It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / RegAllocLocal.cpp
blobe5d3a48babdf48e5cfef485225fb203d9e3590ad
1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/BasicBlock.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/IndexedMap.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 using namespace llvm;
39 STATISTIC(NumStores, "Number of stores added");
40 STATISTIC(NumLoads , "Number of loads added");
42 static RegisterRegAlloc
43 localRegAlloc("local", "local register allocator",
44 createLocalRegisterAllocator);
46 namespace {
47 class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
48 public:
49 static char ID;
50 RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
51 private:
52 const TargetMachine *TM;
53 MachineFunction *MF;
54 const TargetRegisterInfo *TRI;
55 const TargetInstrInfo *TII;
57 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
58 // values are spilled.
59 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
61 // Virt2PhysRegMap - This map contains entries for each virtual register
62 // that is currently available in a physical register.
63 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
65 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
66 return Virt2PhysRegMap[VirtReg];
69 // PhysRegsUsed - This array is effectively a map, containing entries for
70 // each physical register that currently has a value (ie, it is in
71 // Virt2PhysRegMap). The value mapped to is the virtual register
72 // corresponding to the physical register (the inverse of the
73 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
74 // because it is used by a future instruction, and to -2 if it is not
75 // allocatable. If the entry for a physical register is -1, then the
76 // physical register is "not in the map".
78 std::vector<int> PhysRegsUsed;
80 // PhysRegsUseOrder - This contains a list of the physical registers that
81 // currently have a virtual register value in them. This list provides an
82 // ordering of registers, imposing a reallocation order. This list is only
83 // used if all registers are allocated and we have to spill one, in which
84 // case we spill the least recently used register. Entries at the front of
85 // the list are the least recently used registers, entries at the back are
86 // the most recently used.
88 std::vector<unsigned> PhysRegsUseOrder;
90 // Virt2LastUseMap - This maps each virtual register to its last use
91 // (MachineInstr*, operand index pair).
92 IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
93 Virt2LastUseMap;
95 std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
96 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
97 return Virt2LastUseMap[Reg];
100 // VirtRegModified - This bitset contains information about which virtual
101 // registers need to be spilled back to memory when their registers are
102 // scavenged. If a virtual register has simply been rematerialized, there
103 // is no reason to spill it to memory when we need the register back.
105 BitVector VirtRegModified;
107 // UsedInMultipleBlocks - Tracks whether a particular register is used in
108 // more than one block.
109 BitVector UsedInMultipleBlocks;
111 void markVirtRegModified(unsigned Reg, bool Val = true) {
112 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
113 Reg -= TargetRegisterInfo::FirstVirtualRegister;
114 if (Val)
115 VirtRegModified.set(Reg);
116 else
117 VirtRegModified.reset(Reg);
120 bool isVirtRegModified(unsigned Reg) const {
121 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
122 assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
123 && "Illegal virtual register!");
124 return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
127 void AddToPhysRegsUseOrder(unsigned Reg) {
128 std::vector<unsigned>::iterator It =
129 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
130 if (It != PhysRegsUseOrder.end())
131 PhysRegsUseOrder.erase(It);
132 PhysRegsUseOrder.push_back(Reg);
135 void MarkPhysRegRecentlyUsed(unsigned Reg) {
136 if (PhysRegsUseOrder.empty() ||
137 PhysRegsUseOrder.back() == Reg) return; // Already most recently used
139 for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
140 if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
141 unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
142 PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
143 // Add it to the end of the list
144 PhysRegsUseOrder.push_back(RegMatch);
145 if (RegMatch == Reg)
146 return; // Found an exact match, exit early
150 public:
151 virtual const char *getPassName() const {
152 return "Local Register Allocator";
155 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
156 AU.setPreservesCFG();
157 AU.addRequiredID(PHIEliminationID);
158 AU.addRequiredID(TwoAddressInstructionPassID);
159 MachineFunctionPass::getAnalysisUsage(AU);
162 private:
163 /// runOnMachineFunction - Register allocate the whole function
164 bool runOnMachineFunction(MachineFunction &Fn);
166 /// AllocateBasicBlock - Register allocate the specified basic block.
