1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
44 //===----------------------------------------------------------------------===//
45 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46 /// hacks on it until the target machine can handle it. This involves
47 /// eliminating value sizes the machine cannot handle (promoting small sizes to
48 /// large sizes or splitting up large values into small values) as well as
49 /// eliminating operations the machine cannot handle.
51 /// This code also does a small amount of optimization and recognition of idioms
52 /// as part of its processing. For example, if a target does not support a
53 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54 /// will attempt merge setcc and brc instructions into brcc's.
57 class VISIBILITY_HIDDEN SelectionDAGLegalize
{
60 CodeGenOpt::Level OptLevel
;
62 // Libcall insertion helpers.
64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65 /// legalized. We use this to ensure that calls are properly serialized
66 /// against each other, including inserted libcalls.
67 SDValue LastCALLSEQ_END
;
69 /// IsLegalizingCall - This member is used *only* for purposes of providing
70 /// helpful assertions that a libcall isn't created while another call is
71 /// being legalized (which could lead to non-serialized call sequences).
72 bool IsLegalizingCall
;
75 Legal
, // The target natively supports this operation.
76 Promote
, // This operation should be executed in a larger type.
77 Expand
// Try to expand this to other ops, otherwise use a libcall.
80 /// ValueTypeActions - This is a bitvector that contains two bits for each
81 /// value type, where the two bits correspond to the LegalizeAction enum.
82 /// This can be queried with "getTypeAction(VT)".
83 TargetLowering::ValueTypeActionImpl ValueTypeActions
;
85 /// LegalizedNodes - For nodes that are of legal width, and that have more
86 /// than one use, this map indicates what regularized operand to use. This
87 /// allows us to avoid legalizing the same thing more than once.
88 DenseMap
<SDValue
, SDValue
> LegalizedNodes
;
90 void AddLegalizedOperand(SDValue From
, SDValue To
) {
91 LegalizedNodes
.insert(std::make_pair(From
, To
));
92 // If someone requests legalization of the new node, return itself.
94 LegalizedNodes
.insert(std::make_pair(To
, To
));
98 SelectionDAGLegalize(SelectionDAG
&DAG
, CodeGenOpt::Level ol
);
100 /// getTypeAction - Return how we should legalize values of this type, either
101 /// it is already legal or we need to expand it into multiple registers of
102 /// smaller integer type, or we need to promote it to a larger type.
103 LegalizeAction
getTypeAction(MVT VT
) const {
104 return (LegalizeAction
)ValueTypeActions
.getTypeAction(VT
);
107 /// isTypeLegal - Return true if this type is legal on this target.
109 bool isTypeLegal(MVT VT
) const {
110 return getTypeAction(VT
) == Legal
;
116 /// LegalizeOp - We know that the specified value has a legal type.
117 /// Recursively ensure that the operands have legal types, then return the
119 SDValue
LegalizeOp(SDValue O
);
121 SDValue
OptimizeFloatStore(StoreSDNode
*ST
);
123 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
125 /// is necessary to spill the vector being inserted into to memory, perform
126 /// the insert there, and then read the result back.
127 SDValue
PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
,
128 SDValue Idx
, DebugLoc dl
);
129 SDValue
ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
,
130 SDValue Idx
, DebugLoc dl
);
132 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133 /// performs the same shuffe in terms of order or result bytes, but on a type
134 /// whose vector element type is narrower than the original shuffle type.
135 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136 SDValue
ShuffleWithNarrowerEltType(MVT NVT
, MVT VT
, DebugLoc dl
,
137 SDValue N1
, SDValue N2
,
138 SmallVectorImpl
<int> &Mask
) const;
140 bool LegalizeAllNodesNotLeadingTo(SDNode
*N
, SDNode
*Dest
,
141 SmallPtrSet
<SDNode
*, 32> &NodesLeadingTo
);
143 void LegalizeSetCCCondCode(MVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
146 SDValue
ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
, bool isSigned
);
147 SDValue
ExpandFPLibCall(SDNode
*Node
, RTLIB::Libcall Call_F32
,
148 RTLIB::Libcall Call_F64
, RTLIB::Libcall Call_F80
,
149 RTLIB::Libcall Call_PPCF128
);
150 SDValue
ExpandIntLibCall(SDNode
*Node
, bool isSigned
, RTLIB::Libcall Call_I16
,
151 RTLIB::Libcall Call_I32
, RTLIB::Libcall Call_I64
,
152 RTLIB::Libcall Call_I128
);
154 SDValue
EmitStackConvert(SDValue SrcOp
, MVT SlotVT
, MVT DestVT
, DebugLoc dl
);
155 SDValue
ExpandBUILD_VECTOR(SDNode
*Node
);
156 SDValue
ExpandSCALAR_TO_VECTOR(SDNode
*Node
);
157 SDValue
ExpandDBG_STOPPOINT(SDNode
*Node
);
158 void ExpandDYNAMIC_STACKALLOC(SDNode
*Node
,
159 SmallVectorImpl
<SDValue
> &Results
);
160 SDValue
ExpandFCOPYSIGN(SDNode
*Node
);
161 SDValue
ExpandLegalINT_TO_FP(bool isSigned
, SDValue LegalOp
, MVT DestVT
,
163 SDValue
PromoteLegalINT_TO_FP(SDValue LegalOp
, MVT DestVT
, bool isSigned
,
165 SDValue
PromoteLegalFP_TO_INT(SDValue LegalOp
, MVT DestVT
, bool isSigned
,
168 SDValue
ExpandBSWAP(SDValue Op
, DebugLoc dl
);
169 SDValue
ExpandBitCount(unsigned Opc
, SDValue Op
, DebugLoc dl
);
171 SDValue
ExpandExtractFromVectorThroughStack(SDValue Op
);
172 SDValue
ExpandVectorBuildThroughStack(SDNode
* Node
);
174 void ExpandNode(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
175 void PromoteNode(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
179 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
180 /// performs the same shuffe in terms of order or result bytes, but on a type
181 /// whose vector element type is narrower than the original shuffle type.
