1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/BasicBlock.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/IndexedMap.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
39 STATISTIC(NumStores
, "Number of stores added");
40 STATISTIC(NumLoads
, "Number of loads added");
42 static RegisterRegAlloc
43 localRegAlloc("local", "local register allocator",
44 createLocalRegisterAllocator
);
47 class VISIBILITY_HIDDEN RALocal
: public MachineFunctionPass
{
50 RALocal() : MachineFunctionPass(&ID
), StackSlotForVirtReg(-1) {}
52 const TargetMachine
*TM
;
54 const TargetRegisterInfo
*TRI
;
55 const TargetInstrInfo
*TII
;
57 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
58 // values are spilled.
59 IndexedMap
<int, VirtReg2IndexFunctor
> StackSlotForVirtReg
;
61 // Virt2PhysRegMap - This map contains entries for each virtual register
62 // that is currently available in a physical register.
63 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysRegMap
;
65 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg
) {
66 return Virt2PhysRegMap
[VirtReg
];
69 // PhysRegsUsed - This array is effectively a map, containing entries for
70 // each physical register that currently has a value (ie, it is in
71 // Virt2PhysRegMap). The value mapped to is the virtual register
72 // corresponding to the physical register (the inverse of the
73 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
74 // because it is used by a future instruction, and to -2 if it is not
75 // allocatable. If the entry for a physical register is -1, then the
76 // physical register is "not in the map".
78 std::vector
<int> PhysRegsUsed
;
80 // PhysRegsUseOrder - This contains a list of the physical registers that
81 // currently have a virtual register value in them. This list provides an
82 // ordering of registers, imposing a reallocation order. This list is only
83 // used if all registers are allocated and we have to spill one, in which
84 // case we spill the least recently used register. Entries at the front of
85 // the list are the least recently used registers, entries at the back are
86 // the most recently used.
88 std::vector
<unsigned> PhysRegsUseOrder
;
90 // Virt2LastUseMap - This maps each virtual register to its last use
91 // (MachineInstr*, operand index pair).
92 IndexedMap
<std::pair
<MachineInstr
*, unsigned>, VirtReg2IndexFunctor
>
95 std::pair
<MachineInstr
*,unsigned>& getVirtRegLastUse(unsigned Reg
) {
96 assert(TargetRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
97 return Virt2LastUseMap
[Reg
];
100 // VirtRegModified - This bitset contains information about which virtual
101 // registers need to be spilled back to memory when their registers are
102 // scavenged. If a virtual register has simply been rematerialized, there
103 // is no reason to spill it to memory when we need the register back.
105 BitVector VirtRegModified
;
107 // UsedInMultipleBlocks - Tracks whether a particular register is used in
108 // more than one block.
109 BitVector UsedInMultipleBlocks
;
111 void markVirtRegModified(unsigned Reg
, bool Val
= true) {
112 assert(TargetRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
113 Reg
-= TargetRegisterInfo::FirstVirtualRegister
;
115 VirtRegModified
.set(Reg
);
117 VirtRegModified
.reset(Reg
);
120 bool isVirtRegModified(unsigned Reg
) const {
121 assert(TargetRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
122 assert(Reg
- TargetRegisterInfo::FirstVirtualRegister
< VirtRegModified
.size()
123 && "Illegal virtual register!");
124 return VirtRegModified
[Reg
- TargetRegisterInfo::FirstVirtualRegister
];
127 void AddToPhysRegsUseOrder(unsigned Reg
) {
128 std::vector
<unsigned>::iterator It
=
129 std::find(PhysRegsUseOrder
.begin(), PhysRegsUseOrder
.end(), Reg
);
130 if (It
!= PhysRegsUseOrder
.end())
131 PhysRegsUseOrder
.erase(It
);
132 PhysRegsUseOrder
.push_back(Reg
);
135 void MarkPhysRegRecentlyUsed(unsigned Reg
) {
136 if (PhysRegsUseOrder
.empty() ||
137 PhysRegsUseOrder
.back() == Reg
) return; // Already most recently used
139 for (unsigned i
= PhysRegsUseOrder
.size(); i
!= 0; --i
)
140 if (areRegsEqual(Reg
, PhysRegsUseOrder
[i
-1])) {
141 unsigned RegMatch
= PhysRegsUseOrder
[i
-1]; // remove from middle
142 PhysRegsUseOrder
.erase(PhysRegsUseOrder
.begin()+i
-1);
143 // Add it to the end of the list
144 PhysRegsUseOrder
.push_back(RegMatch
);
146 return; // Found an exact match, exit early
151 virtual const char *getPassName() const {
152 return "Local Register Allocator";
155 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
156 AU
.setPreservesCFG();
157 AU
.addRequiredID(PHIEliminationID
);
158 AU
.addRequiredID(TwoAddressInstructionPassID
);
159 MachineFunctionPass::getAnalysisUsage(AU
);
163 /// runOnMachineFunction - Register allocate the whole function
164 bool runOnMachineFunction(MachineFunction
&Fn
);
166 /// AllocateBasicBlock - Register allocate the specified basic block.
167 void AllocateBasicBlock(MachineBasicBlock
&MBB
);
170 /// areRegsEqual - This method returns true if the specified registers are
171 /// related to each other. To do this, it checks to see if they are equal
172 /// or if the first register is in the alias set of the second register.