167 void AllocateBasicBlock(MachineBasicBlock &MBB);
170 /// areRegsEqual - This method returns true if the specified registers are
171 /// related to each other. To do this, it checks to see if they are equal
172 /// or if the first register is in the alias set of the second register.
174 bool areRegsEqual(unsigned R1, unsigned R2) const {
175 if (R1 == R2) return true;
176 for (const unsigned *AliasSet = TRI->getAliasSet(R2);
177 *AliasSet; ++AliasSet) {
178 if (*AliasSet == R1) return true;
180 return false;
183 /// getStackSpaceFor - This returns the frame index of the specified virtual
184 /// register on the stack, allocating space if necessary.
185 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
187 /// removePhysReg - This method marks the specified physical register as no
188 /// longer being in use.
190 void removePhysReg(unsigned PhysReg);
192 /// spillVirtReg - This method spills the value specified by PhysReg into
193 /// the virtual register slot specified by VirtReg. It then updates the RA
194 /// data structures to indicate the fact that PhysReg is now available.
196 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
197 unsigned VirtReg, unsigned PhysReg);
199 /// spillPhysReg - This method spills the specified physical register into
200 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
201 /// true, then the request is ignored if the physical register does not
202 /// contain a virtual register.
204 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
205 unsigned PhysReg, bool OnlyVirtRegs = false);
207 /// assignVirtToPhysReg - This method updates local state so that we know
208 /// that PhysReg is the proper container for VirtReg now. The physical
209 /// register must not be used for anything else when this is called.
211 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
213 /// isPhysRegAvailable - Return true if the specified physical register is
214 /// free and available for use. This also includes checking to see if
215 /// aliased registers are all free...
217 bool isPhysRegAvailable(unsigned PhysReg) const;
219 /// getFreeReg - Look to see if there is a free register available in the
220 /// specified register class. If not, return 0.
222 unsigned getFreeReg(const TargetRegisterClass *RC);
224 /// getReg - Find a physical register to hold the specified virtual
225 /// register. If all compatible physical registers are used, this method
226 /// spills the last used virtual register to the stack, and uses that
227 /// register. If NoFree is true, that means the caller knows there isn't
228 /// a free register, do not call getFreeReg().
229 unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
230 unsigned VirtReg, bool NoFree = false);
232 /// reloadVirtReg - This method transforms the specified virtual
233 /// register use to refer to a physical register. This method may do this
234 /// in one of several ways: if the register is available in a physical
235 /// register already, it uses that physical register. If the value is not
236 /// in a physical register, and if there are physical registers available,
237 /// it loads it into a register. If register pressure is high, and it is
238 /// possible, it tries to fold the load of the virtual register into the
239 /// instruction itself. It avoids doing this if register pressure is low to
240 /// improve the chance that subsequent instructions can use the reloaded
241 /// value. This method returns the modified instruction.
243 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
244 unsigned OpNum, SmallSet<unsigned, 4> &RRegs);
246 /// ComputeLocalLiveness - Computes liveness of registers within a basic
247 /// block, setting the killed/dead flags as appropriate.
248 void ComputeLocalLiveness(MachineBasicBlock& MBB);
250 void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
251 unsigned PhysReg);
253 char RALocal::ID = 0;
256 /// getStackSpaceFor - This allocates space for the specified virtual register
257 /// to be held on the stack.
258 int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
259 // Find the location Reg would belong...
260 int SS = StackSlotForVirtReg[VirtReg];
261 if (SS != -1)
262 return SS; // Already has space allocated?
264 // Allocate a new stack object for this spill location...
265 int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
266 RC->getAlignment());
268 // Assign the slot...
269 StackSlotForVirtReg[VirtReg] = FrameIdx;
270 return FrameIdx;
274 /// removePhysReg - This method marks the specified physical register as no
275 /// longer being in use.
277 void RALocal::removePhysReg(unsigned PhysReg) {
278 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
280 std::vector<unsigned>::iterator It =
281 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
282 if (It != PhysRegsUseOrder.end())
283 PhysRegsUseOrder.erase(It);
287 /// spillVirtReg - This method spills the value specified by PhysReg into the
288 /// virtual register slot specified by VirtReg. It then updates the RA data
289 /// structures to indicate the fact that PhysReg is now available.