182 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184 SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT
, MVT VT
, DebugLoc dl
,
185 SDValue N1
, SDValue N2
,
186 SmallVectorImpl
<int> &Mask
) const {
187 MVT EltVT
= NVT
.getVectorElementType();
188 unsigned NumMaskElts
= VT
.getVectorNumElements();
189 unsigned NumDestElts
= NVT
.getVectorNumElements();
190 unsigned NumEltsGrowth
= NumDestElts
/ NumMaskElts
;
192 assert(NumEltsGrowth
&& "Cannot promote to vector type with fewer elts!");
194 if (NumEltsGrowth
== 1)
195 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, &Mask
[0]);
197 SmallVector
<int, 8> NewMask
;
198 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
200 for (unsigned j
= 0; j
!= NumEltsGrowth
; ++j
) {
202 NewMask
.push_back(-1);
204 NewMask
.push_back(Idx
* NumEltsGrowth
+ j
);
207 assert(NewMask
.size() == NumDestElts
&& "Non-integer NumEltsGrowth?");
208 assert(TLI
.isShuffleMaskLegal(NewMask
, NVT
) && "Shuffle not legal?");
209 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, &NewMask
[0]);
212 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG
&dag
,
213 CodeGenOpt::Level ol
)
214 : TLI(dag
.getTargetLoweringInfo()), DAG(dag
), OptLevel(ol
),
215 ValueTypeActions(TLI
.getValueTypeActions()) {
216 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
217 "Too many value types for ValueTypeActions to hold!");
220 void SelectionDAGLegalize::LegalizeDAG() {
221 LastCALLSEQ_END
= DAG
.getEntryNode();
222 IsLegalizingCall
= false;
224 // The legalize process is inherently a bottom-up recursive process (users
225 // legalize their uses before themselves). Given infinite stack space, we
226 // could just start legalizing on the root and traverse the whole graph. In
227 // practice however, this causes us to run out of stack space on large basic
228 // blocks. To avoid this problem, compute an ordering of the nodes where each
229 // node is only legalized after all of its operands are legalized.
230 DAG
.AssignTopologicalOrder();
231 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
232 E
= prior(DAG
.allnodes_end()); I
!= next(E
); ++I
)
233 LegalizeOp(SDValue(I
, 0));
235 // Finally, it's possible the root changed. Get the new root.
236 SDValue OldRoot
= DAG
.getRoot();
237 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
238 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
240 LegalizedNodes
.clear();
242 // Remove dead nodes now.
243 DAG
.RemoveDeadNodes();
247 /// FindCallEndFromCallStart - Given a chained node that is part of a call
248 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
249 static SDNode
*FindCallEndFromCallStart(SDNode
*Node
) {
250 if (Node
->getOpcode() == ISD::CALLSEQ_END
)
252 if (Node
->use_empty())
253 return 0; // No CallSeqEnd
255 // The chain is usually at the end.
256 SDValue
TheChain(Node
, Node
->getNumValues()-1);
257 if (TheChain
.getValueType() != MVT::Other
) {
258 // Sometimes it's at the beginning.
259 TheChain
= SDValue(Node
, 0);
260 if (TheChain
.getValueType() != MVT::Other
) {
261 // Otherwise, hunt for it.
262 for (unsigned i
= 1, e
= Node
->getNumValues(); i
!= e
; ++i
)
263 if (Node
->getValueType(i
) == MVT::Other
) {
264 TheChain
= SDValue(Node
, i
);
268 // Otherwise, we walked into a node without a chain.
269 if (TheChain
.getValueType() != MVT::Other
)
274 for (SDNode::use_iterator UI
= Node
->use_begin(),
275 E
= Node
->use_end(); UI
!= E
; ++UI
) {
277 // Make sure to only follow users of our token chain.
279 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
)
280 if (User
->getOperand(i
) == TheChain
)
281 if (SDNode
*Result
= FindCallEndFromCallStart(User
))
287 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
288 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
289 static SDNode
*FindCallStartFromCallEnd(SDNode
*Node
) {
290 assert(Node
&& "Didn't find callseq_start for a call??");
291 if (Node
->getOpcode() == ISD::CALLSEQ_START
) return Node
;
293 assert(Node
->getOperand(0).getValueType() == MVT::Other
&&
294 "Node doesn't have a token chain argument!");
295 return FindCallStartFromCallEnd(Node
->getOperand(0).getNode());
298 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
299 /// see if any uses can reach Dest. If no dest operands can get to dest,
300 /// legalize them, legalize ourself, and return false, otherwise, return true.
302 /// Keep track of the nodes we fine that actually do lead to Dest in
303 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
305 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode
*N
, SDNode
*Dest
,
306 SmallPtrSet
<SDNode
*, 32> &NodesLeadingTo
) {
307 if (N
== Dest
) return true; // N certainly leads to Dest :)
309 // If we've already processed this node and it does lead to Dest, there is no
310 // need to reprocess it.
311 if (NodesLeadingTo
.count(N
)) return true;
313 // If the first result of this node has been already legalized, then it cannot
315 if (LegalizedNodes
.count(SDValue(N
, 0))) return false;
317 // Okay, this node has not already been legalized. Check and legalize all
318 // operands. If none lead to Dest, then we can legalize this node.
319 bool OperandsLeadToDest
= false;
320 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
321 OperandsLeadToDest
|= // If an operand leads to Dest, so do we.
322 LegalizeAllNodesNotLeadingTo(N
->getOperand(i
).getNode(), Dest
, NodesLeadingTo
);
324 if (OperandsLeadToDest
) {
325 NodesLeadingTo
.insert(N
);
329 // Okay, this node looks safe, legalize it and return false.
330 LegalizeOp(SDValue(N
, 0));
334 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
335 /// a load from the constant pool.
336 static SDValue
ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
,
337 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
339 DebugLoc dl
= CFP
->getDebugLoc();
341 // If a FP immediate is precise when represented as a float and if the
342 // target can do an extending load from float to double, we put it into
343 // the constant pool as a float, even if it's is statically typed as a
344 // double. This shrinks FP constants and canonicalizes them for targets where
345 // an FP extending load is the same cost as a normal load (such as on the x87
346 // fp stack or PPC FP unit).
