur
<< " -> " << tri_
->getName(PhysReg
)
389 vrm_
->clearVirt(cur
.reg
);
390 vrm_
->assignVirt2Phys(cur
.reg
, PhysReg
);
392 // Remove unnecessary kills since a copy does not clobber the register.
393 if (li_
->hasInterval(SrcReg
)) {
394 LiveInterval
&SrcLI
= li_
->getInterval(SrcReg
);
395 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(cur
.reg
),
396 E
= mri_
->reg_end(); I
!= E
; ++I
) {
397 MachineOperand
&O
= I
.getOperand();
398 if (!O
.isUse() || !O
.isKill())
400 MachineInstr
*MI
= &*I
;
401 if (SrcLI
.liveAt(li_
->getDefIndex(li_
->getInstructionIndex(MI
))))
413 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
415 mri_
= &fn
.getRegInfo();
416 tm_
= &fn
.getTarget();
417 tri_
= tm_
->getRegisterInfo();
418 tii_
= tm_
->getInstrInfo();
419 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
420 li_
= &getAnalysis
<LiveIntervals
>();
421 ls_
= &getAnalysis
<LiveStacks
>();
422 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
424 // We don't run the coalescer here because we have no reason to
425 // interact with it. If the coalescer requires interaction, it
426 // won't do anything. If it doesn't require interaction, we assume
427 // it was run as a separate pass.
429 // If this is the first function compiled, compute the related reg classes.
430 if (RelatedRegClasses
.empty())
431 ComputeRelatedRegClasses();
433 // Also resize register usage trackers.
436 vrm_
= &getAnalysis
<VirtRegMap
>();
437 if (!rewriter_
.get()) rewriter_
.reset(createVirtRegRewriter());
439 if (NewSpillFramework
) {
440 spiller_
.reset(createSpiller(mf_
, li_
, ls_
, vrm_
));
447 // Rewrite spill code and update the PhysRegsUsed set.
448 rewriter_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
450 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
458 NextReloadMap
.clear();
459 DowngradedRegs
.clear();
460 DowngradeMap
.clear();
466 /// initIntervalSets - initialize the interval sets.
468 void RALinScan::initIntervalSets()
470 assert(unhandled_
.empty() && fixed_
.empty() &&
471 active_
.empty() && inactive_
.empty() &&
472 "interval sets should be empty on initialization");
474 handled_
.reserve(li_
->getNumIntervals());
476 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
477 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
478 mri_
->setPhysRegUsed(i
->second
->reg
);
479 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
481 unhandled_
.push(i
->second
);
485 void RALinScan::linearScan()
487 // linear scan algorithm
488 DOUT
<< "********** LINEAR SCAN **********\n";
489 DEBUG(errs() << "********** Function: "
490 << mf_
->getFunction()->getName() << '\n');
492 DEBUG(printIntervals("fixed", fixed_
.begin(), fixed_
.end()));
494 while (!unhandled_
.empty()) {
495 // pick the interval with the earliest start point
496 LiveInterval
* cur
= unhandled_
.top();
499 DOUT
<< "\n*** CURRENT ***: " << *cur
<< '\n';
502 processActiveIntervals(cur
->beginNumber());
503 processInactiveIntervals(cur
->beginNumber());
505 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
506 "Can only allocate virtual registers!");
509 // Allocating a virtual register. try to find a free
510 // physical register or spill an interval (possibly this one) in order to
512 assignRegOrStackSlotAtInterval(cur
);
514 DEBUG(printIntervals("active", active_
.begin(), active_
.end()));
515 DEBUG(printIntervals("inactive", inactive_
.begin(), inactive_
.end()));
518 // Expire any remaining active intervals
519 while (!active_
.empty()) {
520 IntervalPtr
&IP
= active_
.back();
521 unsigned reg
= IP
.first
->reg
;
522 DOUT
<< "\tinterval " << *IP
.first
<< " expired\n";
523 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
524 "Can only allocate virtual registers!");
525 reg
= vrm_
->getPhys(reg
);
530 // Expire any remaining inactive intervals
531 DEBUG(for (IntervalPtrs::reverse_iterator
532 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
533 DOUT
<< "\tinterval " << *i
->first
<< " expired\n");
536 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
537 MachineFunction::iterator EntryMBB
= mf_
->begin();
538 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
539 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
540 LiveInterval
&cur
= *i
->second
;
542 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
545 else if (vrm_
->isAssignedReg(cur
.reg
))
546 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
549 // Ignore splited live intervals.