174 bool areRegsEqual(unsigned R1
, unsigned R2
) const {
175 if (R1
== R2
) return true;
176 for (const unsigned *AliasSet
= TRI
->getAliasSet(R2
);
177 *AliasSet
; ++AliasSet
) {
178 if (*AliasSet
== R1
) return true;
183 /// getStackSpaceFor - This returns the frame index of the specified virtual
184 /// register on the stack, allocating space if necessary.
185 int getStackSpaceFor(unsigned VirtReg
, const TargetRegisterClass
*RC
);
187 /// removePhysReg - This method marks the specified physical register as no
188 /// longer being in use.
190 void removePhysReg(unsigned PhysReg
);
192 /// spillVirtReg - This method spills the value specified by PhysReg into
193 /// the virtual register slot specified by VirtReg. It then updates the RA
194 /// data structures to indicate the fact that PhysReg is now available.
196 void spillVirtReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
197 unsigned VirtReg
, unsigned PhysReg
);
199 /// spillPhysReg - This method spills the specified physical register into
200 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
201 /// true, then the request is ignored if the physical register does not
202 /// contain a virtual register.
204 void spillPhysReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
205 unsigned PhysReg
, bool OnlyVirtRegs
= false);
207 /// assignVirtToPhysReg - This method updates local state so that we know
208 /// that PhysReg is the proper container for VirtReg now. The physical
209 /// register must not be used for anything else when this is called.
211 void assignVirtToPhysReg(unsigned VirtReg
, unsigned PhysReg
);
213 /// isPhysRegAvailable - Return true if the specified physical register is
214 /// free and available for use. This also includes checking to see if
215 /// aliased registers are all free...
217 bool isPhysRegAvailable(unsigned PhysReg
) const;
219 /// getFreeReg - Look to see if there is a free register available in the
220 /// specified register class. If not, return 0.
222 unsigned getFreeReg(const TargetRegisterClass
*RC
);
224 /// getReg - Find a physical register to hold the specified virtual
225 /// register. If all compatible physical registers are used, this method
226 /// spills the last used virtual register to the stack, and uses that
227 /// register. If NoFree is true, that means the caller knows there isn't
228 /// a free register, do not call getFreeReg().
229 unsigned getReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
230 unsigned VirtReg
, bool NoFree
= false);
232 /// reloadVirtReg - This method transforms the specified virtual
233 /// register use to refer to a physical register. This method may do this
234 /// in one of several ways: if the register is available in a physical
235 /// register already, it uses that physical register. If the value is not
236 /// in a physical register, and if there are physical registers available,
237 /// it loads it into a register. If register pressure is high, and it is
238 /// possible, it tries to fold the load of the virtual register into the
239 /// instruction itself. It avoids doing this if register pressure is low to
240 /// improve the chance that subsequent instructions can use the reloaded
241 /// value. This method returns the modified instruction.
243 MachineInstr
*reloadVirtReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
244 unsigned OpNum
, SmallSet
<unsigned, 4> &RRegs
);
246 /// ComputeLocalLiveness - Computes liveness of registers within a basic
247 /// block, setting the killed/dead flags as appropriate.
248 void ComputeLocalLiveness(MachineBasicBlock
& MBB
);
250 void reloadPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&I
,
253 char RALocal::ID
= 0;
256 /// getStackSpaceFor - This allocates space for the specified virtual register
257 /// to be held on the stack.
258 int RALocal::getStackSpaceFor(unsigned VirtReg
, const TargetRegisterClass
*RC
) {
259 // Find the location Reg would belong...
260 int SS
= StackSlotForVirtReg
[VirtReg
];
262 return SS
; // Already has space allocated?
264 // Allocate a new stack object for this spill location...
265 int FrameIdx
= MF
->getFrameInfo()->CreateStackObject(RC
->getSize(),
268 // Assign the slot...
269 StackSlotForVirtReg
[VirtReg
] = FrameIdx
;
274 /// removePhysReg - This method marks the specified physical register as no
275 /// longer being in use.
277 void RALocal::removePhysReg(unsigned PhysReg
) {
278 PhysRegsUsed
[PhysReg
] = -1; // PhyReg no longer used
280 std::vector
<unsigned>::iterator It
=
281 std::find(PhysRegsUseOrder
.begin(), PhysRegsUseOrder
.end(), PhysReg
);
282 if (It
!= PhysRegsUseOrder
.end())
283 PhysRegsUseOrder
.erase(It
);
287 /// spillVirtReg - This method spills the value specified by PhysReg into the
288 /// virtual register slot specified by VirtReg. It then updates the RA data
289 /// structures to indicate the fact that PhysReg is now available.
291 void RALocal::spillVirtReg(MachineBasicBlock
&MBB
,
292 MachineBasicBlock::iterator I
,
293 unsigned VirtReg
, unsigned PhysReg
) {
294 assert(VirtReg
&& "Spilling a physical register is illegal!"
