1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
43 STATISTIC(NodesCombined
, "Number of dag nodes combined");
44 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
45 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
46 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
50 CombinerAA("combiner-alias-analysis", cl::Hidden
,
51 cl::desc("Turn on alias analysis during testing"));
54 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
55 cl::desc("Include global information in alias analysis"));
57 //------------------------------ DAGCombiner ---------------------------------//
59 class VISIBILITY_HIDDEN DAGCombiner
{
61 const TargetLowering
&TLI
;
63 CodeGenOpt::Level OptLevel
;
67 // Worklist of all of the nodes that need to be simplified.
68 std::vector
<SDNode
*> WorkList
;
70 // AA - Used for DAG load/store alias analysis.
73 /// AddUsersToWorkList - When an instruction is simplified, add all users of
74 /// the instruction to the work lists because they might get more simplified
77 void AddUsersToWorkList(SDNode
*N
) {
78 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
83 /// visit - call the node-specific routine that knows how to fold each
84 /// particular type of node.
85 SDValue
visit(SDNode
*N
);
88 /// AddToWorkList - Add to the work list making sure it's instance is at the
89 /// the back (next to be processed.)
90 void AddToWorkList(SDNode
*N
) {
91 removeFromWorkList(N
);
92 WorkList
.push_back(N
);
95 /// removeFromWorkList - remove all instances of N from the worklist.
97 void removeFromWorkList(SDNode
*N
) {
98 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
102 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
105 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
106 return CombineTo(N
, &Res
, 1, AddTo
);
109 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
111 SDValue To
[] = { Res0
, Res1
};
112 return CombineTo(N
, To
, 2, AddTo
);
115 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
119 /// SimplifyDemandedBits - Check the specified integer node value to see if
120 /// it can be simplified or if things it uses can be simplified by bit
121 /// propagation. If so, return true.
122 bool SimplifyDemandedBits(SDValue Op
) {
123 APInt Demanded
= APInt::getAllOnesValue(Op
.getValueSizeInBits());
124 return SimplifyDemandedBits(Op
, Demanded
);
127 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
129 bool CombineToPreIndexedLoadStore(SDNode
*N
);
130 bool CombineToPostIndexedLoadStore(SDNode
*N
);
133 /// combine - call the node-specific routine that knows how to fold each
134 /// particular type of node. If that doesn't do anything, try the
135 /// target-specific DAG combines.
136 SDValue
combine(SDNode
*N
);
138 // Visitation implementation - Implement dag node combining for different
139 // node types. The semantics are as follows:
141 // SDValue.getNode() == 0 - No change was made
142 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
143 // otherwise - N should be replaced by the returned Operand.
145 SDValue
visitTokenFactor(SDNode
*N
);
146 SDValue
visitMERGE_VALUES(SDNode
*N
);
147 SDValue
visitADD(SDNode
*N
);
148 SDValue
visitSUB(SDNode
*N
);
149 SDValue
visitADDC(SDNode
*N
);
150 SDValue
visitADDE(SDNode
*N
);
151 SDValue
visitMUL(SDNode
*N
);
152 SDValue
visitSDIV(SDNode
*N
);
153 SDValue
visitUDIV(SDNode
*N
);
154 SDValue
visitSREM(SDNode
*N
);
155 SDValue
visitUREM(SDNode
*N
);
156 SDValue
visitMULHU(SDNode
*N
);
157 SDValue
visitMULHS(SDNode
*N
);
158 SDValue
visitSMUL_LOHI(SDNode
*N
);
159 SDValue
visitUMUL_LOHI(SDNode
*N
);
160 SDValue
visitSDIVREM(SDNode
*N
);
161 SDValue
visitUDIVREM(SDNode
*N
);
162 SDValue
visitAND(SDNode
*N
);
163 SDValue
visitOR(SDNode
*N
);
164 SDValue
visitXOR(SDNode
*N
);
165 SDValue
SimplifyVBinOp(SDNode
*N
);
166 SDValue
visitSHL(SDNode
*N
);
167 SDValue
visitSRA(SDNode
*N
);
168 SDValue
visitSRL(SDNode
*N
);
169 SDValue
visitCTLZ(SDNode
*N
);
170 SDValue
visitCTTZ(SDNode
*N
);
171 SDValue
visitCTPOP(SDNode
*N
);
172 SDValue
visitSELECT(SDNode
*N
);
173 SDValue
visitSELECT_CC(SDNode
*N
);
174 SDValue
visitSETCC(SDNode
*N
);
175 SDValue
visitSIGN_EXTEND(SDNode
*N
);
176 SDValue
visitZERO_EXTEND(SDNode
*N
);
177 SDValue
visitANY_EXTEND(SDNode
*N
);
178 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
179 SDValue
visitTRUNCATE(SDNode
*N
);
180 SDValue
visitBIT_CONVERT(SDNode
*N
);
181 SDValue
visitBUILD_PAIR(SDNode
*N
);
182 SDValue
visitFADD(SDNode
*N
);
183 SDValue
visitFSUB(SDNode
*N
);
184 SDValue
visitFMUL(SDNode
*N
);
185 SDValue
visitFDIV(SDNode
*N
);
186 SDValue
visitFREM(SDNode
*N
);
187 SDValue
visitFCOPYSIGN(SDNode
*N
);
188 SDValue
visitSINT_TO_FP(SDNode
*N
);
189 SDValue
visitUINT_TO_FP(SDNode
*N
);
190 SDValue
visitFP_TO_SINT(SDNode
*N
);
191 SDValue
visitFP_TO_UINT(SDNode
*N
);
192 SDValue
visitFP_ROUND(SDNode
*N
);
193 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
194 SDValue
visitFP_EXTEND(SDNode
*N
);
195 SDValue
visitFNEG(SDNode
*N
);
196 SDValue
visitFABS(SDNode
*N
);
197 SDValue
visitBRCOND(SDNode
*N
);
198 SDValue
visitBR_CC(SDNode
*N
);
199 SDValue
visitLOAD(SDNode
*N
);
200 SDValue
visitSTORE(SDNode
*N
);
201 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
202 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
203 SDValue
visitBUILD_VECTOR(SDNode
*N
);
204 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
205 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
207 SDValue
XformToShuffleWithZero(SDNode
*N
);
208 SDValue
ReassociateOps(unsigned Opc
, DebugLoc DL
, SDValue LHS
, SDValue RHS
);
210 SDValue
visitShiftByConstant(SDNode
*N
, unsigned Amt
);
212 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
213 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
214 SDValue
SimplifySelect(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
);
215 SDValue
SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
,
216 SDValue N3
, ISD::CondCode CC
,
217 bool NotExtCompare
= false);
218 SDValue
SimplifySetCC(MVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
219 DebugLoc DL
, bool foldBooleans
= true);
220 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
222 SDValue
CombineConsecutiveLoads(SDNode
*N
, MVT VT
);
223 SDValue
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*, MVT
);
224 SDValue
BuildSDIV(SDNode
*N
);
225 SDValue
BuildUDIV(SDNode
*N
);
226 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
);
227 SDValue
ReduceLoadWidth(SDNode
*N
);
228 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
230 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
232 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
233 /// looking for aliasing nodes and adding them to the Aliases vector.
234 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
235 SmallVector
<SDValue
, 8> &Aliases
);
237 /// isAlias - Return true if there is any possibility that the two addresses
239 bool isAlias(SDValue Ptr1
, int64_t Size1
,
240 const Value
*SrcValue1
, int SrcValueOffset1
,
241 SDValue Ptr2
, int64_t Size2
,
242 const Value
*SrcValue2
, int SrcValueOffset2
) const;
244 /// FindAliasInfo - Extracts the relevant alias information from the memory
245 /// node. Returns true if the operand was a load.
246 bool FindAliasInfo(SDNode
*N
,
247 SDValue
&Ptr
, int64_t &Size
,
248 const Value
*&SrcValue
, int &SrcValueOffset
) const;
250 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
251 /// looking for a better chain (aliasing node.)
252 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
254 /// getShiftAmountTy - Returns a type large enough to hold any valid
255 /// shift amount - before type legalization these can be huge.
256 MVT
getShiftAmountTy() {
257 return LegalTypes
? TLI
.getShiftAmountTy() : TLI
.getPointerTy();
261 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
, CodeGenOpt::Level OL
)
263 TLI(D
.getTargetLoweringInfo()),
266 LegalOperations(false),
270 /// Run - runs the dag combiner on all nodes in the work list
271 void Run(CombineLevel AtLevel
);
277 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
278 /// nodes from the worklist.
279 class VISIBILITY_HIDDEN WorkListRemover
:
280 public SelectionDAG::DAGUpdateListener
{
283 explicit WorkListRemover(DAGCombiner
&dc
) : DC(dc
) {}
285 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
286 DC
.removeFromWorkList(N
);
289 virtual void NodeUpdated(SDNode
*N
) {
295 //===----------------------------------------------------------------------===//
296 // TargetLowering::DAGCombinerInfo implementation
297 //===----------------------------------------------------------------------===//
299 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
300 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
303 SDValue
TargetLowering::DAGCombinerInfo::
304 CombineTo(SDNode
*N
, const std::vector
<SDValue
> &To
, bool AddTo
) {
305 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
308 SDValue
TargetLowering::DAGCombinerInfo::
309 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
310 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
314 SDValue
TargetLowering::DAGCombinerInfo::
315 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
316 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
319 void TargetLowering::DAGCombinerInfo::
320 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
321 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
324 //===----------------------------------------------------------------------===//
326 //===----------------------------------------------------------------------===//
328 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
329 /// specified expression for the same cost as the expression itself, or 2 if we
330 /// can compute the negated form more cheaply than the expression itself.
331 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
332 unsigned Depth
= 0) {
333 // No compile time optimizations on this type.
334 if (Op
.getValueType() == MVT::ppcf128
)
337 // fneg is removable even if it has multiple uses.
338 if (Op
.getOpcode() == ISD::FNEG
) return 2;
340 // Don't allow anything with multiple uses.
341 if (!Op
.hasOneUse()) return 0;
343 // Don't recurse exponentially.
344 if (Depth
> 6) return 0;
346 switch (Op
.getOpcode()) {
347 default: return false;
348 case ISD::ConstantFP
:
349 // Don't invert constant FP values after legalize. The negated constant
350 // isn't necessarily legal.
351 return LegalOperations
? 0 : 1;
353 // FIXME: determine better conditions for this xform.
354 if (!UnsafeFPMath
) return 0;
356 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
357 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
359 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
360 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
362 // We can't turn -(A-B) into B-A when we honor signed zeros.
363 if (!UnsafeFPMath
) return 0;
365 // fold (fneg (fsub A, B)) -> (fsub B, A)
370 if (HonorSignDependentRoundingFPMath()) return 0;
372 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
373 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
376 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
381 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1);
385 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
386 /// returns the newly negated expression.
387 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
388 bool LegalOperations
, unsigned Depth
= 0) {
389 // fneg is removable even if it has multiple uses.
390 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
392 // Don't allow anything with multiple uses.
393 assert(Op
.hasOneUse() && "Unknown reuse!");
395 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
396 switch (Op
.getOpcode()) {
397 default: llvm_unreachable("Unknown code");
398 case ISD::ConstantFP
: {
399 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
401 return DAG
.getConstantFP(V
, Op
.getValueType());
404 // FIXME: determine better conditions for this xform.
405 assert(UnsafeFPMath
);
407 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
408 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
409 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
410 GetNegatedExpression(Op
.getOperand(0), DAG
,
411 LegalOperations
, Depth
+1),
413 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
414 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
415 GetNegatedExpression(Op
.getOperand(1), DAG
,
416 LegalOperations
, Depth
+1),
419 // We can't turn -(A-B) into B-A when we honor signed zeros.
420 assert(UnsafeFPMath
);
422 // fold (fneg (fsub 0, B)) -> B
423 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
424 if (N0CFP
->getValueAPF().isZero())
425 return Op
.getOperand(1);
427 // fold (fneg (fsub A, B)) -> (fsub B, A)
428 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
429 Op
.getOperand(1), Op
.getOperand(0));
433 assert(!HonorSignDependentRoundingFPMath());
435 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
436 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
437 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
438 GetNegatedExpression(Op
.getOperand(0), DAG
,
439 LegalOperations
, Depth
+1),
442 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
443 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
445 GetNegatedExpression(Op
.getOperand(1), DAG
,
446 LegalOperations
, Depth
+1));
450 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
451 GetNegatedExpression(Op
.getOperand(0), DAG
,
452 LegalOperations
, Depth
+1));
454 return DAG
.getNode(ISD::FP_ROUND
, Op
.getDebugLoc(), Op
.getValueType(),
455 GetNegatedExpression(Op
.getOperand(0), DAG
,
456 LegalOperations
, Depth
+1),
462 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
463 // that selects between the values 1 and 0, making it equivalent to a setcc.
464 // Also, set the incoming LHS, RHS, and CC references to the appropriate
465 // nodes based on the type of node we are checking. This simplifies life a
466 // bit for the callers.
467 static bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
469 if (N
.getOpcode() == ISD::SETCC
) {
470 LHS
= N
.getOperand(0);
471 RHS
= N
.getOperand(1);
472 CC
= N
.getOperand(2);
475 if (N
.getOpcode() == ISD::SELECT_CC
&&
476 N
.getOperand(2).getOpcode() == ISD::Constant
&&
477 N
.getOperand(3).getOpcode() == ISD::Constant
&&
478 cast
<ConstantSDNode
>(N
.getOperand(2))->getAPIntValue() == 1 &&
479 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
480 LHS
= N
.getOperand(0);
481 RHS
= N
.getOperand(1);
482 CC
= N
.getOperand(4);
488 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
489 // one use. If this is true, it allows the users to invert the operation for
490 // free when it is profitable to do so.
491 static bool isOneUseSetCC(SDValue N
) {
493 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
498 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, DebugLoc DL
,
499 SDValue N0
, SDValue N1
) {
500 MVT VT
= N0
.getValueType();
501 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
502 if (isa
<ConstantSDNode
>(N1
)) {
503 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
505 DAG
.FoldConstantArithmetic(Opc
, VT
,
506 cast
<ConstantSDNode
>(N0
.getOperand(1)),
507 cast
<ConstantSDNode
>(N1
));
508 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
509 } else if (N0
.hasOneUse()) {
510 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
511 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
512 N0
.getOperand(0), N1
);
513 AddToWorkList(OpNode
.getNode());
514 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
518 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
519 if (isa
<ConstantSDNode
>(N0
)) {
520 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
522 DAG
.FoldConstantArithmetic(Opc
, VT
,
523 cast
<ConstantSDNode
>(N1
.getOperand(1)),
524 cast
<ConstantSDNode
>(N0
));
525 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
526 } else if (N1
.hasOneUse()) {
527 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
528 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
529 N1
.getOperand(0), N0
);
530 AddToWorkList(OpNode
.getNode());
531 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
538 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
540 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
542 DOUT
<< "\nReplacing.1 "; DEBUG(N
->dump(&DAG
));
543 DOUT
<< "\nWith: "; DEBUG(To
[0].getNode()->dump(&DAG
));
544 DOUT
<< " and " << NumTo
-1 << " other values\n";
545 DEBUG(for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
546 assert(N
->getValueType(i
) == To
[i
].getValueType() &&
547 "Cannot combine value to value of different type!"));
548 WorkListRemover
DeadNodes(*this);
549 DAG
.ReplaceAllUsesWith(N
, To
, &DeadNodes
);
552 // Push the new nodes and any users onto the worklist
553 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
554 if (To
[i
].getNode()) {
555 AddToWorkList(To
[i
].getNode());
556 AddUsersToWorkList(To
[i
].getNode());
561 // Finally, if the node is now dead, remove it from the graph. The node
562 // may not be dead if the replacement process recursively simplified to
563 // something else needing this node.
564 if (N
->use_empty()) {
565 // Nodes can be reintroduced into the worklist. Make sure we do not
566 // process a node that has been replaced.
567 removeFromWorkList(N
);
569 // Finally, since the node is now dead, remove it from the graph.
572 return SDValue(N
, 0);
576 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&
578 // Replace all uses. If any nodes become isomorphic to other nodes and
579 // are deleted, make sure to remove them from our worklist.
580 WorkListRemover
DeadNodes(*this);
581 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, &DeadNodes
);
583 // Push the new node and any (possibly new) users onto the worklist.
584 AddToWorkList(TLO
.New
.getNode());
585 AddUsersToWorkList(TLO
.New
.getNode());
587 // Finally, if the node is now dead, remove it from the graph. The node
588 // may not be dead if the replacement process recursively simplified to
589 // something else needing this node.
590 if (TLO
.Old
.getNode()->use_empty()) {
591 removeFromWorkList(TLO
.Old
.getNode());
593 // If the operands of this node are only used by the node, they will now
594 // be dead. Make sure to visit them first to delete dead nodes early.
595 for (unsigned i
= 0, e
= TLO
.Old
.getNode()->getNumOperands(); i
!= e
; ++i
)
596 if (TLO
.Old
.getNode()->getOperand(i
).getNode()->hasOneUse())
597 AddToWorkList(TLO
.Old
.getNode()->getOperand(i
).getNode());
599 DAG
.DeleteNode(TLO
.Old
.getNode());
603 /// SimplifyDemandedBits - Check the specified integer node value to see if
604 /// it can be simplified or if things it uses can be simplified by bit
605 /// propagation. If so, return true.
606 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
607 TargetLowering::TargetLoweringOpt
TLO(DAG
);
608 APInt KnownZero
, KnownOne
;
609 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
613 AddToWorkList(Op
.getNode());
615 // Replace the old value with the new one.
617 DOUT
<< "\nReplacing.2 "; DEBUG(TLO
.Old
.getNode()->dump(&DAG
));
618 DOUT
<< "\nWith: "; DEBUG(TLO
.New
.getNode()->dump(&DAG
));
621 CommitTargetLoweringOpt(TLO
);
625 //===----------------------------------------------------------------------===//
626 // Main DAG Combiner implementation
627 //===----------------------------------------------------------------------===//
629 void DAGCombiner::Run(CombineLevel AtLevel
) {
630 // set the instance variables, so that the various visit routines may use it.
632 LegalOperations
= Level
>= NoIllegalOperations
;
633 LegalTypes
= Level
>= NoIllegalTypes
;
635 // Add all the dag nodes to the worklist.
636 WorkList
.reserve(DAG
.allnodes_size());
637 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
638 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
639 WorkList
.push_back(I
);
641 // Create a dummy node (which is not added to allnodes), that adds a reference
642 // to the root node, preventing it from being deleted, and tracking any
643 // changes of the root.
644 HandleSDNode
Dummy(DAG
.getRoot());
646 // The root of the dag may dangle to deleted nodes until the dag combiner is
647 // done. Set it to null to avoid confusion.
648 DAG
.setRoot(SDValue());
650 // while the worklist isn't empty, inspect the node on the end of it and
651 // try and combine it.
652 while (!WorkList
.empty()) {
653 SDNode
*N
= WorkList
.back();
656 // If N has no uses, it is dead. Make sure to revisit all N's operands once
657 // N is deleted from the DAG, since they too may now be dead or may have a
658 // reduced number of uses, allowing other xforms.
659 if (N
->use_empty() && N
!= &Dummy
) {
660 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
661 AddToWorkList(N
->getOperand(i
).getNode());
667 SDValue RV
= combine(N
);
669 if (RV
.getNode() == 0)
674 // If we get back the same node we passed in, rather than a new node or
675 // zero, we know that the node must have defined multiple values and
676 // CombineTo was used. Since CombineTo takes care of the worklist
677 // mechanics for us, we have no work to do in this case.
678 if (RV
.getNode() == N
)
681 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
682 RV
.getNode()->getOpcode() != ISD::DELETED_NODE
&&
683 "Node was deleted but visit returned new node!");
685 DOUT
<< "\nReplacing.3 "; DEBUG(N
->dump(&DAG
));
686 DOUT
<< "\nWith: "; DEBUG(RV
.getNode()->dump(&DAG
));
688 WorkListRemover
DeadNodes(*this);
689 if (N
->getNumValues() == RV
.getNode()->getNumValues())
690 DAG
.ReplaceAllUsesWith(N
, RV
.getNode(), &DeadNodes
);
692 assert(N
->getValueType(0) == RV
.getValueType() &&
693 N
->getNumValues() == 1 && "Type mismatch");
695 DAG
.ReplaceAllUsesWith(N
, &OpV
, &DeadNodes
);
698 // Push the new node and any users onto the worklist
699 AddToWorkList(RV
.getNode());
700 AddUsersToWorkList(RV
.getNode());
702 // Add any uses of the old node to the worklist in case this node is the
703 // last one that uses them. They may become dead after this node is
705 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
706 AddToWorkList(N
->getOperand(i
).getNode());
708 // Finally, if the node is now dead, remove it from the graph. The node
709 // may not be dead if the replacement process recursively simplified to
710 // something else needing this node.
711 if (N
->use_empty()) {
712 // Nodes can be reintroduced into the worklist. Make sure we do not
713 // process a node that has been replaced.
714 removeFromWorkList(N
);
716 // Finally, since the node is now dead, remove it from the graph.
721 // If the root changed (e.g. it was a dead load, update the root).
722 DAG
.setRoot(Dummy
.getValue());
725 SDValue
DAGCombiner::visit(SDNode
*N
) {
726 switch(N
->getOpcode()) {
728 case ISD::TokenFactor
: return visitTokenFactor(N
);
729 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
730 case ISD::ADD
: return visitADD(N
);
731 case ISD::SUB
: return visitSUB(N
);
732 case ISD::ADDC
: return visitADDC(N
);
733 case ISD::ADDE
: return visitADDE(N
);
734 case ISD::MUL
: return visitMUL(N
);
735 case ISD::SDIV
: return visitSDIV(N
);
736 case ISD::UDIV
: return visitUDIV(N
);
737 case ISD::SREM
: return visitSREM(N
);
738 case ISD::UREM
: return visitUREM(N
);
739 case ISD::MULHU
: return visitMULHU(N
);
740 case ISD::MULHS
: return visitMULHS(N
);
741 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
742 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
743 case ISD::SDIVREM
: return visitSDIVREM(N
);
744 case ISD::UDIVREM
: return visitUDIVREM(N
);
745 case ISD::AND
: return visitAND(N
);
746 case ISD::OR
: return visitOR(N
);
747 case ISD::XOR
: return visitXOR(N
);
748 case ISD::SHL
: return visitSHL(N
);
749 case ISD::SRA
: return visitSRA(N
);
750 case ISD::SRL
: return visitSRL(N
);
751 case ISD::CTLZ
: return visitCTLZ(N
);
752 case ISD::CTTZ
: return visitCTTZ(N
);
753 case ISD::CTPOP
: return visitCTPOP(N
);
754 case ISD::SELECT
: return visitSELECT(N
);
755 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
756 case ISD::SETCC
: return visitSETCC(N
);
757 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
758 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
759 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
760 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
761 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
762 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
763 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
764 case ISD::FADD
: return visitFADD(N
);
765 case ISD::FSUB
: return visitFSUB(N
);
766 case ISD::FMUL
: return visitFMUL(N
);
767 case ISD::FDIV
: return visitFDIV(N
);
768 case ISD::FREM
: return visitFREM(N
);
769 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
770 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
771 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
772 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
773 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
774 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
775 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
776 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
777 case ISD::FNEG
: return visitFNEG(N
);
778 case ISD::FABS
: return visitFABS(N
);
779 case ISD::BRCOND
: return visitBRCOND(N
);
780 case ISD::BR_CC
: return visitBR_CC(N
);
781 case ISD::LOAD
: return visitLOAD(N
);
782 case ISD::STORE
: return visitSTORE(N
);
783 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
784 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
785 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
786 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
787 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
792 SDValue
DAGCombiner::combine(SDNode
*N
) {
793 SDValue RV
= visit(N
);
795 // If nothing happened, try a target-specific DAG combine.