550 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
553 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
555 const LiveRange
&LR
= *I
;
556 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
557 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
558 if (LiveInMBBs
[i
] != EntryMBB
) {
559 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) &&
560 "Adding a virtual register to livein set?");
561 LiveInMBBs
[i
]->addLiveIn(Reg
);
570 // Look for physical registers that end up not being allocated even though
571 // register allocator had to spill other registers in its register class.
572 if (ls_
->getNumIntervals() == 0)
574 if (!vrm_
->FindUnusedRegisters(li_
))
578 /// processActiveIntervals - expire old intervals and move non-overlapping ones
579 /// to the inactive list.
580 void RALinScan::processActiveIntervals(unsigned CurPoint
)
582 DOUT
<< "\tprocessing active intervals:\n";
584 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
585 LiveInterval
*Interval
= active_
[i
].first
;
586 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
587 unsigned reg
= Interval
->reg
;
589 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
591 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
592 DOUT
<< "\t\tinterval " << *Interval
<< " expired\n";
593 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
594 "Can only allocate virtual registers!");
595 reg
= vrm_
->getPhys(reg
);
598 // Pop off the end of the list.
599 active_
[i
] = active_
.back();
603 } else if (IntervalPos
->start
> CurPoint
) {
604 // Move inactive intervals to inactive list.
605 DOUT
<< "\t\tinterval " << *Interval
<< " inactive\n";
606 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
607 "Can only allocate virtual registers!");
608 reg
= vrm_
->getPhys(reg
);
611 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
613 // Pop off the end of the list.
614 active_
[i
] = active_
.back();
618 // Otherwise, just update the iterator position.
619 active_
[i
].second
= IntervalPos
;
624 /// processInactiveIntervals - expire old intervals and move overlapping
625 /// ones to the active list.
626 void RALinScan::processInactiveIntervals(unsigned CurPoint
)
628 DOUT
<< "\tprocessing inactive intervals:\n";
630 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
631 LiveInterval
*Interval
= inactive_
[i
].first
;
632 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
633 unsigned reg
= Interval
->reg
;
635 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
637 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
638 DOUT
<< "\t\tinterval " << *Interval
<< " expired\n";
640 // Pop off the end of the list.
641 inactive_
[i
] = inactive_
.back();
642 inactive_
.pop_back();
644 } else if (IntervalPos
->start
<= CurPoint
) {
645 // move re-activated intervals in active list
646 DOUT
<< "\t\tinterval " << *Interval
<< " active\n";
647 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
648 "Can only allocate virtual registers!");
649 reg
= vrm_
->getPhys(reg
);
652 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
654 // Pop off the end of the list.
655 inactive_
[i
] = inactive_
.back();
656 inactive_
.pop_back();
659 // Otherwise, just update the iterator position.
660 inactive_
[i
].second
= IntervalPos
;
665 /// updateSpillWeights - updates the spill weights of the specifed physical
666 /// register and its weight.
667 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
668 unsigned reg
, float weight
,
669 const TargetRegisterClass
*RC
) {
670 SmallSet
<unsigned, 4> Processed
;
671 SmallSet
<unsigned, 4> SuperAdded
;
672 SmallVector
<unsigned, 4> Supers
;
673 Weights
[reg
] += weight
;
674 Processed
.insert(reg
);
675 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
676 Weights
[*as
] += weight
;
677 Processed
.insert(*as
);
678 if (tri_
->isSubRegister(*as
, reg
) &&
679 SuperAdded
.insert(*as
) &&
681 Supers
.push_back(*as
);
685 // If the alias is a super-register, and the super-register is in the
686 // register class we are trying to allocate. Then add the weight to all
687 // sub-registers of the super-register even if they are not aliases.
688 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
689 // bl should get the same spill weight otherwise it will be choosen
690 // as a spill candidate since spilling bh doesn't make ebx available.
691 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
692 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
693 if (!Processed
.count(*sr
))
694 Weights
[*sr
] += weight
;
699 RALinScan::IntervalPtrs::iterator
700 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
701 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
703 if (I
->first
== LI
) return I
;
707 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
, unsigned Point
){
708 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
709 RALinScan::IntervalPtr
&IP
= V
[i
];
710 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
712 if (I
!= IP
.first
->begin()) --I
;
717 /// addStackInterval - Create a LiveInterval for stack if the specified live
718 /// interval has been spilled.