291 void RALocal::spillVirtReg(MachineBasicBlock &MBB,
292 MachineBasicBlock::iterator I,
293 unsigned VirtReg, unsigned PhysReg) {
294 assert(VirtReg && "Spilling a physical register is illegal!"
295 " Must not have appropriate kill for the register or use exists beyond"
296 " the intended one.");
297 DOUT << " Spilling register " << TRI->getName(PhysReg)
298 << " containing %reg" << VirtReg;
300 if (!isVirtRegModified(VirtReg)) {
301 DOUT << " which has not been modified, so no store necessary!";
302 std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
303 if (LastUse.first)
304 LastUse.first->getOperand(LastUse.second).setIsKill();
305 } else {
306 // Otherwise, there is a virtual register corresponding to this physical
307 // register. We only need to spill it into its stack slot if it has been
308 // modified.
309 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
310 int FrameIndex = getStackSpaceFor(VirtReg, RC);
311 DOUT << " to stack slot #" << FrameIndex;
312 // If the instruction reads the register that's spilled, (e.g. this can
313 // happen if it is a move to a physical register), then the spill
314 // instruction is not a kill.
315 bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
316 TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
317 ++NumStores; // Update statistics
320 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
322 DOUT << "\n";
323 removePhysReg(PhysReg);
327 /// spillPhysReg - This method spills the specified physical register into the
328 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
329 /// then the request is ignored if the physical register does not contain a
330 /// virtual register.
332 void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
333 unsigned PhysReg, bool OnlyVirtRegs) {
334 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
335 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
336 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
337 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
338 } else {
339 // If the selected register aliases any other registers, we must make
340 // sure that one of the aliases isn't alive.
341 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
342 *AliasSet; ++AliasSet)
343 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
344 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
345 if (PhysRegsUsed[*AliasSet])
346 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
351 /// assignVirtToPhysReg - This method updates local state so that we know
352 /// that PhysReg is the proper container for VirtReg now. The physical
353 /// register must not be used for anything else when this is called.
355 void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
356 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
357 // Update information to note the fact that this register was just used, and
358 // it holds VirtReg.
359 PhysRegsUsed[PhysReg] = VirtReg;
360 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
361 AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg
365 /// isPhysRegAvailable - Return true if the specified physical register is free
366 /// and available for use. This also includes checking to see if aliased
367 /// registers are all free...
369 bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
370 if (PhysRegsUsed[PhysReg] != -1) return false;
372 // If the selected register aliases any other allocated registers, it is
373 // not free!
374 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
375 *AliasSet; ++AliasSet)
376 if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
377 return false; // Can't use this reg then.
378 return true;
382 /// getFreeReg - Look to see if there is a free register available in the
383 /// specified register class. If not, return 0.
385 unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
386 // Get iterators defining the range of registers that are valid to allocate in
387 // this class, which also specifies the preferred allocation order.
388 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
389 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
391 for (; RI != RE; ++RI)
392 if (isPhysRegAvailable(*RI)) { // Is reg unused?
393 assert(*RI != 0 && "Cannot use register!");
394 return *RI; // Found an unused register!
396 return 0;
400 /// getReg - Find a physical register to hold the specified virtual
401 /// register. If all compatible physical registers are used, this method spills
402 /// the last used virtual register to the stack, and uses that register.
404 unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
405 unsigned VirtReg, bool NoFree) {
406 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
408 // First check to see if we have a free register of the requested type...
409 unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
411 // If we didn't find an unused register, scavenge one now!
412 if (PhysReg == 0) {
413 assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
415 // Loop over all of the preallocated registers from the least recently used
416 // to the most recently used. When we find one that is capable of holding
417 // our register, use it.
418 for (unsigned i = 0; PhysReg == 0; ++i) {
419 assert(i != PhysRegsUseOrder.size() &&
420 "Couldn't find a register of the appropriate class!");
422 unsigned R = PhysRegsUseOrder[i];
424 // We can only use this register if it holds a virtual register (ie, it
425 // can be spilled). Do not use it if it is an explicitly allocated
426 // physical register!
427 assert(PhysRegsUsed[R] != -1 &&
428 "PhysReg in PhysRegsUseOrder, but is not allocated?");
429 if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
430 // If the current register is compatible, use it.