796 if (RV
.getNode() == 0) {
797 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
798 "Node was deleted but visit returned NULL!");
800 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
801 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
803 // Expose the DAG combiner to the target combiner impls.
804 TargetLowering::DAGCombinerInfo
805 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
807 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
811 // If N is a commutative binary node, try commuting it to enable more
813 if (RV
.getNode() == 0 &&
814 SelectionDAG::isCommutativeBinOp(N
->getOpcode()) &&
815 N
->getNumValues() == 1) {
816 SDValue N0
= N
->getOperand(0);
817 SDValue N1
= N
->getOperand(1);
819 // Constant operands are canonicalized to RHS.
820 if (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
)) {
821 SDValue Ops
[] = { N1
, N0
};
822 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(),
825 return SDValue(CSENode
, 0);
832 /// getInputChainForNode - Given a node, return its input chain if it has one,
833 /// otherwise return a null sd operand.
834 static SDValue
getInputChainForNode(SDNode
*N
) {
835 if (unsigned NumOps
= N
->getNumOperands()) {
836 if (N
->getOperand(0).getValueType() == MVT::Other
)
837 return N
->getOperand(0);
838 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
839 return N
->getOperand(NumOps
-1);
840 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
841 if (N
->getOperand(i
).getValueType() == MVT::Other
)
842 return N
->getOperand(i
);
847 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
848 // If N has two operands, where one has an input chain equal to the other,
849 // the 'other' chain is redundant.
850 if (N
->getNumOperands() == 2) {
851 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
852 return N
->getOperand(0);
853 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
854 return N
->getOperand(1);
857 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
858 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
859 SmallPtrSet
<SDNode
*, 16> SeenOps
;
860 bool Changed
= false; // If we should replace this token factor.
862 // Start out with this token factor.
865 // Iterate through token factors. The TFs grows when new token factors are
867 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
870 // Check each of the operands.
871 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
872 SDValue Op
= TF
->getOperand(i
);
874 switch (Op
.getOpcode()) {
875 case ISD::EntryToken
:
876 // Entry tokens don't need to be added to the list. They are
881 case ISD::TokenFactor
:
882 if ((CombinerAA
|| Op
.hasOneUse()) &&
883 std::find(TFs
.begin(), TFs
.end(), Op
.getNode()) == TFs
.end()) {
884 // Queue up for processing.
885 TFs
.push_back(Op
.getNode());
886 // Clean up in case the token factor is removed.
887 AddToWorkList(Op
.getNode());
894 // Only add if it isn't already in the list.
895 if (SeenOps
.insert(Op
.getNode()))
906 // If we've change things around then replace token factor.
909 // The entry token is the only possible outcome.
910 Result
= DAG
.getEntryNode();
912 // New and improved token factor.
913 Result
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
914 MVT::Other
, &Ops
[0], Ops
.size());
917 // Don't add users to work list.
918 return CombineTo(N
, Result
, false);
924 /// MERGE_VALUES can always be eliminated.
925 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
926 WorkListRemover
DeadNodes(*this);
927 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
928 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
),
930 removeFromWorkList(N
);
932 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
936 SDValue
combineShlAddConstant(DebugLoc DL
, SDValue N0
, SDValue N1
,
938 MVT VT
= N0
.getValueType();
939 SDValue N00
= N0
.getOperand(0);
940 SDValue N01
= N0
.getOperand(1);
941 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
943 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.getNode()->hasOneUse() &&
944 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
945 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
946 N0
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
,
947 DAG
.getNode(ISD::SHL
, N00
.getDebugLoc(), VT
,
948 N00
.getOperand(0), N01
),
949 DAG
.getNode(ISD::SHL
, N01
.getDebugLoc(), VT
,
950 N00
.getOperand(1), N01
));
951 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
957 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
958 SDValue N0
= N
->getOperand(0);
959 SDValue N1
= N
->getOperand(1);
960 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
961 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
962 MVT VT
= N0
.getValueType();
966 SDValue FoldedVOp
= SimplifyVBinOp(N
);
967 if (FoldedVOp
.getNode()) return FoldedVOp
;
970 // fold (add x, undef) -> undef
971 if (N0
.getOpcode() == ISD::UNDEF
)
973 if (N1
.getOpcode() == ISD::UNDEF
)
975 // fold (add c1, c2) -> c1+c2
977 return DAG
.FoldConstantArithmetic(ISD::ADD
, VT
, N0C
, N1C
);
978 // canonicalize constant to RHS
980 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
);
981 // fold (add x, 0) -> x
982 if (N1C
&& N1C
->isNullValue())
984 // fold (add Sym, c) -> Sym+c
985 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
986 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
) && N1C
&&
987 GA
->getOpcode() == ISD::GlobalAddress
)
988 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
990 (uint64_t)N1C
->getSExtValue());
991 // fold ((c1-A)+c2) -> (c1+c2)-A
992 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
993 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
994 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
995 DAG
.getConstant(N1C
->getAPIntValue()+
996 N0C
->getAPIntValue(), VT
),
999 SDValue RADD
= ReassociateOps(ISD::ADD
, N
->getDebugLoc(), N0
, N1
);
1000 if (RADD
.getNode() != 0)
1002 // fold ((0-A) + B) -> B-A
1003 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
1004 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
1005 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
, N0
.getOperand(1));
1006 // fold (A + (0-B)) -> A-B
1007 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
1008 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
1009 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, N1
.getOperand(1));
1010 // fold (A+(B-A)) -> B
1011 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
1012 return N1
.getOperand(0);
1013 // fold ((B-A)+A) -> B
1014 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
1015 return N0
.getOperand(0);
1016 // fold (A+(B-(A+C))) to (B-C)
1017 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1018 N0
== N1
.getOperand(1).getOperand(0))
1019 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1020 N1
.getOperand(1).getOperand(1));
1021 // fold (A+(B-(C+A))) to (B-C)
1022 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1023 N0
== N1
.getOperand(1).getOperand(1))
1024 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1025 N1
.getOperand(1).getOperand(0));
1026 // fold (A+((B-A)+or-C)) to (B+or-C)
1027 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
1028 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
1029 N0
== N1
.getOperand(0).getOperand(1))
1030 return DAG
.getNode(N1
.getOpcode(), N
->getDebugLoc(), VT
,
1031 N1
.getOperand(0).getOperand(0), N1
.getOperand(1));
1033 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1034 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
1035 SDValue N00
= N0
.getOperand(0);
1036 SDValue N01
= N0
.getOperand(1);
1037 SDValue N10
= N1
.getOperand(0);
1038 SDValue N11
= N1
.getOperand(1);
1040 if (isa
<ConstantSDNode
>(N00
) || isa
<ConstantSDNode
>(N10
))
1041 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1042 DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
, N00
, N10
),
1043 DAG
.getNode(ISD::ADD
, N1
.getDebugLoc(), VT
, N01
, N11
));
1046 if (!VT
.isVector() && SimplifyDemandedBits(SDValue(N
, 0)))
1047 return SDValue(N
, 0);
1049 // fold (a+b) -> (a|b) iff a and b share no bits.
1050 if (VT
.isInteger() && !VT
.isVector()) {
1051 APInt LHSZero
, LHSOne
;
1052 APInt RHSZero
, RHSOne
;
1053 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1054 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1056 if (LHSZero
.getBoolValue()) {
1057 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1059 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1060 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1061 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1062 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1063 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
);
1067 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1068 if (N0
.getOpcode() == ISD::SHL
&& N0
.getNode()->hasOneUse()) {
1069 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N0
, N1
, DAG
);
1070 if (Result
.getNode()) return Result
;
1072 if (N1
.getOpcode() == ISD::SHL
&& N1
.getNode()->hasOneUse()) {
1073 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N1
, N0
, DAG
);
1074 if (Result
.getNode()) return Result
;
1080 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
1081 SDValue N0
= N
->getOperand(0);
1082 SDValue N1
= N
->getOperand(1);
1083 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1084 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1085 MVT VT
= N0
.getValueType();
1087 // If the flag result is dead, turn this into an ADD.
1088 if (N
->hasNUsesOfValue(0, 1))
1089 return CombineTo(N
, DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
),
1090 DAG
.getNode(ISD::CARRY_FALSE
,
1091 N
->getDebugLoc(), MVT::Flag
));
1093 // canonicalize constant to RHS.
1095 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1097 // fold (addc x, 0) -> x + no carry out
1098 if (N1C
&& N1C
->isNullValue())
1099 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
1100 N
->getDebugLoc(), MVT::Flag
));
1102 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1103 APInt LHSZero
, LHSOne
;
1104 APInt RHSZero
, RHSOne
;
1105 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1106 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1108 if (LHSZero
.getBoolValue()) {
1109 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1111 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1112 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1113 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1114 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1115 return CombineTo(N
, DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
),
1116 DAG
.getNode(ISD::CARRY_FALSE
,
1117 N
->getDebugLoc(), MVT::Flag
));
1123 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
1124 SDValue N0
= N
->getOperand(0);
1125 SDValue N1
= N
->getOperand(1);
1126 SDValue CarryIn
= N
->getOperand(2);
1127 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1128 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1130 // canonicalize constant to RHS
1132 return DAG
.getNode(ISD::ADDE
, N
->getDebugLoc(), N
->getVTList(),
1135 // fold (adde x, y, false) -> (addc x, y)
1136 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
1137 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1142 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
1143 SDValue N0
= N
->getOperand(0);
1144 SDValue N1
= N
->getOperand(1);
1145 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1146 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1147 MVT VT
= N0
.getValueType();
1150 if (VT
.isVector()) {
1151 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1152 if (FoldedVOp
.getNode()) return FoldedVOp
;
1155 // fold (sub x, x) -> 0
1157 return DAG
.getConstant(0, N
->getValueType(0));
1158 // fold (sub c1, c2) -> c1-c2
1160 return DAG
.FoldConstantArithmetic(ISD::SUB
, VT
, N0C
, N1C
);
1161 // fold (sub x, c) -> (add x, -c)
1163 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
,
1164 DAG
.getConstant(-N1C
->getAPIntValue(), VT
));
1165 // fold (A+B)-A -> B
1166 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
1167 return N0
.getOperand(1);
1168 // fold (A+B)-B -> A
1169 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
1170 return N0
.getOperand(0);
1171 // fold ((A+(B+or-C))-B) -> A+or-C
1172 if (N0
.getOpcode() == ISD::ADD
&&
1173 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
1174 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
1175 N0
.getOperand(1).getOperand(0) == N1
)
1176 return DAG
.getNode(N0
.getOperand(1).getOpcode(), N
->getDebugLoc(), VT
,
1177 N0
.getOperand(0), N0
.getOperand(1).getOperand(1));
1178 // fold ((A+(C+B))-B) -> A+C
1179 if (N0
.getOpcode() == ISD::ADD
&&
1180 N0
.getOperand(1).getOpcode() == ISD::ADD
&&
1181 N0
.getOperand(1).getOperand(1) == N1
)
1182 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1183 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1184 // fold ((A-(B-C))-C) -> A-B
1185 if (N0
.getOpcode() == ISD::SUB
&&
1186 N0
.getOperand(1).getOpcode() == ISD::SUB
&&
1187 N0
.getOperand(1).getOperand(1) == N1
)
1188 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1189 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1191 // If either operand of a sub is undef, the result is undef
1192 if (N0
.getOpcode() == ISD::UNDEF
)
1194 if (N1
.getOpcode() == ISD::UNDEF
)
1197 // If the relocation model supports it, consider symbol offsets.
1198 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1199 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
1200 // fold (sub Sym, c) -> Sym-c
1201 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
1202 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
1204 (uint64_t)N1C
->getSExtValue());
1205 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1206 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
1207 if (GA
->getGlobal() == GB
->getGlobal())
1208 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
1215 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
1216 SDValue N0
= N
->getOperand(0);
1217 SDValue N1
= N
->getOperand(1);
1218 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1219 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1220 MVT VT
= N0
.getValueType();
1223 if (VT
.isVector()) {
1224 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1225 if (FoldedVOp
.getNode()) return FoldedVOp
;
1228 // fold (mul x, undef) -> 0
1229 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1230 return DAG
.getConstant(0, VT
);
1231 // fold (mul c1, c2) -> c1*c2
1233 return DAG
.FoldConstantArithmetic(ISD::MUL
, VT
, N0C
, N1C
);
1234 // canonicalize constant to RHS
1236 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
, N1
, N0
);
1237 // fold (mul x, 0) -> 0
1238 if (N1C
&& N1C
->isNullValue())
1240 // fold (mul x, -1) -> 0-x
1241 if (N1C
&& N1C
->isAllOnesValue())
1242 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1243 DAG
.getConstant(0, VT
), N0
);
1244 // fold (mul x, (1 << c)) -> x << c
1245 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1246 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1247 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1248 getShiftAmountTy()));
1249 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1250 if (N1C
&& (-N1C
->getAPIntValue()).isPowerOf2()) {
1251 unsigned Log2Val
= (-N1C
->getAPIntValue()).logBase2();
1252 // FIXME: If the input is something that is easily negated (e.g. a
1253 // single-use add), we should put the negate there.
1254 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1255 DAG
.getConstant(0, VT
),
1256 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1257 DAG
.getConstant(Log2Val
, getShiftAmountTy())));
1259 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1260 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1261 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1262 SDValue C3
= DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1263 N1
, N0
.getOperand(1));
1264 AddToWorkList(C3
.getNode());
1265 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1266 N0
.getOperand(0), C3
);
1269 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1272 SDValue
Sh(0,0), Y(0,0);
1273 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1274 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1275 N0
.getNode()->hasOneUse()) {
1277 } else if (N1
.getOpcode() == ISD::SHL
&&
1278 isa
<ConstantSDNode
>(N1
.getOperand(1)) &&
1279 N1
.getNode()->hasOneUse()) {
1284 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1285 Sh
.getOperand(0), Y
);
1286 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1287 Mul
, Sh
.getOperand(1));
1291 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1292 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse() &&
1293 isa
<ConstantSDNode
>(N0
.getOperand(1)))
1294 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1295 DAG
.getNode(ISD::MUL
, N0
.getDebugLoc(), VT
,
1296 N0
.getOperand(0), N1
),
1297 DAG
.getNode(ISD::MUL
, N1
.getDebugLoc(), VT
,
1298 N0
.getOperand(1), N1
));
1301 SDValue RMUL
= ReassociateOps(ISD::MUL
, N
->getDebugLoc(), N0
, N1
);
1302 if (RMUL
.getNode() != 0)
1308 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
1309 SDValue N0
= N
->getOperand(0);
1310 SDValue N1
= N
->getOperand(1);
1311 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1312 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1313 MVT VT
= N
->getValueType(0);
1316 if (VT
.isVector()) {
1317 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1318 if (FoldedVOp
.getNode()) return FoldedVOp
;
1321 // fold (sdiv c1, c2) -> c1/c2
1322 if (N0C
&& N1C
&& !N1C
->isNullValue())
1323 return DAG
.FoldConstantArithmetic(ISD::SDIV
, VT
, N0C
, N1C
);
1324 // fold (sdiv X, 1) -> X
1325 if (N1C
&& N1C
->getSExtValue() == 1LL)
1327 // fold (sdiv X, -1) -> 0-X
1328 if (N1C
&& N1C
->isAllOnesValue())
1329 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1330 DAG
.getConstant(0, VT
), N0
);
1331 // If we know the sign bits of both operands are zero, strength reduce to a
1332 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1333 if (!VT
.isVector()) {
1334 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1335 return DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), N1
.getValueType(),
1338 // fold (sdiv X, pow2) -> simple ops after legalize
1339 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap() &&
1340 (isPowerOf2_64(N1C
->getSExtValue()) ||
1341 isPowerOf2_64(-N1C
->getSExtValue()))) {
1342 // If dividing by powers of two is cheap, then don't perform the following
1344 if (TLI
.isPow2DivCheap())
1347 int64_t pow2
= N1C
->getSExtValue();
1348 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1349 unsigned lg2
= Log2_64(abs2
);
1351 // Splat the sign bit into the register
1352 SDValue SGN
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
1353 DAG
.getConstant(VT
.getSizeInBits()-1,
1354 getShiftAmountTy()));
1355 AddToWorkList(SGN
.getNode());
1357 // Add (N0 < 0) ? abs2 - 1 : 0;
1358 SDValue SRL
= DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, SGN
,
1359 DAG
.getConstant(VT
.getSizeInBits() - lg2
,
1360 getShiftAmountTy()));
1361 SDValue ADD
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
, SRL
);
1362 AddToWorkList(SRL
.getNode());
1363 AddToWorkList(ADD
.getNode()); // Divide by pow2
1364 SDValue SRA
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, ADD
,
1365 DAG
.getConstant(lg2
, getShiftAmountTy()));
1367 // If we're dividing by a positive value, we're done. Otherwise, we must
1368 // negate the result.
1372 AddToWorkList(SRA
.getNode());
1373 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1374 DAG
.getConstant(0, VT
), SRA
);
1377 // if integer divide is expensive and we satisfy the requirements, emit an
1378 // alternate sequence.
1379 if (N1C
&& (N1C
->getSExtValue() < -1 || N1C
->getSExtValue() > 1) &&
1380 !TLI
.isIntDivCheap()) {
1381 SDValue Op
= BuildSDIV(N
);
1382 if (Op
.getNode()) return Op
;
1386 if (N0
.getOpcode() == ISD::UNDEF
)
1387 return DAG
.getConstant(0, VT
);
1388 // X / undef -> undef
1389 if (N1
.getOpcode() == ISD::UNDEF
)
1395 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
1396 SDValue N0
= N
->getOperand(0);
1397 SDValue N1
= N
->getOperand(1);
1398 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1399 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1400 MVT VT
= N
->getValueType(0);
1403 if (VT
.isVector()) {
1404 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1405 if (FoldedVOp
.getNode()) return FoldedVOp
;
1408 // fold (udiv c1, c2) -> c1/c2
1409 if (N0C
&& N1C
&& !N1C
->isNullValue())
1410 return DAG
.FoldConstantArithmetic(ISD::UDIV
, VT
, N0C
, N1C
);
1411 // fold (udiv x, (1 << c)) -> x >>u c
1412 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1413 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
1414 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1415 getShiftAmountTy()));
1416 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1417 if (N1
.getOpcode() == ISD::SHL
) {
1418 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1419 if (SHC
->getAPIntValue().isPowerOf2()) {
1420 MVT ADDVT
= N1
.getOperand(1).getValueType();
1421 SDValue Add
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), ADDVT
,
1423 DAG
.getConstant(SHC
->getAPIntValue()
1426 AddToWorkList(Add
.getNode());
1427 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, Add
);
1431 // fold (udiv x, c) -> alternate
1432 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap()) {
1433 SDValue Op
= BuildUDIV(N
);
1434 if (Op
.getNode()) return Op
;
1438 if (N0
.getOpcode() == ISD::UNDEF
)
1439 return DAG
.getConstant(0, VT
);
1440 // X / undef -> undef
1441 if (N1
.getOpcode() == ISD::UNDEF
)
1447 SDValue
DAGCombiner::visitSREM(SDNode
*N
) {
1448 SDValue N0
= N
->getOperand(0);
1449 SDValue N1
= N
->getOperand(1);
1450 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1451 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1452 MVT VT
= N
->getValueType(0);
1454 // fold (srem c1, c2) -> c1%c2
1455 if (N0C
&& N1C
&& !N1C
->isNullValue())
1456 return DAG
.FoldConstantArithmetic(ISD::SREM
, VT
, N0C
, N1C
);
1457 // If we know the sign bits of both operands are zero, strength reduce to a
1458 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1459 if (!VT
.isVector()) {
1460 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1461 return DAG
.getNode(ISD::UREM
, N
->getDebugLoc(), VT
, N0
, N1
);
1464 // If X/C can be simplified by the division-by-constant logic, lower
1465 // X%C to the equivalent of X-X/C*C.
1466 if (N1C
&& !N1C
->isNullValue()) {
1467 SDValue Div
= DAG
.getNode(ISD::SDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1468 AddToWorkList(Div
.getNode());
1469 SDValue OptimizedDiv
= combine(Div
.getNode());
1470 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1471 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1473 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1474 AddToWorkList(Mul
.getNode());
1480 if (N0
.getOpcode() == ISD::UNDEF
)
1481 return DAG
.getConstant(0, VT
);
1482 // X % undef -> undef
1483 if (N1
.getOpcode() == ISD::UNDEF
)
1489 SDValue
DAGCombiner::visitUREM(SDNode
*N
) {
1490 SDValue N0
= N
->getOperand(0);
1491 SDValue N1
= N
->getOperand(1);
1492 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1493 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1494 MVT VT
= N
->getValueType(0);
1496 // fold (urem c1, c2) -> c1%c2
1497 if (N0C
&& N1C
&& !N1C
->isNullValue())
1498 return DAG
.FoldConstantArithmetic(ISD::UREM
, VT
, N0C
, N1C
);
1499 // fold (urem x, pow2) -> (and x, pow2-1)
1500 if (N1C
&& !N1C
->isNullValue() && N1C
->getAPIntValue().isPowerOf2())
1501 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
,
1502 DAG
.getConstant(N1C
->getAPIntValue()-1,VT
));
1503 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1504 if (N1
.getOpcode() == ISD::SHL
) {
1505 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1506 if (SHC
->getAPIntValue().isPowerOf2()) {
1508 DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
,
1509 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()),
1511 AddToWorkList(Add
.getNode());
1512 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, Add
);
1517 // If X/C can be simplified by the division-by-constant logic, lower
1518 // X%C to the equivalent of X-X/C*C.
1519 if (N1C
&& !N1C
->isNullValue()) {
1520 SDValue Div
= DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1521 AddToWorkList(Div
.getNode());
1522 SDValue OptimizedDiv
= combine(Div
.getNode());
1523 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1524 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1526 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1527 AddToWorkList(Mul
.getNode());
1533 if (N0
.getOpcode() == ISD::UNDEF
)
1534 return DAG
.getConstant(0, VT
);
1535 // X % undef -> undef
1536 if (N1
.getOpcode() == ISD::UNDEF
)
1542 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
1543 SDValue N0
= N
->getOperand(0);
1544 SDValue N1
= N
->getOperand(1);
1545 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1546 MVT VT
= N
->getValueType(0);
1548 // fold (mulhs x, 0) -> 0
1549 if (N1C
&& N1C
->isNullValue())
1551 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1552 if (N1C
&& N1C
->getAPIntValue() == 1)
1553 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), N0
.getValueType(), N0
,
1554 DAG
.getConstant(N0
.getValueType().getSizeInBits() - 1,
1555 getShiftAmountTy()));
1556 // fold (mulhs x, undef) -> 0
1557 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1558 return DAG
.getConstant(0, VT
);
1563 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
1564 SDValue N0
= N
->getOperand(0);
1565 SDValue N1
= N
->getOperand(1);
1566 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1567 MVT VT
= N
->getValueType(0);
1569 // fold (mulhu x, 0) -> 0
1570 if (N1C
&& N1C
->isNullValue())
1572 // fold (mulhu x, 1) -> 0
1573 if (N1C
&& N1C
->getAPIntValue() == 1)
1574 return DAG
.getConstant(0, N0
.getValueType());
1575 // fold (mulhu x, undef) -> 0
1576 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1577 return DAG
.getConstant(0, VT
);
1582 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1583 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1584 /// that are being performed. Return true if a simplification was made.