295 " Must not have appropriate kill for the register or use exists beyond"
296 " the intended one.");
297 DOUT
<< " Spilling register " << TRI
->getName(PhysReg
)
298 << " containing %reg" << VirtReg
;
300 if (!isVirtRegModified(VirtReg
)) {
301 DOUT
<< " which has not been modified, so no store necessary!";
302 std::pair
<MachineInstr
*, unsigned> &LastUse
= getVirtRegLastUse(VirtReg
);
304 LastUse
.first
->getOperand(LastUse
.second
).setIsKill();
306 // Otherwise, there is a virtual register corresponding to this physical
307 // register. We only need to spill it into its stack slot if it has been
309 const TargetRegisterClass
*RC
= MF
->getRegInfo().getRegClass(VirtReg
);
310 int FrameIndex
= getStackSpaceFor(VirtReg
, RC
);
311 DOUT
<< " to stack slot #" << FrameIndex
;
312 // If the instruction reads the register that's spilled, (e.g. this can
313 // happen if it is a move to a physical register), then the spill
314 // instruction is not a kill.
315 bool isKill
= !(I
!= MBB
.end() && I
->readsRegister(PhysReg
));
316 TII
->storeRegToStackSlot(MBB
, I
, PhysReg
, isKill
, FrameIndex
, RC
);
317 ++NumStores
; // Update statistics
320 getVirt2PhysRegMapSlot(VirtReg
) = 0; // VirtReg no longer available
323 removePhysReg(PhysReg
);
327 /// spillPhysReg - This method spills the specified physical register into the
328 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
329 /// then the request is ignored if the physical register does not contain a
330 /// virtual register.
332 void RALocal::spillPhysReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
333 unsigned PhysReg
, bool OnlyVirtRegs
) {
334 if (PhysRegsUsed
[PhysReg
] != -1) { // Only spill it if it's used!
335 assert(PhysRegsUsed
[PhysReg
] != -2 && "Non allocable reg used!");
336 if (PhysRegsUsed
[PhysReg
] || !OnlyVirtRegs
)
337 spillVirtReg(MBB
, I
, PhysRegsUsed
[PhysReg
], PhysReg
);
339 // If the selected register aliases any other registers, we must make
340 // sure that one of the aliases isn't alive.
341 for (const unsigned *AliasSet
= TRI
->getAliasSet(PhysReg
);
342 *AliasSet
; ++AliasSet
)
343 if (PhysRegsUsed
[*AliasSet
] != -1 && // Spill aliased register.
344 PhysRegsUsed
[*AliasSet
] != -2) // If allocatable.
345 if (PhysRegsUsed
[*AliasSet
])
346 spillVirtReg(MBB
, I
, PhysRegsUsed
[*AliasSet
], *AliasSet
);
351 /// assignVirtToPhysReg - This method updates local state so that we know
352 /// that PhysReg is the proper container for VirtReg now. The physical
353 /// register must not be used for anything else when this is called.
355 void RALocal::assignVirtToPhysReg(unsigned VirtReg
, unsigned PhysReg
) {
356 assert(PhysRegsUsed
[PhysReg
] == -1 && "Phys reg already assigned!");
357 // Update information to note the fact that this register was just used, and
359 PhysRegsUsed
[PhysReg
] = VirtReg
;
360 getVirt2PhysRegMapSlot(VirtReg
) = PhysReg
;
361 AddToPhysRegsUseOrder(PhysReg
); // New use of PhysReg
365 /// isPhysRegAvailable - Return true if the specified physical register is free
366 /// and available for use. This also includes checking to see if aliased
367 /// registers are all free...
369 bool RALocal::isPhysRegAvailable(unsigned PhysReg
) const {
370 if (PhysRegsUsed
[PhysReg
] != -1) return false;
372 // If the selected register aliases any other allocated registers, it is
374 for (const unsigned *AliasSet
= TRI
->getAliasSet(PhysReg
);
375 *AliasSet
; ++AliasSet
)
376 if (PhysRegsUsed
[*AliasSet
] >= 0) // Aliased register in use?
377 return false; // Can't use this reg then.
382 /// getFreeReg - Look to see if there is a free register available in the
383 /// specified register class. If not, return 0.
385 unsigned RALocal::getFreeReg(const TargetRegisterClass
*RC
) {
386 // Get iterators defining the range of registers that are valid to allocate in
387 // this class, which also specifies the preferred allocation order.
388 TargetRegisterClass::iterator RI
= RC
->allocation_order_begin(*MF
);
389 TargetRegisterClass::iterator RE
= RC
->allocation_order_end(*MF
);
391 for (; RI
!= RE
; ++RI
)
392 if (isPhysRegAvailable(*RI
)) { // Is reg unused?
393 assert(*RI
!= 0 && "Cannot use register!");
394 return *RI
; // Found an unused register!
400 /// getReg - Find a physical register to hold the specified virtual
401 /// register. If all compatible physical registers are used, this method spills
402 /// the last used virtual register to the stack, and uses that register.
404 unsigned RALocal::getReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
405 unsigned VirtReg
, bool NoFree
) {
406 const TargetRegisterClass
*RC
= MF
->getRegInfo().getRegClass(VirtReg
);
408 // First check to see if we have a free register of the requested type...
409 unsigned PhysReg
= NoFree
? 0 : getFreeReg(RC
);
411 // If we didn't find an unused register, scavenge one now!
413 assert(!PhysRegsUseOrder
.empty() && "No allocated registers??");
415 // Loop over all of the preallocated registers from the least recently used
416 // to the most recently used. When we find one that is capable of holding
417 // our register, use it.