347 MVT VT
= CFP
->getValueType(0);
348 ConstantFP
*LLVMC
= const_cast<ConstantFP
*>(CFP
->getConstantFPValue());
350 assert((VT
== MVT::f64
|| VT
== MVT::f32
) && "Invalid type expansion");
351 return DAG
.getConstant(LLVMC
->getValueAPF().bitcastToAPInt(),
352 (VT
== MVT::f64
) ? MVT::i64
: MVT::i32
);
357 while (SVT
!= MVT::f32
) {
358 SVT
= (MVT::SimpleValueType
)(SVT
.getSimpleVT() - 1);
359 if (CFP
->isValueValidForType(SVT
, CFP
->getValueAPF()) &&
360 // Only do this if the target has a native EXTLOAD instruction from
362 TLI
.isLoadExtLegal(ISD::EXTLOAD
, SVT
) &&
363 TLI
.ShouldShrinkFPConstant(OrigVT
)) {
364 const Type
*SType
= SVT
.getTypeForMVT();
365 LLVMC
= cast
<ConstantFP
>(ConstantExpr::getFPTrunc(LLVMC
, SType
));
371 SDValue CPIdx
= DAG
.getConstantPool(LLVMC
, TLI
.getPointerTy());
372 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
374 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
,
375 OrigVT
, DAG
.getEntryNode(),
376 CPIdx
, PseudoSourceValue::getConstantPool(),
377 0, VT
, false, Alignment
);
378 return DAG
.getLoad(OrigVT
, dl
, DAG
.getEntryNode(), CPIdx
,
379 PseudoSourceValue::getConstantPool(), 0, false, Alignment
);
382 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384 SDValue
ExpandUnalignedStore(StoreSDNode
*ST
, SelectionDAG
&DAG
,
385 const TargetLowering
&TLI
) {
386 SDValue Chain
= ST
->getChain();
387 SDValue Ptr
= ST
->getBasePtr();
388 SDValue Val
= ST
->getValue();
389 MVT VT
= Val
.getValueType();
390 int Alignment
= ST
->getAlignment();
391 int SVOffset
= ST
->getSrcValueOffset();
392 DebugLoc dl
= ST
->getDebugLoc();
393 if (ST
->getMemoryVT().isFloatingPoint() ||
394 ST
->getMemoryVT().isVector()) {
395 MVT intVT
= MVT::getIntegerVT(VT
.getSizeInBits());
396 if (TLI
.isTypeLegal(intVT
)) {
397 // Expand to a bitconvert of the value to the integer type of the
398 // same size, then a (misaligned) int store.
399 // FIXME: Does not handle truncating floating point stores!
400 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, intVT
, Val
);
401 return DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getSrcValue(),
402 SVOffset
, ST
->isVolatile(), Alignment
);
404 // Do a (aligned) store to a stack slot, then copy from the stack slot
405 // to the final destination using (unaligned) integer loads and stores.
406 MVT StoredVT
= ST
->getMemoryVT();
408 TLI
.getRegisterType(MVT::getIntegerVT(StoredVT
.getSizeInBits()));
409 unsigned StoredBytes
= StoredVT
.getSizeInBits() / 8;
410 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
411 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
413 // Make sure the stack slot is also aligned for the register type.
414 SDValue StackPtr
= DAG
.CreateStackTemporary(StoredVT
, RegVT
);
416 // Perform the original store, only redirected to the stack slot.
417 SDValue Store
= DAG
.getTruncStore(Chain
, dl
,
418 Val
, StackPtr
, NULL
, 0, StoredVT
);
419 SDValue Increment
= DAG
.getConstant(RegBytes
, TLI
.getPointerTy());
420 SmallVector
<SDValue
, 8> Stores
;
423 // Do all but one copies using the full register width.
424 for (unsigned i
= 1; i
< NumRegs
; i
++) {
425 // Load one integer register's worth from the stack slot.
426 SDValue Load
= DAG
.getLoad(RegVT
, dl
, Store
, StackPtr
, NULL
, 0);
427 // Store it to the final location. Remember the store.
428 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
429 ST
->getSrcValue(), SVOffset
+ Offset
,
431 MinAlign(ST
->getAlignment(), Offset
)));
432 // Increment the pointers.
434 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(), StackPtr
,
436 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
439 // The last store may be partial. Do a truncating store. On big-endian
440 // machines this requires an extending load from the stack slot to ensure
441 // that the bits are in the right place.
442 MVT MemVT
= MVT::getIntegerVT(8 * (StoredBytes
- Offset
));
444 // Load from the stack slot.
445 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
448 Stores
.push_back(DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
449 ST
->getSrcValue(), SVOffset
+ Offset
,
450 MemVT
, ST
->isVolatile(),
451 MinAlign(ST
->getAlignment(), Offset
)));
452 // The order of the stores doesn't matter - say it with a TokenFactor.
453 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Stores
[0],
457 assert(ST
->getMemoryVT().isInteger() &&
458 !ST
->getMemoryVT().isVector() &&
459 "Unaligned store of unknown type.");
460 // Get the half-size VT
462 (MVT::SimpleValueType
)(ST
->getMemoryVT().getSimpleVT() - 1);
463 int NumBits
= NewStoredVT
.getSizeInBits();
464 int IncrementSize
= NumBits
/ 8;
466 // Divide the stored value in two parts.
467 SDValue ShiftAmount
= DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy());
469 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
471 // Store the two parts
472 SDValue Store1
, Store2
;
473 Store1
= DAG
.getTruncStore(Chain
, dl
, TLI
.isLittleEndian()?Lo
:Hi
, Ptr
,
474 ST
->getSrcValue(), SVOffset
, NewStoredVT
,
475 ST
->isVolatile(), Alignment
);
476 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
477 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
478 Alignment
= MinAlign(Alignment
, IncrementSize
);
479 Store2
= DAG
.getTruncStore(Chain
, dl
, TLI
.isLittleEndian()?Hi
:Lo
, Ptr
,
480 ST
->getSrcValue(), SVOffset
+ IncrementSize
,
481 NewStoredVT
, ST
->isVolatile(), Alignment
);
483 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
486 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
488 SDValue
ExpandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
,
489 const TargetLowering
&TLI
) {
490 int SVOffset
= LD
->getSrcValueOffset();
491 SDValue Chain
= LD
->getChain();
492 SDValue Ptr
= LD
->getBasePtr();
493 MVT VT
= LD
->getValueType(0);
494 MVT LoadedVT
= LD
->getMemoryVT();
495 DebugLoc dl
= LD
->getDebugLoc();
496 if (VT
.isFloatingPoint() || VT
.isVector()) {
497 MVT intVT
= MVT::getIntegerVT(LoadedVT
.getSizeInBits());
498 if (TLI
.isTypeLegal(intVT
)) {
499 // Expand to a (misaligned) integer load of the same size,
500 // then bitconvert to floating point or vector.