1586 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
1588 // If the high half is not needed, just compute the low half.
1589 bool HiExists
= N
->hasAnyUseOfValue(1);
1591 (!LegalOperations
||
1592 TLI
.isOperationLegal(LoOp
, N
->getValueType(0)))) {
1593 SDValue Res
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1594 N
->op_begin(), N
->getNumOperands());
1595 return CombineTo(N
, Res
, Res
);
1598 // If the low half is not needed, just compute the high half.
1599 bool LoExists
= N
->hasAnyUseOfValue(0);
1601 (!LegalOperations
||
1602 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
1603 SDValue Res
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1604 N
->op_begin(), N
->getNumOperands());
1605 return CombineTo(N
, Res
, Res
);
1608 // If both halves are used, return as it is.
1609 if (LoExists
&& HiExists
)
1612 // If the two computed results can be simplified separately, separate them.
1614 SDValue Lo
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1615 N
->op_begin(), N
->getNumOperands());
1616 AddToWorkList(Lo
.getNode());
1617 SDValue LoOpt
= combine(Lo
.getNode());
1618 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
1619 (!LegalOperations
||
1620 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
1621 return CombineTo(N
, LoOpt
, LoOpt
);
1625 SDValue Hi
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1626 N
->op_begin(), N
->getNumOperands());
1627 AddToWorkList(Hi
.getNode());
1628 SDValue HiOpt
= combine(Hi
.getNode());
1629 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
1630 (!LegalOperations
||
1631 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
1632 return CombineTo(N
, HiOpt
, HiOpt
);
1638 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
1639 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
);
1640 if (Res
.getNode()) return Res
;
1645 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
1646 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
);
1647 if (Res
.getNode()) return Res
;
1652 SDValue
DAGCombiner::visitSDIVREM(SDNode
*N
) {
1653 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::SDIV
, ISD::SREM
);
1654 if (Res
.getNode()) return Res
;
1659 SDValue
DAGCombiner::visitUDIVREM(SDNode
*N
) {
1660 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::UDIV
, ISD::UREM
);
1661 if (Res
.getNode()) return Res
;
1666 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1667 /// two operands of the same opcode, try to simplify it.
1668 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
1669 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
1670 MVT VT
= N0
.getValueType();
1671 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
1673 // For each of OP in AND/OR/XOR:
1674 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1675 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1676 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1677 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
1678 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
||
1679 N0
.getOpcode() == ISD::SIGN_EXTEND
||
1680 (N0
.getOpcode() == ISD::TRUNCATE
&&
1681 !TLI
.isTruncateFree(N0
.getOperand(0).getValueType(), VT
))) &&
1682 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()) {
1683 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1684 N0
.getOperand(0).getValueType(),
1685 N0
.getOperand(0), N1
.getOperand(0));
1686 AddToWorkList(ORNode
.getNode());
1687 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, ORNode
);
1690 // For each of OP in SHL/SRL/SRA/AND...
1691 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1692 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1693 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1694 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
1695 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
1696 N0
.getOperand(1) == N1
.getOperand(1)) {
1697 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1698 N0
.getOperand(0).getValueType(),
1699 N0
.getOperand(0), N1
.getOperand(0));
1700 AddToWorkList(ORNode
.getNode());
1701 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
1702 ORNode
, N0
.getOperand(1));
1708 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
1709 SDValue N0
= N
->getOperand(0);
1710 SDValue N1
= N
->getOperand(1);
1711 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1712 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1713 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1714 MVT VT
= N1
.getValueType();
1715 unsigned BitWidth
= VT
.getSizeInBits();
1718 if (VT
.isVector()) {
1719 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1720 if (FoldedVOp
.getNode()) return FoldedVOp
;
1723 // fold (and x, undef) -> 0
1724 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1725 return DAG
.getConstant(0, VT
);
1726 // fold (and c1, c2) -> c1&c2
1728 return DAG
.FoldConstantArithmetic(ISD::AND
, VT
, N0C
, N1C
);
1729 // canonicalize constant to RHS
1731 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N1
, N0
);
1732 // fold (and x, -1) -> x
1733 if (N1C
&& N1C
->isAllOnesValue())
1735 // if (and x, c) is known to be zero, return 0
1736 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
1737 APInt::getAllOnesValue(BitWidth
)))
1738 return DAG
.getConstant(0, VT
);
1740 SDValue RAND
= ReassociateOps(ISD::AND
, N
->getDebugLoc(), N0
, N1
);
1741 if (RAND
.getNode() != 0)
1743 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1744 if (N1C
&& N0
.getOpcode() == ISD::OR
)
1745 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
1746 if ((ORI
->getAPIntValue() & N1C
->getAPIntValue()) == N1C
->getAPIntValue())
1748 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1749 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1750 SDValue N0Op0
= N0
.getOperand(0);
1751 APInt Mask
= ~N1C
->getAPIntValue();
1752 Mask
.trunc(N0Op0
.getValueSizeInBits());
1753 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
1754 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(),
1755 N0
.getValueType(), N0Op0
);
1757 // Replace uses of the AND with uses of the Zero extend node.
1760 // We actually want to replace all uses of the any_extend with the
1761 // zero_extend, to avoid duplicating things. This will later cause this
1762 // AND to be folded.
1763 CombineTo(N0
.getNode(), Zext
);
1764 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1767 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1768 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1769 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1770 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1772 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1773 LL
.getValueType().isInteger()) {
1774 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1775 if (cast
<ConstantSDNode
>(LR
)->isNullValue() && Op1
== ISD::SETEQ
) {
1776 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1777 LR
.getValueType(), LL
, RL
);
1778 AddToWorkList(ORNode
.getNode());
1779 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1781 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1782 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
1783 SDValue ANDNode
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(),
1784 LR
.getValueType(), LL
, RL
);
1785 AddToWorkList(ANDNode
.getNode());
1786 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1788 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1789 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
1790 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1791 LR
.getValueType(), LL
, RL
);
1792 AddToWorkList(ORNode
.getNode());
1793 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1796 // canonicalize equivalent to ll == rl
1797 if (LL
== RR
&& LR
== RL
) {
1798 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1801 if (LL
== RL
&& LR
== RR
) {
1802 bool isInteger
= LL
.getValueType().isInteger();
1803 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
1804 if (Result
!= ISD::SETCC_INVALID
&&
1805 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1806 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1811 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1812 if (N0
.getOpcode() == N1
.getOpcode()) {
1813 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1814 if (Tmp
.getNode()) return Tmp
;
1817 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1818 // fold (and (sra)) -> (and (srl)) when possible.
1819 if (!VT
.isVector() &&
1820 SimplifyDemandedBits(SDValue(N
, 0)))
1821 return SDValue(N
, 0);
1822 // fold (zext_inreg (extload x)) -> (zextload x)
1823 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
1824 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1825 MVT EVT
= LN0
->getMemoryVT();
1826 // If we zero all the possible extended bits, then we can turn this into
1827 // a zextload if we are running before legalize or the operation is legal.
1828 unsigned BitWidth
= N1
.getValueSizeInBits();
1829 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1830 BitWidth
- EVT
.getSizeInBits())) &&
1831 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1832 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1833 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1834 LN0
->getChain(), LN0
->getBasePtr(),
1836 LN0
->getSrcValueOffset(), EVT
,
1837 LN0
->isVolatile(), LN0
->getAlignment());
1839 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1840 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1843 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1844 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
1846 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1847 MVT EVT
= LN0
->getMemoryVT();
1848 // If we zero all the possible extended bits, then we can turn this into
1849 // a zextload if we are running before legalize or the operation is legal.
1850 unsigned BitWidth
= N1
.getValueSizeInBits();
1851 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1852 BitWidth
- EVT
.getSizeInBits())) &&
1853 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1854 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1855 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1857 LN0
->getBasePtr(), LN0
->getSrcValue(),
1858 LN0
->getSrcValueOffset(), EVT
,
1859 LN0
->isVolatile(), LN0
->getAlignment());
1861 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1862 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1866 // fold (and (load x), 255) -> (zextload x, i8)
1867 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1868 if (N1C
&& N0
.getOpcode() == ISD::LOAD
) {
1869 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1870 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
1871 LN0
->isUnindexed() && N0
.hasOneUse() &&
1872 // Do not change the width of a volatile load.
1873 !LN0
->isVolatile()) {
1874 MVT EVT
= MVT::Other
;
1875 uint32_t ActiveBits
= N1C
->getAPIntValue().getActiveBits();
1876 if (ActiveBits
> 0 && APIntOps::isMask(ActiveBits
, N1C
->getAPIntValue()))
1877 EVT
= MVT::getIntegerVT(ActiveBits
);
1879 MVT LoadedVT
= LN0
->getMemoryVT();
1881 // Do not generate loads of non-round integer types since these can
1882 // be expensive (and would be wrong if the type is not byte sized).
1883 if (EVT
!= MVT::Other
&& LoadedVT
.bitsGT(EVT
) && EVT
.isRound() &&
1884 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1885 MVT PtrType
= N0
.getOperand(1).getValueType();
1887 // For big endian targets, we need to add an offset to the pointer to
1888 // load the correct bytes. For little endian systems, we merely need to
1889 // read fewer bytes from the same pointer.
1890 unsigned LVTStoreBytes
= LoadedVT
.getStoreSizeInBits()/8;
1891 unsigned EVTStoreBytes
= EVT
.getStoreSizeInBits()/8;
1892 unsigned PtrOff
= LVTStoreBytes
- EVTStoreBytes
;
1893 unsigned Alignment
= LN0
->getAlignment();
1894 SDValue NewPtr
= LN0
->getBasePtr();
1896 if (TLI
.isBigEndian()) {
1897 NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(), PtrType
,
1898 NewPtr
, DAG
.getConstant(PtrOff
, PtrType
));
1899 Alignment
= MinAlign(Alignment
, PtrOff
);
1902 AddToWorkList(NewPtr
.getNode());
1904 DAG
.getExtLoad(ISD::ZEXTLOAD
, LN0
->getDebugLoc(), VT
, LN0
->getChain(),
1905 NewPtr
, LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
1906 EVT
, LN0
->isVolatile(), Alignment
);
1908 CombineTo(N0
.getNode(), Load
, Load
.getValue(1));
1909 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1917 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
1918 SDValue N0
= N
->getOperand(0);
1919 SDValue N1
= N
->getOperand(1);
1920 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1921 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1922 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1923 MVT VT
= N1
.getValueType();
1926 if (VT
.isVector()) {
1927 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1928 if (FoldedVOp
.getNode()) return FoldedVOp
;
1931 // fold (or x, undef) -> -1
1932 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1933 return DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
1934 // fold (or c1, c2) -> c1|c2
1936 return DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N0C
, N1C
);
1937 // canonicalize constant to RHS
1939 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N1
, N0
);
1940 // fold (or x, 0) -> x
1941 if (N1C
&& N1C
->isNullValue())
1943 // fold (or x, -1) -> -1
1944 if (N1C
&& N1C
->isAllOnesValue())
1946 // fold (or x, c) -> c iff (x & ~c) == 0
1947 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
1950 SDValue ROR
= ReassociateOps(ISD::OR
, N
->getDebugLoc(), N0
, N1
);
1951 if (ROR
.getNode() != 0)
1953 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1954 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
1955 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1956 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
1957 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
1958 DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
1959 N0
.getOperand(0), N1
),
1960 DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N1C
, C1
));
1962 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1963 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1964 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1965 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1967 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1968 LL
.getValueType().isInteger()) {
1969 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1970 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1971 if (cast
<ConstantSDNode
>(LR
)->isNullValue() &&
1972 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
1973 SDValue ORNode
= DAG
.getNode(ISD::OR
, LR
.getDebugLoc(),
1974 LR
.getValueType(), LL
, RL
);
1975 AddToWorkList(ORNode
.getNode());
1976 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1978 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1979 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1980 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
1981 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
1982 SDValue ANDNode
= DAG
.getNode(ISD::AND
, LR
.getDebugLoc(),
1983 LR
.getValueType(), LL
, RL
);
1984 AddToWorkList(ANDNode
.getNode());
1985 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1988 // canonicalize equivalent to ll == rl
1989 if (LL
== RR
&& LR
== RL
) {
1990 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1993 if (LL
== RL
&& LR
== RR
) {
1994 bool isInteger
= LL
.getValueType().isInteger();
1995 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
1996 if (Result
!= ISD::SETCC_INVALID
&&
1997 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1998 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
2003 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2004 if (N0
.getOpcode() == N1
.getOpcode()) {
2005 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2006 if (Tmp
.getNode()) return Tmp
;
2009 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2010 if (N0
.getOpcode() == ISD::AND
&&
2011 N1
.getOpcode() == ISD::AND
&&
2012 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
2013 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
2014 // Don't increase # computations.
2015 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
2016 // We can only do this xform if we know that bits from X that are set in C2
2017 // but not in C1 are already zero. Likewise for Y.
2018 const APInt
&LHSMask
=
2019 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2020 const APInt
&RHSMask
=
2021 cast
<ConstantSDNode
>(N1
.getOperand(1))->getAPIntValue();
2023 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
2024 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
2025 SDValue X
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2026 N0
.getOperand(0), N1
.getOperand(0));
2027 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, X
,
2028 DAG
.getConstant(LHSMask
| RHSMask
, VT
));
2032 // See if this is some rotate idiom.
2033 if (SDNode
*Rot
= MatchRotate(N0
, N1
, N
->getDebugLoc()))
2034 return SDValue(Rot
, 0);
2039 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2040 static bool MatchRotateHalf(SDValue Op
, SDValue
&Shift
, SDValue
&Mask
) {
2041 if (Op
.getOpcode() == ISD::AND
) {
2042 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
2043 Mask
= Op
.getOperand(1);
2044 Op
= Op
.getOperand(0);
2050 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
2058 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2059 // idioms for rotate, and if the target supports rotation instructions, generate
2061 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
) {
2062 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2063 MVT VT
= LHS
.getValueType();
2064 if (!TLI
.isTypeLegal(VT
)) return 0;
2066 // The target must have at least one rotate flavor.
2067 bool HasROTL
= TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
);
2068 bool HasROTR
= TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
);
2069 if (!HasROTL
&& !HasROTR
) return 0;
2071 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2072 SDValue LHSShift
; // The shift.
2073 SDValue LHSMask
; // AND value if any.
2074 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
2075 return 0; // Not part of a rotate.
2077 SDValue RHSShift
; // The shift.
2078 SDValue RHSMask
; // AND value if any.
2079 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
2080 return 0; // Not part of a rotate.
2082 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
2083 return 0; // Not shifting the same value.
2085 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
2086 return 0; // Shifts must disagree.
2088 // Canonicalize shl to left side in a shl/srl pair.
2089 if (RHSShift
.getOpcode() == ISD::SHL
) {
2090 std::swap(LHS
, RHS
);
2091 std::swap(LHSShift
, RHSShift
);
2092 std::swap(LHSMask
, RHSMask
);
2095 unsigned OpSizeInBits
= VT
.getSizeInBits();
2096 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
2097 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
2098 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
2100 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2101 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2102 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
2103 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
2104 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getZExtValue();
2105 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getZExtValue();
2106 if ((LShVal
+ RShVal
) != OpSizeInBits
)
2111 Rot
= DAG
.getNode(ISD::ROTL
, DL
, VT
, LHSShiftArg
, LHSShiftAmt
);
2113 Rot
= DAG
.getNode(ISD::ROTR
, DL
, VT
, LHSShiftArg
, RHSShiftAmt
);
2115 // If there is an AND of either shifted operand, apply it to the result.
2116 if (LHSMask
.getNode() || RHSMask
.getNode()) {
2117 APInt Mask
= APInt::getAllOnesValue(OpSizeInBits
);
2119 if (LHSMask
.getNode()) {
2120 APInt RHSBits
= APInt::getLowBitsSet(OpSizeInBits
, LShVal
);
2121 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getAPIntValue() | RHSBits
;
2123 if (RHSMask
.getNode()) {
2124 APInt LHSBits
= APInt::getHighBitsSet(OpSizeInBits
, RShVal
);
2125 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getAPIntValue() | LHSBits
;
2128 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
2131 return Rot
.getNode();
2134 // If there is a mask here, and we have a variable shift, we can't be sure
2135 // that we're masking out the right stuff.
2136 if (LHSMask
.getNode() || RHSMask
.getNode())
2139 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2140 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2141 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
2142 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
2143 if (ConstantSDNode
*SUBC
=
2144 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
2145 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2147 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2148 LHSShiftArg
, LHSShiftAmt
).getNode();
2150 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2151 LHSShiftArg
, RHSShiftAmt
).getNode();
2156 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2157 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2158 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
2159 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
2160 if (ConstantSDNode
*SUBC
=
2161 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
2162 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2164 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2165 LHSShiftArg
, RHSShiftAmt
).getNode();
2167 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2168 LHSShiftArg
, LHSShiftAmt
).getNode();
2173 // Look for sign/zext/any-extended or truncate cases:
2174 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2175 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2176 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2177 || LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
2178 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2179 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2180 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2181 || RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
2182 SDValue LExtOp0
= LHSShiftAmt
.getOperand(0);
2183 SDValue RExtOp0
= RHSShiftAmt
.getOperand(0);
2184 if (RExtOp0
.getOpcode() == ISD::SUB
&&
2185 RExtOp0
.getOperand(1) == LExtOp0
) {
2186 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2188 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2189 // (rotr x, (sub 32, y))
2190 if (ConstantSDNode
*SUBC
=
2191 dyn_cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
2192 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2193 return DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
2195 HasROTL
? LHSShiftAmt
: RHSShiftAmt
).getNode();
2198 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
2199 RExtOp0
== LExtOp0
.getOperand(1)) {
2200 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2202 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2203 // (rotl x, (sub 32, y))
2204 if (ConstantSDNode
*SUBC
=
2205 dyn_cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
2206 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2207 return DAG
.getNode(HasROTR
? ISD::ROTR
: ISD::ROTL
, DL
, VT
,
2209 HasROTR
? RHSShiftAmt
: LHSShiftAmt
).getNode();
2218 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
2219 SDValue N0
= N
->getOperand(0);
2220 SDValue N1
= N
->getOperand(1);
2221 SDValue LHS
, RHS
, CC
;
2222 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2223 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2224 MVT VT
= N0
.getValueType();
2227 if (VT
.isVector()) {
2228 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2229 if (FoldedVOp
.getNode()) return FoldedVOp
;
2232 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2233 if (N0
.getOpcode() == ISD::UNDEF
&& N1
.getOpcode() == ISD::UNDEF
)
2234 return DAG
.getConstant(0, VT
);
2235 // fold (xor x, undef) -> undef
2236 if (N0
.getOpcode() == ISD::UNDEF
)
2238 if (N1
.getOpcode() == ISD::UNDEF
)
2240 // fold (xor c1, c2) -> c1^c2
2242 return DAG
.FoldConstantArithmetic(ISD::XOR
, VT
, N0C
, N1C
);
2243 // canonicalize constant to RHS
2245 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
2246 // fold (xor x, 0) -> x
2247 if (N1C
&& N1C
->isNullValue())
2250 SDValue RXOR
= ReassociateOps(ISD::XOR
, N
->getDebugLoc(), N0
, N1
);
2251 if (RXOR
.getNode() != 0)
2254 // fold !(x cc y) -> (x !cc y)
2255 if (N1C
&& N1C
->getAPIntValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
2256 bool isInt
= LHS
.getValueType().isInteger();
2257 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
2260 if (!LegalOperations
|| TLI
.isCondCodeLegal(NotCC
, LHS
.getValueType())) {
2261 switch (N0
.getOpcode()) {
2263 llvm_unreachable("Unhandled SetCC Equivalent!");
2265 return DAG
.getSetCC(N
->getDebugLoc(), VT
, LHS
, RHS
, NotCC
);
2266 case ISD::SELECT_CC
:
2267 return DAG
.getSelectCC(N
->getDebugLoc(), LHS
, RHS
, N0
.getOperand(2),
2268 N0
.getOperand(3), NotCC
);
2273 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2274 if (N1C
&& N1C
->getAPIntValue() == 1 && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
2275 N0
.getNode()->hasOneUse() &&
2276 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
2277 SDValue V
= N0
.getOperand(0);
2278 V
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), V
.getValueType(), V
,
2279 DAG
.getConstant(1, V
.getValueType()));
2280 AddToWorkList(V
.getNode());
2281 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, V
);
2284 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2285 if (N1C
&& N1C
->getAPIntValue() == 1 && VT
== MVT::i1
&&
2286 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2287 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2288 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
2289 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2290 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2291 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2292 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2293 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2296 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2297 if (N1C
&& N1C
->isAllOnesValue() &&
2298 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2299 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2300 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
2301 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2302 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2303 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2304 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2305 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2308 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2309 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
2310 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
2311 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2313 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(1),
2314 DAG
.getConstant(N1C
->getAPIntValue() ^
2315 N00C
->getAPIntValue(), VT
));
2317 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2318 DAG
.getConstant(N1C
->getAPIntValue() ^
2319 N01C
->getAPIntValue(), VT
));
2321 // fold (xor x, x) -> 0
2323 if (!VT
.isVector()) {
2324 return DAG
.getConstant(0, VT
);
2325 } else if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)){
2326 // Produce a vector of zeros.
2327 SDValue El
= DAG
.getConstant(0, VT
.getVectorElementType());
2328 std::vector
<SDValue
> Ops(VT
.getVectorNumElements(), El
);
2329 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
2330 &Ops
[0], Ops
.size());
2334 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2335 if (N0
.getOpcode() == N1
.getOpcode()) {
2336 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2337 if (Tmp
.getNode()) return Tmp
;
2340 // Simplify the expression using non-local knowledge.
2341 if (!VT
.isVector() &&
2342 SimplifyDemandedBits(SDValue(N
, 0)))
2343 return SDValue(N
, 0);
2348 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2349 /// the shift amount is a constant.
2350 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, unsigned Amt
) {
2351 SDNode
*LHS
= N
->getOperand(0).getNode();
2352 if (!LHS
->hasOneUse()) return SDValue();
2354 // We want to pull some binops through shifts, so that we have (and (shift))
2355 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2356 // thing happens with address calculations, so it's important to canonicalize
2358 bool HighBitSet
= false; // Can we transform this if the high bit is set?