418 for (unsigned i
= 0; PhysReg
== 0; ++i
) {
419 assert(i
!= PhysRegsUseOrder
.size() &&
420 "Couldn't find a register of the appropriate class!");
422 unsigned R
= PhysRegsUseOrder
[i
];
424 // We can only use this register if it holds a virtual register (ie, it
425 // can be spilled). Do not use it if it is an explicitly allocated
426 // physical register!
427 assert(PhysRegsUsed
[R
] != -1 &&
428 "PhysReg in PhysRegsUseOrder, but is not allocated?");
429 if (PhysRegsUsed
[R
] && PhysRegsUsed
[R
] != -2) {
430 // If the current register is compatible, use it.
431 if (RC
->contains(R
)) {
435 // If one of the registers aliased to the current register is
436 // compatible, use it.
437 for (const unsigned *AliasIt
= TRI
->getAliasSet(R
);
438 *AliasIt
; ++AliasIt
) {
439 if (RC
->contains(*AliasIt
) &&
440 // If this is pinned down for some reason, don't use it. For
441 // example, if CL is pinned, and we run across CH, don't use
442 // CH as justification for using scavenging ECX (which will
444 PhysRegsUsed
[*AliasIt
] != 0 &&
446 // Make sure the register is allocatable. Don't allocate SIL on
448 PhysRegsUsed
[*AliasIt
] != -2) {
449 PhysReg
= *AliasIt
; // Take an aliased register
457 assert(PhysReg
&& "Physical register not assigned!?!?");
459 // At this point PhysRegsUseOrder[i] is the least recently used register of
460 // compatible register class. Spill it to memory and reap its remains.
461 spillPhysReg(MBB
, I
, PhysReg
);
464 // Now that we know which register we need to assign this to, do it now!
465 assignVirtToPhysReg(VirtReg
, PhysReg
);
470 /// reloadVirtReg - This method transforms the specified virtual
471 /// register use to refer to a physical register. This method may do this in
472 /// one of several ways: if the register is available in a physical register
473 /// already, it uses that physical register. If the value is not in a physical
474 /// register, and if there are physical registers available, it loads it into a
475 /// register. If register pressure is high, and it is possible, it tries to
476 /// fold the load of the virtual register into the instruction itself. It
477 /// avoids doing this if register pressure is low to improve the chance that
478 /// subsequent instructions can use the reloaded value. This method returns the
479 /// modified instruction.
481 MachineInstr
*RALocal::reloadVirtReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
483 SmallSet
<unsigned, 4> &ReloadedRegs
) {
484 unsigned VirtReg
= MI
->getOperand(OpNum
).getReg();
486 // If the virtual register is already available, just update the instruction
488 if (unsigned PR
= getVirt2PhysRegMapSlot(VirtReg
)) {
489 MarkPhysRegRecentlyUsed(PR
); // Already have this value available!
490 MI
->getOperand(OpNum
).setReg(PR
); // Assign the input register
491 getVirtRegLastUse(VirtReg
) = std::make_pair(MI
, OpNum
);
495 // Otherwise, we need to fold it into the current instruction, or reload it.
496 // If we have registers available to hold the value, use them.
497 const TargetRegisterClass
*RC
= MF
->getRegInfo().getRegClass(VirtReg
);
498 unsigned PhysReg
= getFreeReg(RC
);
499 int FrameIndex
= getStackSpaceFor(VirtReg
, RC
);
501 if (PhysReg
) { // Register is available, allocate it!
502 assignVirtToPhysReg(VirtReg
, PhysReg
);
503 } else { // No registers available.
504 // Force some poor hapless value out of the register file to
505 // make room for the new register, and reload it.
506 PhysReg
= getReg(MBB
, MI
, VirtReg
, true);
509 markVirtRegModified(VirtReg
, false); // Note that this reg was just reloaded
511 DOUT
<< " Reloading %reg" << VirtReg
<< " into "
512 << TRI
->getName(PhysReg
) << "\n";
514 // Add move instruction(s)
515 TII
->loadRegFromStackSlot(MBB
, MI
, PhysReg
, FrameIndex
, RC
);
516 ++NumLoads
; // Update statistics
518 MF
->getRegInfo().setPhysRegUsed(PhysReg
);
519 MI
->getOperand(OpNum
).setReg(PhysReg
); // Assign the input register
520 getVirtRegLastUse(VirtReg
) = std::make_pair(MI
, OpNum
);
522 if (!ReloadedRegs
.insert(PhysReg
)) {
524 raw_string_ostream
Msg(msg
);
525 Msg
<< "Ran out of registers during register allocation!";
526 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
) {
527 Msg
<< "\nPlease check your inline asm statement for invalid "
531 llvm_report_error(Msg
.str());
533 for (const unsigned *SubRegs
= TRI
->getSubRegisters(PhysReg
);
534 *SubRegs
; ++SubRegs
) {
535 if (!ReloadedRegs
.insert(*SubRegs
)) {
537 raw_string_ostream
Msg(msg
);
538 Msg
<< "Ran out of registers during register allocation!";
539 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
) {
540 Msg
<< "\nPlease check your inline asm statement for invalid "
544 llvm_report_error(Msg
.str());
551 /// isReadModWriteImplicitKill - True if this is an implicit kill for a
552 /// read/mod/write register, i.e. update partial register.