431 if (RC->contains(R)) {
432 PhysReg = R;
433 break;
434 } else {
435 // If one of the registers aliased to the current register is
436 // compatible, use it.
437 for (const unsigned *AliasIt = TRI->getAliasSet(R);
438 *AliasIt; ++AliasIt) {
439 if (RC->contains(*AliasIt) &&
440 // If this is pinned down for some reason, don't use it. For
441 // example, if CL is pinned, and we run across CH, don't use
442 // CH as justification for using scavenging ECX (which will
443 // fail).
444 PhysRegsUsed[*AliasIt] != 0 &&
446 // Make sure the register is allocatable. Don't allocate SIL on
447 // x86-32.
448 PhysRegsUsed[*AliasIt] != -2) {
449 PhysReg = *AliasIt; // Take an aliased register
450 break;
457 assert(PhysReg && "Physical register not assigned!?!?");
459 // At this point PhysRegsUseOrder[i] is the least recently used register of
460 // compatible register class. Spill it to memory and reap its remains.
461 spillPhysReg(MBB, I, PhysReg);
464 // Now that we know which register we need to assign this to, do it now!
465 assignVirtToPhysReg(VirtReg, PhysReg);
466 return PhysReg;
470 /// reloadVirtReg - This method transforms the specified virtual
471 /// register use to refer to a physical register. This method may do this in
472 /// one of several ways: if the register is available in a physical register
473 /// already, it uses that physical register. If the value is not in a physical
474 /// register, and if there are physical registers available, it loads it into a
475 /// register. If register pressure is high, and it is possible, it tries to
476 /// fold the load of the virtual register into the instruction itself. It
477 /// avoids doing this if register pressure is low to improve the chance that
478 /// subsequent instructions can use the reloaded value. This method returns the
479 /// modified instruction.
481 MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
482 unsigned OpNum,
483 SmallSet<unsigned, 4> &ReloadedRegs) {
484 unsigned VirtReg = MI->getOperand(OpNum).getReg();
486 // If the virtual register is already available, just update the instruction
487 // and return.
488 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
489 MarkPhysRegRecentlyUsed(PR); // Already have this value available!
490 MI->getOperand(OpNum).setReg(PR); // Assign the input register
491 getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
492 return MI;
495 // Otherwise, we need to fold it into the current instruction, or reload it.
496 // If we have registers available to hold the value, use them.
497 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
498 unsigned PhysReg = getFreeReg(RC);
499 int FrameIndex = getStackSpaceFor(VirtReg, RC);
501 if (PhysReg) { // Register is available, allocate it!
502 assignVirtToPhysReg(VirtReg, PhysReg);
503 } else { // No registers available.
504 // Force some poor hapless value out of the register file to
505 // make room for the new register, and reload it.
506 PhysReg = getReg(MBB, MI, VirtReg, true);
509 markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
511 DOUT << " Reloading %reg" << VirtReg << " into "
512 << TRI->getName(PhysReg) << "\n";
514 // Add move instruction(s)
515 TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
516 ++NumLoads; // Update statistics
518 MF->getRegInfo().setPhysRegUsed(PhysReg);
519 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
520 getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
522 if (!ReloadedRegs.insert(PhysReg)) {
523 std::string msg;
524 raw_string_ostream Msg(msg);
525 Msg << "Ran out of registers during register allocation!";
526 if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
527 Msg << "\nPlease check your inline asm statement for invalid "
528 << "constraints:\n";
529 MI->print(Msg, TM);
531 llvm_report_error(Msg.str());
533 for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
534 *SubRegs; ++SubRegs) {
535 if (!ReloadedRegs.insert(*SubRegs)) {
536 std::string msg;
537 raw_string_ostream Msg(msg);
538 Msg << "Ran out of registers during register allocation!";
539 if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
540 Msg << "\nPlease check your inline asm statement for invalid "
541 << "constraints:\n";
542 MI->print(Msg, TM);
544 llvm_report_error(Msg.str());
548 return MI;
551 /// isReadModWriteImplicitKill - True if this is an implicit kill for a
552 /// read/mod/write register, i.e. update partial register.