719 static void addStackInterval(LiveInterval
*cur
, LiveStacks
*ls_
,
721 MachineRegisterInfo
* mri_
, VirtRegMap
&vrm_
) {
722 int SS
= vrm_
.getStackSlot(cur
->reg
);
723 if (SS
== VirtRegMap::NO_STACK_SLOT
)
726 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
727 LiveInterval
&SI
= ls_
->getOrCreateInterval(SS
, RC
);
730 if (SI
.hasAtLeastOneValue())
731 VNI
= SI
.getValNumInfo(0);
733 VNI
= SI
.getNextValue(0, 0, false, ls_
->getVNInfoAllocator());
735 LiveInterval
&RI
= li_
->getInterval(cur
->reg
);
736 // FIXME: This may be overly conservative.
737 SI
.MergeRangesInAsValue(RI
, VNI
);
740 /// getConflictWeight - Return the number of conflicts between cur
741 /// live interval and defs and uses of Reg weighted by loop depthes.
743 float getConflictWeight(LiveInterval
*cur
, unsigned Reg
, LiveIntervals
*li_
,
744 MachineRegisterInfo
*mri_
,
745 const MachineLoopInfo
*loopInfo
) {
747 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
748 E
= mri_
->reg_end(); I
!= E
; ++I
) {
749 MachineInstr
*MI
= &*I
;
750 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
751 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
752 Conflicts
+= powf(10.0f
, (float)loopDepth
);
758 /// findIntervalsToSpill - Determine the intervals to spill for the
759 /// specified interval. It's passed the physical registers whose spill
760 /// weight is the lowest among all the registers whose live intervals
761 /// conflict with the interval.
762 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
763 std::vector
<std::pair
<unsigned,float> > &Candidates
,
765 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
766 // We have figured out the *best* register to spill. But there are other
767 // registers that are pretty good as well (spill weight within 3%). Spill
768 // the one that has fewest defs and uses that conflict with cur.
769 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
770 SmallVector
<LiveInterval
*, 8> SLIs
[3];
772 DOUT
<< "\tConsidering " << NumCands
<< " candidates: ";
773 DEBUG(for (unsigned i
= 0; i
!= NumCands
; ++i
)
774 DOUT
<< tri_
->getName(Candidates
[i
].first
) << " ";
777 // Calculate the number of conflicts of each candidate.
778 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
779 unsigned Reg
= i
->first
->reg
;
780 unsigned PhysReg
= vrm_
->getPhys(Reg
);
781 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
783 for (unsigned j
= 0; j
< NumCands
; ++j
) {
784 unsigned Candidate
= Candidates
[j
].first
;
785 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
787 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
788 SLIs
[j
].push_back(i
->first
);
793 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
794 unsigned Reg
= i
->first
->reg
;
795 unsigned PhysReg
= vrm_
->getPhys(Reg
);
796 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
798 for (unsigned j
= 0; j
< NumCands
; ++j
) {
799 unsigned Candidate
= Candidates
[j
].first
;
800 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
802 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
803 SLIs
[j
].push_back(i
->first
);
808 // Which is the best candidate?
809 unsigned BestCandidate
= 0;
810 float MinConflicts
= Conflicts
[0];
811 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
812 if (Conflicts
[i
] < MinConflicts
) {
814 MinConflicts
= Conflicts
[i
];
818 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
819 std::back_inserter(SpillIntervals
));
823 struct WeightCompare
{
824 typedef std::pair
<unsigned, float> RegWeightPair
;
825 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
826 return LHS
.second
< RHS
.second
;
831 static bool weightsAreClose(float w1
, float w2
) {
835 float diff
= w1
- w2
;
836 if (diff
<= 0.02f
) // Within 0.02f
838 return (diff
/ w2
) <= 0.05f
; // Within 5%.
841 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
842 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
843 if (I
== NextReloadMap
.end())
845 return &li_
->getInterval(I
->second
);
848 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
849 bool isNew
= DowngradedRegs
.insert(Reg
);
850 isNew
= isNew
; // Silence compiler warning.
851 assert(isNew
&& "Multiple reloads holding the same register?");
852 DowngradeMap
.insert(std::make_pair(li
->reg
, Reg
));
853 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
) {
854 isNew
= DowngradedRegs
.insert(*AS
);
855 isNew
= isNew
; // Silence compiler warning.