2360 switch (LHS
->getOpcode()) {
2361 default: return SDValue();
2364 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2367 HighBitSet
= true; // We can only transform sra if the high bit is set.
2370 if (N
->getOpcode() != ISD::SHL
)
2371 return SDValue(); // only shl(add) not sr[al](add).
2372 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2376 // We require the RHS of the binop to be a constant as well.
2377 ConstantSDNode
*BinOpCst
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
2378 if (!BinOpCst
) return SDValue();
2380 // FIXME: disable this unless the input to the binop is a shift by a constant.
2381 // If it is not a shift, it pessimizes some common cases like:
2383 // void foo(int *X, int i) { X[i & 1235] = 1; }
2384 // int bar(int *X, int i) { return X[i & 255]; }
2385 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
2386 if ((BinOpLHSVal
->getOpcode() != ISD::SHL
&&
2387 BinOpLHSVal
->getOpcode() != ISD::SRA
&&
2388 BinOpLHSVal
->getOpcode() != ISD::SRL
) ||
2389 !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1)))
2392 MVT VT
= N
->getValueType(0);
2394 // If this is a signed shift right, and the high bit is modified by the
2395 // logical operation, do not perform the transformation. The highBitSet
2396 // boolean indicates the value of the high bit of the constant which would
2397 // cause it to be modified for this operation.
2398 if (N
->getOpcode() == ISD::SRA
) {
2399 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
2400 if (BinOpRHSSignSet
!= HighBitSet
)
2404 // Fold the constants, shifting the binop RHS by the shift amount.
2405 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(1).getDebugLoc(),
2407 LHS
->getOperand(1), N
->getOperand(1));
2409 // Create the new shift.
2410 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(0).getDebugLoc(),
2411 VT
, LHS
->getOperand(0), N
->getOperand(1));
2413 // Create the new binop.
2414 return DAG
.getNode(LHS
->getOpcode(), N
->getDebugLoc(), VT
, NewShift
, NewRHS
);
2417 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
2418 SDValue N0
= N
->getOperand(0);
2419 SDValue N1
= N
->getOperand(1);
2420 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2421 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2422 MVT VT
= N0
.getValueType();
2423 unsigned OpSizeInBits
= VT
.getSizeInBits();
2425 // fold (shl c1, c2) -> c1<<c2
2427 return DAG
.FoldConstantArithmetic(ISD::SHL
, VT
, N0C
, N1C
);
2428 // fold (shl 0, x) -> 0
2429 if (N0C
&& N0C
->isNullValue())
2431 // fold (shl x, c >= size(x)) -> undef
2432 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2433 return DAG
.getUNDEF(VT
);
2434 // fold (shl x, 0) -> x
2435 if (N1C
&& N1C
->isNullValue())
2437 // if (shl x, c) is known to be zero, return 0
2438 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
2439 APInt::getAllOnesValue(VT
.getSizeInBits())))
2440 return DAG
.getConstant(0, VT
);
2441 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2442 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2443 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2444 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2445 SDValue N101
= N1
.getOperand(0).getOperand(1);
2446 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2447 MVT TruncVT
= N1
.getValueType();
2448 SDValue N100
= N1
.getOperand(0).getOperand(0);
2449 APInt TruncC
= N101C
->getAPIntValue();
2450 TruncC
.trunc(TruncVT
.getSizeInBits());
2451 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
2452 DAG
.getNode(ISD::AND
, N
->getDebugLoc(), TruncVT
,
2453 DAG
.getNode(ISD::TRUNCATE
,
2456 DAG
.getConstant(TruncC
, TruncVT
)));
2460 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2461 return SDValue(N
, 0);
2463 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2464 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
2465 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2466 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2467 uint64_t c2
= N1C
->getZExtValue();
2468 if (c1
+ c2
> OpSizeInBits
)
2469 return DAG
.getConstant(0, VT
);
2470 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2471 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2473 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2474 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2475 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2476 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2477 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2478 if (c1
< VT
.getSizeInBits()) {
2479 uint64_t c2
= N1C
->getZExtValue();
2480 SDValue HiBitsMask
=
2481 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2482 VT
.getSizeInBits() - c1
),
2484 SDValue Mask
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), VT
,
2488 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, Mask
,
2489 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
2491 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, Mask
,
2492 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
2495 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2496 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1)) {
2497 SDValue HiBitsMask
=
2498 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2499 VT
.getSizeInBits() -
2500 N1C
->getZExtValue()),
2502 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2506 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2509 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
2510 SDValue N0
= N
->getOperand(0);
2511 SDValue N1
= N
->getOperand(1);
2512 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2513 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2514 MVT VT
= N0
.getValueType();
2516 // fold (sra c1, c2) -> (sra c1, c2)
2518 return DAG
.FoldConstantArithmetic(ISD::SRA
, VT
, N0C
, N1C
);
2519 // fold (sra 0, x) -> 0
2520 if (N0C
&& N0C
->isNullValue())
2522 // fold (sra -1, x) -> -1
2523 if (N0C
&& N0C
->isAllOnesValue())
2525 // fold (sra x, (setge c, size(x))) -> undef
2526 if (N1C
&& N1C
->getZExtValue() >= VT
.getSizeInBits())
2527 return DAG
.getUNDEF(VT
);
2528 // fold (sra x, 0) -> x
2529 if (N1C
&& N1C
->isNullValue())
2531 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2533 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
2534 unsigned LowBits
= VT
.getSizeInBits() - (unsigned)N1C
->getZExtValue();
2535 MVT EVT
= MVT::getIntegerVT(LowBits
);
2536 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, EVT
)))
2537 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
2538 N0
.getOperand(0), DAG
.getValueType(EVT
));
2541 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2542 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
2543 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2544 unsigned Sum
= N1C
->getZExtValue() + C1
->getZExtValue();
2545 if (Sum
>= VT
.getSizeInBits()) Sum
= VT
.getSizeInBits()-1;
2546 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2547 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
2551 // fold (sra (shl X, m), (sub result_size, n))
2552 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2553 // result_size - n != m.
2554 // If truncate is free for the target sext(shl) is likely to result in better
2556 if (N0
.getOpcode() == ISD::SHL
) {
2557 // Get the two constanst of the shifts, CN0 = m, CN = n.
2558 const ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2560 // Determine what the truncate's result bitsize and type would be.
2561 unsigned VTValSize
= VT
.getSizeInBits();
2563 MVT::getIntegerVT(VTValSize
- N1C
->getZExtValue());
2564 // Determine the residual right-shift amount.
2565 signed ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
2567 // If the shift is not a no-op (in which case this should be just a sign
2568 // extend already), the truncated to type is legal, sign_extend is legal
2569 // on that type, and the the truncate to that type is both legal and free,
2570 // perform the transform.
2571 if ((ShiftAmt
> 0) &&
2572 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
2573 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
2574 TLI
.isTruncateFree(VT
, TruncVT
)) {
2576 SDValue Amt
= DAG
.getConstant(ShiftAmt
, getShiftAmountTy());
2577 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
,
2578 N0
.getOperand(0), Amt
);
2579 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), TruncVT
,
2581 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
2582 N
->getValueType(0), Trunc
);
2587 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2588 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2589 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2590 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2591 SDValue N101
= N1
.getOperand(0).getOperand(1);
2592 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2593 MVT TruncVT
= N1
.getValueType();
2594 SDValue N100
= N1
.getOperand(0).getOperand(0);
2595 APInt TruncC
= N101C
->getAPIntValue();
2596 TruncC
.trunc(TruncVT
.getSizeInBits());
2597 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
2598 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2600 DAG
.getNode(ISD::TRUNCATE
,
2603 DAG
.getConstant(TruncC
, TruncVT
)));
2607 // Simplify, based on bits shifted out of the LHS.
2608 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2609 return SDValue(N
, 0);
2612 // If the sign bit is known to be zero, switch this to a SRL.
2613 if (DAG
.SignBitIsZero(N0
))
2614 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, N1
);
2616 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2619 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
2620 SDValue N0
= N
->getOperand(0);
2621 SDValue N1
= N
->getOperand(1);
2622 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2623 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2624 MVT VT
= N0
.getValueType();
2625 unsigned OpSizeInBits
= VT
.getSizeInBits();
2627 // fold (srl c1, c2) -> c1 >>u c2
2629 return DAG
.FoldConstantArithmetic(ISD::SRL
, VT
, N0C
, N1C
);
2630 // fold (srl 0, x) -> 0
2631 if (N0C
&& N0C
->isNullValue())
2633 // fold (srl x, c >= size(x)) -> undef
2634 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2635 return DAG
.getUNDEF(VT
);
2636 // fold (srl x, 0) -> x
2637 if (N1C
&& N1C
->isNullValue())
2639 // if (srl x, c) is known to be zero, return 0
2640 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
2641 APInt::getAllOnesValue(OpSizeInBits
)))
2642 return DAG
.getConstant(0, VT
);
2644 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2645 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2646 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2647 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2648 uint64_t c2
= N1C
->getZExtValue();
2649 if (c1
+ c2
> OpSizeInBits
)
2650 return DAG
.getConstant(0, VT
);
2651 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2652 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2655 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2656 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
2657 // Shifting in all undef bits?
2658 MVT SmallVT
= N0
.getOperand(0).getValueType();
2659 if (N1C
->getZExtValue() >= SmallVT
.getSizeInBits())
2660 return DAG
.getUNDEF(VT
);
2662 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), SmallVT
,
2663 N0
.getOperand(0), N1
);
2664 AddToWorkList(SmallShift
.getNode());
2665 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, SmallShift
);
2668 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2669 // bit, which is unmodified by sra.
2670 if (N1C
&& N1C
->getZExtValue() + 1 == VT
.getSizeInBits()) {
2671 if (N0
.getOpcode() == ISD::SRA
)
2672 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0), N1
);
2675 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2676 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
2677 N1C
->getAPIntValue() == Log2_32(VT
.getSizeInBits())) {
2678 APInt KnownZero
, KnownOne
;
2679 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
2680 DAG
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
2682 // If any of the input bits are KnownOne, then the input couldn't be all
2683 // zeros, thus the result of the srl will always be zero.
2684 if (KnownOne
.getBoolValue()) return DAG
.getConstant(0, VT
);
2686 // If all of the bits input the to ctlz node are known to be zero, then
2687 // the result of the ctlz is "32" and the result of the shift is one.
2688 APInt UnknownBits
= ~KnownZero
& Mask
;
2689 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
2691 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2692 if ((UnknownBits
& (UnknownBits
- 1)) == 0) {
2693 // Okay, we know that only that the single bit specified by UnknownBits
2694 // could be set on input to the CTLZ node. If this bit is set, the SRL
2695 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2696 // to an SRL/XOR pair, which is likely to simplify more.
2697 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
2698 SDValue Op
= N0
.getOperand(0);
2701 Op
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
, Op
,
2702 DAG
.getConstant(ShAmt
, getShiftAmountTy()));
2703 AddToWorkList(Op
.getNode());
2706 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
2707 Op
, DAG
.getConstant(1, VT
));
2711 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2712 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2713 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2714 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2715 SDValue N101
= N1
.getOperand(0).getOperand(1);
2716 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2717 MVT TruncVT
= N1
.getValueType();
2718 SDValue N100
= N1
.getOperand(0).getOperand(0);
2719 APInt TruncC
= N101C
->getAPIntValue();
2720 TruncC
.trunc(TruncVT
.getSizeInBits());
2721 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
2722 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2724 DAG
.getNode(ISD::TRUNCATE
,
2727 DAG
.getConstant(TruncC
, TruncVT
)));
2731 // fold operands of srl based on knowledge that the low bits are not
2733 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2734 return SDValue(N
, 0);
2736 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2739 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
2740 SDValue N0
= N
->getOperand(0);
2741 MVT VT
= N
->getValueType(0);
2743 // fold (ctlz c1) -> c2
2744 if (isa
<ConstantSDNode
>(N0
))
2745 return DAG
.getNode(ISD::CTLZ
, N
->getDebugLoc(), VT
, N0
);
2749 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
2750 SDValue N0
= N
->getOperand(0);
2751 MVT VT
= N
->getValueType(0);
2753 // fold (cttz c1) -> c2
2754 if (isa
<ConstantSDNode
>(N0
))
2755 return DAG
.getNode(ISD::CTTZ
, N
->getDebugLoc(), VT
, N0
);
2759 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
2760 SDValue N0
= N
->getOperand(0);
2761 MVT VT
= N
->getValueType(0);
2763 // fold (ctpop c1) -> c2
2764 if (isa
<ConstantSDNode
>(N0
))
2765 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), VT
, N0
);
2769 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
2770 SDValue N0
= N
->getOperand(0);
2771 SDValue N1
= N
->getOperand(1);
2772 SDValue N2
= N
->getOperand(2);
2773 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2774 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2775 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2776 MVT VT
= N
->getValueType(0);
2777 MVT VT0
= N0
.getValueType();
2779 // fold (select C, X, X) -> X
2782 // fold (select true, X, Y) -> X
2783 if (N0C
&& !N0C
->isNullValue())
2785 // fold (select false, X, Y) -> Y
2786 if (N0C
&& N0C
->isNullValue())
2788 // fold (select C, 1, X) -> (or C, X)
2789 if (VT
== MVT::i1
&& N1C
&& N1C
->getAPIntValue() == 1)
2790 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2791 // fold (select C, 0, 1) -> (xor C, 1)
2792 if (VT
.isInteger() &&
2795 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
)) &&
2796 N1C
&& N2C
&& N1C
->isNullValue() && N2C
->getAPIntValue() == 1) {
2799 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT0
,
2800 N0
, DAG
.getConstant(1, VT0
));
2801 XORNode
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), VT0
,
2802 N0
, DAG
.getConstant(1, VT0
));
2803 AddToWorkList(XORNode
.getNode());
2805 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, XORNode
);
2806 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, XORNode
);
2808 // fold (select C, 0, X) -> (and (not C), X)
2809 if (VT
== VT0
&& VT
== MVT::i1
&& N1C
&& N1C
->isNullValue()) {
2810 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2811 AddToWorkList(NOTNode
.getNode());
2812 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, NOTNode
, N2
);
2814 // fold (select C, X, 1) -> (or (not C), X)
2815 if (VT
== VT0
&& VT
== MVT::i1
&& N2C
&& N2C
->getAPIntValue() == 1) {
2816 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2817 AddToWorkList(NOTNode
.getNode());
2818 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, NOTNode
, N1
);
2820 // fold (select C, X, 0) -> (and C, X)
2821 if (VT
== MVT::i1
&& N2C
&& N2C
->isNullValue())
2822 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2823 // fold (select X, X, Y) -> (or X, Y)
2824 // fold (select X, 1, Y) -> (or X, Y)
2825 if (VT
== MVT::i1
&& (N0
== N1
|| (N1C
&& N1C
->getAPIntValue() == 1)))
2826 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2827 // fold (select X, Y, X) -> (and X, Y)
2828 // fold (select X, Y, 0) -> (and X, Y)
2829 if (VT
== MVT::i1
&& (N0
== N2
|| (N2C
&& N2C
->getAPIntValue() == 0)))
2830 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2832 // If we can fold this based on the true/false value, do so.
2833 if (SimplifySelectOps(N
, N1
, N2
))
2834 return SDValue(N
, 0); // Don't revisit N.
2836 // fold selects based on a setcc into other things, such as min/max/abs
2837 if (N0
.getOpcode() == ISD::SETCC
) {
2839 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2840 // having to say they don't support SELECT_CC on every type the DAG knows
2841 // about, since there is no way to mark an opcode illegal at all value types
2842 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, MVT::Other
) &&
2843 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))
2844 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), VT
,
2845 N0
.getOperand(0), N0
.getOperand(1),
2846 N1
, N2
, N0
.getOperand(2));
2847 return SimplifySelect(N
->getDebugLoc(), N0
, N1
, N2
);
2853 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
2854 SDValue N0
= N
->getOperand(0);
2855 SDValue N1
= N
->getOperand(1);
2856 SDValue N2
= N
->getOperand(2);
2857 SDValue N3
= N
->getOperand(3);
2858 SDValue N4
= N
->getOperand(4);
2859 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
2861 // fold select_cc lhs, rhs, x, x, cc -> x
2865 // Determine if the condition we're dealing with is constant
2866 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
2867 N0
, N1
, CC
, N
->getDebugLoc(), false);
2868 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
2870 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
2871 if (!SCCC
->isNullValue())
2872 return N2
; // cond always true -> true val
2874 return N3
; // cond always false -> false val
2877 // Fold to a simpler select_cc
2878 if (SCC
.getNode() && SCC
.getOpcode() == ISD::SETCC
)
2879 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), N2
.getValueType(),
2880 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
2883 // If we can fold this based on the true/false value, do so.
2884 if (SimplifySelectOps(N
, N2
, N3
))
2885 return SDValue(N
, 0); // Don't revisit N.
2887 // fold select_cc into other things, such as min/max/abs
2888 return SimplifySelectCC(N
->getDebugLoc(), N0
, N1
, N2
, N3
, CC
);
2891 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
2892 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
2893 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(),
2897 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2898 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
2899 // transformation. Returns true if extension are possible and the above
2900 // mentioned transformation is profitable.
2901 static bool ExtendUsesToFormExtLoad(SDNode
*N
, SDValue N0
,
2903 SmallVector
<SDNode
*, 4> &ExtendNodes
,
2904 const TargetLowering
&TLI
) {
2905 bool HasCopyToRegUses
= false;
2906 bool isTruncFree
= TLI
.isTruncateFree(N
->getValueType(0), N0
.getValueType());
2907 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
2908 UE
= N0
.getNode()->use_end();
2913 if (UI
.getUse().getResNo() != N0
.getResNo())
2915 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2916 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
2917 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
2918 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
2919 // Sign bits will be lost after a zext.
2922 for (unsigned i
= 0; i
!= 2; ++i
) {
2923 SDValue UseOp
= User
->getOperand(i
);
2926 if (!isa
<ConstantSDNode
>(UseOp
))
2931 ExtendNodes
.push_back(User
);
2934 // If truncates aren't free and there are users we can't
2935 // extend, it isn't worthwhile.
2938 // Remember if this value is live-out.
2939 if (User
->getOpcode() == ISD::CopyToReg
)
2940 HasCopyToRegUses
= true;
2943 if (HasCopyToRegUses
) {
2944 bool BothLiveOut
= false;
2945 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
2947 SDUse
&Use
= UI
.getUse();
2948 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
2954 // Both unextended and extended values are live out. There had better be
2955 // good a reason for the transformation.
2956 return ExtendNodes
.size();
2961 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
2962 SDValue N0
= N
->getOperand(0);
2963 MVT VT
= N
->getValueType(0);
2965 // fold (sext c1) -> c1
2966 if (isa
<ConstantSDNode
>(N0
))
2967 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N0
);
2969 // fold (sext (sext x)) -> (sext x)
2970 // fold (sext (aext x)) -> (sext x)
2971 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2972 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
,
2975 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2976 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2977 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2978 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
2979 if (NarrowLoad
.getNode()) {
2980 if (NarrowLoad
.getNode() != N0
.getNode())
2981 CombineTo(N0
.getNode(), NarrowLoad
);
2982 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2985 // See if the value being truncated is already sign extended. If so, just
2986 // eliminate the trunc/sext pair.
2987 SDValue Op
= N0
.getOperand(0);
2988 unsigned OpBits
= Op
.getValueType().getSizeInBits();
2989 unsigned MidBits
= N0
.getValueType().getSizeInBits();
2990 unsigned DestBits
= VT
.getSizeInBits();
2991 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
2993 if (OpBits
== DestBits
) {
2994 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2995 // bits, it is already ready.
2996 if (NumSignBits
> DestBits
-MidBits
)
2998 } else if (OpBits
< DestBits
) {
2999 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
3000 // bits, just sext from i32.
3001 if (NumSignBits
> OpBits
-MidBits
)
3002 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3004 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
3005 // bits, just truncate to i32.
3006 if (NumSignBits
> OpBits
-MidBits
)
3007 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3010 // fold (sext (truncate x)) -> (sextinreg x).
3011 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
3012 N0
.getValueType())) {
3013 if (Op
.getValueType().bitsLT(VT
))
3014 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N0
.getDebugLoc(), VT
, Op
);
3015 else if (Op
.getValueType().bitsGT(VT
))
3016 Op
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), VT
, Op
);
3017 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, Op
,
3018 DAG
.getValueType(N0
.getValueType()));
3022 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3023 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3024 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3025 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, N0
.getValueType()))) {
3026 bool DoXform
= true;
3027 SmallVector
<SDNode
*, 4> SetCCs
;
3028 if (!N0
.hasOneUse())
3029 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::SIGN_EXTEND
, SetCCs
, TLI
);
3031 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3032 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3034 LN0
->getBasePtr(), LN0
->getSrcValue(),
3035 LN0
->getSrcValueOffset(),
3037 LN0
->isVolatile(), LN0
->getAlignment());
3038 CombineTo(N
, ExtLoad
);
3039 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3040 N0
.getValueType(), ExtLoad
);
3041 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3043 // Extend SetCC uses if necessary.
3044 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3045 SDNode
*SetCC
= SetCCs
[i
];
3046 SmallVector
<SDValue
, 4> Ops
;
3048 for (unsigned j
= 0; j
!= 2; ++j
) {
3049 SDValue SOp
= SetCC
->getOperand(j
);
3051 Ops
.push_back(ExtLoad
);
3053 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
,
3054 N
->getDebugLoc(), VT
, SOp
));
3057 Ops
.push_back(SetCC
->getOperand(2));
3058 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3059 SetCC
->getValueType(0),
3060 &Ops
[0], Ops
.size()));
3063 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3067 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3068 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3069 if ((ISD::isSEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3070 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3071 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3072 MVT EVT
= LN0
->getMemoryVT();
3073 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3074 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
)) {
3075 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3077 LN0
->getBasePtr(), LN0
->getSrcValue(),
3078 LN0
->getSrcValueOffset(), EVT
,
3079 LN0
->isVolatile(), LN0
->getAlignment());
3080 CombineTo(N
, ExtLoad
);
3081 CombineTo(N0
.getNode(),
3082 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3083 N0
.getValueType(), ExtLoad
),
3084 ExtLoad
.getValue(1));
3085 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3089 if (N0
.getOpcode() == ISD::SETCC
) {
3090 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
3091 if (VT
.isVector() &&
3092 // We know that the # elements of the results is the same as the
3093 // # elements of the compare (and the # elements of the compare result
3094 // for that matter). Check to see that they are the same size. If so,
3095 // we know that the element size of the sext'd result matches the
3096 // element size of the compare operands.
3097 VT
.getSizeInBits() == N0
.getOperand(0).getValueType().getSizeInBits() &&
3099 // Only do this before legalize for now.
3101 return DAG
.getVSetCC(N
->getDebugLoc(), VT
, N0
.getOperand(0),
3103 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3106 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3108 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
3110 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3111 NegOne
, DAG
.getConstant(0, VT
),
3112 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3113 if (SCC
.getNode()) return SCC
;
3118 // fold (sext x) -> (zext x) if the sign bit is known zero.