553 static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
554 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
555 MachineOperand& MO = MI->getOperand(i);
556 if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
557 MO.isDef() && !MO.isDead())
558 return true;
560 return false;
563 /// isReadModWriteImplicitDef - True if this is an implicit def for a
564 /// read/mod/write register, i.e. update partial register.
565 static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
566 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
567 MachineOperand& MO = MI->getOperand(i);
568 if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
569 !MO.isDef() && MO.isKill())
570 return true;
572 return false;
575 // precedes - Helper function to determine with MachineInstr A
576 // precedes MachineInstr B within the same MBB.
577 static bool precedes(MachineBasicBlock::iterator A,
578 MachineBasicBlock::iterator B) {
579 if (A == B)
580 return false;
582 MachineBasicBlock::iterator I = A->getParent()->begin();
583 while (I != A->getParent()->end()) {
584 if (I == A)
585 return true;
586 else if (I == B)
587 return false;
589 ++I;
592 return false;
595 /// ComputeLocalLiveness - Computes liveness of registers within a basic
596 /// block, setting the killed/dead flags as appropriate.
597 void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
598 MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
599 // Keep track of the most recently seen previous use or def of each reg,
600 // so that we can update them with dead/kill markers.
601 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
602 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
603 I != E; ++I) {
604 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
605 MachineOperand& MO = I->getOperand(i);
606 // Uses don't trigger any flags, but we need to save
607 // them for later. Also, we have to process these
608 // _before_ processing the defs, since an instr
609 // uses regs before it defs them.
610 if (MO.isReg() && MO.getReg() && MO.isUse()) {
611 LastUseDef[MO.getReg()] = std::make_pair(I, i);
614 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
616 const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
617 if (Aliases) {
618 while (*Aliases) {
619 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
620 alias = LastUseDef.find(*Aliases);
622 if (alias != LastUseDef.end() && alias->second.first != I)
623 LastUseDef[*Aliases] = std::make_pair(I, i);
625 ++Aliases;
631 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
632 MachineOperand& MO = I->getOperand(i);
633 // Defs others than 2-addr redefs _do_ trigger flag changes:
634 // - A def followed by a def is dead
635 // - A use followed by a def is a kill
636 if (MO.isReg() && MO.getReg() && MO.isDef()) {
637 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
638 last = LastUseDef.find(MO.getReg());
639 if (last != LastUseDef.end()) {
640 // Check if this is a two address instruction. If so, then
641 // the def does not kill the use.
642 if (last->second.first == I &&
643 I->isRegTiedToUseOperand(i))
644 continue;
646 MachineOperand& lastUD =
647 last->second.first->getOperand(last->second.second);
648 if (lastUD.isDef())
649 lastUD.setIsDead(true);
650 else
651 lastUD.setIsKill(true);
654 LastUseDef[MO.getReg()] = std::make_pair(I, i);
659 // Live-out (of the function) registers contain return values of the function,
660 // so we need to make sure they are alive at return time.
661 if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
662 MachineInstr* Ret = &MBB.back();
663 for (MachineRegisterInfo::liveout_iterator
664 I = MF->getRegInfo().liveout_begin(),
665 E = MF->getRegInfo().liveout_end(); I != E; ++I)
666 if (!Ret->readsRegister(*I)) {
667 Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
668 LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
672 // Finally, loop over the final use/def of each reg
673 // in the block and determine if it is dead.
674 for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
675 I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
676 MachineInstr* MI = I->second.first;
677 unsigned idx = I->second.second;
678 MachineOperand& MO = MI->getOperand(idx);
680 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
682 // A crude approximation of "live-out" calculation
683 bool usedOutsideBlock = isPhysReg ? false :
684 UsedInMultipleBlocks.test(MO.getReg() -
685 TargetRegisterInfo::FirstVirtualRegister);
686 if (!isPhysReg && !usedOutsideBlock)
687 for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
688 UE = MRI.reg_end(); UI != UE; ++UI)
689 // Two cases:
690 // - used in another block
691 // - used in the same block before it is defined (loop)
692 if (UI->getParent() != &MBB ||
693 (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
694 UsedInMultipleBlocks.set(MO.getReg() -
695 TargetRegisterInfo::FirstVirtualRegister);
696 usedOutsideBlock = true;
697 break;
700 // Physical registers and those that are not live-out of the block
701 // are killed/dead at their last use/def within this block.