856 assert(isNew
&& "Multiple reloads holding the same register?");
857 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
862 void RALinScan::UpgradeRegister(unsigned Reg
) {
864 DowngradedRegs
.erase(Reg
);
865 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
866 DowngradedRegs
.erase(*AS
);
872 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
873 return A
->beginNumber() < B
->beginNumber();
878 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
880 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
)
882 DOUT
<< "\tallocating current interval: ";
884 // This is an implicitly defined live interval, just assign any register.
885 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
887 unsigned physReg
= vrm_
->getRegAllocPref(cur
->reg
);
889 physReg
= *RC
->allocation_order_begin(*mf_
);
890 DOUT
<< tri_
->getName(physReg
) << '\n';
891 // Note the register is not really in use.
892 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
898 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
899 unsigned StartPosition
= cur
->beginNumber();
900 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
902 // If start of this live interval is defined by a move instruction and its
903 // source is assigned a physical register that is compatible with the target
904 // register class, then we should try to assign it the same register.
905 // This can happen when the move is from a larger register class to a smaller
906 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
907 if (!vrm_
->getRegAllocPref(cur
->reg
) && cur
->hasAtLeastOneValue()) {
908 VNInfo
*vni
= cur
->begin()->valno
;
909 if (vni
->def
&& !vni
->isUnused() && vni
->isDefAccurate()) {
910 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
911 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
913 tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
)) {
915 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
917 else if (vrm_
->isAssignedReg(SrcReg
))
918 Reg
= vrm_
->getPhys(SrcReg
);
921 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
923 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
924 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
925 mri_
->setRegAllocationHint(cur
->reg
, 0, Reg
);
931 // For every interval in inactive we overlap with, mark the
932 // register as not free and update spill weights.
933 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
934 e
= inactive_
.end(); i
!= e
; ++i
) {
935 unsigned Reg
= i
->first
->reg
;
936 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
937 "Can only allocate virtual registers!");
938 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
939 // If this is not in a related reg class to the register we're allocating,
941 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
942 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
943 Reg
= vrm_
->getPhys(Reg
);
945 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
949 // Speculatively check to see if we can get a register right now. If not,
950 // we know we won't be able to by adding more constraints. If so, we can
951 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
952 // is very bad (it contains all callee clobbered registers for any functions
953 // with a call), so we want to avoid doing that if possible.
954 unsigned physReg
= getFreePhysReg(cur
);
955 unsigned BestPhysReg
= physReg
;
957 // We got a register. However, if it's in the fixed_ list, we might
958 // conflict with it. Check to see if we conflict with it or any of its
960 SmallSet
<unsigned, 8> RegAliases
;
961 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
962 RegAliases
.insert(*AS
);
964 bool ConflictsWithFixed
= false;
965 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
966 IntervalPtr
&IP
= fixed_
[i
];
967 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
968 // Okay, this reg is on the fixed list. Check to see if we actually
970 LiveInterval
*I
= IP
.first
;
971 if (I
->endNumber() > StartPosition
) {
972 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
974 if (II
!= I
->begin() && II
->start
> StartPosition
)
976 if (cur
->overlapsFrom(*I
, II
)) {
977 ConflictsWithFixed
= true;
984 // Okay, the register picked by our speculative getFreePhysReg call turned
985 // out to be in use. Actually add all of the conflicting fixed registers to
986 // regUse_ so we can do an accurate query.
987 if (ConflictsWithFixed
) {
988 // For every interval in fixed we overlap with, mark the register as not
989 // free and update spill weights.
990 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
991 IntervalPtr
&IP
= fixed_
[i
];
992 LiveInterval
*I
= IP
.first
;
994 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
995 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
996 I
->endNumber() > StartPosition
) {
997 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
999 if (II
!= I
->begin() && II
->start
> StartPosition
)
1001 if (cur
->overlapsFrom(*I
, II
)) {
1002 unsigned reg
= I
->reg
;
1004 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
1009 // Using the newly updated regUse_ object, which includes conflicts in the
1010 // future, see if there are any registers available.
1011 physReg
= getFreePhysReg(cur
);
1015 // Restore the physical register tracker, removing information about the
1019 // If we find a free register, we are done: assign this virtual to
1020 // the free physical register and add this interval to the active
1023 DOUT
<< tri_
->getName(physReg
) << '\n';
1024 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
1026 active_
.push_back(std::make_pair(cur
, cur
->begin()));
1027 handled_
.push_back(cur
);
1029 // "Upgrade" the physical register since it has been allocated.