3119 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
3120 DAG
.SignBitIsZero(N0
))
3121 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3126 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
3127 SDValue N0
= N
->getOperand(0);
3128 MVT VT
= N
->getValueType(0);
3130 // fold (zext c1) -> c1
3131 if (isa
<ConstantSDNode
>(N0
))
3132 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3133 // fold (zext (zext x)) -> (zext x)
3134 // fold (zext (aext x)) -> (zext x)
3135 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3136 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
,
3139 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3140 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3141 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3142 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3143 if (NarrowLoad
.getNode()) {
3144 if (NarrowLoad
.getNode() != N0
.getNode())
3145 CombineTo(N0
.getNode(), NarrowLoad
);
3146 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3150 // fold (zext (truncate x)) -> (and x, mask)
3151 if (N0
.getOpcode() == ISD::TRUNCATE
&&
3152 (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
3153 SDValue Op
= N0
.getOperand(0);
3154 if (Op
.getValueType().bitsLT(VT
)) {
3155 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3156 } else if (Op
.getValueType().bitsGT(VT
)) {
3157 Op
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3159 return DAG
.getZeroExtendInReg(Op
, N
->getDebugLoc(), N0
.getValueType());
3162 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3163 // if either of the casts is not free.
3164 if (N0
.getOpcode() == ISD::AND
&&
3165 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3166 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3167 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3168 N0
.getValueType()) ||
3169 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
3170 SDValue X
= N0
.getOperand(0).getOperand(0);
3171 if (X
.getValueType().bitsLT(VT
)) {
3172 X
= DAG
.getNode(ISD::ANY_EXTEND
, X
.getDebugLoc(), VT
, X
);
3173 } else if (X
.getValueType().bitsGT(VT
)) {
3174 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3176 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3177 Mask
.zext(VT
.getSizeInBits());
3178 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3179 X
, DAG
.getConstant(Mask
, VT
));
3182 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3183 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3184 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3185 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
3186 bool DoXform
= true;
3187 SmallVector
<SDNode
*, 4> SetCCs
;
3188 if (!N0
.hasOneUse())
3189 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ZERO_EXTEND
, SetCCs
, TLI
);
3191 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3192 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3194 LN0
->getBasePtr(), LN0
->getSrcValue(),
3195 LN0
->getSrcValueOffset(),
3197 LN0
->isVolatile(), LN0
->getAlignment());
3198 CombineTo(N
, ExtLoad
);
3199 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3200 N0
.getValueType(), ExtLoad
);
3201 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3203 // Extend SetCC uses if necessary.
3204 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3205 SDNode
*SetCC
= SetCCs
[i
];
3206 SmallVector
<SDValue
, 4> Ops
;
3208 for (unsigned j
= 0; j
!= 2; ++j
) {
3209 SDValue SOp
= SetCC
->getOperand(j
);
3211 Ops
.push_back(ExtLoad
);
3213 Ops
.push_back(DAG
.getNode(ISD::ZERO_EXTEND
,
3214 N
->getDebugLoc(), VT
, SOp
));
3217 Ops
.push_back(SetCC
->getOperand(2));
3218 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3219 SetCC
->getValueType(0),
3220 &Ops
[0], Ops
.size()));
3223 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3227 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3228 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3229 if ((ISD::isZEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3230 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3231 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3232 MVT EVT
= LN0
->getMemoryVT();
3233 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3234 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
)) {
3235 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3237 LN0
->getBasePtr(), LN0
->getSrcValue(),
3238 LN0
->getSrcValueOffset(), EVT
,
3239 LN0
->isVolatile(), LN0
->getAlignment());
3240 CombineTo(N
, ExtLoad
);
3241 CombineTo(N0
.getNode(),
3242 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), N0
.getValueType(),
3244 ExtLoad
.getValue(1));
3245 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3249 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3250 if (N0
.getOpcode() == ISD::SETCC
) {
3252 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3253 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3254 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3255 if (SCC
.getNode()) return SCC
;
3261 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
3262 SDValue N0
= N
->getOperand(0);
3263 MVT VT
= N
->getValueType(0);
3265 // fold (aext c1) -> c1
3266 if (isa
<ConstantSDNode
>(N0
))
3267 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3268 // fold (aext (aext x)) -> (aext x)
3269 // fold (aext (zext x)) -> (zext x)
3270 // fold (aext (sext x)) -> (sext x)
3271 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
3272 N0
.getOpcode() == ISD::ZERO_EXTEND
||
3273 N0
.getOpcode() == ISD::SIGN_EXTEND
)
3274 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, N0
.getOperand(0));
3276 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3277 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3278 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3279 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3280 if (NarrowLoad
.getNode()) {
3281 if (NarrowLoad
.getNode() != N0
.getNode())
3282 CombineTo(N0
.getNode(), NarrowLoad
);
3283 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3287 // fold (aext (truncate x))
3288 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3289 SDValue TruncOp
= N0
.getOperand(0);
3290 if (TruncOp
.getValueType() == VT
)
3291 return TruncOp
; // x iff x size == zext size.
3292 if (TruncOp
.getValueType().bitsGT(VT
))
3293 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, TruncOp
);
3294 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, TruncOp
);
3297 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3298 // if the trunc is not free.
3299 if (N0
.getOpcode() == ISD::AND
&&
3300 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3301 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3302 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3303 N0
.getValueType())) {
3304 SDValue X
= N0
.getOperand(0).getOperand(0);
3305 if (X
.getValueType().bitsLT(VT
)) {
3306 X
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, X
);
3307 } else if (X
.getValueType().bitsGT(VT
)) {
3308 X
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, X
);
3310 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3311 Mask
.zext(VT
.getSizeInBits());
3312 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3313 X
, DAG
.getConstant(Mask
, VT
));
3316 // fold (aext (load x)) -> (aext (truncate (extload x)))
3317 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3318 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3319 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3320 bool DoXform
= true;
3321 SmallVector
<SDNode
*, 4> SetCCs
;
3322 if (!N0
.hasOneUse())
3323 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
3325 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3326 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
3328 LN0
->getBasePtr(), LN0
->getSrcValue(),
3329 LN0
->getSrcValueOffset(),
3331 LN0
->isVolatile(), LN0
->getAlignment());
3332 CombineTo(N
, ExtLoad
);
3333 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3334 N0
.getValueType(), ExtLoad
);
3335 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3337 // Extend SetCC uses if necessary.
3338 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3339 SDNode
*SetCC
= SetCCs
[i
];
3340 SmallVector
<SDValue
, 4> Ops
;
3342 for (unsigned j
= 0; j
!= 2; ++j
) {
3343 SDValue SOp
= SetCC
->getOperand(j
);
3345 Ops
.push_back(ExtLoad
);
3347 Ops
.push_back(DAG
.getNode(ISD::ANY_EXTEND
,
3348 N
->getDebugLoc(), VT
, SOp
));
3351 Ops
.push_back(SetCC
->getOperand(2));
3352 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3353 SetCC
->getValueType(0),
3354 &Ops
[0], Ops
.size()));
3357 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3361 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3362 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3363 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3364 if (N0
.getOpcode() == ISD::LOAD
&&
3365 !ISD::isNON_EXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3367 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3368 MVT EVT
= LN0
->getMemoryVT();
3369 SDValue ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), N
->getDebugLoc(),
3370 VT
, LN0
->getChain(), LN0
->getBasePtr(),
3372 LN0
->getSrcValueOffset(), EVT
,
3373 LN0
->isVolatile(), LN0
->getAlignment());
3374 CombineTo(N
, ExtLoad
);
3375 CombineTo(N0
.getNode(),
3376 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3377 N0
.getValueType(), ExtLoad
),
3378 ExtLoad
.getValue(1));
3379 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3382 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3383 if (N0
.getOpcode() == ISD::SETCC
) {
3385 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3386 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3387 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3395 /// GetDemandedBits - See if the specified operand can be simplified with the
3396 /// knowledge that only the bits specified by Mask are used. If so, return the
3397 /// simpler operand, otherwise return a null SDValue.
3398 SDValue
DAGCombiner::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
3399 switch (V
.getOpcode()) {
3403 // If the LHS or RHS don't contribute bits to the or, drop them.
3404 if (DAG
.MaskedValueIsZero(V
.getOperand(0), Mask
))
3405 return V
.getOperand(1);
3406 if (DAG
.MaskedValueIsZero(V
.getOperand(1), Mask
))
3407 return V
.getOperand(0);
3410 // Only look at single-use SRLs.
3411 if (!V
.getNode()->hasOneUse())
3413 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
3414 // See if we can recursively simplify the LHS.
3415 unsigned Amt
= RHSC
->getZExtValue();
3417 // Watch out for shift count overflow though.
3418 if (Amt
>= Mask
.getBitWidth()) break;
3419 APInt NewMask
= Mask
<< Amt
;
3420 SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
);
3421 if (SimplifyLHS
.getNode())
3422 return DAG
.getNode(ISD::SRL
, V
.getDebugLoc(), V
.getValueType(),
3423 SimplifyLHS
, V
.getOperand(1));
3429 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3430 /// bits and then truncated to a narrower type and where N is a multiple
3431 /// of number of bits of the narrower type, transform it to a narrower load
3432 /// from address + N / num of bits of new type. If the result is to be
3433 /// extended, also fold the extension to form a extending load.
3434 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
3435 unsigned Opc
= N
->getOpcode();
3436 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3437 SDValue N0
= N
->getOperand(0);
3438 MVT VT
= N
->getValueType(0);
3441 // This transformation isn't valid for vector loads.
3445 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3447 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
3448 ExtType
= ISD::SEXTLOAD
;
3449 EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
3450 if (LegalOperations
&& !TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))
3454 unsigned EVTBits
= EVT
.getSizeInBits();
3456 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
3457 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3458 ShAmt
= N01
->getZExtValue();
3459 // Is the shift amount a multiple of size of VT?
3460 if ((ShAmt
& (EVTBits
-1)) == 0) {
3461 N0
= N0
.getOperand(0);
3462 if (N0
.getValueType().getSizeInBits() <= EVTBits
)
3468 // Do not generate loads of non-round integer types since these can
3469 // be expensive (and would be wrong if the type is not byte sized).
3470 if (isa
<LoadSDNode
>(N0
) && N0
.hasOneUse() && EVT
.isRound() &&
3471 cast
<LoadSDNode
>(N0
)->getMemoryVT().getSizeInBits() > EVTBits
&&
3472 // Do not change the width of a volatile load.
3473 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
3474 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3475 MVT PtrType
= N0
.getOperand(1).getValueType();
3477 // For big endian targets, we need to adjust the offset to the pointer to
3478 // load the correct bytes.
3479 if (TLI
.isBigEndian()) {
3480 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
3481 unsigned EVTStoreBits
= EVT
.getStoreSizeInBits();
3482 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
3485 uint64_t PtrOff
= ShAmt
/ 8;
3486 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
3487 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(),
3488 PtrType
, LN0
->getBasePtr(),
3489 DAG
.getConstant(PtrOff
, PtrType
));
3490 AddToWorkList(NewPtr
.getNode());
3492 SDValue Load
= (ExtType
== ISD::NON_EXTLOAD
)
3493 ? DAG
.getLoad(VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
3494 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3495 LN0
->isVolatile(), NewAlign
)
3496 : DAG
.getExtLoad(ExtType
, N0
.getDebugLoc(), VT
, LN0
->getChain(), NewPtr
,
3497 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3498 EVT
, LN0
->isVolatile(), NewAlign
);
3500 // Replace the old load's chain with the new load's chain.
3501 WorkListRemover
DeadNodes(*this);
3502 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1),
3505 // Return the new loaded value.
3512 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
3513 SDValue N0
= N
->getOperand(0);
3514 SDValue N1
= N
->getOperand(1);
3515 MVT VT
= N
->getValueType(0);
3516 MVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
3517 unsigned VTBits
= VT
.getSizeInBits();
3518 unsigned EVTBits
= EVT
.getSizeInBits();
3520 // fold (sext_in_reg c1) -> c1
3521 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
3522 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, N0
, N1
);
3524 // If the input is already sign extended, just drop the extension.
3525 if (DAG
.ComputeNumSignBits(N0
) >= VT
.getSizeInBits()-EVTBits
+1)
3528 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3529 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3530 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT())) {
3531 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
3532 N0
.getOperand(0), N1
);
3535 // fold (sext_in_reg (sext x)) -> (sext x)
3536 // fold (sext_in_reg (aext x)) -> (sext x)
3537 // if x is small enough.
3538 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
3539 SDValue N00
= N0
.getOperand(0);
3540 if (N00
.getValueType().getSizeInBits() < EVTBits
)
3541 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N00
, N1
);
3544 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3545 if (DAG
.MaskedValueIsZero(N0
, APInt::getBitsSet(VTBits
, EVTBits
-1, EVTBits
)))
3546 return DAG
.getZeroExtendInReg(N0
, N
->getDebugLoc(), EVT
);
3548 // fold operands of sext_in_reg based on knowledge that the top bits are not
3550 if (SimplifyDemandedBits(SDValue(N
, 0)))
3551 return SDValue(N
, 0);
3553 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3554 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3555 SDValue NarrowLoad
= ReduceLoadWidth(N
);
3556 if (NarrowLoad
.getNode())
3559 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3560 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3561 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3562 if (N0
.getOpcode() == ISD::SRL
) {
3563 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
3564 if (ShAmt
->getZExtValue()+EVTBits
<= VT
.getSizeInBits()) {
3565 // We can turn this into an SRA iff the input to the SRL is already sign
3567 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
3568 if (VT
.getSizeInBits()-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
3569 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
,
3570 N0
.getOperand(0), N0
.getOperand(1));
3574 // fold (sext_inreg (extload x)) -> (sextload x)
3575 if (ISD::isEXTLoad(N0
.getNode()) &&
3576 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3577 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3578 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3579 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3580 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3581 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3583 LN0
->getBasePtr(), LN0
->getSrcValue(),
3584 LN0
->getSrcValueOffset(), EVT
,
3585 LN0
->isVolatile(), LN0
->getAlignment());
3586 CombineTo(N
, ExtLoad
);
3587 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3588 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3590 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3591 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3593 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3594 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3595 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3596 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3597 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3599 LN0
->getBasePtr(), LN0
->getSrcValue(),
3600 LN0
->getSrcValueOffset(), EVT
,
3601 LN0
->isVolatile(), LN0
->getAlignment());
3602 CombineTo(N
, ExtLoad
);
3603 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3604 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3609 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
3610 SDValue N0
= N
->getOperand(0);
3611 MVT VT
= N
->getValueType(0);
3614 if (N0
.getValueType() == N
->getValueType(0))
3616 // fold (truncate c1) -> c1
3617 if (isa
<ConstantSDNode
>(N0
))
3618 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
);
3619 // fold (truncate (truncate x)) -> (truncate x)
3620 if (N0
.getOpcode() == ISD::TRUNCATE
)
3621 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3622 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3623 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::SIGN_EXTEND
||
3624 N0
.getOpcode() == ISD::ANY_EXTEND
) {
3625 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
3626 // if the source is smaller than the dest, we still need an extend
3627 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
3629 else if (N0
.getOperand(0).getValueType().bitsGT(VT
))
3630 // if the source is larger than the dest, than we just need the truncate
3631 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3633 // if the source and dest are the same type, we can drop both the extend
3635 return N0
.getOperand(0);
3638 // See if we can simplify the input to this truncate through knowledge that
3639 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3642 GetDemandedBits(N0
, APInt::getLowBitsSet(N0
.getValueSizeInBits(),
3643 VT
.getSizeInBits()));
3644 if (Shorter
.getNode())
3645 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Shorter
);
3647 // fold (truncate (load x)) -> (smaller load x)
3648 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3649 return ReduceLoadWidth(N
);
3652 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
3653 SDValue Elt
= N
->getOperand(i
);
3654 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
3655 return Elt
.getNode();
3656 return Elt
.getOperand(Elt
.getResNo()).getNode();
3659 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3660 /// if load locations are consecutive.
3661 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, MVT VT
) {
3662 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
3664 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
3665 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
3666 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse())
3668 MVT LD1VT
= LD1
->getValueType(0);
3669 const MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3671 if (ISD::isNON_EXTLoad(LD2
) &&
3673 // If both are volatile this would reduce the number of volatile loads.
3674 // If one is volatile it might be ok, but play conservative and bail out.
3675 !LD1
->isVolatile() &&
3676 !LD2
->isVolatile() &&
3677 TLI
.isConsecutiveLoad(LD2
, LD1
, LD1VT
.getSizeInBits()/8, 1, MFI
)) {
3678 unsigned Align
= LD1
->getAlignment();
3679 unsigned NewAlign
= TLI
.getTargetData()->
3680 getABITypeAlignment(VT
.getTypeForMVT());
3682 if (NewAlign
<= Align
&&
3683 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
3684 return DAG
.getLoad(VT
, N
->getDebugLoc(), LD1
->getChain(),
3685 LD1
->getBasePtr(), LD1
->getSrcValue(),
3686 LD1
->getSrcValueOffset(), false, Align
);
3692 SDValue
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
3693 SDValue N0
= N
->getOperand(0);
3694 MVT VT
= N
->getValueType(0);
3696 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3697 // Only do this before legalize, since afterward the target may be depending
3698 // on the bitconvert.
3699 // First check to see if this is all constant.
3701 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
3703 bool isSimple
= true;
3704 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
)
3705 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3706 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
3707 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
3712 MVT DestEltVT
= N
->getValueType(0).getVectorElementType();
3713 assert(!DestEltVT
.isVector() &&
3714 "Element type of vector ValueType must not be vector!");
3716 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
3719 // If the input is a constant, let getNode fold it.
3720 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
3721 SDValue Res
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, N0
);
3722 if (Res
.getNode() != N
) return Res
;
3725 // (conv (conv x, t1), t2) -> (conv x, t2)
3726 if (N0
.getOpcode() == ISD::BIT_CONVERT
)
3727 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
,
3730 // fold (conv (load x)) -> (load (conv*)x)
3731 // If the resultant load doesn't need a higher alignment than the original!
3732 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
3733 // Do not change the width of a volatile load.
3734 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
3735 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
3736 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3737 unsigned Align
= TLI
.getTargetData()->
3738 getABITypeAlignment(VT
.getTypeForMVT());
3739 unsigned OrigAlign
= LN0
->getAlignment();
3741 if (Align
<= OrigAlign
) {
3742 SDValue Load
= DAG
.getLoad(VT
, N
->getDebugLoc(), LN0
->getChain(),
3744 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
3745 LN0
->isVolatile(), OrigAlign
);
3747 CombineTo(N0
.getNode(),
3748 DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3749 N0
.getValueType(), Load
),
3755 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3756 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3757 // This often reduces constant pool loads.
3758 if ((N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FABS
) &&
3759 N0
.getNode()->hasOneUse() && VT
.isInteger() && !VT
.isVector()) {
3760 SDValue NewConv
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(), VT
,
3762 AddToWorkList(NewConv
.getNode());
3764 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3765 if (N0
.getOpcode() == ISD::FNEG
)
3766 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
3767 NewConv
, DAG
.getConstant(SignBit
, VT
));
3768 assert(N0
.getOpcode() == ISD::FABS
);
3769 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3770 NewConv
, DAG
.getConstant(~SignBit
, VT
));
3773 // fold (bitconvert (fcopysign cst, x)) ->
3774 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3775 // Note that we don't handle (copysign x, cst) because this can always be
3776 // folded to an fneg or fabs.
3777 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
3778 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
3779 VT
.isInteger() && !VT
.isVector()) {
3780 unsigned OrigXWidth
= N0
.getOperand(1).getValueType().getSizeInBits();
3781 MVT IntXVT
= MVT::getIntegerVT(OrigXWidth
);
3782 if (TLI
.isTypeLegal(IntXVT
) || !LegalTypes
) {
3783 SDValue X
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3784 IntXVT
, N0
.getOperand(1));
3785 AddToWorkList(X
.getNode());
3787 // If X has a different width than the result/lhs, sext it or truncate it.
3788 unsigned VTWidth
= VT
.getSizeInBits();
3789 if (OrigXWidth
< VTWidth
) {
3790 X
= DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, X
);
3791 AddToWorkList(X
.getNode());
3792 } else if (OrigXWidth
> VTWidth
) {
3793 // To get the sign bit in the right place, we have to shift it right
3794 // before truncating.
3795 X
= DAG
.getNode(ISD::SRL
, X
.getDebugLoc(),
3796 X
.getValueType(), X
,
3797 DAG
.getConstant(OrigXWidth
-VTWidth
, X
.getValueType()));
3798 AddToWorkList(X
.getNode());
3799 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3800 AddToWorkList(X
.getNode());
3803 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3804 X
= DAG
.getNode(ISD::AND
, X
.getDebugLoc(), VT
,
3805 X
, DAG
.getConstant(SignBit
, VT
));
3806 AddToWorkList(X
.getNode());
3808 SDValue Cst
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3809 VT
, N0
.getOperand(0));
3810 Cst
= DAG
.getNode(ISD::AND
, Cst
.getDebugLoc(), VT
,
3811 Cst
, DAG
.getConstant(~SignBit
, VT
));
3812 AddToWorkList(Cst
.getNode());
3814 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, X
, Cst
);
3818 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3819 if (N0
.getOpcode() == ISD::BUILD_PAIR
) {
3820 SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
);
3821 if (CombineLD
.getNode())
3828 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
3829 MVT VT
= N
->getValueType(0);
3830 return CombineConsecutiveLoads(N
, VT
);
3833 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3834 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3835 /// destination element value type.
3836 SDValue
DAGCombiner::
3837 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*BV
, MVT DstEltVT
) {
3838 MVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
3840 // If this is already the right type, we're done.
3841 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
3843 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
3844 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
3846 // If this is a conversion of N elements of one type to N elements of another
3847 // type, convert each element. This handles FP<->INT cases.
3848 if (SrcBitSize
== DstBitSize
) {
3849 SmallVector
<SDValue
, 8> Ops
;
3850 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3851 SDValue Op
= BV
->getOperand(i
);
3852 // If the vector element type is not legal, the BUILD_VECTOR operands
3853 // are promoted and implicitly truncated. Make that explicit here.
3854 if (Op
.getValueType() != SrcEltVT
)
3855 Op
= DAG
.getNode(ISD::TRUNCATE
, BV
->getDebugLoc(), SrcEltVT
, Op
);
3856 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
3858 AddToWorkList(Ops
.back().getNode());
3860 MVT VT
= MVT::getVectorVT(DstEltVT
,
3861 BV
->getValueType(0).getVectorNumElements());
3862 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3863 &Ops
[0], Ops
.size());
3866 // Otherwise, we're growing or shrinking the elements. To avoid having to
3867 // handle annoying details of growing/shrinking FP values, we convert them to
3869 if (SrcEltVT
.isFloatingPoint()) {
3870 // Convert the input float vector to a int vector where the elements are the
3872 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
3873 MVT IntVT
= MVT::getIntegerVT(SrcEltVT
.getSizeInBits());
3874 BV
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, IntVT
).getNode();
3878 // Now we know the input is an integer vector. If the output is a FP type,
3879 // convert to integer first, then to FP of the right size.
3880 if (DstEltVT
.isFloatingPoint()) {
3881 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
3882 MVT TmpVT
= MVT::getIntegerVT(DstEltVT
.getSizeInBits());
3883 SDNode
*Tmp
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, TmpVT
).getNode();
3885 // Next, convert to FP elements of the same size.