702 if (isPhysReg || !usedOutsideBlock) {
703 if (MO.isUse()) {
704 // Don't mark uses that are tied to defs as kills.
705 if (!MI->isRegTiedToDefOperand(idx))
706 MO.setIsKill(true);
707 } else
708 MO.setIsDead(true);
713 void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
714 // loop over each instruction
715 MachineBasicBlock::iterator MII = MBB.begin();
717 DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
718 if (LBB) errs() << "\nStarting RegAlloc of BB: " << LBB->getName());
720 // Add live-in registers as active.
721 for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
722 E = MBB.livein_end(); I != E; ++I) {
723 unsigned Reg = *I;
724 MF->getRegInfo().setPhysRegUsed(Reg);
725 PhysRegsUsed[Reg] = 0; // It is free and reserved now
726 AddToPhysRegsUseOrder(Reg);
727 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
728 *SubRegs; ++SubRegs) {
729 if (PhysRegsUsed[*SubRegs] != -2) {
730 AddToPhysRegsUseOrder(*SubRegs);
731 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
732 MF->getRegInfo().setPhysRegUsed(*SubRegs);
737 ComputeLocalLiveness(MBB);
739 // Otherwise, sequentially allocate each instruction in the MBB.
740 while (MII != MBB.end()) {
741 MachineInstr *MI = MII++;
742 const TargetInstrDesc &TID = MI->getDesc();
743 DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
744 DOUT << " Regs have values: ";
745 for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
746 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
747 DOUT << "[" << TRI->getName(i)
748 << ",%reg" << PhysRegsUsed[i] << "] ";
749 DOUT << "\n");
751 // Loop over the implicit uses, making sure that they are at the head of the
752 // use order list, so they don't get reallocated.
753 if (TID.ImplicitUses) {
754 for (const unsigned *ImplicitUses = TID.ImplicitUses;
755 *ImplicitUses; ++ImplicitUses)
756 MarkPhysRegRecentlyUsed(*ImplicitUses);
759 SmallVector<unsigned, 8> Kills;
760 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
761 MachineOperand& MO = MI->getOperand(i);
762 if (MO.isReg() && MO.isKill()) {
763 if (!MO.isImplicit())
764 Kills.push_back(MO.getReg());
765 else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
766 // These are extra physical register kills when a sub-register
767 // is defined (def of a sub-register is a read/mod/write of the
768 // larger registers). Ignore.
769 Kills.push_back(MO.getReg());
773 // If any physical regs are earlyclobber, spill any value they might
774 // have in them, then mark them unallocatable.
775 // If any virtual regs are earlyclobber, allocate them now (before
776 // freeing inputs that are killed).
777 if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
778 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
779 MachineOperand& MO = MI->getOperand(i);
780 if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
781 MO.getReg()) {
782 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
783 unsigned DestVirtReg = MO.getReg();
784 unsigned DestPhysReg;
786 // If DestVirtReg already has a value, use it.
787 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
788 DestPhysReg = getReg(MBB, MI, DestVirtReg);
789 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
790 markVirtRegModified(DestVirtReg);
791 getVirtRegLastUse(DestVirtReg) =
792 std::make_pair((MachineInstr*)0, 0);
793 DOUT << " Assigning " << TRI->getName(DestPhysReg)
794 << " to %reg" << DestVirtReg << "\n";
795 MO.setReg(DestPhysReg); // Assign the earlyclobber register
796 } else {
797 unsigned Reg = MO.getReg();
798 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
799 // These are extra physical register defs when a sub-register
800 // is defined (def of a sub-register is a read/mod/write of the
801 // larger registers). Ignore.
802 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
804 MF->getRegInfo().setPhysRegUsed(Reg);
805 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
806 PhysRegsUsed[Reg] = 0; // It is free and reserved now
807 AddToPhysRegsUseOrder(Reg);
809 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
810 *SubRegs; ++SubRegs) {
811 if (PhysRegsUsed[*SubRegs] != -2) {
812 MF->getRegInfo().setPhysRegUsed(*SubRegs);
813 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
814 AddToPhysRegsUseOrder(*SubRegs);
822 // Get the used operands into registers. This has the potential to spill
823 // incoming values if we are out of registers. Note that we completely
824 // ignore physical register uses here. We assume that if an explicit
825 // physical register is referenced by the instruction, that it is guaranteed
826 // to be live-in, or the input is badly hosed.