553 static bool isReadModWriteImplicitKill(MachineInstr
*MI
, unsigned Reg
) {
554 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
555 MachineOperand
& MO
= MI
->getOperand(i
);
556 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isImplicit() &&
557 MO
.isDef() && !MO
.isDead())
563 /// isReadModWriteImplicitDef - True if this is an implicit def for a
564 /// read/mod/write register, i.e. update partial register.
565 static bool isReadModWriteImplicitDef(MachineInstr
*MI
, unsigned Reg
) {
566 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
567 MachineOperand
& MO
= MI
->getOperand(i
);
568 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isImplicit() &&
569 !MO
.isDef() && MO
.isKill())
575 // precedes - Helper function to determine with MachineInstr A
576 // precedes MachineInstr B within the same MBB.
577 static bool precedes(MachineBasicBlock::iterator A
,
578 MachineBasicBlock::iterator B
) {
582 MachineBasicBlock::iterator I
= A
->getParent()->begin();
583 while (I
!= A
->getParent()->end()) {
595 /// ComputeLocalLiveness - Computes liveness of registers within a basic
596 /// block, setting the killed/dead flags as appropriate.
597 void RALocal::ComputeLocalLiveness(MachineBasicBlock
& MBB
) {
598 MachineRegisterInfo
& MRI
= MBB
.getParent()->getRegInfo();
599 // Keep track of the most recently seen previous use or def of each reg,
600 // so that we can update them with dead/kill markers.
601 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> > LastUseDef
;
602 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
604 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
605 MachineOperand
& MO
= I
->getOperand(i
);
606 // Uses don't trigger any flags, but we need to save
607 // them for later. Also, we have to process these
608 // _before_ processing the defs, since an instr
609 // uses regs before it defs them.
610 if (MO
.isReg() && MO
.getReg() && MO
.isUse()) {
611 LastUseDef
[MO
.getReg()] = std::make_pair(I
, i
);
614 if (TargetRegisterInfo::isVirtualRegister(MO
.getReg())) continue;
616 const unsigned* Aliases
= TRI
->getAliasSet(MO
.getReg());
619 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> >::iterator
620 alias
= LastUseDef
.find(*Aliases
);
622 if (alias
!= LastUseDef
.end() && alias
->second
.first
!= I
)
623 LastUseDef
[*Aliases
] = std::make_pair(I
, i
);
631 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
632 MachineOperand
& MO
= I
->getOperand(i
);
633 // Defs others than 2-addr redefs _do_ trigger flag changes:
634 // - A def followed by a def is dead
635 // - A use followed by a def is a kill
636 if (MO
.isReg() && MO
.getReg() && MO
.isDef()) {
637 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> >::iterator
638 last
= LastUseDef
.find(MO
.getReg());
639 if (last
!= LastUseDef
.end()) {
640 // Check if this is a two address instruction. If so, then
641 // the def does not kill the use.
642 if (last
->second
.first
== I
&&
643 I
->isRegTiedToUseOperand(i
))
646 MachineOperand
& lastUD
=
647 last
->second
.first
->getOperand(last
->second
.second
);
649 lastUD
.setIsDead(true);
651 lastUD
.setIsKill(true);
654 LastUseDef
[MO
.getReg()] = std::make_pair(I
, i
);
659 // Live-out (of the function) registers contain return values of the function,
660 // so we need to make sure they are alive at return time.
661 if (!MBB
.empty() && MBB
.back().getDesc().isReturn()) {
662 MachineInstr
* Ret
= &MBB
.back();
663 for (MachineRegisterInfo::liveout_iterator
664 I
= MF
->getRegInfo().liveout_begin(),
665 E
= MF
->getRegInfo().liveout_end(); I
!= E
; ++I
)
666 if (!Ret
->readsRegister(*I
)) {
667 Ret
->addOperand(MachineOperand::CreateReg(*I
, false, true));
668 LastUseDef
[*I
] = std::make_pair(Ret
, Ret
->getNumOperands()-1);
672 // Finally, loop over the final use/def of each reg
673 // in the block and determine if it is dead.
674 for (DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> >::iterator
675 I
= LastUseDef
.begin(), E
= LastUseDef
.end(); I
!= E
; ++I
) {
676 MachineInstr
* MI
= I
->second
.first
;
677 unsigned idx
= I
->second
.second
;
678 MachineOperand
& MO
= MI
->getOperand(idx
);
680 bool isPhysReg
= TargetRegisterInfo::isPhysicalRegister(MO
.getReg());
682 // A crude approximation of "live-out" calculation
683 bool usedOutsideBlock
= isPhysReg
? false :
684 UsedInMultipleBlocks
.test(MO
.getReg() -
685 TargetRegisterInfo::FirstVirtualRegister
);
686 if (!isPhysReg
&& !usedOutsideBlock
)
687 for (MachineRegisterInfo::reg_iterator UI
= MRI
.reg_begin(MO
.getReg()),
688 UE
= MRI
.reg_end(); UI
!= UE
; ++UI
)
690 // - used in another block
691 // - used in the same block before it is defined (loop)
692 if (UI
->getParent() != &MBB
||
693 (MO
.isDef() && UI
.getOperand().isUse() && precedes(&*UI
, MI
))) {
694 UsedInMultipleBlocks
.set(MO
.getReg() -
695 TargetRegisterInfo::FirstVirtualRegister
);
696 usedOutsideBlock
= true;
700 // Physical registers and those that are not live-out of the block
701 // are killed/dead at their last use/def within this block.