3886 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp
, DstEltVT
);
3889 // Okay, we know the src/dst types are both integers of differing types.
3890 // Handling growing first.
3891 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
3892 if (SrcBitSize
< DstBitSize
) {
3893 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
3895 SmallVector
<SDValue
, 8> Ops
;
3896 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
3897 i
+= NumInputsPerOutput
) {
3898 bool isLE
= TLI
.isLittleEndian();
3899 APInt NewBits
= APInt(DstBitSize
, 0);
3900 bool EltIsUndef
= true;
3901 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
3902 // Shift the previously computed bits over.
3903 NewBits
<<= SrcBitSize
;
3904 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
3905 if (Op
.getOpcode() == ISD::UNDEF
) continue;
3908 NewBits
|= (APInt(cast
<ConstantSDNode
>(Op
)->getAPIntValue()).
3909 zextOrTrunc(SrcBitSize
).zext(DstBitSize
));
3913 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3915 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
3918 MVT VT
= MVT::getVectorVT(DstEltVT
, Ops
.size());
3919 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3920 &Ops
[0], Ops
.size());
3923 // Finally, this must be the case where we are shrinking elements: each input
3924 // turns into multiple outputs.
3925 bool isS2V
= ISD::isScalarToVector(BV
);
3926 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
3927 MVT VT
= MVT::getVectorVT(DstEltVT
, NumOutputsPerInput
*BV
->getNumOperands());
3928 SmallVector
<SDValue
, 8> Ops
;
3930 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3931 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
3932 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
3933 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3937 APInt OpVal
= APInt(cast
<ConstantSDNode
>(BV
->getOperand(i
))->
3938 getAPIntValue()).zextOrTrunc(SrcBitSize
);
3940 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
3941 APInt ThisVal
= APInt(OpVal
).trunc(DstBitSize
);
3942 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
3943 if (isS2V
&& i
== 0 && j
== 0 && APInt(ThisVal
).zext(SrcBitSize
) == OpVal
)
3944 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3945 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
3947 OpVal
= OpVal
.lshr(DstBitSize
);
3950 // For big endian targets, swap the order of the pieces of each element.
3951 if (TLI
.isBigEndian())
3952 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
3955 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3956 &Ops
[0], Ops
.size());
3959 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
3960 SDValue N0
= N
->getOperand(0);
3961 SDValue N1
= N
->getOperand(1);
3962 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3963 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3964 MVT VT
= N
->getValueType(0);
3967 if (VT
.isVector()) {
3968 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3969 if (FoldedVOp
.getNode()) return FoldedVOp
;
3972 // fold (fadd c1, c2) -> (fadd c1, c2)
3973 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3974 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N1
);
3975 // canonicalize constant to RHS
3976 if (N0CFP
&& !N1CFP
)
3977 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N1
, N0
);
3978 // fold (fadd A, 0) -> A
3979 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
3981 // fold (fadd A, (fneg B)) -> (fsub A, B)
3982 if (isNegatibleForFree(N1
, LegalOperations
) == 2)
3983 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
,
3984 GetNegatedExpression(N1
, DAG
, LegalOperations
));
3985 // fold (fadd (fneg A), B) -> (fsub B, A)
3986 if (isNegatibleForFree(N0
, LegalOperations
) == 2)
3987 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N1
,
3988 GetNegatedExpression(N0
, DAG
, LegalOperations
));
3990 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3991 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
3992 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
3993 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
3994 DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
,
3995 N0
.getOperand(1), N1
));
4000 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
4001 SDValue N0
= N
->getOperand(0);
4002 SDValue N1
= N
->getOperand(1);
4003 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4004 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4005 MVT VT
= N
->getValueType(0);
4008 if (VT
.isVector()) {
4009 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4010 if (FoldedVOp
.getNode()) return FoldedVOp
;
4013 // fold (fsub c1, c2) -> c1-c2
4014 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4015 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
, N1
);
4016 // fold (fsub A, 0) -> A
4017 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4019 // fold (fsub 0, B) -> -B
4020 if (UnsafeFPMath
&& N0CFP
&& N0CFP
->getValueAPF().isZero()) {
4021 if (isNegatibleForFree(N1
, LegalOperations
))
4022 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
4023 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4024 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N1
);
4026 // fold (fsub A, (fneg B)) -> (fadd A, B)
4027 if (isNegatibleForFree(N1
, LegalOperations
))
4028 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
,
4029 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4034 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
4035 SDValue N0
= N
->getOperand(0);
4036 SDValue N1
= N
->getOperand(1);
4037 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4038 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4039 MVT VT
= N
->getValueType(0);
4042 if (VT
.isVector()) {
4043 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4044 if (FoldedVOp
.getNode()) return FoldedVOp
;
4047 // fold (fmul c1, c2) -> c1*c2
4048 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4049 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
, N1
);
4050 // canonicalize constant to RHS
4051 if (N0CFP
&& !N1CFP
)
4052 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N1
, N0
);
4053 // fold (fmul A, 0) -> 0
4054 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4056 // fold (fmul A, 0) -> 0, vector edition.
4057 if (UnsafeFPMath
&& ISD::isBuildVectorAllZeros(N1
.getNode()))
4059 // fold (fmul X, 2.0) -> (fadd X, X)
4060 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
4061 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N0
);
4062 // fold (fmul X, (fneg 1.0)) -> (fneg X)
4063 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
4064 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4065 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N0
);
4067 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4068 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4069 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4070 // Both can be negated for free, check to see if at least one is cheaper
4072 if (LHSNeg
== 2 || RHSNeg
== 2)
4073 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4074 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4075 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4079 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4080 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
4081 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4082 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4083 DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4084 N0
.getOperand(1), N1
));
4089 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
4090 SDValue N0
= N
->getOperand(0);
4091 SDValue N1
= N
->getOperand(1);
4092 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4093 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4094 MVT VT
= N
->getValueType(0);
4097 if (VT
.isVector()) {
4098 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4099 if (FoldedVOp
.getNode()) return FoldedVOp
;
4102 // fold (fdiv c1, c2) -> c1/c2
4103 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4104 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
4107 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4108 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4109 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4110 // Both can be negated for free, check to see if at least one is cheaper
4112 if (LHSNeg
== 2 || RHSNeg
== 2)
4113 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
,
4114 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4115 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4122 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
4123 SDValue N0
= N
->getOperand(0);
4124 SDValue N1
= N
->getOperand(1);
4125 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4126 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4127 MVT VT
= N
->getValueType(0);
4129 // fold (frem c1, c2) -> fmod(c1,c2)
4130 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4131 return DAG
.getNode(ISD::FREM
, N
->getDebugLoc(), VT
, N0
, N1
);
4136 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
4137 SDValue N0
= N
->getOperand(0);
4138 SDValue N1
= N
->getOperand(1);
4139 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4140 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4141 MVT VT
= N
->getValueType(0);
4143 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
) // Constant fold
4144 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
, N0
, N1
);
4147 const APFloat
& V
= N1CFP
->getValueAPF();
4148 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4149 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4150 if (!V
.isNegative()) {
4151 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
4152 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4154 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4155 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
,
4156 DAG
.getNode(ISD::FABS
, N0
.getDebugLoc(), VT
, N0
));
4160 // copysign(fabs(x), y) -> copysign(x, y)
4161 // copysign(fneg(x), y) -> copysign(x, y)
4162 // copysign(copysign(x,z), y) -> copysign(x, y)
4163 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
4164 N0
.getOpcode() == ISD::FCOPYSIGN
)
4165 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4166 N0
.getOperand(0), N1
);
4168 // copysign(x, abs(y)) -> abs(x)
4169 if (N1
.getOpcode() == ISD::FABS
)
4170 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4172 // copysign(x, copysign(y,z)) -> copysign(x, z)
4173 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
4174 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4175 N0
, N1
.getOperand(1));
4177 // copysign(x, fp_extend(y)) -> copysign(x, y)
4178 // copysign(x, fp_round(y)) -> copysign(x, y)
4179 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
4180 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4181 N0
, N1
.getOperand(0));
4186 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
4187 SDValue N0
= N
->getOperand(0);
4188 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4189 MVT VT
= N
->getValueType(0);
4190 MVT OpVT
= N0
.getValueType();
4192 // fold (sint_to_fp c1) -> c1fp
4193 if (N0C
&& OpVT
!= MVT::ppcf128
)
4194 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4196 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4197 // but UINT_TO_FP is legal on this target, try to convert.
4198 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
4199 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
4200 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4201 if (DAG
.SignBitIsZero(N0
))
4202 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4208 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
4209 SDValue N0
= N
->getOperand(0);
4210 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4211 MVT VT
= N
->getValueType(0);
4212 MVT OpVT
= N0
.getValueType();
4214 // fold (uint_to_fp c1) -> c1fp
4215 if (N0C
&& OpVT
!= MVT::ppcf128
)
4216 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4218 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4219 // but SINT_TO_FP is legal on this target, try to convert.
4220 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
4221 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
4222 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4223 if (DAG
.SignBitIsZero(N0
))
4224 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4230 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
4231 SDValue N0
= N
->getOperand(0);
4232 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4233 MVT VT
= N
->getValueType(0);
4235 // fold (fp_to_sint c1fp) -> c1
4237 return DAG
.getNode(ISD::FP_TO_SINT
, N
->getDebugLoc(), VT
, N0
);
4242 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
4243 SDValue N0
= N
->getOperand(0);
4244 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4245 MVT VT
= N
->getValueType(0);
4247 // fold (fp_to_uint c1fp) -> c1
4248 if (N0CFP
&& VT
!= MVT::ppcf128
)
4249 return DAG
.getNode(ISD::FP_TO_UINT
, N
->getDebugLoc(), VT
, N0
);
4254 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
4255 SDValue N0
= N
->getOperand(0);
4256 SDValue N1
= N
->getOperand(1);
4257 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4258 MVT VT
= N
->getValueType(0);
4260 // fold (fp_round c1fp) -> c1fp
4261 if (N0CFP
&& N0
.getValueType() != MVT::ppcf128
)
4262 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
, N1
);
4264 // fold (fp_round (fp_extend x)) -> x
4265 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
4266 return N0
.getOperand(0);
4268 // fold (fp_round (fp_round x)) -> (fp_round x)
4269 if (N0
.getOpcode() == ISD::FP_ROUND
) {
4270 // This is a value preserving truncation if both round's are.
4271 bool IsTrunc
= N
->getConstantOperandVal(1) == 1 &&
4272 N0
.getNode()->getConstantOperandVal(1) == 1;
4273 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4274 DAG
.getIntPtrConstant(IsTrunc
));
4277 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4278 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
4279 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(), VT
,
4280 N0
.getOperand(0), N1
);
4281 AddToWorkList(Tmp
.getNode());
4282 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4283 Tmp
, N0
.getOperand(1));
4289 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
4290 SDValue N0
= N
->getOperand(0);
4291 MVT VT
= N
->getValueType(0);
4292 MVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
4293 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4295 // fold (fp_round_inreg c1fp) -> c1fp
4296 if (N0CFP
&& (TLI
.isTypeLegal(EVT
) || !LegalTypes
)) {
4297 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), EVT
);
4298 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, Round
);
4304 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
4305 SDValue N0
= N
->getOperand(0);
4306 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4307 MVT VT
= N
->getValueType(0);
4309 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4310 if (N
->hasOneUse() &&
4311 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
4314 // fold (fp_extend c1fp) -> c1fp
4315 if (N0CFP
&& VT
!= MVT::ppcf128
)
4316 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, N0
);
4318 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4320 if (N0
.getOpcode() == ISD::FP_ROUND
4321 && N0
.getNode()->getConstantOperandVal(1) == 1) {
4322 SDValue In
= N0
.getOperand(0);
4323 if (In
.getValueType() == VT
) return In
;
4324 if (VT
.bitsLT(In
.getValueType()))
4325 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
,
4326 In
, N0
.getOperand(1));
4327 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, In
);
4330 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4331 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
4332 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4333 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
4334 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4335 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
4337 LN0
->getBasePtr(), LN0
->getSrcValue(),
4338 LN0
->getSrcValueOffset(),
4340 LN0
->isVolatile(), LN0
->getAlignment());
4341 CombineTo(N
, ExtLoad
);
4342 CombineTo(N0
.getNode(),
4343 DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(),
4344 N0
.getValueType(), ExtLoad
, DAG
.getIntPtrConstant(1)),
4345 ExtLoad
.getValue(1));
4346 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4352 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
4353 SDValue N0
= N
->getOperand(0);
4355 if (isNegatibleForFree(N0
, LegalOperations
))
4356 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
4358 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4359 // constant pool values.
4360 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4361 N0
.getOperand(0).getValueType().isInteger() &&
4362 !N0
.getOperand(0).getValueType().isVector()) {
4363 SDValue Int
= N0
.getOperand(0);
4364 MVT IntVT
= Int
.getValueType();
4365 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4366 Int
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), IntVT
, Int
,
4367 DAG
.getConstant(APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4368 AddToWorkList(Int
.getNode());
4369 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4370 N
->getValueType(0), Int
);
4377 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
4378 SDValue N0
= N
->getOperand(0);
4379 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4380 MVT VT
= N
->getValueType(0);
4382 // fold (fabs c1) -> fabs(c1)
4383 if (N0CFP
&& VT
!= MVT::ppcf128
)
4384 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4385 // fold (fabs (fabs x)) -> (fabs x)
4386 if (N0
.getOpcode() == ISD::FABS
)
4387 return N
->getOperand(0);
4388 // fold (fabs (fneg x)) -> (fabs x)
4389 // fold (fabs (fcopysign x, y)) -> (fabs x)
4390 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
4391 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4393 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4394 // constant pool values.
4395 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4396 N0
.getOperand(0).getValueType().isInteger() &&
4397 !N0
.getOperand(0).getValueType().isVector()) {
4398 SDValue Int
= N0
.getOperand(0);
4399 MVT IntVT
= Int
.getValueType();
4400 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4401 Int
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), IntVT
, Int
,
4402 DAG
.getConstant(~APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4403 AddToWorkList(Int
.getNode());
4404 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4405 N
->getValueType(0), Int
);
4412 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
4413 SDValue Chain
= N
->getOperand(0);
4414 SDValue N1
= N
->getOperand(1);
4415 SDValue N2
= N
->getOperand(2);
4416 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
4418 // never taken branch, fold to chain
4419 if (N1C
&& N1C
->isNullValue())
4421 // unconditional branch
4422 if (N1C
&& N1C
->getAPIntValue() == 1)
4423 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
, Chain
, N2
);
4424 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4426 if (N1
.getOpcode() == ISD::SETCC
&&
4427 TLI
.isOperationLegalOrCustom(ISD::BR_CC
, MVT::Other
)) {
4428 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4429 Chain
, N1
.getOperand(2),
4430 N1
.getOperand(0), N1
.getOperand(1), N2
);
4433 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::SRL
) {
4434 // Match this pattern so that we can generate simpler code:
4437 // %b = and i32 %a, 2
4438 // %c = srl i32 %b, 1
4439 // brcond i32 %c ...
4445 // %c = setcc eq %b, 0
4448 // This applies only when the AND constant value has one bit set and the
4449 // SRL constant is equal to the log2 of the AND constant. The back-end is
4450 // smart enough to convert the result into a TEST/JMP sequence.
4451 SDValue Op0
= N1
.getOperand(0);
4452 SDValue Op1
= N1
.getOperand(1);
4454 if (Op0
.getOpcode() == ISD::AND
&&
4456 Op1
.getOpcode() == ISD::Constant
) {
4457 SDValue AndOp0
= Op0
.getOperand(0);
4458 SDValue AndOp1
= Op0
.getOperand(1);
4460 if (AndOp1
.getOpcode() == ISD::Constant
) {
4461 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
4463 if (AndConst
.isPowerOf2() &&
4464 cast
<ConstantSDNode
>(Op1
)->getAPIntValue()==AndConst
.logBase2()) {
4466 DAG
.getSetCC(N
->getDebugLoc(),
4467 TLI
.getSetCCResultType(Op0
.getValueType()),
4468 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
4471 // Replace the uses of SRL with SETCC
4472 DAG
.ReplaceAllUsesOfValueWith(N1
, SetCC
);
4473 removeFromWorkList(N1
.getNode());
4474 DAG
.DeleteNode(N1
.getNode());
4475 return DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
4476 MVT::Other
, Chain
, SetCC
, N2
);
4485 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4487 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
4488 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
4489 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
4491 // Use SimplifySetCC to simplify SETCC's.
4492 SDValue Simp
= SimplifySetCC(TLI
.getSetCCResultType(CondLHS
.getValueType()),
4493 CondLHS
, CondRHS
, CC
->get(), N
->getDebugLoc(),
4495 if (Simp
.getNode()) AddToWorkList(Simp
.getNode());
4497 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(Simp
.getNode());
4499 // fold br_cc true, dest -> br dest (unconditional branch)
4500 if (SCCC
&& !SCCC
->isNullValue())
4501 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
,
4502 N
->getOperand(0), N
->getOperand(4));
4503 // fold br_cc false, dest -> unconditional fall through
4504 if (SCCC
&& SCCC
->isNullValue())
4505 return N
->getOperand(0);
4507 // fold to a simpler setcc
4508 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
4509 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4510 N
->getOperand(0), Simp
.getOperand(2),
4511 Simp
.getOperand(0), Simp
.getOperand(1),
4517 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4518 /// pre-indexed load / store when the base pointer is an add or subtract
4519 /// and it has other uses besides the load / store. After the
4520 /// transformation, the new indexed load / store has effectively folded
4521 /// the add / subtract in and all of its other uses are redirected to the
4522 /// new load / store.
4523 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
4524 if (!LegalOperations
)
4530 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4531 if (LD
->isIndexed())
4533 VT
= LD
->getMemoryVT();
4534 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
4535 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
4537 Ptr
= LD
->getBasePtr();
4538 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4539 if (ST
->isIndexed())
4541 VT
= ST
->getMemoryVT();
4542 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
4543 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
4545 Ptr
= ST
->getBasePtr();
4551 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4552 // out. There is no reason to make this a preinc/predec.
4553 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
4554 Ptr
.getNode()->hasOneUse())
4557 // Ask the target to do addressing mode selection.
4560 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4561 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
4563 // Don't create a indexed load / store with zero offset.
4564 if (isa
<ConstantSDNode
>(Offset
) &&
4565 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4568 // Try turning it into a pre-indexed load / store except when:
4569 // 1) The new base ptr is a frame index.
4570 // 2) If N is a store and the new base ptr is either the same as or is a
4571 // predecessor of the value being stored.
4572 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4573 // that would create a cycle.
4574 // 4) All uses are load / store ops that use it as old base ptr.
4576 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4577 // (plus the implicit offset) to a register to preinc anyway.
4578 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
4583 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
4584 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
4588 // Now check for #3 and #4.
4589 bool RealUse
= false;
4590 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4591 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4595 if (Use
->isPredecessorOf(N
))
4598 if (!((Use
->getOpcode() == ISD::LOAD
&&
4599 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
4600 (Use
->getOpcode() == ISD::STORE
&&
4601 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
)))
4610 Result
= DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4611 BasePtr
, Offset
, AM
);
4613 Result
= DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4614 BasePtr
, Offset
, AM
);
4617 DOUT
<< "\nReplacing.4 "; DEBUG(N
->dump(&DAG
));
4618 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4620 WorkListRemover
DeadNodes(*this);
4622 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4624 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4627 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4631 // Finally, since the node is now dead, remove it from the graph.
4634 // Replace the uses of Ptr with uses of the updated base value.
4635 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
4637 removeFromWorkList(Ptr
.getNode());
4638 DAG
.DeleteNode(Ptr
.getNode());
4643 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4644 /// add / sub of the base pointer node into a post-indexed load / store.
4645 /// The transformation folded the add / subtract into the new indexed
4646 /// load / store effectively and all of its uses are redirected to the
4647 /// new load / store.
4648 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
4649 if (!LegalOperations
)
4655 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4656 if (LD
->isIndexed())
4658 VT
= LD
->getMemoryVT();
4659 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
4660 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
4662 Ptr
= LD
->getBasePtr();
4663 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4664 if (ST
->isIndexed())
4666 VT
= ST
->getMemoryVT();
4667 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
4668 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
4670 Ptr
= ST
->getBasePtr();
4676 if (Ptr
.getNode()->hasOneUse())
4679 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4680 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4683 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
4688 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4689 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
4691 std::swap(BasePtr
, Offset
);
4694 // Don't create a indexed load / store with zero offset.
4695 if (isa
<ConstantSDNode
>(Offset
) &&
4696 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4699 // Try turning it into a post-indexed load / store except when
4700 // 1) All uses are load / store ops that use it as base ptr.
4701 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4702 // nor a successor of N. Otherwise, if Op is folded that would
4705 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
4709 bool TryNext
= false;
4710 for (SDNode::use_iterator II
= BasePtr
.getNode()->use_begin(),
4711 EE
= BasePtr
.getNode()->use_end(); II
!= EE
; ++II
) {
4713 if (Use
== Ptr
.getNode())
4716 // If all the uses are load / store addresses, then don't do the
4718 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
4719 bool RealUse
= false;
4720 for (SDNode::use_iterator III
= Use
->use_begin(),
4721 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
4722 SDNode
*UseUse
= *III
;
4723 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
4724 cast
<LoadSDNode
>(UseUse
)->getBasePtr().getNode() == Use
) ||
4725 (UseUse
->getOpcode() == ISD::STORE
&&
4726 cast
<StoreSDNode
>(UseUse
)->getBasePtr().getNode() == Use
)))
4741 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
4742 SDValue Result
= isLoad
4743 ? DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4744 BasePtr
, Offset
, AM
)
4745 : DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4746 BasePtr
, Offset
, AM
);
4749 DOUT
<< "\nReplacing.5 "; DEBUG(N
->dump(&DAG
));
4750 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4752 WorkListRemover
DeadNodes(*this);
4754 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4756 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4759 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4763 // Finally, since the node is now dead, remove it from the graph.
4766 // Replace the uses of Use with uses of the updated base value.
4767 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
4768 Result
.getValue(isLoad
? 1 : 0),
4770 removeFromWorkList(Op
);
4780 /// InferAlignment - If we can infer some alignment information from this
4781 /// pointer, return it.
4782 static unsigned InferAlignment(SDValue Ptr
, SelectionDAG
&DAG
) {
4783 // If this is a direct reference to a stack slot, use information about the
4784 // stack slot's alignment.
4785 int FrameIdx
= 1 << 31;
4786 int64_t FrameOffset
= 0;
4787 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
4788 FrameIdx
= FI
->getIndex();
4789 } else if (Ptr
.getOpcode() == ISD::ADD
&&
4790 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
4791 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
4792 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
4793 FrameOffset
= Ptr
.getConstantOperandVal(1);
4796 if (FrameIdx
!= (1 << 31)) {
4797 // FIXME: Handle FI+CST.