1030 UpgradeRegister(physReg
);
1031 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
1032 // "Downgrade" physReg to try to keep physReg from being allocated until
1033 // the next reload from the same SS is allocated.
1034 mri_
->setRegAllocationHint(NextReloadLI
->reg
, 0, physReg
);
1035 DowngradeRegister(cur
, physReg
);
1039 DOUT
<< "no free registers\n";
1041 // Compile the spill weights into an array that is better for scanning.
1042 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
1043 for (std::vector
<std::pair
<unsigned, float> >::iterator
1044 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
1045 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
1047 // for each interval in active, update spill weights.
1048 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
1050 unsigned reg
= i
->first
->reg
;
1051 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1052 "Can only allocate virtual registers!");
1053 reg
= vrm_
->getPhys(reg
);
1054 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
1057 DOUT
<< "\tassigning stack slot at interval "<< *cur
<< ":\n";
1059 // Find a register to spill.
1060 float minWeight
= HUGE_VALF
;
1061 unsigned minReg
= 0;
1064 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1065 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1066 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1067 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1069 float regWeight
= SpillWeights
[reg
];
1070 if (minWeight
> regWeight
)
1072 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1075 // If we didn't find a register that is spillable, try aliases?
1077 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1078 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1080 // No need to worry about if the alias register size < regsize of RC.
1081 // We are going to spill all registers that alias it anyway.
1082 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1083 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1087 // Sort all potential spill candidates by weight.
1088 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare());
1089 minReg
= RegsWeights
[0].first
;
1090 minWeight
= RegsWeights
[0].second
;
1091 if (minWeight
== HUGE_VALF
) {
1092 // All registers must have inf weight. Just grab one!
1093 minReg
= BestPhysReg
? BestPhysReg
: *RC
->allocation_order_begin(*mf_
);
1094 if (cur
->weight
== HUGE_VALF
||
1095 li_
->getApproximateInstructionCount(*cur
) == 0) {
1096 // Spill a physical register around defs and uses.
1097 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1098 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1099 // in fixed_. Reset them.
1100 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1101 IntervalPtr
&IP
= fixed_
[i
];
1102 LiveInterval
*I
= IP
.first
;
1103 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1104 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1107 DowngradedRegs
.clear();
1108 assignRegOrStackSlotAtInterval(cur
);
1110 llvm_report_error("Ran out of registers during register allocation!");
1116 // Find up to 3 registers to consider as spill candidates.
1117 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1118 while (LastCandidate
> 1) {
1119 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1124 DOUT
<< "\t\tregister(s) with min weight(s): ";
1125 DEBUG(for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1126 DOUT
<< tri_
->getName(RegsWeights
[i
].first
)
1127 << " (" << RegsWeights
[i
].second
<< ")\n");
1129 // If the current has the minimum weight, we need to spill it and
1130 // add any added intervals back to unhandled, and restart
1132 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1133 DOUT
<< "\t\t\tspilling(c): " << *cur
<< '\n';
1134 SmallVector
<LiveInterval
*, 8> spillIs
;
1135 std::vector
<LiveInterval
*> added
;
1137 if (!NewSpillFramework
) {
1138 added
= li_
->addIntervalsForSpills(*cur
, spillIs
, loopInfo
, *vrm_
);
1140 added
= spiller_
->spill(cur
);
1143 std::sort(added
.begin(), added
.end(), LISorter());
1144 addStackInterval(cur
, ls_
, li_
, mri_
, *vrm_
);
1146 return; // Early exit if all spills were folded.
1148 // Merge added with unhandled. Note that we have already sorted
1149 // intervals returned by addIntervalsForSpills by their starting
1151 // This also update the NextReloadMap. That is, it adds mapping from a
1152 // register defined by a reload from SS to the next reload from SS in the
1153 // same basic block.
1154 MachineBasicBlock
*LastReloadMBB
= 0;
1155 LiveInterval
*LastReload
= 0;
1156 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1157 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1158 LiveInterval
*ReloadLi
= added
[i
];
1159 if (ReloadLi
->weight
== HUGE_VALF
&&
1160 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1161 unsigned ReloadIdx
= ReloadLi
->beginNumber();
1162 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1163 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1164 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1165 // Last reload of same SS is in the same MBB. We want to try to
1166 // allocate both reloads the same register and make sure the reg
1167 // isn't clobbered in between if at all possible.