501 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
, LD
->getSrcValue(),
502 SVOffset
, LD
->isVolatile(),
504 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, LoadedVT
, newLoad
);
505 if (VT
.isFloatingPoint() && LoadedVT
!= VT
)
506 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Result
);
508 SDValue Ops
[] = { Result
, Chain
};
509 return DAG
.getMergeValues(Ops
, 2, dl
);
511 // Copy the value to a (aligned) stack slot using (unaligned) integer
512 // loads and stores, then do a (aligned) load from the stack slot.
513 MVT RegVT
= TLI
.getRegisterType(intVT
);
514 unsigned LoadedBytes
= LoadedVT
.getSizeInBits() / 8;
515 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
516 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
518 // Make sure the stack slot is also aligned for the register type.
519 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
521 SDValue Increment
= DAG
.getConstant(RegBytes
, TLI
.getPointerTy());
522 SmallVector
<SDValue
, 8> Stores
;
523 SDValue StackPtr
= StackBase
;
526 // Do all but one copies using the full register width.
527 for (unsigned i
= 1; i
< NumRegs
; i
++) {
528 // Load one integer register's worth from the original location.
529 SDValue Load
= DAG
.getLoad(RegVT
, dl
, Chain
, Ptr
, LD
->getSrcValue(),
530 SVOffset
+ Offset
, LD
->isVolatile(),
531 MinAlign(LD
->getAlignment(), Offset
));
532 // Follow the load with a store to the stack slot. Remember the store.
533 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, StackPtr
,
535 // Increment the pointers.
537 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
538 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(), StackPtr
,
542 // The last copy may be partial. Do an extending load.
543 MVT MemVT
= MVT::getIntegerVT(8 * (LoadedBytes
- Offset
));
544 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
545 LD
->getSrcValue(), SVOffset
+ Offset
,
546 MemVT
, LD
->isVolatile(),
547 MinAlign(LD
->getAlignment(), Offset
));
548 // Follow the load with a store to the stack slot. Remember the store.
549 // On big-endian machines this requires a truncating store to ensure
550 // that the bits end up in the right place.
551 Stores
.push_back(DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, StackPtr
,
554 // The order of the stores doesn't matter - say it with a TokenFactor.
555 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Stores
[0],
558 // Finally, perform the original load only redirected to the stack slot.
559 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
562 // Callers expect a MERGE_VALUES node.
563 SDValue Ops
[] = { Load
, TF
};
564 return DAG
.getMergeValues(Ops
, 2, dl
);
567 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
568 "Unaligned load of unsupported type.");
570 // Compute the new VT that is half the size of the old one. This is an
572 unsigned NumBits
= LoadedVT
.getSizeInBits();
574 NewLoadedVT
= MVT::getIntegerVT(NumBits
/2);
577 unsigned Alignment
= LD
->getAlignment();
578 unsigned IncrementSize
= NumBits
/ 8;
579 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
581 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
582 if (HiExtType
== ISD::NON_EXTLOAD
)
583 HiExtType
= ISD::ZEXTLOAD
;
585 // Load the value in two parts
587 if (TLI
.isLittleEndian()) {
588 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
589 SVOffset
, NewLoadedVT
, LD
->isVolatile(), Alignment
);
590 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
591 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
592 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
593 SVOffset
+ IncrementSize
, NewLoadedVT
, LD
->isVolatile(),
594 MinAlign(Alignment
, IncrementSize
));
596 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
597 SVOffset
, NewLoadedVT
, LD
->isVolatile(), Alignment
);
598 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
599 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
600 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
601 SVOffset
+ IncrementSize
, NewLoadedVT
, LD
->isVolatile(),
602 MinAlign(Alignment
, IncrementSize
));
605 // aggregate the two parts
606 SDValue ShiftAmount
= DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy());
607 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
608 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
610 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
613 SDValue Ops
[] = { Result
, TF
};
614 return DAG
.getMergeValues(Ops
, 2, dl
);
617 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
618 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
619 /// is necessary to spill the vector being inserted into to memory, perform
620 /// the insert there, and then read the result back.
621 SDValue
SelectionDAGLegalize::
622 PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
, SDValue Idx
,
628 // If the target doesn't support this, we have to spill the input vector
629 // to a temporary stack slot, update the element, then reload it. This is
630 // badness. We could also load the value into a vector register (either
631 // with a "move to register" or "extload into register" instruction, then
632 // permute it into place, if the idx is a constant and if the idx is
633 // supported by the target.
634 MVT VT
= Tmp1
.getValueType();
635 MVT EltVT
= VT
.getVectorElementType();
636 MVT IdxVT
= Tmp3
.getValueType();
637 MVT PtrVT
= TLI
.getPointerTy();
638 SDValue StackPtr
= DAG
.CreateStackTemporary(VT
);
640 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
643 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp1
, StackPtr
,
644 PseudoSourceValue::getFixedStack(SPFI
), 0);
646 // Truncate or zero extend offset to target pointer type.
647 unsigned CastOpc
= IdxVT
.bitsGT(PtrVT
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
648 Tmp3
= DAG
.getNode(CastOpc
, dl
, PtrVT
, Tmp3
);
649 // Add the offset to the index.
650 unsigned EltSize
= EltVT
.getSizeInBits()/8;
651 Tmp3
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Tmp3
,DAG
.getConstant(EltSize
, IdxVT
));
652 SDValue StackPtr2
= DAG
.getNode(ISD::ADD
, dl
, IdxVT
, Tmp3
, StackPtr
);
653 // Store the scalar value.
654 Ch
= DAG
.getTruncStore(Ch
, dl
, Tmp2
, StackPtr2
,
655 PseudoSourceValue::getFixedStack(SPFI
), 0, EltVT
);
656 // Load the updated vector.