702 if (isPhysReg
|| !usedOutsideBlock
) {
704 // Don't mark uses that are tied to defs as kills.
705 if (!MI
->isRegTiedToDefOperand(idx
))
713 void RALocal::AllocateBasicBlock(MachineBasicBlock
&MBB
) {
714 // loop over each instruction
715 MachineBasicBlock::iterator MII
= MBB
.begin();
717 DEBUG(const BasicBlock
*LBB
= MBB
.getBasicBlock();
718 if (LBB
) errs() << "\nStarting RegAlloc of BB: " << LBB
->getName());
720 // Add live-in registers as active.
721 for (MachineBasicBlock::livein_iterator I
= MBB
.livein_begin(),
722 E
= MBB
.livein_end(); I
!= E
; ++I
) {
724 MF
->getRegInfo().setPhysRegUsed(Reg
);
725 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
726 AddToPhysRegsUseOrder(Reg
);
727 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
728 *SubRegs
; ++SubRegs
) {
729 if (PhysRegsUsed
[*SubRegs
] != -2) {
730 AddToPhysRegsUseOrder(*SubRegs
);
731 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
732 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
737 ComputeLocalLiveness(MBB
);
739 // Otherwise, sequentially allocate each instruction in the MBB.
740 while (MII
!= MBB
.end()) {
741 MachineInstr
*MI
= MII
++;
742 const TargetInstrDesc
&TID
= MI
->getDesc();
743 DEBUG(DOUT
<< "\nStarting RegAlloc of: " << *MI
;
744 DOUT
<< " Regs have values: ";
745 for (unsigned i
= 0; i
!= TRI
->getNumRegs(); ++i
)
746 if (PhysRegsUsed
[i
] != -1 && PhysRegsUsed
[i
] != -2)
747 DOUT
<< "[" << TRI
->getName(i
)
748 << ",%reg" << PhysRegsUsed
[i
] << "] ";
751 // Loop over the implicit uses, making sure that they are at the head of the
752 // use order list, so they don't get reallocated.
753 if (TID
.ImplicitUses
) {
754 for (const unsigned *ImplicitUses
= TID
.ImplicitUses
;
755 *ImplicitUses
; ++ImplicitUses
)
756 MarkPhysRegRecentlyUsed(*ImplicitUses
);
759 SmallVector
<unsigned, 8> Kills
;
760 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
761 MachineOperand
& MO
= MI
->getOperand(i
);
762 if (MO
.isReg() && MO
.isKill()) {
763 if (!MO
.isImplicit())
764 Kills
.push_back(MO
.getReg());
765 else if (!isReadModWriteImplicitKill(MI
, MO
.getReg()))
766 // These are extra physical register kills when a sub-register
767 // is defined (def of a sub-register is a read/mod/write of the
768 // larger registers). Ignore.
769 Kills
.push_back(MO
.getReg());
773 // If any physical regs are earlyclobber, spill any value they might
774 // have in them, then mark them unallocatable.
775 // If any virtual regs are earlyclobber, allocate them now (before
776 // freeing inputs that are killed).
777 if (MI
->getOpcode()==TargetInstrInfo::INLINEASM
) {
778 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
) {
779 MachineOperand
& MO
= MI
->getOperand(i
);
780 if (MO
.isReg() && MO
.isDef() && MO
.isEarlyClobber() &&
782 if (TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
783 unsigned DestVirtReg
= MO
.getReg();
784 unsigned DestPhysReg
;
786 // If DestVirtReg already has a value, use it.
787 if (!(DestPhysReg
= getVirt2PhysRegMapSlot(DestVirtReg
)))
788 DestPhysReg
= getReg(MBB
, MI
, DestVirtReg
);
789 MF
->getRegInfo().setPhysRegUsed(DestPhysReg
);
790 markVirtRegModified(DestVirtReg
);
791 getVirtRegLastUse(DestVirtReg
) =
792 std::make_pair((MachineInstr
*)0, 0);
793 DOUT
<< " Assigning " << TRI
->getName(DestPhysReg
)
794 << " to %reg" << DestVirtReg
<< "\n";
795 MO
.setReg(DestPhysReg
); // Assign the earlyclobber register
797 unsigned Reg
= MO
.getReg();
798 if (PhysRegsUsed
[Reg
] == -2) continue; // Something like ESP.
799 // These are extra physical register defs when a sub-register
800 // is defined (def of a sub-register is a read/mod/write of the
801 // larger registers). Ignore.
802 if (isReadModWriteImplicitDef(MI
, MO
.getReg())) continue;
804 MF
->getRegInfo().setPhysRegUsed(Reg
);
805 spillPhysReg(MBB
, MI
, Reg
, true); // Spill any existing value in reg
806 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
807 AddToPhysRegsUseOrder(Reg
);
809 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
810 *SubRegs
; ++SubRegs
) {
811 if (PhysRegsUsed
[*SubRegs
] != -2) {
812 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
813 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
814 AddToPhysRegsUseOrder(*SubRegs
);
822 // Get the used operands into registers. This has the potential to spill
823 // incoming values if we are out of registers. Note that we completely
824 // ignore physical register uses here. We assume that if an explicit
825 // physical register is referenced by the instruction, that it is guaranteed
826 // to be live-in, or the input is badly hosed.