4798 const MachineFrameInfo
&MFI
= *DAG
.getMachineFunction().getFrameInfo();
4799 if (MFI
.isFixedObjectIndex(FrameIdx
)) {
4800 int64_t ObjectOffset
= MFI
.getObjectOffset(FrameIdx
) + FrameOffset
;
4802 // The alignment of the frame index can be determined from its offset from
4803 // the incoming frame position. If the frame object is at offset 32 and
4804 // the stack is guaranteed to be 16-byte aligned, then we know that the
4805 // object is 16-byte aligned.
4806 unsigned StackAlign
= DAG
.getTarget().getFrameInfo()->getStackAlignment();
4807 unsigned Align
= MinAlign(ObjectOffset
, StackAlign
);
4809 // Finally, the frame object itself may have a known alignment. Factor
4810 // the alignment + offset into a new alignment. For example, if we know
4811 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4812 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4813 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4814 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
4816 return std::max(Align
, FIInfoAlign
);
4823 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
4824 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
4825 SDValue Chain
= LD
->getChain();
4826 SDValue Ptr
= LD
->getBasePtr();
4828 // Try to infer better alignment information than the load already has.
4829 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
4830 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4831 if (Align
> LD
->getAlignment())
4832 return DAG
.getExtLoad(LD
->getExtensionType(), N
->getDebugLoc(),
4833 LD
->getValueType(0),
4834 Chain
, Ptr
, LD
->getSrcValue(),
4835 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
4836 LD
->isVolatile(), Align
);
4840 // If load is not volatile and there are no uses of the loaded value (and
4841 // the updated indexed value in case of indexed loads), change uses of the
4842 // chain value into uses of the chain input (i.e. delete the dead load).
4843 if (!LD
->isVolatile()) {
4844 if (N
->getValueType(1) == MVT::Other
) {
4846 if (N
->hasNUsesOfValue(0, 0)) {
4847 // It's not safe to use the two value CombineTo variant here. e.g.
4848 // v1, chain2 = load chain1, loc
4849 // v2, chain3 = load chain2, loc
4851 // Now we replace use of chain2 with chain1. This makes the second load
4852 // isomorphic to the one we are deleting, and thus makes this load live.
4853 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4854 DOUT
<< "\nWith chain: "; DEBUG(Chain
.getNode()->dump(&DAG
));
4856 WorkListRemover
DeadNodes(*this);
4857 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
, &DeadNodes
);
4859 if (N
->use_empty()) {
4860 removeFromWorkList(N
);
4864 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4868 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
4869 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
4870 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
4871 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4872 DOUT
<< "\nWith: "; DEBUG(Undef
.getNode()->dump(&DAG
));
4873 DOUT
<< " and 2 other values\n";
4874 WorkListRemover
DeadNodes(*this);
4875 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
, &DeadNodes
);
4876 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1),
4877 DAG
.getUNDEF(N
->getValueType(1)),
4879 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
, &DeadNodes
);
4880 removeFromWorkList(N
);
4882 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4887 // If this load is directly stored, replace the load value with the stored
4889 // TODO: Handle store large -> read small portion.
4890 // TODO: Handle TRUNCSTORE/LOADEXT
4891 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
4892 !LD
->isVolatile()) {
4893 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
4894 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
4895 if (PrevST
->getBasePtr() == Ptr
&&
4896 PrevST
->getValue().getValueType() == N
->getValueType(0))
4897 return CombineTo(N
, Chain
.getOperand(1), Chain
);
4902 // Walk up chain skipping non-aliasing memory nodes.
4903 SDValue BetterChain
= FindBetterChain(N
, Chain
);
4905 // If there is a better chain.
4906 if (Chain
!= BetterChain
) {
4909 // Replace the chain to void dependency.
4910 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
4911 ReplLoad
= DAG
.getLoad(N
->getValueType(0), LD
->getDebugLoc(),
4913 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4914 LD
->isVolatile(), LD
->getAlignment());
4916 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), LD
->getDebugLoc(),
4917 LD
->getValueType(0),
4918 BetterChain
, Ptr
, LD
->getSrcValue(),
4919 LD
->getSrcValueOffset(),
4922 LD
->getAlignment());
4925 // Create token factor to keep old chain connected.
4926 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
4927 MVT::Other
, Chain
, ReplLoad
.getValue(1));
4929 // Replace uses with load result and token factor. Don't add users
4931 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
4935 // Try transforming N to an indexed load.
4936 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
4937 return SDValue(N
, 0);
4943 /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
4944 /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
4945 /// of the loaded bits, try narrowing the load and store if it would end up
4946 /// being a win for performance or code size.
4947 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
4948 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
4949 if (ST
->isVolatile())
4952 SDValue Chain
= ST
->getChain();
4953 SDValue Value
= ST
->getValue();
4954 SDValue Ptr
= ST
->getBasePtr();
4955 MVT VT
= Value
.getValueType();
4957 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
4960 unsigned Opc
= Value
.getOpcode();
4961 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
4962 Value
.getOperand(1).getOpcode() != ISD::Constant
)
4965 SDValue N0
= Value
.getOperand(0);
4966 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse()) {
4967 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
4968 if (LD
->getBasePtr() != Ptr
)
4971 // Find the type to narrow it the load / op / store to.
4972 SDValue N1
= Value
.getOperand(1);
4973 unsigned BitWidth
= N1
.getValueSizeInBits();
4974 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
4975 if (Opc
== ISD::AND
)
4976 Imm
^= APInt::getAllOnesValue(BitWidth
);
4977 if (Imm
== 0 || Imm
.isAllOnesValue())
4979 unsigned ShAmt
= Imm
.countTrailingZeros();
4980 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
4981 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
4982 MVT NewVT
= MVT::getIntegerVT(NewBW
);
4983 while (NewBW
< BitWidth
&&
4984 !(TLI
.isOperationLegalOrCustom(Opc
, NewVT
) &&
4985 TLI
.isNarrowingProfitable(VT
, NewVT
))) {
4986 NewBW
= NextPowerOf2(NewBW
);
4987 NewVT
= MVT::getIntegerVT(NewBW
);
4989 if (NewBW
>= BitWidth
)
4992 // If the lsb changed does not start at the type bitwidth boundary,
4993 // start at the previous one.
4995 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
4996 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
, ShAmt
+ NewBW
);
4997 if ((Imm
& Mask
) == Imm
) {
4998 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
4999 if (Opc
== ISD::AND
)
5000 NewImm
^= APInt::getAllOnesValue(NewBW
);
5001 uint64_t PtrOff
= ShAmt
/ 8;
5002 // For big endian targets, we need to adjust the offset to the pointer to
5003 // load the correct bytes.
5004 if (TLI
.isBigEndian())
5005 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
5007 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
5009 TLI
.getTargetData()->getABITypeAlignment(NewVT
.getTypeForMVT()))
5012 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LD
->getDebugLoc(),
5013 Ptr
.getValueType(), Ptr
,
5014 DAG
.getConstant(PtrOff
, Ptr
.getValueType()));
5015 SDValue NewLD
= DAG
.getLoad(NewVT
, N0
.getDebugLoc(),
5016 LD
->getChain(), NewPtr
,
5017 LD
->getSrcValue(), LD
->getSrcValueOffset(),
5018 LD
->isVolatile(), NewAlign
);
5019 SDValue NewVal
= DAG
.getNode(Opc
, Value
.getDebugLoc(), NewVT
, NewLD
,
5020 DAG
.getConstant(NewImm
, NewVT
));
5021 SDValue NewST
= DAG
.getStore(Chain
, N
->getDebugLoc(),
5023 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5026 AddToWorkList(NewPtr
.getNode());
5027 AddToWorkList(NewLD
.getNode());
5028 AddToWorkList(NewVal
.getNode());
5029 WorkListRemover
DeadNodes(*this);
5030 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1),
5040 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
5041 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
5042 SDValue Chain
= ST
->getChain();
5043 SDValue Value
= ST
->getValue();
5044 SDValue Ptr
= ST
->getBasePtr();
5046 // Try to infer better alignment information than the store already has.
5047 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
5048 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
5049 if (Align
> ST
->getAlignment())
5050 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
,
5051 Ptr
, ST
->getSrcValue(),
5052 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5053 ST
->isVolatile(), Align
);
5057 // If this is a store of a bit convert, store the input value if the
5058 // resultant store does not need a higher alignment than the original.
5059 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
5060 ST
->isUnindexed()) {
5061 unsigned OrigAlign
= ST
->getAlignment();
5062 MVT SVT
= Value
.getOperand(0).getValueType();
5063 unsigned Align
= TLI
.getTargetData()->
5064 getABITypeAlignment(SVT
.getTypeForMVT());
5065 if (Align
<= OrigAlign
&&
5066 ((!LegalOperations
&& !ST
->isVolatile()) ||
5067 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)))
5068 return DAG
.getStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5069 Ptr
, ST
->getSrcValue(),
5070 ST
->getSrcValueOffset(), ST
->isVolatile(), OrigAlign
);
5073 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
5074 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
5075 // NOTE: If the original store is volatile, this transform must not increase
5076 // the number of stores. For example, on x86-32 an f64 can be stored in one
5077 // processor operation but an i64 (which is not legal) requires two. So the
5078 // transform should not be done in this case.
5079 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
5081 switch (CFP
->getValueType(0).getSimpleVT()) {
5082 default: llvm_unreachable("Unknown FP type");
5083 case MVT::f80
: // We don't do this for these yet.
5088 if (((TLI
.isTypeLegal(MVT::i32
) || !LegalTypes
) && !LegalOperations
&&
5089 !ST
->isVolatile()) ||
5090 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5091 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
5092 bitcastToAPInt().getZExtValue(), MVT::i32
);
5093 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5094 Ptr
, ST
->getSrcValue(),
5095 ST
->getSrcValueOffset(), ST
->isVolatile(),
5096 ST
->getAlignment());
5100 if (((TLI
.isTypeLegal(MVT::i64
) || !LegalTypes
) && !LegalOperations
&&
5101 !ST
->isVolatile()) ||
5102 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
5103 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
5104 getZExtValue(), MVT::i64
);
5105 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5106 Ptr
, ST
->getSrcValue(),
5107 ST
->getSrcValueOffset(), ST
->isVolatile(),
5108 ST
->getAlignment());
5109 } else if (!ST
->isVolatile() &&
5110 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5111 // Many FP stores are not made apparent until after legalize, e.g. for
5112 // argument passing. Since this is so common, custom legalize the
5113 // 64-bit integer store into two 32-bit stores.
5114 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
5115 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
5116 SDValue Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
5117 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
5119 int SVOffset
= ST
->getSrcValueOffset();
5120 unsigned Alignment
= ST
->getAlignment();
5121 bool isVolatile
= ST
->isVolatile();
5123 SDValue St0
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Lo
,
5124 Ptr
, ST
->getSrcValue(),
5125 ST
->getSrcValueOffset(),
5126 isVolatile
, ST
->getAlignment());
5127 Ptr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), Ptr
.getValueType(), Ptr
,
5128 DAG
.getConstant(4, Ptr
.getValueType()));
5130 Alignment
= MinAlign(Alignment
, 4U);
5131 SDValue St1
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Hi
,
5132 Ptr
, ST
->getSrcValue(),
5133 SVOffset
, isVolatile
, Alignment
);
5134 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
5144 // Walk up chain skipping non-aliasing memory nodes.
5145 SDValue BetterChain
= FindBetterChain(N
, Chain
);
5147 // If there is a better chain.
5148 if (Chain
!= BetterChain
) {
5149 // Replace the chain to avoid dependency.
5151 if (ST
->isTruncatingStore()) {
5152 ReplStore
= DAG
.getTruncStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5153 ST
->getSrcValue(),ST
->getSrcValueOffset(),
5155 ST
->isVolatile(), ST
->getAlignment());
5157 ReplStore
= DAG
.getStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5158 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5159 ST
->isVolatile(), ST
->getAlignment());
5162 // Create token to keep both nodes around.
5163 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
5164 MVT::Other
, Chain
, ReplStore
);
5166 // Don't add users to work list.
5167 return CombineTo(N
, Token
, false);
5171 // Try transforming N to an indexed store.
5172 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
5173 return SDValue(N
, 0);
5175 // FIXME: is there such a thing as a truncating indexed store?
5176 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
5177 Value
.getValueType().isInteger()) {
5178 // See if we can simplify the input to this truncstore with knowledge that
5179 // only the low bits are being used. For example:
5180 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
5182 GetDemandedBits(Value
,
5183 APInt::getLowBitsSet(Value
.getValueSizeInBits(),
5184 ST
->getMemoryVT().getSizeInBits()));
5185 AddToWorkList(Value
.getNode());
5186 if (Shorter
.getNode())
5187 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Shorter
,
5188 Ptr
, ST
->getSrcValue(),
5189 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5190 ST
->isVolatile(), ST
->getAlignment());
5192 // Otherwise, see if we can simplify the operation with
5193 // SimplifyDemandedBits, which only works if the value has a single use.
5194 if (SimplifyDemandedBits(Value
,
5195 APInt::getLowBitsSet(
5196 Value
.getValueSizeInBits(),
5197 ST
->getMemoryVT().getSizeInBits())))
5198 return SDValue(N
, 0);
5201 // If this is a load followed by a store to the same location, then the store
5203 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
5204 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
5205 ST
->isUnindexed() && !ST
->isVolatile() &&
5206 // There can't be any side effects between the load and store, such as
5208 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
5209 // The store is dead, remove it.
5214 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
5215 // truncating store. We can do this even if this is already a truncstore.
5216 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
5217 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
5218 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
5219 ST
->getMemoryVT())) {
5220 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5221 Ptr
, ST
->getSrcValue(),
5222 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5223 ST
->isVolatile(), ST
->getAlignment());
5226 return ReduceLoadOpStoreWidth(N
);
5229 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
5230 SDValue InVec
= N
->getOperand(0);
5231 SDValue InVal
= N
->getOperand(1);
5232 SDValue EltNo
= N
->getOperand(2);
5234 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5235 // vector with the inserted element.
5236 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
5237 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5238 SmallVector
<SDValue
, 8> Ops(InVec
.getNode()->op_begin(),
5239 InVec
.getNode()->op_end());
5240 if (Elt
< Ops
.size())
5242 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5243 InVec
.getValueType(), &Ops
[0], Ops
.size());
5245 // If the invec is an UNDEF and if EltNo is a constant, create a new
5246 // BUILD_VECTOR with undef elements and the inserted element.
5247 if (!LegalOperations
&& InVec
.getOpcode() == ISD::UNDEF
&&
5248 isa
<ConstantSDNode
>(EltNo
)) {
5249 MVT VT
= InVec
.getValueType();
5250 MVT EVT
= VT
.getVectorElementType();
5251 unsigned NElts
= VT
.getVectorNumElements();
5252 SmallVector
<SDValue
, 8> Ops(NElts
, DAG
.getUNDEF(EVT
));
5254 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5255 if (Elt
< Ops
.size())
5257 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5258 InVec
.getValueType(), &Ops
[0], Ops
.size());
5263 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
5264 // (vextract (scalar_to_vector val, 0) -> val
5265 SDValue InVec
= N
->getOperand(0);
5267 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
5268 // If the operand is wider than the vector element type then it is implicitly
5269 // truncated. Make that explicit here.
5270 MVT EltVT
= InVec
.getValueType().getVectorElementType();
5271 SDValue InOp
= InVec
.getOperand(0);
5272 if (InOp
.getValueType() != EltVT
)
5273 return DAG
.getNode(ISD::TRUNCATE
, InVec
.getDebugLoc(), EltVT
, InOp
);
5277 // Perform only after legalization to ensure build_vector / vector_shuffle
5278 // optimizations have already been done.
5279 if (!LegalOperations
) return SDValue();
5281 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5282 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5283 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5284 SDValue EltNo
= N
->getOperand(1);
5286 if (isa
<ConstantSDNode
>(EltNo
)) {
5287 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5288 bool NewLoad
= false;
5289 bool BCNumEltsChanged
= false;
5290 MVT VT
= InVec
.getValueType();
5291 MVT EVT
= VT
.getVectorElementType();
5294 if (InVec
.getOpcode() == ISD::BIT_CONVERT
) {
5295 MVT BCVT
= InVec
.getOperand(0).getValueType();
5296 if (!BCVT
.isVector() || EVT
.bitsGT(BCVT
.getVectorElementType()))
5298 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
5299 BCNumEltsChanged
= true;
5300 InVec
= InVec
.getOperand(0);
5301 EVT
= BCVT
.getVectorElementType();
5305 LoadSDNode
*LN0
= NULL
;
5306 const ShuffleVectorSDNode
*SVN
= NULL
;
5307 if (ISD::isNormalLoad(InVec
.getNode())) {
5308 LN0
= cast
<LoadSDNode
>(InVec
);
5309 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
5310 InVec
.getOperand(0).getValueType() == EVT
&&
5311 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
5312 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
5313 } else if ((SVN
= dyn_cast
<ShuffleVectorSDNode
>(InVec
))) {
5314 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5316 // (load $addr+1*size)
5318 // If the bit convert changed the number of elements, it is unsafe
5319 // to examine the mask.
5320 if (BCNumEltsChanged
)
5323 // Select the input vector, guarding against out of range extract vector.
5324 unsigned NumElems
= VT
.getVectorNumElements();
5325 int Idx
= (Elt
> NumElems
) ? -1 : SVN
->getMaskElt(Elt
);
5326 InVec
= (Idx
< (int)NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
5328 if (InVec
.getOpcode() == ISD::BIT_CONVERT
)
5329 InVec
= InVec
.getOperand(0);
5330 if (ISD::isNormalLoad(InVec
.getNode())) {
5331 LN0
= cast
<LoadSDNode
>(InVec
);
5332 Elt
= (Idx
< (int)NumElems
) ? Idx
: Idx
- NumElems
;
5336 if (!LN0
|| !LN0
->hasOneUse() || LN0
->isVolatile())
5339 unsigned Align
= LN0
->getAlignment();
5341 // Check the resultant load doesn't need a higher alignment than the
5344 TLI
.getTargetData()->getABITypeAlignment(LVT
.getTypeForMVT());
5346 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, LVT
))
5352 SDValue NewPtr
= LN0
->getBasePtr();
5354 unsigned PtrOff
= LVT
.getSizeInBits() * Elt
/ 8;
5355 MVT PtrType
= NewPtr
.getValueType();
5356 if (TLI
.isBigEndian())
5357 PtrOff
= VT
.getSizeInBits() / 8 - PtrOff
;
5358 NewPtr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), PtrType
, NewPtr
,
5359 DAG
.getConstant(PtrOff
, PtrType
));
5362 return DAG
.getLoad(LVT
, N
->getDebugLoc(), LN0
->getChain(), NewPtr
,
5363 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
5364 LN0
->isVolatile(), Align
);
5370 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
5371 unsigned NumInScalars
= N
->getNumOperands();
5372 MVT VT
= N
->getValueType(0);
5373 MVT EltType
= VT
.getVectorElementType();
5375 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5376 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5377 // at most two distinct vectors, turn this into a shuffle node.
5378 SDValue VecIn1
, VecIn2
;
5379 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5380 // Ignore undef inputs.
5381 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5383 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5384 // constant index, bail out.
5385 if (N
->getOperand(i
).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5386 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
5387 VecIn1
= VecIn2
= SDValue(0, 0);
5391 // If the input vector type disagrees with the result of the build_vector,
5392 // we can't make a shuffle.
5393 SDValue ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
5394 if (ExtractedFromVec
.getValueType() != VT
) {
5395 VecIn1
= VecIn2
= SDValue(0, 0);
5399 // Otherwise, remember this. We allow up to two distinct input vectors.
5400 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
5403 if (VecIn1
.getNode() == 0) {
5404 VecIn1
= ExtractedFromVec
;
5405 } else if (VecIn2
.getNode() == 0) {
5406 VecIn2
= ExtractedFromVec
;
5409 VecIn1
= VecIn2
= SDValue(0, 0);
5414 // If everything is good, we can make a shuffle operation.
5415 if (VecIn1
.getNode()) {
5416 SmallVector
<int, 8> Mask
;
5417 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5418 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
5423 // If extracting from the first vector, just use the index directly.
5424 SDValue Extract
= N
->getOperand(i
);
5425 SDValue ExtVal
= Extract
.getOperand(1);
5426 if (Extract
.getOperand(0) == VecIn1
) {
5427 unsigned ExtIndex
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5428 if (ExtIndex
> VT
.getVectorNumElements())
5431 Mask
.push_back(ExtIndex
);
5435 // Otherwise, use InIdx + VecSize
5436 unsigned Idx
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5437 Mask
.push_back(Idx
+NumInScalars
);
5440 // Add count and size info.
5441 if (!TLI
.isTypeLegal(VT
) && LegalTypes
)
5444 // Return the new VECTOR_SHUFFLE node.
5447 Ops
[1] = VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(VT
);
5448 return DAG
.getVectorShuffle(VT
, N
->getDebugLoc(), Ops
[0], Ops
[1], &Mask
[0]);
5454 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
5455 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5456 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5457 // inputs come from at most two distinct vectors, turn this into a shuffle
5460 // If we only have one input vector, we don't need to do any concatenation.
5461 if (N
->getNumOperands() == 1)
5462 return N
->getOperand(0);
5467 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
5470 MVT VT
= N
->getValueType(0);
5471 unsigned NumElts
= VT
.getVectorNumElements();
5473 SDValue N0
= N
->getOperand(0);
5474 SDValue N1
= N
->getOperand(1);
5476 assert(N0
.getValueType().getVectorNumElements() == NumElts
&&
5477 "Vector shuffle must be normalized in DAG");
5479 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
5481 // If it is a splat, check if the argument vector is a build_vector with
5482 // all scalar elements the same.
5483 if (cast
<ShuffleVectorSDNode
>(N
)->isSplat()) {
5484 SDNode
*V
= N0
.getNode();
5487 // If this is a bit convert that changes the element type of the vector but
5488 // not the number of vector elements, look through it. Be careful not to
5489 // look though conversions that change things like v4f32 to v2f64.
5490 if (V
->getOpcode() == ISD::BIT_CONVERT
) {
5491 SDValue ConvInput
= V
->getOperand(0);
5492 if (ConvInput
.getValueType().isVector() &&
5493 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
5494 V
= ConvInput
.getNode();
5497 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
5498 unsigned NumElems
= V
->getNumOperands();
5499 unsigned BaseIdx
= cast
<ShuffleVectorSDNode
>(N
)->getSplatIndex();
5500 if (NumElems
> BaseIdx
) {
5502 bool AllSame
= true;
5503 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5504 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
5505 Base
= V
->getOperand(i
);
5509 // Splat of <u, u, u, u>, return <u, u, u, u>
5510 if (!Base
.getNode())
5512 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5513 if (V
->getOperand(i
) != Base
) {
5518 // Splat of <x, x, x, x>, return <x, x, x, x>
5527 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5528 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5529 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5530 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5531 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
5532 MVT VT
= N
->getValueType(0);
5533 DebugLoc dl
= N
->getDebugLoc();
5534 SDValue LHS
= N
->getOperand(0);
5535 SDValue RHS
= N
->getOperand(1);
5536 if (N
->getOpcode() == ISD::AND
) {
5537 if (RHS
.getOpcode() == ISD::BIT_CONVERT
)
5538 RHS
= RHS
.getOperand(0);
5539 if (RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5540 SmallVector
<int, 8> Indices
;
5541 unsigned NumElts
= RHS
.getNumOperands();
5542 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5543 SDValue Elt
= RHS
.getOperand(i
);
5544 if (!isa
<ConstantSDNode
>(Elt
))
5546 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
5547 Indices
.push_back(i
);
5548 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
5549 Indices
.push_back(NumElts
);
5554 // Let's see if the target supports this vector_shuffle.