1168 assert(LastReload
->beginNumber() < ReloadIdx
);
1169 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1171 LastReloadMBB
= ReloadMBB
;
1172 LastReload
= ReloadLi
;
1173 LastReloadSS
= ReloadSS
;
1175 unhandled_
.push(ReloadLi
);
1182 // Push the current interval back to unhandled since we are going
1183 // to re-run at least this iteration. Since we didn't modify it it
1184 // should go back right in the front of the list
1185 unhandled_
.push(cur
);
1187 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1188 "did not choose a register to spill?");
1190 // We spill all intervals aliasing the register with
1191 // minimum weight, rollback to the interval with the earliest
1192 // start point and let the linear scan algorithm run again
1193 SmallVector
<LiveInterval
*, 8> spillIs
;
1195 // Determine which intervals have to be spilled.
1196 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1198 // Set of spilled vregs (used later to rollback properly)
1199 SmallSet
<unsigned, 8> spilled
;
1201 // The earliest start of a Spilled interval indicates up to where
1202 // in handled we need to roll back
1204 LiveInterval
*earliestStartInterval
= cur
;
1206 // Spill live intervals of virtual regs mapped to the physical register we
1207 // want to clear (and its aliases). We only spill those that overlap with the
1208 // current interval as the rest do not affect its allocation. we also keep
1209 // track of the earliest start of all spilled live intervals since this will
1210 // mark our rollback point.
1211 std::vector
<LiveInterval
*> added
;
1212 while (!spillIs
.empty()) {
1213 LiveInterval
*sli
= spillIs
.back();
1215 DOUT
<< "\t\t\tspilling(a): " << *sli
<< '\n';
1216 earliestStartInterval
=
1217 (earliestStartInterval
->beginNumber() < sli
->beginNumber()) ?
1218 earliestStartInterval
: sli
;
1220 std::vector
<LiveInterval
*> newIs
;
1221 if (!NewSpillFramework
) {
1222 newIs
= li_
->addIntervalsForSpills(*sli
, spillIs
, loopInfo
, *vrm_
);
1224 newIs
= spiller_
->spill(sli
);
1226 addStackInterval(sli
, ls_
, li_
, mri_
, *vrm_
);
1227 std::copy(newIs
.begin(), newIs
.end(), std::back_inserter(added
));
1228 spilled
.insert(sli
->reg
);
1231 unsigned earliestStart
= earliestStartInterval
->beginNumber();
1233 DOUT
<< "\t\trolling back to: " << earliestStart
<< '\n';
1235 // Scan handled in reverse order up to the earliest start of a
1236 // spilled live interval and undo each one, restoring the state of
1238 while (!handled_
.empty()) {
1239 LiveInterval
* i
= handled_
.back();
1240 // If this interval starts before t we are done.
1241 if (i
->beginNumber() < earliestStart
)
1243 DOUT
<< "\t\t\tundo changes for: " << *i
<< '\n';
1244 handled_
.pop_back();
1246 // When undoing a live interval allocation we must know if it is active or
1247 // inactive to properly update regUse_ and the VirtRegMap.
1248 IntervalPtrs::iterator it
;
1249 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1251 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1252 if (!spilled
.count(i
->reg
))
1254 delRegUse(vrm_
->getPhys(i
->reg
));
1255 vrm_
->clearVirt(i
->reg
);
1256 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1257 inactive_
.erase(it
);
1258 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1259 if (!spilled
.count(i
->reg
))
1261 vrm_
->clearVirt(i
->reg
);
1263 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1264 "Can only allocate virtual registers!");
1265 vrm_
->clearVirt(i
->reg
);
1269 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1270 if (ii
== DowngradeMap
.end())
1271 // It interval has a preference, it must be defined by a copy. Clear the
1272 // preference now since the source interval allocation may have been
1274 mri_
->setRegAllocationHint(i
->reg
, 0, 0);
1276 UpgradeRegister(ii
->second
);
1280 // Rewind the iterators in the active, inactive, and fixed lists back to the
1281 // point we reverted to.
1282 RevertVectorIteratorsTo(active_
, earliestStart
);
1283 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1284 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1286 // Scan the rest and undo each interval that expired after t and
1287 // insert it in active (the next iteration of the algorithm will
1288 // put it in inactive if required)
1289 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1290 LiveInterval
*HI
= handled_
[i
];
1291 if (!HI
->expiredAt(earliestStart
) &&
1292 HI
->expiredAt(cur
->beginNumber())) {
1293 DOUT
<< "\t\t\tundo changes for: " << *HI
<< '\n';
1294 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1295 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1296 addRegUse(vrm_
->getPhys(HI
->reg
));
1300 // Merge added with unhandled.