828 SmallSet
<unsigned, 4> ReloadedRegs
;
829 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
) {
830 MachineOperand
& MO
= MI
->getOperand(i
);
831 // here we are looking for only used operands (never def&use)
832 if (MO
.isReg() && !MO
.isDef() && MO
.getReg() && !MO
.isImplicit() &&
833 TargetRegisterInfo::isVirtualRegister(MO
.getReg()))
834 MI
= reloadVirtReg(MBB
, MI
, i
, ReloadedRegs
);
837 // If this instruction is the last user of this register, kill the
838 // value, freeing the register being used, so it doesn't need to be
839 // spilled to memory.
841 for (unsigned i
= 0, e
= Kills
.size(); i
!= e
; ++i
) {
842 unsigned VirtReg
= Kills
[i
];
843 unsigned PhysReg
= VirtReg
;
844 if (TargetRegisterInfo::isVirtualRegister(VirtReg
)) {
845 // If the virtual register was never materialized into a register, it
846 // might not be in the map, but it won't hurt to zero it out anyway.
847 unsigned &PhysRegSlot
= getVirt2PhysRegMapSlot(VirtReg
);
848 PhysReg
= PhysRegSlot
;
850 } else if (PhysRegsUsed
[PhysReg
] == -2) {
851 // Unallocatable register dead, ignore.
854 assert((!PhysRegsUsed
[PhysReg
] || PhysRegsUsed
[PhysReg
] == -1) &&
855 "Silently clearing a virtual register?");
859 DOUT
<< " Last use of " << TRI
->getName(PhysReg
)
860 << "[%reg" << VirtReg
<<"], removing it from live set\n";
861 removePhysReg(PhysReg
);
862 for (const unsigned *SubRegs
= TRI
->getSubRegisters(PhysReg
);
863 *SubRegs
; ++SubRegs
) {
864 if (PhysRegsUsed
[*SubRegs
] != -2) {
865 DOUT
<< " Last use of "
866 << TRI
->getName(*SubRegs
)
867 << "[%reg" << VirtReg
<<"], removing it from live set\n";
868 removePhysReg(*SubRegs
);
874 // Loop over all of the operands of the instruction, spilling registers that
875 // are defined, and marking explicit destinations in the PhysRegsUsed map.
876 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
877 MachineOperand
& MO
= MI
->getOperand(i
);
878 if (MO
.isReg() && MO
.isDef() && !MO
.isImplicit() && MO
.getReg() &&
879 !MO
.isEarlyClobber() &&
880 TargetRegisterInfo::isPhysicalRegister(MO
.getReg())) {
881 unsigned Reg
= MO
.getReg();
882 if (PhysRegsUsed
[Reg
] == -2) continue; // Something like ESP.
883 // These are extra physical register defs when a sub-register
884 // is defined (def of a sub-register is a read/mod/write of the
885 // larger registers). Ignore.
886 if (isReadModWriteImplicitDef(MI
, MO
.getReg())) continue;
888 MF
->getRegInfo().setPhysRegUsed(Reg
);
889 spillPhysReg(MBB
, MI
, Reg
, true); // Spill any existing value in reg
890 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
891 AddToPhysRegsUseOrder(Reg
);
893 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
894 *SubRegs
; ++SubRegs
) {
895 if (PhysRegsUsed
[*SubRegs
] != -2) {
896 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
897 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
898 AddToPhysRegsUseOrder(*SubRegs
);
904 // Loop over the implicit defs, spilling them as well.
905 if (TID
.ImplicitDefs
) {
906 for (const unsigned *ImplicitDefs
= TID
.ImplicitDefs
;
907 *ImplicitDefs
; ++ImplicitDefs
) {
908 unsigned Reg
= *ImplicitDefs
;
909 if (PhysRegsUsed
[Reg
] != -2) {
910 spillPhysReg(MBB
, MI
, Reg
, true);
911 AddToPhysRegsUseOrder(Reg
);
912 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
914 MF
->getRegInfo().setPhysRegUsed(Reg
);
915 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
916 *SubRegs
; ++SubRegs
) {
917 if (PhysRegsUsed
[*SubRegs
] != -2) {
918 AddToPhysRegsUseOrder(*SubRegs
);
919 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
920 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
926 SmallVector
<unsigned, 8> DeadDefs
;
927 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
928 MachineOperand
& MO
= MI
->getOperand(i
);
929 if (MO
.isReg() && MO
.isDead())
930 DeadDefs
.push_back(MO
.getReg());
933 // Okay, we have allocated all of the source operands and spilled any values
934 // that would be destroyed by defs of this instruction. Loop over the
935 // explicit defs and assign them to a register, spilling incoming values if
936 // we need to scavenge a register.
938 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
939 MachineOperand
& MO
= MI
->getOperand(i
);
940 if (MO
.isReg() && MO
.isDef() && MO
.getReg() &&
941 !MO
.isEarlyClobber() &&
942 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
943 unsigned DestVirtReg
= MO
.getReg();
944 unsigned DestPhysReg
;
946 // If DestVirtReg already has a value, use it.