657 return DAG
.getLoad(VT
, dl
, Ch
, StackPtr
,
658 PseudoSourceValue::getFixedStack(SPFI
), 0);
662 SDValue
SelectionDAGLegalize::
663 ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
, SDValue Idx
, DebugLoc dl
) {
664 if (ConstantSDNode
*InsertPos
= dyn_cast
<ConstantSDNode
>(Idx
)) {
665 // SCALAR_TO_VECTOR requires that the type of the value being inserted
666 // match the element type of the vector being created, except for
667 // integers in which case the inserted value can be over width.
668 MVT EltVT
= Vec
.getValueType().getVectorElementType();
669 if (Val
.getValueType() == EltVT
||
670 (EltVT
.isInteger() && Val
.getValueType().bitsGE(EltVT
))) {
671 SDValue ScVec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
672 Vec
.getValueType(), Val
);
674 unsigned NumElts
= Vec
.getValueType().getVectorNumElements();
675 // We generate a shuffle of InVec and ScVec, so the shuffle mask
676 // should be 0,1,2,3,4,5... with the appropriate element replaced with
678 SmallVector
<int, 8> ShufOps
;
679 for (unsigned i
= 0; i
!= NumElts
; ++i
)
680 ShufOps
.push_back(i
!= InsertPos
->getZExtValue() ? i
: NumElts
);
682 return DAG
.getVectorShuffle(Vec
.getValueType(), dl
, Vec
, ScVec
,
686 return PerformInsertVectorEltInMemory(Vec
, Val
, Idx
, dl
);
689 SDValue
SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode
* ST
) {
690 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
691 // FIXME: We shouldn't do this for TargetConstantFP's.
692 // FIXME: move this to the DAG Combiner! Note that we can't regress due
693 // to phase ordering between legalized code and the dag combiner. This
694 // probably means that we need to integrate dag combiner and legalizer
696 // We generally can't do this one for long doubles.
697 SDValue Tmp1
= ST
->getChain();
698 SDValue Tmp2
= ST
->getBasePtr();
700 int SVOffset
= ST
->getSrcValueOffset();
701 unsigned Alignment
= ST
->getAlignment();
702 bool isVolatile
= ST
->isVolatile();
703 DebugLoc dl
= ST
->getDebugLoc();
704 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(ST
->getValue())) {
705 if (CFP
->getValueType(0) == MVT::f32
&&
706 getTypeAction(MVT::i32
) == Legal
) {
707 Tmp3
= DAG
.getConstant(CFP
->getValueAPF().
708 bitcastToAPInt().zextOrTrunc(32),
710 return DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
711 SVOffset
, isVolatile
, Alignment
);
712 } else if (CFP
->getValueType(0) == MVT::f64
) {
713 // If this target supports 64-bit registers, do a single 64-bit store.
714 if (getTypeAction(MVT::i64
) == Legal
) {
715 Tmp3
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
716 zextOrTrunc(64), MVT::i64
);
717 return DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
718 SVOffset
, isVolatile
, Alignment
);
719 } else if (getTypeAction(MVT::i32
) == Legal
&& !ST
->isVolatile()) {
720 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
721 // stores. If the target supports neither 32- nor 64-bits, this
722 // xform is certainly not worth it.
723 const APInt
&IntVal
=CFP
->getValueAPF().bitcastToAPInt();
724 SDValue Lo
= DAG
.getConstant(APInt(IntVal
).trunc(32), MVT::i32
);
725 SDValue Hi
= DAG
.getConstant(IntVal
.lshr(32).trunc(32), MVT::i32
);
726 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
728 Lo
= DAG
.getStore(Tmp1
, dl
, Lo
, Tmp2
, ST
->getSrcValue(),
729 SVOffset
, isVolatile
, Alignment
);
730 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
731 DAG
.getIntPtrConstant(4));
732 Hi
= DAG
.getStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(), SVOffset
+4,
733 isVolatile
, MinAlign(Alignment
, 4U));
735 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
742 /// LegalizeOp - We know that the specified value has a legal type, and
743 /// that its operands are legal. Now ensure that the operation itself
744 /// is legal, recursively ensuring that the operands' operations remain
746 SDValue
SelectionDAGLegalize::LegalizeOp(SDValue Op
) {
747 if (Op
.getOpcode() == ISD::TargetConstant
) // Allow illegal target nodes.
750 SDNode
*Node
= Op
.getNode();
751 DebugLoc dl
= Node
->getDebugLoc();
753 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
754 assert(getTypeAction(Node
->getValueType(i
)) == Legal
&&
755 "Unexpected illegal type!");
757 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
758 assert((isTypeLegal(Node
->getOperand(i
).getValueType()) ||
759 Node
->getOperand(i
).getOpcode() == ISD::TargetConstant
) &&
760 "Unexpected illegal type!");
762 // Note that LegalizeOp may be reentered even from single-use nodes, which
763 // means that we always must cache transformed nodes.
764 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
765 if (I
!= LegalizedNodes
.end()) return I
->second
;
767 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
769 bool isCustom
= false;
771 // Figure out the correct action; the way to query this varies by opcode
772 TargetLowering::LegalizeAction Action
;
773 bool SimpleFinishLegalizing
= true;
774 switch (Node
->getOpcode()) {
775 case ISD::INTRINSIC_W_CHAIN
:
776 case ISD::INTRINSIC_WO_CHAIN
:
777 case ISD::INTRINSIC_VOID
:
780 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
782 case ISD::SINT_TO_FP
:
783 case ISD::UINT_TO_FP
:
784 case ISD::EXTRACT_VECTOR_ELT
:
785 Action
= TLI
.getOperationAction(Node
->getOpcode(),
786 Node
->getOperand(0).getValueType());
788 case ISD::FP_ROUND_INREG
:
789 case ISD::SIGN_EXTEND_INREG
: {
790 MVT InnerType
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
791 Action
= TLI
.getOperationAction(Node
->getOpcode(), InnerType
);
797 unsigned CCOperand
= Node
->getOpcode() == ISD::SELECT_CC
? 4 :
798 Node
->getOpcode() == ISD::SETCC
? 2 : 1;
799 unsigned CompareOperand
= Node
->getOpcode() == ISD::BR_CC
? 2 : 0;
800 MVT OpVT
= Node
->getOperand(CompareOperand
).getValueType();
801 ISD::CondCode CCCode
=
802 cast
<CondCodeSDNode
>(Node
->getOperand(CCOperand
))->get();
803 Action
= TLI
.getCondCodeAction(CCCode
, OpVT
);
804 if (Action
== TargetLowering::Legal
) {
805 if (Node
->getOpcode() == ISD::SELECT_CC
)
806 Action
= TLI
.getOperationAction(Node
->getOpcode(),
807 Node
->getValueType(0));
809 Action
= TLI
.getOperationAction(Node
->getOpcode(), OpVT
);
815 // FIXME: Model these properly. LOAD and STORE are complicated, and
816 // STORE expects the unlegalized operand in some cases.