828 SmallSet<unsigned, 4> ReloadedRegs;
829 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
830 MachineOperand& MO = MI->getOperand(i);
831 // here we are looking for only used operands (never def&use)
832 if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
833 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
834 MI = reloadVirtReg(MBB, MI, i, ReloadedRegs);
837 // If this instruction is the last user of this register, kill the
838 // value, freeing the register being used, so it doesn't need to be
839 // spilled to memory.
841 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
842 unsigned VirtReg = Kills[i];
843 unsigned PhysReg = VirtReg;
844 if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
845 // If the virtual register was never materialized into a register, it
846 // might not be in the map, but it won't hurt to zero it out anyway.
847 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
848 PhysReg = PhysRegSlot;
849 PhysRegSlot = 0;
850 } else if (PhysRegsUsed[PhysReg] == -2) {
851 // Unallocatable register dead, ignore.
852 continue;
853 } else {
854 assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
855 "Silently clearing a virtual register?");
858 if (PhysReg) {
859 DOUT << " Last use of " << TRI->getName(PhysReg)
860 << "[%reg" << VirtReg <<"], removing it from live set\n";
861 removePhysReg(PhysReg);
862 for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
863 *SubRegs; ++SubRegs) {
864 if (PhysRegsUsed[*SubRegs] != -2) {
865 DOUT << " Last use of "
866 << TRI->getName(*SubRegs)
867 << "[%reg" << VirtReg <<"], removing it from live set\n";
868 removePhysReg(*SubRegs);
874 // Loop over all of the operands of the instruction, spilling registers that
875 // are defined, and marking explicit destinations in the PhysRegsUsed map.
876 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
877 MachineOperand& MO = MI->getOperand(i);
878 if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
879 !MO.isEarlyClobber() &&
880 TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
881 unsigned Reg = MO.getReg();
882 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
883 // These are extra physical register defs when a sub-register
884 // is defined (def of a sub-register is a read/mod/write of the
885 // larger registers). Ignore.
886 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
888 MF->getRegInfo().setPhysRegUsed(Reg);
889 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
890 PhysRegsUsed[Reg] = 0; // It is free and reserved now
891 AddToPhysRegsUseOrder(Reg);
893 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
894 *SubRegs; ++SubRegs) {
895 if (PhysRegsUsed[*SubRegs] != -2) {
896 MF->getRegInfo().setPhysRegUsed(*SubRegs);
897 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
898 AddToPhysRegsUseOrder(*SubRegs);
904 // Loop over the implicit defs, spilling them as well.
905 if (TID.ImplicitDefs) {
906 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
907 *ImplicitDefs; ++ImplicitDefs) {
908 unsigned Reg = *ImplicitDefs;
909 if (PhysRegsUsed[Reg] != -2) {
910 spillPhysReg(MBB, MI, Reg, true);
911 AddToPhysRegsUseOrder(Reg);
912 PhysRegsUsed[Reg] = 0; // It is free and reserved now
914 MF->getRegInfo().setPhysRegUsed(Reg);
915 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
916 *SubRegs; ++SubRegs) {
917 if (PhysRegsUsed[*SubRegs] != -2) {
918 AddToPhysRegsUseOrder(*SubRegs);
919 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
920 MF->getRegInfo().setPhysRegUsed(*SubRegs);
926 SmallVector<unsigned, 8> DeadDefs;
927 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
928 MachineOperand& MO = MI->getOperand(i);
929 if (MO.isReg() && MO.isDead())
930 DeadDefs.push_back(MO.getReg());
933 // Okay, we have allocated all of the source operands and spilled any values
934 // that would be destroyed by defs of this instruction. Loop over the
935 // explicit defs and assign them to a register, spilling incoming values if
936 // we need to scavenge a register.
938 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
939 MachineOperand& MO = MI->getOperand(i);
940 if (MO.isReg() && MO.isDef() && MO.getReg() &&
941 !MO.isEarlyClobber() &&
942 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
943 unsigned DestVirtReg = MO.getReg();
944 unsigned DestPhysReg;
946 // If DestVirtReg already has a value, use it.