5555 MVT RVT
= RHS
.getValueType();
5556 if (!TLI
.isVectorClearMaskLegal(Indices
, RVT
))
5559 // Return the new VECTOR_SHUFFLE node.
5560 MVT EVT
= RVT
.getVectorElementType();
5561 SmallVector
<SDValue
,8> ZeroOps(RVT
.getVectorNumElements(),
5562 DAG
.getConstant(0, EVT
));
5563 SDValue Zero
= DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5564 RVT
, &ZeroOps
[0], ZeroOps
.size());
5565 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RVT
, LHS
);
5566 SDValue Shuf
= DAG
.getVectorShuffle(RVT
, dl
, LHS
, Zero
, &Indices
[0]);
5567 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Shuf
);
5574 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5575 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
5576 // After legalize, the target may be depending on adds and other
5577 // binary ops to provide legal ways to construct constants or other
5578 // things. Simplifying them may result in a loss of legality.
5579 if (LegalOperations
) return SDValue();
5581 MVT VT
= N
->getValueType(0);
5582 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
5584 MVT EltType
= VT
.getVectorElementType();
5585 SDValue LHS
= N
->getOperand(0);
5586 SDValue RHS
= N
->getOperand(1);
5587 SDValue Shuffle
= XformToShuffleWithZero(N
);
5588 if (Shuffle
.getNode()) return Shuffle
;
5590 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5592 if (LHS
.getOpcode() == ISD::BUILD_VECTOR
&&
5593 RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5594 SmallVector
<SDValue
, 8> Ops
;
5595 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
5596 SDValue LHSOp
= LHS
.getOperand(i
);
5597 SDValue RHSOp
= RHS
.getOperand(i
);
5598 // If these two elements can't be folded, bail out.
5599 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
5600 LHSOp
.getOpcode() != ISD::Constant
&&
5601 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
5602 (RHSOp
.getOpcode() != ISD::UNDEF
&&
5603 RHSOp
.getOpcode() != ISD::Constant
&&
5604 RHSOp
.getOpcode() != ISD::ConstantFP
))
5607 // Can't fold divide by zero.
5608 if (N
->getOpcode() == ISD::SDIV
|| N
->getOpcode() == ISD::UDIV
||
5609 N
->getOpcode() == ISD::FDIV
) {
5610 if ((RHSOp
.getOpcode() == ISD::Constant
&&
5611 cast
<ConstantSDNode
>(RHSOp
.getNode())->isNullValue()) ||
5612 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
5613 cast
<ConstantFPSDNode
>(RHSOp
.getNode())->getValueAPF().isZero()))
5617 Ops
.push_back(DAG
.getNode(N
->getOpcode(), LHS
.getDebugLoc(),
5618 EltType
, LHSOp
, RHSOp
));
5619 AddToWorkList(Ops
.back().getNode());
5620 assert((Ops
.back().getOpcode() == ISD::UNDEF
||
5621 Ops
.back().getOpcode() == ISD::Constant
||
5622 Ops
.back().getOpcode() == ISD::ConstantFP
) &&
5623 "Scalar binop didn't fold!");
5626 if (Ops
.size() == LHS
.getNumOperands()) {
5627 MVT VT
= LHS
.getValueType();
5628 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
5629 &Ops
[0], Ops
.size());
5636 SDValue
DAGCombiner::SimplifySelect(DebugLoc DL
, SDValue N0
,
5637 SDValue N1
, SDValue N2
){
5638 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
5640 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
5641 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
5643 // If we got a simplified select_cc node back from SimplifySelectCC, then
5644 // break it down into a new SETCC node, and a new SELECT node, and then return
5645 // the SELECT node, since we were called with a SELECT node.
5646 if (SCC
.getNode()) {
5647 // Check to see if we got a select_cc back (to turn into setcc/select).
5648 // Otherwise, just return whatever node we got back, like fabs.
5649 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
5650 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getDebugLoc(),
5652 SCC
.getOperand(0), SCC
.getOperand(1),
5654 AddToWorkList(SETCC
.getNode());
5655 return DAG
.getNode(ISD::SELECT
, SCC
.getDebugLoc(), SCC
.getValueType(),
5656 SCC
.getOperand(2), SCC
.getOperand(3), SETCC
);
5664 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5665 /// are the two values being selected between, see if we can simplify the
5666 /// select. Callers of this should assume that TheSelect is deleted if this
5667 /// returns true. As such, they should return the appropriate thing (e.g. the
5668 /// node) back to the top-level of the DAG combiner loop to avoid it being
5670 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
5673 // If this is a select from two identical things, try to pull the operation
5674 // through the select.
5675 if (LHS
.getOpcode() == RHS
.getOpcode() && LHS
.hasOneUse() && RHS
.hasOneUse()){
5676 // If this is a load and the token chain is identical, replace the select
5677 // of two loads with a load through a select of the address to load from.
5678 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5679 // constants have been dropped into the constant pool.
5680 if (LHS
.getOpcode() == ISD::LOAD
&&
5681 // Do not let this transformation reduce the number of volatile loads.
5682 !cast
<LoadSDNode
>(LHS
)->isVolatile() &&
5683 !cast
<LoadSDNode
>(RHS
)->isVolatile() &&
5684 // Token chains must be identical.
5685 LHS
.getOperand(0) == RHS
.getOperand(0)) {
5686 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
5687 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
5689 // If this is an EXTLOAD, the VT's must match.
5690 if (LLD
->getMemoryVT() == RLD
->getMemoryVT()) {
5691 // FIXME: this conflates two src values, discarding one. This is not
5692 // the right thing to do, but nothing uses srcvalues now. When they do,
5693 // turn SrcValue into a list of locations.
5695 if (TheSelect
->getOpcode() == ISD::SELECT
) {
5696 // Check that the condition doesn't reach either load. If so, folding
5697 // this will induce a cycle into the DAG.
5698 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5699 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode())) {
5700 Addr
= DAG
.getNode(ISD::SELECT
, TheSelect
->getDebugLoc(),
5701 LLD
->getBasePtr().getValueType(),
5702 TheSelect
->getOperand(0), LLD
->getBasePtr(),
5706 // Check that the condition doesn't reach either load. If so, folding
5707 // this will induce a cycle into the DAG.
5708 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5709 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5710 !LLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode()) &&
5711 !RLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode())) {
5712 Addr
= DAG
.getNode(ISD::SELECT_CC
, TheSelect
->getDebugLoc(),
5713 LLD
->getBasePtr().getValueType(),
5714 TheSelect
->getOperand(0),
5715 TheSelect
->getOperand(1),
5716 LLD
->getBasePtr(), RLD
->getBasePtr(),
5717 TheSelect
->getOperand(4));
5721 if (Addr
.getNode()) {
5723 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
5724 Load
= DAG
.getLoad(TheSelect
->getValueType(0),
5725 TheSelect
->getDebugLoc(),
5727 Addr
,LLD
->getSrcValue(),
5728 LLD
->getSrcValueOffset(),
5730 LLD
->getAlignment());
5732 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
5733 TheSelect
->getDebugLoc(),
5734 TheSelect
->getValueType(0),
5735 LLD
->getChain(), Addr
, LLD
->getSrcValue(),
5736 LLD
->getSrcValueOffset(),
5739 LLD
->getAlignment());
5742 // Users of the select now use the result of the load.
5743 CombineTo(TheSelect
, Load
);
5745 // Users of the old loads now use the new load's chain. We know the
5746 // old-load value is dead now.
5747 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5748 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5758 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5759 /// where 'cond' is the comparison specified by CC.
5760 SDValue
DAGCombiner::SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
,
5761 SDValue N2
, SDValue N3
,
5762 ISD::CondCode CC
, bool NotExtCompare
) {
5763 // (x ? y : y) -> y.
5764 if (N2
== N3
) return N2
;
5766 MVT VT
= N2
.getValueType();
5767 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
5768 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
5769 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
5771 // Determine if the condition we're dealing with is constant
5772 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
5773 N0
, N1
, CC
, DL
, false);
5774 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
5775 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode());
5777 // fold select_cc true, x, y -> x
5778 if (SCCC
&& !SCCC
->isNullValue())
5780 // fold select_cc false, x, y -> y
5781 if (SCCC
&& SCCC
->isNullValue())
5784 // Check to see if we can simplify the select into an fabs node
5785 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
5786 // Allow either -0.0 or 0.0
5787 if (CFP
->getValueAPF().isZero()) {
5788 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5789 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
5790 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
5791 N2
== N3
.getOperand(0))
5792 return DAG
.getNode(ISD::FABS
, DL
, VT
, N0
);
5794 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5795 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5796 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
5797 N2
.getOperand(0) == N3
)
5798 return DAG
.getNode(ISD::FABS
, DL
, VT
, N3
);
5802 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5803 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5804 // in it. This is a win when the constant is not otherwise available because
5805 // it replaces two constant pool loads with one. We only do this if the FP
5806 // type is known to be legal, because if it isn't, then we are before legalize
5807 // types an we want the other legalization to happen first (e.g. to avoid
5808 // messing with soft float) and if the ConstantFP is not legal, because if
5809 // it is legal, we may not need to store the FP constant in a constant pool.
5810 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
5811 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
5812 if (TLI
.isTypeLegal(N2
.getValueType()) &&
5813 (TLI
.getOperationAction(ISD::ConstantFP
, N2
.getValueType()) !=
5814 TargetLowering::Legal
) &&
5815 // If both constants have multiple uses, then we won't need to do an
5816 // extra load, they are likely around in registers for other users.
5817 (TV
->hasOneUse() || FV
->hasOneUse())) {
5818 Constant
*Elts
[] = {
5819 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
5820 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
5822 const Type
*FPTy
= Elts
[0]->getType();
5823 const TargetData
&TD
= *TLI
.getTargetData();
5825 // Create a ConstantArray of the two constants.
5826 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
, 2);
5827 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(),
5828 TD
.getPrefTypeAlignment(FPTy
));
5829 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5831 // Get the offsets to the 0 and 1 element of the array so that we can
5832 // select between them.
5833 SDValue Zero
= DAG
.getIntPtrConstant(0);
5834 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
5835 SDValue One
= DAG
.getIntPtrConstant(EltSize
);
5837 SDValue Cond
= DAG
.getSetCC(DL
,
5838 TLI
.getSetCCResultType(N0
.getValueType()),
5840 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, DL
, Zero
.getValueType(),
5842 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, TLI
.getPointerTy(), CPIdx
,
5844 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
5845 PseudoSourceValue::getConstantPool(), 0, false,
5851 // Check to see if we can perform the "gzip trick", transforming
5852 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5853 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
5854 N0
.getValueType().isInteger() &&
5855 N2
.getValueType().isInteger() &&
5856 (N1C
->isNullValue() || // (a < 0) ? b : 0
5857 (N1C
->getAPIntValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
5858 MVT XType
= N0
.getValueType();
5859 MVT AType
= N2
.getValueType();
5860 if (XType
.bitsGE(AType
)) {
5861 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5862 // single-bit constant.
5863 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue()-1)) == 0)) {
5864 unsigned ShCtV
= N2C
->getAPIntValue().logBase2();
5865 ShCtV
= XType
.getSizeInBits()-ShCtV
-1;
5866 SDValue ShCt
= DAG
.getConstant(ShCtV
, getShiftAmountTy());
5867 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(),
5869 AddToWorkList(Shift
.getNode());
5871 if (XType
.bitsGT(AType
)) {
5872 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5873 AddToWorkList(Shift
.getNode());
5876 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5879 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(),
5881 DAG
.getConstant(XType
.getSizeInBits()-1,
5882 getShiftAmountTy()));
5883 AddToWorkList(Shift
.getNode());
5885 if (XType
.bitsGT(AType
)) {
5886 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5887 AddToWorkList(Shift
.getNode());
5890 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5894 // fold select C, 16, 0 -> shl C, 4
5895 if (N2C
&& N3C
&& N3C
->isNullValue() && N2C
->getAPIntValue().isPowerOf2() &&
5896 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
) {
5898 // If the caller doesn't want us to simplify this into a zext of a compare,
5900 if (NotExtCompare
&& N2C
->getAPIntValue() == 1)
5903 // Get a SetCC of the condition
5904 // FIXME: Should probably make sure that setcc is legal if we ever have a
5905 // target where it isn't.
5907 // cast from setcc result type to select result type
5909 SCC
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(N0
.getValueType()),
5911 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
5912 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getDebugLoc(), N2
.getValueType());
5914 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5915 N2
.getValueType(), SCC
);
5917 SCC
= DAG
.getSetCC(N0
.getDebugLoc(), MVT::i1
, N0
, N1
, CC
);
5918 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5919 N2
.getValueType(), SCC
);
5922 AddToWorkList(SCC
.getNode());
5923 AddToWorkList(Temp
.getNode());
5925 if (N2C
->getAPIntValue() == 1)
5928 // shl setcc result by log2 n2c
5929 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
5930 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
5931 getShiftAmountTy()));
5934 // Check to see if this is the equivalent of setcc
5935 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5936 // otherwise, go ahead with the folds.
5937 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getAPIntValue() == 1ULL)) {
5938 MVT XType
= N0
.getValueType();
5939 if (!LegalOperations
||
5940 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(XType
))) {
5941 SDValue Res
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(XType
), N0
, N1
, CC
);
5942 if (Res
.getValueType() != VT
)
5943 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Res
);
5947 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5948 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
5949 (!LegalOperations
||
5950 TLI
.isOperationLegal(ISD::CTLZ
, XType
))) {
5951 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, N0
.getDebugLoc(), XType
, N0
);
5952 return DAG
.getNode(ISD::SRL
, DL
, XType
, Ctlz
,
5953 DAG
.getConstant(Log2_32(XType
.getSizeInBits()),
5954 getShiftAmountTy()));
5956 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5957 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
5958 SDValue NegN0
= DAG
.getNode(ISD::SUB
, N0
.getDebugLoc(),
5959 XType
, DAG
.getConstant(0, XType
), N0
);
5960 SDValue NotN0
= DAG
.getNOT(N0
.getDebugLoc(), N0
, XType
);
5961 return DAG
.getNode(ISD::SRL
, DL
, XType
,
5962 DAG
.getNode(ISD::AND
, DL
, XType
, NegN0
, NotN0
),
5963 DAG
.getConstant(XType
.getSizeInBits()-1,
5964 getShiftAmountTy()));
5966 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5967 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
5968 SDValue Sign
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), XType
, N0
,
5969 DAG
.getConstant(XType
.getSizeInBits()-1,
5970 getShiftAmountTy()));
5971 return DAG
.getNode(ISD::XOR
, DL
, XType
, Sign
, DAG
.getConstant(1, XType
));
5975 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5976 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5977 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5978 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1) &&
5979 N2
.getOperand(0) == N1
&& N0
.getValueType().isInteger()) {
5980 MVT XType
= N0
.getValueType();
5981 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
, N0
,
5982 DAG
.getConstant(XType
.getSizeInBits()-1,
5983 getShiftAmountTy()));
5984 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), XType
,
5986 AddToWorkList(Shift
.getNode());
5987 AddToWorkList(Add
.getNode());
5988 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
5990 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5991 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5992 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
&&
5993 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1)) {
5994 if (ConstantSDNode
*SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0))) {
5995 MVT XType
= N0
.getValueType();
5996 if (SubC
->isNullValue() && XType
.isInteger()) {
5997 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
,
5999 DAG
.getConstant(XType
.getSizeInBits()-1,
6000 getShiftAmountTy()));
6001 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(),
6003 AddToWorkList(Shift
.getNode());
6004 AddToWorkList(Add
.getNode());
6005 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
6013 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
6014 SDValue
DAGCombiner::SimplifySetCC(MVT VT
, SDValue N0
,
6015 SDValue N1
, ISD::CondCode Cond
,
6016 DebugLoc DL
, bool foldBooleans
) {
6017 TargetLowering::DAGCombinerInfo
6018 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
6019 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
6022 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
6023 /// return a DAG expression to select that will generate the same value by
6024 /// multiplying by a magic number. See:
6025 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6026 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
6027 std::vector
<SDNode
*> Built
;
6028 SDValue S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
6030 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
6036 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
6037 /// return a DAG expression to select that will generate the same value by
6038 /// multiplying by a magic number. See:
6039 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6040 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
6041 std::vector
<SDNode
*> Built
;
6042 SDValue S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
6044 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
6050 /// FindBaseOffset - Return true if base is known not to alias with anything
6051 /// but itself. Provides base object and offset as results.
6052 static bool FindBaseOffset(SDValue Ptr
, SDValue
&Base
, int64_t &Offset
) {
6053 // Assume it is a primitive operation.
6054 Base
= Ptr
; Offset
= 0;
6056 // If it's an adding a simple constant then integrate the offset.
6057 if (Base
.getOpcode() == ISD::ADD
) {
6058 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
6059 Base
= Base
.getOperand(0);
6060 Offset
+= C
->getZExtValue();
6064 // If it's any of the following then it can't alias with anything but itself.
6065 return isa
<FrameIndexSDNode
>(Base
) ||
6066 isa
<ConstantPoolSDNode
>(Base
) ||
6067 isa
<GlobalAddressSDNode
>(Base
);
6070 /// isAlias - Return true if there is any possibility that the two addresses
6072 bool DAGCombiner::isAlias(SDValue Ptr1
, int64_t Size1
,
6073 const Value
*SrcValue1
, int SrcValueOffset1
,
6074 SDValue Ptr2
, int64_t Size2
,
6075 const Value
*SrcValue2
, int SrcValueOffset2
) const {
6076 // If they are the same then they must be aliases.
6077 if (Ptr1
== Ptr2
) return true;
6079 // Gather base node and offset information.
6080 SDValue Base1
, Base2
;
6081 int64_t Offset1
, Offset2
;
6082 bool KnownBase1
= FindBaseOffset(Ptr1
, Base1
, Offset1
);
6083 bool KnownBase2
= FindBaseOffset(Ptr2
, Base2
, Offset2
);
6085 // If they have a same base address then...
6087 // Check to see if the addresses overlap.
6088 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
6090 // If we know both bases then they can't alias.
6091 if (KnownBase1
&& KnownBase2
) return false;
6093 if (CombinerGlobalAA
) {
6094 // Use alias analysis information.
6095 int64_t MinOffset
= std::min(SrcValueOffset1
, SrcValueOffset2
);
6096 int64_t Overlap1
= Size1
+ SrcValueOffset1
- MinOffset
;
6097 int64_t Overlap2
= Size2
+ SrcValueOffset2
- MinOffset
;
6098 AliasAnalysis::AliasResult AAResult
=
6099 AA
.alias(SrcValue1
, Overlap1
, SrcValue2
, Overlap2
);
6100 if (AAResult
== AliasAnalysis::NoAlias
)
6104 // Otherwise we have to assume they alias.
6108 /// FindAliasInfo - Extracts the relevant alias information from the memory
6109 /// node. Returns true if the operand was a load.
6110 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
6111 SDValue
&Ptr
, int64_t &Size
,
6112 const Value
*&SrcValue
, int &SrcValueOffset
) const {
6113 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
6114 Ptr
= LD
->getBasePtr();
6115 Size
= LD
->getMemoryVT().getSizeInBits() >> 3;
6116 SrcValue
= LD
->getSrcValue();
6117 SrcValueOffset
= LD
->getSrcValueOffset();
6119 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
6120 Ptr
= ST
->getBasePtr();
6121 Size
= ST
->getMemoryVT().getSizeInBits() >> 3;
6122 SrcValue
= ST
->getSrcValue();
6123 SrcValueOffset
= ST
->getSrcValueOffset();
6125 llvm_unreachable("FindAliasInfo expected a memory operand");
6131 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
6132 /// looking for aliasing nodes and adding them to the Aliases vector.
6133 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
6134 SmallVector
<SDValue
, 8> &Aliases
) {
6135 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
6136 std::set
<SDNode
*> Visited
; // Visited node set.
6138 // Get alias information for node.
6141 const Value
*SrcValue
= 0;
6142 int SrcValueOffset
= 0;
6143 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
);
6146 Chains
.push_back(OriginalChain
);
6148 // Look at each chain and determine if it is an alias. If so, add it to the
6149 // aliases list. If not, then continue up the chain looking for the next
6151 while (!Chains
.empty()) {
6152 SDValue Chain
= Chains
.back();
6155 // Don't bother if we've been before.
6156 if (Visited
.find(Chain
.getNode()) != Visited
.end()) continue;
6157 Visited
.insert(Chain
.getNode());
6159 switch (Chain
.getOpcode()) {
6160 case ISD::EntryToken
:
6161 // Entry token is ideal chain operand, but handled in FindBetterChain.
6166 // Get alias information for Chain.
6169 const Value
*OpSrcValue
= 0;
6170 int OpSrcValueOffset
= 0;
6171 bool IsOpLoad
= FindAliasInfo(Chain
.getNode(), OpPtr
, OpSize
,
6172 OpSrcValue
, OpSrcValueOffset
);
6174 // If chain is alias then stop here.
6175 if (!(IsLoad
&& IsOpLoad
) &&
6176 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
,
6177 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
)) {
6178 Aliases
.push_back(Chain
);
6180 // Look further up the chain.
6181 Chains
.push_back(Chain
.getOperand(0));
6182 // Clean up old chain.
6183 AddToWorkList(Chain
.getNode());
6188 case ISD::TokenFactor
:
6189 // We have to check each of the operands of the token factor, so we queue
6190 // then up. Adding the operands to the queue (stack) in reverse order
6191 // maintains the original order and increases the likelihood that getNode
6192 // will find a matching token factor (CSE.)
6193 for (unsigned n
= Chain
.getNumOperands(); n
;)
6194 Chains
.push_back(Chain
.getOperand(--n
));
6195 // Eliminate the token factor if we can.
6196 AddToWorkList(Chain
.getNode());
6200 // For all other instructions we will just have to take what we can get.
6201 Aliases
.push_back(Chain
);
6207 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6208 /// for a better chain (aliasing node.)
6209 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
6210 SmallVector
<SDValue
, 8> Aliases
; // Ops for replacing token factor.
6212 // Accumulate all the aliases to this node.
6213 GatherAllAliases(N
, OldChain
, Aliases
);
6215 if (Aliases
.size() == 0) {
6216 // If no operands then chain to entry token.
6217 return DAG
.getEntryNode();
6218 } else if (Aliases
.size() == 1) {
6219 // If a single operand then chain to it. We don't need to revisit it.
6223 // Construct a custom tailored token factor.
6224 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
6225 &Aliases
[0], Aliases
.size());
6227 // Make sure the old chain gets cleaned up.
6228 if (NewChain
!= OldChain
) AddToWorkList(OldChain
.getNode());
6233 // SelectionDAG::Combine - This is the entry point for the file.
6235 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
&AA
,
6236 CodeGenOpt::Level OptLevel
) {
6237 /// run - This is the main entry point to this class.
6239 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);