817 SimpleFinishLegalizing
= false;
819 case ISD::CALLSEQ_START
:
820 case ISD::CALLSEQ_END
:
821 // FIXME: This shouldn't be necessary. These nodes have special properties
822 // dealing with the recursive nature of legalization. Removing this
823 // special case should be done as part of making LegalizeDAG non-recursive.
824 SimpleFinishLegalizing
= false;
826 case ISD::EXTRACT_ELEMENT
:
827 case ISD::FLT_ROUNDS_
:
835 case ISD::MERGE_VALUES
:
837 case ISD::FRAME_TO_ARGS_OFFSET
:
838 // These operations lie about being legal: when they claim to be legal,
839 // they should actually be expanded.
840 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
841 if (Action
== TargetLowering::Legal
)
842 Action
= TargetLowering::Expand
;
844 case ISD::TRAMPOLINE
:
846 case ISD::RETURNADDR
:
847 // These operations lie about being legal: when they claim to be legal,
848 // they should actually be custom-lowered.
849 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
850 if (Action
== TargetLowering::Legal
)
851 Action
= TargetLowering::Custom
;
853 case ISD::BUILD_VECTOR
:
854 // A weird case: legalization for BUILD_VECTOR never legalizes the
856 // FIXME: This really sucks... changing it isn't semantically incorrect,
857 // but it massively pessimizes the code for floating-point BUILD_VECTORs
858 // because ConstantFP operands get legalized into constant pool loads
859 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
860 // though, because BUILD_VECTORS usually get lowered into other nodes
861 // which get legalized properly.
862 SimpleFinishLegalizing
= false;
865 if (Node
->getOpcode() >= ISD::BUILTIN_OP_END
) {
866 Action
= TargetLowering::Legal
;
868 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
873 if (SimpleFinishLegalizing
) {
874 SmallVector
<SDValue
, 8> Ops
, ResultVals
;
875 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
876 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
877 switch (Node
->getOpcode()) {
884 // Branches tweak the chain to include LastCALLSEQ_END
885 Ops
[0] = DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Ops
[0],
887 Ops
[0] = LegalizeOp(Ops
[0]);
888 LastCALLSEQ_END
= DAG
.getEntryNode();
895 // Legalizing shifts/rotates requires adjusting the shift amount
896 // to the appropriate width.
897 if (!Ops
[1].getValueType().isVector())
898 Ops
[1] = LegalizeOp(DAG
.getShiftAmountOperand(Ops
[1]));
902 Result
= DAG
.UpdateNodeOperands(Result
.getValue(0), Ops
.data(),
905 case TargetLowering::Legal
:
906 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
907 ResultVals
.push_back(Result
.getValue(i
));
909 case TargetLowering::Custom
:
910 // FIXME: The handling for custom lowering with multiple results is
912 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
913 if (Tmp1
.getNode()) {
914 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
) {
916 ResultVals
.push_back(Tmp1
);
918 ResultVals
.push_back(Tmp1
.getValue(i
));
924 case TargetLowering::Expand
:
925 ExpandNode(Result
.getNode(), ResultVals
);
927 case TargetLowering::Promote
:
928 PromoteNode(Result
.getNode(), ResultVals
);
931 if (!ResultVals
.empty()) {
932 for (unsigned i
= 0, e
= ResultVals
.size(); i
!= e
; ++i
) {
933 if (ResultVals
[i
] != SDValue(Node
, i
))
934 ResultVals
[i
] = LegalizeOp(ResultVals
[i
]);
935 AddLegalizedOperand(SDValue(Node
, i
), ResultVals
[i
]);
937 return ResultVals
[Op
.getResNo()];
941 switch (Node
->getOpcode()) {
944 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
946 llvm_unreachable("Do not know how to legalize this operator!");
948 case ISD::BUILD_VECTOR
:
949 switch (TLI
.getOperationAction(ISD::BUILD_VECTOR
, Node
->getValueType(0))) {
950 default: llvm_unreachable("This action is not supported yet!");
951 case TargetLowering::Custom
:
952 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
953 if (Tmp3
.getNode()) {
958 case TargetLowering::Expand
:
959 Result
= ExpandBUILD_VECTOR(Result
.getNode());
963 case ISD::CALLSEQ_START
: {
964 SDNode
*CallEnd
= FindCallEndFromCallStart(Node
);
966 // Recursively Legalize all of the inputs of the call end that do not lead
967 // to this call start. This ensures that any libcalls that need be inserted
968 // are inserted *before* the CALLSEQ_START.
969 {SmallPtrSet
<SDNode
*, 32> NodesLeadingTo
;
970 for (unsigned i
= 0, e
= CallEnd
->getNumOperands(); i
!= e
; ++i
)
971 LegalizeAllNodesNotLeadingTo(CallEnd
->getOperand(i
).getNode(), Node
,
975 // Now that we legalized all of the inputs (which may have inserted
976 // libcalls) create the new CALLSEQ_START node.
977 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
979 // Merge in the last call, to ensure that this call start after the last
981 if (LastCALLSEQ_END
.getOpcode() != ISD::EntryToken
) {
982 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
983 Tmp1
, LastCALLSEQ_END
);
984 Tmp1
= LegalizeOp(Tmp1
);
987 // Do not try to legalize the target-specific arguments (#1+).
988 if (Tmp1
!= Node
->getOperand(0)) {
989 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
991 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
994 // Remember that the CALLSEQ_START is legalized.