947 if (!(DestPhysReg
= getVirt2PhysRegMapSlot(DestVirtReg
)))
948 DestPhysReg
= getReg(MBB
, MI
, DestVirtReg
);
949 MF
->getRegInfo().setPhysRegUsed(DestPhysReg
);
950 markVirtRegModified(DestVirtReg
);
951 getVirtRegLastUse(DestVirtReg
) = std::make_pair((MachineInstr
*)0, 0);
952 DOUT
<< " Assigning " << TRI
->getName(DestPhysReg
)
953 << " to %reg" << DestVirtReg
<< "\n";
954 MO
.setReg(DestPhysReg
); // Assign the output register
958 // If this instruction defines any registers that are immediately dead,
961 for (unsigned i
= 0, e
= DeadDefs
.size(); i
!= e
; ++i
) {
962 unsigned VirtReg
= DeadDefs
[i
];
963 unsigned PhysReg
= VirtReg
;
964 if (TargetRegisterInfo::isVirtualRegister(VirtReg
)) {
965 unsigned &PhysRegSlot
= getVirt2PhysRegMapSlot(VirtReg
);
966 PhysReg
= PhysRegSlot
;
967 assert(PhysReg
!= 0);
969 } else if (PhysRegsUsed
[PhysReg
] == -2) {
970 // Unallocatable register dead, ignore.
975 DOUT
<< " Register " << TRI
->getName(PhysReg
)
976 << " [%reg" << VirtReg
977 << "] is never used, removing it from live set\n";
978 removePhysReg(PhysReg
);
979 for (const unsigned *AliasSet
= TRI
->getAliasSet(PhysReg
);
980 *AliasSet
; ++AliasSet
) {
981 if (PhysRegsUsed
[*AliasSet
] != -2) {
982 DOUT
<< " Register " << TRI
->getName(*AliasSet
)
983 << " [%reg" << *AliasSet
984 << "] is never used, removing it from live set\n";
985 removePhysReg(*AliasSet
);
991 // Finally, if this is a noop copy instruction, zap it. (Except that if
992 // the copy is dead, it must be kept to avoid messing up liveness info for
993 // the register scavenger. See pr4100.)
994 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
995 if (TII
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
) &&
996 SrcReg
== DstReg
&& DeadDefs
.empty())
1000 MachineBasicBlock::iterator MI
= MBB
.getFirstTerminator();
1002 // Spill all physical registers holding virtual registers now.
1003 for (unsigned i
= 0, e
= TRI
->getNumRegs(); i
!= e
; ++i
)
1004 if (PhysRegsUsed
[i
] != -1 && PhysRegsUsed
[i
] != -2) {
1005 if (unsigned VirtReg
= PhysRegsUsed
[i
])
1006 spillVirtReg(MBB
, MI
, VirtReg
, i
);
1012 // This checking code is very expensive.
1014 for (unsigned i
= TargetRegisterInfo::FirstVirtualRegister
,
1015 e
= MF
->getRegInfo().getLastVirtReg(); i
<= e
; ++i
)
1016 if (unsigned PR
= Virt2PhysRegMap
[i
]) {
1017 cerr
<< "Register still mapped: " << i
<< " -> " << PR
<< "\n";
1020 assert(AllOk
&& "Virtual registers still in phys regs?");
1023 // Clear any physical register which appear live at the end of the basic
1024 // block, but which do not hold any virtual registers. e.g., the stack
1026 PhysRegsUseOrder
.clear();
1029 /// runOnMachineFunction - Register allocate the whole function
1031 bool RALocal::runOnMachineFunction(MachineFunction
&Fn
) {
1032 DOUT
<< "Machine Function " << "\n";
1034 TM
= &Fn
.getTarget();
1035 TRI
= TM
->getRegisterInfo();
1036 TII
= TM
->getInstrInfo();
1038 PhysRegsUsed
.assign(TRI
->getNumRegs(), -1);
1040 // At various places we want to efficiently check to see whether a register
1041 // is allocatable. To handle this, we mark all unallocatable registers as
1042 // being pinned down, permanently.
1044 BitVector Allocable
= TRI
->getAllocatableSet(Fn
);
1045 for (unsigned i
= 0, e
= Allocable
.size(); i
!= e
; ++i
)
1047 PhysRegsUsed
[i
] = -2; // Mark the reg unallocable.
1050 // initialize the virtual->physical register map to have a 'null'
1051 // mapping for all virtual registers
1052 unsigned LastVirtReg
= MF
->getRegInfo().getLastVirtReg();
1053 StackSlotForVirtReg
.grow(LastVirtReg
);
1054 Virt2PhysRegMap
.grow(LastVirtReg
);
1055 Virt2LastUseMap
.grow(LastVirtReg
);
1056 VirtRegModified
.resize(LastVirtReg
+1-TargetRegisterInfo::FirstVirtualRegister
);
1057 UsedInMultipleBlocks
.resize(LastVirtReg
+1-TargetRegisterInfo::FirstVirtualRegister
);
1059 // Loop over all of the basic blocks, eliminating virtual register references
1060 for (MachineFunction::iterator MBB
= Fn
.begin(), MBBe
= Fn
.end();
1062 AllocateBasicBlock(*MBB
);
1064 StackSlotForVirtReg
.clear();
1065 PhysRegsUsed
.clear();
1066 VirtRegModified
.clear();
1067 UsedInMultipleBlocks
.clear();
1068 Virt2PhysRegMap
.clear();
1069 Virt2LastUseMap
.clear();
1073 FunctionPass
*llvm::createLocalRegisterAllocator() {
1074 return new RALocal();