1301 // This also update the NextReloadMap. That is, it adds mapping from a
1302 // register defined by a reload from SS to the next reload from SS in the
1303 // same basic block.
1304 MachineBasicBlock
*LastReloadMBB
= 0;
1305 LiveInterval
*LastReload
= 0;
1306 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1307 std::sort(added
.begin(), added
.end(), LISorter());
1308 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1309 LiveInterval
*ReloadLi
= added
[i
];
1310 if (ReloadLi
->weight
== HUGE_VALF
&&
1311 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1312 unsigned ReloadIdx
= ReloadLi
->beginNumber();
1313 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1314 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1315 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1316 // Last reload of same SS is in the same MBB. We want to try to
1317 // allocate both reloads the same register and make sure the reg
1318 // isn't clobbered in between if at all possible.
1319 assert(LastReload
->beginNumber() < ReloadIdx
);
1320 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1322 LastReloadMBB
= ReloadMBB
;
1323 LastReload
= ReloadLi
;
1324 LastReloadSS
= ReloadSS
;
1326 unhandled_
.push(ReloadLi
);
1330 unsigned RALinScan::getFreePhysReg(LiveInterval
* cur
,
1331 const TargetRegisterClass
*RC
,
1332 unsigned MaxInactiveCount
,
1333 SmallVector
<unsigned, 256> &inactiveCounts
,
1335 unsigned FreeReg
= 0;
1336 unsigned FreeRegInactiveCount
= 0;
1338 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(cur
->reg
);
1339 // Resolve second part of the hint (if possible) given the current allocation.
1340 unsigned physReg
= Hint
.second
;
1342 TargetRegisterInfo::isVirtualRegister(physReg
) && vrm_
->hasPhys(physReg
))
1343 physReg
= vrm_
->getPhys(physReg
);
1345 TargetRegisterClass::iterator I
, E
;
1346 tie(I
, E
) = tri_
->getAllocationOrder(RC
, Hint
.first
, physReg
, *mf_
);
1347 assert(I
!= E
&& "No allocatable register in this register class!");
1349 // Scan for the first available register.
1350 for (; I
!= E
; ++I
) {
1352 // Ignore "downgraded" registers.
1353 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1355 if (isRegAvail(Reg
)) {
1357 if (FreeReg
< inactiveCounts
.size())
1358 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1360 FreeRegInactiveCount
= 0;
1365 // If there are no free regs, or if this reg has the max inactive count,
1366 // return this register.
1367 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
)
1370 // Continue scanning the registers, looking for the one with the highest
1371 // inactive count. Alkis found that this reduced register pressure very
1372 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1374 for (; I
!= E
; ++I
) {
1376 // Ignore "downgraded" registers.
1377 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1379 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1380 FreeRegInactiveCount
< inactiveCounts
[Reg
]) {
1382 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1383 if (FreeRegInactiveCount
== MaxInactiveCount
)
1384 break; // We found the one with the max inactive count.
1391 /// getFreePhysReg - return a free physical register for this virtual register
1392 /// interval if we have one, otherwise return 0.
1393 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1394 SmallVector
<unsigned, 256> inactiveCounts
;
1395 unsigned MaxInactiveCount
= 0;
1397 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1398 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1400 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1402 unsigned reg
= i
->first
->reg
;
1403 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1404 "Can only allocate virtual registers!");
1406 // If this is not in a related reg class to the register we're allocating,
1408 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1409 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1410 reg
= vrm_
->getPhys(reg
);
1411 if (inactiveCounts
.size() <= reg
)
1412 inactiveCounts
.resize(reg
+1);
1413 ++inactiveCounts
[reg
];
1414 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1418 // If copy coalescer has assigned a "preferred" register, check if it's
1420 unsigned Preference
= vrm_
->getRegAllocPref(cur
->reg
);
1422 DOUT
<< "(preferred: " << tri_
->getName(Preference
) << ") ";
1423 if (isRegAvail(Preference
) &&
1424 RC
->contains(Preference
))
1428 if (!DowngradedRegs
.empty()) {
1429 unsigned FreeReg
= getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
,
1434 return getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
, false);
1437 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1438 return new RALinScan();