995 AddLegalizedOperand(Op
.getValue(0), Result
);
996 if (Node
->getNumValues() == 2) // If this has a flag result, remember it.
997 AddLegalizedOperand(Op
.getValue(1), Result
.getValue(1));
999 // Now that the callseq_start and all of the non-call nodes above this call
1000 // sequence have been legalized, legalize the call itself. During this
1001 // process, no libcalls can/will be inserted, guaranteeing that no calls
1003 assert(!IsLegalizingCall
&& "Inconsistent sequentialization of calls!");
1004 // Note that we are selecting this call!
1005 LastCALLSEQ_END
= SDValue(CallEnd
, 0);
1006 IsLegalizingCall
= true;
1008 // Legalize the call, starting from the CALLSEQ_END.
1009 LegalizeOp(LastCALLSEQ_END
);
1010 assert(!IsLegalizingCall
&& "CALLSEQ_END should have cleared this!");
1013 case ISD::CALLSEQ_END
:
1014 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1015 // will cause this node to be legalized as well as handling libcalls right.
1016 if (LastCALLSEQ_END
.getNode() != Node
) {
1017 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node
), 0));
1018 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
1019 assert(I
!= LegalizedNodes
.end() &&
1020 "Legalizing the call start should have legalized this node!");
1024 // Otherwise, the call start has been legalized and everything is going
1025 // according to plan. Just legalize ourselves normally here.
1026 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1027 // Do not try to legalize the target-specific arguments (#1+), except for
1028 // an optional flag input.
1029 if (Node
->getOperand(Node
->getNumOperands()-1).getValueType() != MVT::Flag
){
1030 if (Tmp1
!= Node
->getOperand(0)) {
1031 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1033 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1036 Tmp2
= LegalizeOp(Node
->getOperand(Node
->getNumOperands()-1));
1037 if (Tmp1
!= Node
->getOperand(0) ||
1038 Tmp2
!= Node
->getOperand(Node
->getNumOperands()-1)) {
1039 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1042 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1045 assert(IsLegalizingCall
&& "Call sequence imbalance between start/end?");
1046 // This finishes up call legalization.
1047 IsLegalizingCall
= false;
1049 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1050 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1051 if (Node
->getNumValues() == 2)
1052 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1053 return Result
.getValue(Op
.getResNo());
1055 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
1056 Tmp1
= LegalizeOp(LD
->getChain()); // Legalize the chain.
1057 Tmp2
= LegalizeOp(LD
->getBasePtr()); // Legalize the base pointer.
1059 ISD::LoadExtType ExtType
= LD
->getExtensionType();
1060 if (ExtType
== ISD::NON_EXTLOAD
) {
1061 MVT VT
= Node
->getValueType(0);
1062 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, LD
->getOffset());
1063 Tmp3
= Result
.getValue(0);
1064 Tmp4
= Result
.getValue(1);
1066 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1067 default: llvm_unreachable("This action is not supported yet!");
1068 case TargetLowering::Legal
:
1069 // If this is an unaligned load and the target doesn't support it,
1071 if (!TLI
.allowsUnalignedMemoryAccesses()) {
1072 unsigned ABIAlignment
= TLI
.getTargetData()->
1073 getABITypeAlignment(LD
->getMemoryVT().getTypeForMVT());
1074 if (LD
->getAlignment() < ABIAlignment
){
1075 Result
= ExpandUnalignedLoad(cast
<LoadSDNode
>(Result
.getNode()),
1077 Tmp3
= Result
.getOperand(0);
1078 Tmp4
= Result
.getOperand(1);
1079 Tmp3
= LegalizeOp(Tmp3
);
1080 Tmp4
= LegalizeOp(Tmp4
);
1084 case TargetLowering::Custom
:
1085 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
1086 if (Tmp1
.getNode()) {
1087 Tmp3
= LegalizeOp(Tmp1
);
1088 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
1091 case TargetLowering::Promote
: {
1092 // Only promote a load of vector type to another.
1093 assert(VT
.isVector() && "Cannot promote this load!");
1094 // Change base type to a different vector type.
1095 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
1097 Tmp1
= DAG
.getLoad(NVT
, dl
, Tmp1
, Tmp2
, LD
->getSrcValue(),
1098 LD
->getSrcValueOffset(),
1099 LD
->isVolatile(), LD
->getAlignment());
1100 Tmp3
= LegalizeOp(DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Tmp1
));
1101 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
1105 // Since loads produce two values, make sure to remember that we
1106 // legalized both of them.
1107 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
1108 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
1109 return Op
.getResNo() ? Tmp4
: Tmp3
;
1111 MVT SrcVT
= LD
->getMemoryVT();
1112 unsigned SrcWidth
= SrcVT
.getSizeInBits();
1113 int SVOffset
= LD
->getSrcValueOffset();
1114 unsigned Alignment
= LD
->getAlignment();
1115 bool isVolatile
= LD
->isVolatile();
1117 if (SrcWidth
!= SrcVT
.getStoreSizeInBits() &&
1118 // Some targets pretend to have an i1 loading operation, and actually
1119 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1120 // bits are guaranteed to be zero; it helps the optimizers understand
1121 // that these bits are zero. It is also useful for EXTLOAD, since it
1122 // tells the optimizers that those bits are undefined. It would be
1123 // nice to have an effective generic way of getting these benefits...
1124 // Until such a way is found, don't insist on promoting i1 here.
1125 (SrcVT
!= MVT::i1
||
1126 TLI
.getLoadExtAction(ExtType
, MVT::i1
) == TargetLowering::Promote
)) {
1127 // Promote to a byte-sized load if not loading an integral number of
1128 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1129 unsigned NewWidth
= SrcVT
.getStoreSizeInBits();
1130 MVT NVT
= MVT::getIntegerVT(NewWidth
);
1133 // The extra bits are guaranteed to be zero, since we stored them that
1134 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1136 ISD::LoadExtType NewExtType
=
1137 ExtType
== ISD::ZEXTLOAD
? ISD::ZEXTLOAD
: ISD::EXTLOAD
;
1139 Result
= DAG
.getExtLoad(NewExtType
, dl
, Node
->getValueType(0),
1140 Tmp1
, Tmp2
, LD
->getSrcValue(), SVOffset
,
1141 NVT
, isVolatile
, Alignment
);
1143 Ch
= Result
.getValue(1); // The chain.