947 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
948 DestPhysReg = getReg(MBB, MI, DestVirtReg);
949 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
950 markVirtRegModified(DestVirtReg);
951 getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
952 DOUT << " Assigning " << TRI->getName(DestPhysReg)
953 << " to %reg" << DestVirtReg << "\n";
954 MO.setReg(DestPhysReg); // Assign the output register
958 // If this instruction defines any registers that are immediately dead,
959 // kill them now.
961 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
962 unsigned VirtReg = DeadDefs[i];
963 unsigned PhysReg = VirtReg;
964 if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
965 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
966 PhysReg = PhysRegSlot;
967 assert(PhysReg != 0);
968 PhysRegSlot = 0;
969 } else if (PhysRegsUsed[PhysReg] == -2) {
970 // Unallocatable register dead, ignore.
971 continue;
974 if (PhysReg) {
975 DOUT << " Register " << TRI->getName(PhysReg)
976 << " [%reg" << VirtReg
977 << "] is never used, removing it from live set\n";
978 removePhysReg(PhysReg);
979 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
980 *AliasSet; ++AliasSet) {
981 if (PhysRegsUsed[*AliasSet] != -2) {
982 DOUT << " Register " << TRI->getName(*AliasSet)
983 << " [%reg" << *AliasSet
984 << "] is never used, removing it from live set\n";
985 removePhysReg(*AliasSet);
991 // Finally, if this is a noop copy instruction, zap it. (Except that if
992 // the copy is dead, it must be kept to avoid messing up liveness info for
993 // the register scavenger. See pr4100.)
994 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
995 if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
996 SrcReg == DstReg && DeadDefs.empty())
997 MBB.erase(MI);
1000 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1002 // Spill all physical registers holding virtual registers now.
1003 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
1004 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
1005 if (unsigned VirtReg = PhysRegsUsed[i])
1006 spillVirtReg(MBB, MI, VirtReg, i);
1007 else
1008 removePhysReg(i);
1011 #if 0
1012 // This checking code is very expensive.
1013 bool AllOk = true;
1014 for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
1015 e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
1016 if (unsigned PR = Virt2PhysRegMap[i]) {
1017 cerr << "Register still mapped: " << i << " -> " << PR << "\n";
1018 AllOk = false;
1020 assert(AllOk && "Virtual registers still in phys regs?");
1021 #endif
1023 // Clear any physical register which appear live at the end of the basic
1024 // block, but which do not hold any virtual registers. e.g., the stack
1025 // pointer.
1026 PhysRegsUseOrder.clear();
1029 /// runOnMachineFunction - Register allocate the whole function
1031 bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
1032 DOUT << "Machine Function " << "\n";
1033 MF = &Fn;
1034 TM = &Fn.getTarget();
1035 TRI = TM->getRegisterInfo();
1036 TII = TM->getInstrInfo();
1038 PhysRegsUsed.assign(TRI->getNumRegs(), -1);
1040 // At various places we want to efficiently check to see whether a register
1041 // is allocatable. To handle this, we mark all unallocatable registers as
1042 // being pinned down, permanently.
1044 BitVector Allocable = TRI->getAllocatableSet(Fn);
1045 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
1046 if (!Allocable[i])
1047 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
1050 // initialize the virtual->physical register map to have a 'null'
1051 // mapping for all virtual registers
1052 unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
1053 StackSlotForVirtReg.grow(LastVirtReg);
1054 Virt2PhysRegMap.grow(LastVirtReg);
1055 Virt2LastUseMap.grow(LastVirtReg);
1056 VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
1057 UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
1059 // Loop over all of the basic blocks, eliminating virtual register references
1060 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
1061 MBB != MBBe; ++MBB)
1062 AllocateBasicBlock(*MBB);
1064 StackSlotForVirtReg.clear();
1065 PhysRegsUsed.clear();
1066 VirtRegModified.clear();
1067 UsedInMultipleBlocks.clear();
1068 Virt2PhysRegMap.clear();
1069 Virt2LastUseMap.clear();
1070 return true;
1073 FunctionPass *llvm::createLocalRegisterAllocator() {
1074 return new RALocal();