1145 if (ExtType
== ISD::SEXTLOAD
)
1146 // Having the top bits zero doesn't help when sign extending.
1147 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
1148 Result
.getValueType(),
1149 Result
, DAG
.getValueType(SrcVT
));
1150 else if (ExtType
== ISD::ZEXTLOAD
|| NVT
== Result
.getValueType())
1151 // All the top bits are guaranteed to be zero - inform the optimizers.
1152 Result
= DAG
.getNode(ISD::AssertZext
, dl
,
1153 Result
.getValueType(), Result
,
1154 DAG
.getValueType(SrcVT
));
1156 Tmp1
= LegalizeOp(Result
);
1157 Tmp2
= LegalizeOp(Ch
);
1158 } else if (SrcWidth
& (SrcWidth
- 1)) {
1159 // If not loading a power-of-2 number of bits, expand as two loads.
1160 assert(SrcVT
.isExtended() && !SrcVT
.isVector() &&
1161 "Unsupported extload!");
1162 unsigned RoundWidth
= 1 << Log2_32(SrcWidth
);
1163 assert(RoundWidth
< SrcWidth
);
1164 unsigned ExtraWidth
= SrcWidth
- RoundWidth
;
1165 assert(ExtraWidth
< RoundWidth
);
1166 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
1167 "Load size not an integral number of bytes!");
1168 MVT RoundVT
= MVT::getIntegerVT(RoundWidth
);
1169 MVT ExtraVT
= MVT::getIntegerVT(ExtraWidth
);
1171 unsigned IncrementSize
;
1173 if (TLI
.isLittleEndian()) {
1174 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1175 // Load the bottom RoundWidth bits.
1176 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
,
1177 Node
->getValueType(0), Tmp1
, Tmp2
,
1178 LD
->getSrcValue(), SVOffset
, RoundVT
, isVolatile
,
1181 // Load the remaining ExtraWidth bits.
1182 IncrementSize
= RoundWidth
/ 8;
1183 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
1184 DAG
.getIntPtrConstant(IncrementSize
));
1185 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
1186 LD
->getSrcValue(), SVOffset
+ IncrementSize
,
1187 ExtraVT
, isVolatile
,
1188 MinAlign(Alignment
, IncrementSize
));
1190 // Build a factor node to remember that this load is independent of the
1192 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
1195 // Move the top bits to the right place.
1196 Hi
= DAG
.getNode(ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
1197 DAG
.getConstant(RoundWidth
, TLI
.getShiftAmountTy()));
1199 // Join the hi and lo parts.
1200 Result
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
1202 // Big endian - avoid unaligned loads.
1203 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1204 // Load the top RoundWidth bits.
1205 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
1206 LD
->getSrcValue(), SVOffset
, RoundVT
, isVolatile
,
1209 // Load the remaining ExtraWidth bits.
1210 IncrementSize
= RoundWidth
/ 8;
1211 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
1212 DAG
.getIntPtrConstant(IncrementSize
));
1213 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
,
1214 Node
->getValueType(0), Tmp1
, Tmp2
,
1215 LD
->getSrcValue(), SVOffset
+ IncrementSize
,
1216 ExtraVT
, isVolatile
,
1217 MinAlign(Alignment
, IncrementSize
));
1219 // Build a factor node to remember that this load is independent of the
1221 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
1224 // Move the top bits to the right place.
1225 Hi
= DAG
.getNode(ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
1226 DAG
.getConstant(ExtraWidth
, TLI
.getShiftAmountTy()));
1228 // Join the hi and lo parts.
1229 Result
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
1232 Tmp1
= LegalizeOp(Result
);
1233 Tmp2
= LegalizeOp(Ch
);
1235 switch (TLI
.getLoadExtAction(ExtType
, SrcVT
)) {
1236 default: llvm_unreachable("This action is not supported yet!");
1237 case TargetLowering::Custom
:
1240 case TargetLowering::Legal
:
1241 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, LD
->getOffset());
1242 Tmp1
= Result
.getValue(0);
1243 Tmp2
= Result
.getValue(1);
1246 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1247 if (Tmp3
.getNode()) {
1248 Tmp1
= LegalizeOp(Tmp3
);
1249 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
1252 // If this is an unaligned load and the target doesn't support it,
1254 if (!TLI
.allowsUnalignedMemoryAccesses()) {
1255 unsigned ABIAlignment
= TLI
.getTargetData()->
1256 getABITypeAlignment(LD
->getMemoryVT().getTypeForMVT());
1257 if (LD
->getAlignment() < ABIAlignment
){
1258 Result
= ExpandUnalignedLoad(cast
<LoadSDNode
>(Result
.getNode()),
1260 Tmp1
= Result
.getOperand(0);
1261 Tmp2
= Result
.getOperand(1);
1262 Tmp1
= LegalizeOp(Tmp1
);
1263 Tmp2
= LegalizeOp(Tmp2
);
1268 case TargetLowering::Expand
:
1269 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1270 if (SrcVT
== MVT::f32
&& Node
->getValueType(0) == MVT::f64
) {
1271 SDValue Load
= DAG
.getLoad(SrcVT
, dl
, Tmp1
, Tmp2
, LD
->getSrcValue(),
1272 LD
->getSrcValueOffset(),
1273 LD
->isVolatile(), LD
->getAlignment());
1274 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
,
1275 Node
->getValueType(0), Load
);
1276 Tmp1
= LegalizeOp(Result
); // Relegalize new nodes.
1277 Tmp2
= LegalizeOp(Load
.getValue(1));
1280 assert(ExtType
!= ISD::EXTLOAD
&&"EXTLOAD should always be supported!");
1281 // Turn the unsupported load into an EXTLOAD followed by an explicit
1282 // zero/sign extend inreg.
1283 Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Node
->getValueType(0),
1284 Tmp1
, Tmp2
, LD
->getSrcValue(),
1285 LD
->getSrcValueOffset(), SrcVT
,
1286 LD
->isVolatile(), LD
->getAlignment());
1288 if (ExtType
== ISD::SEXTLOAD
)
1289 ValRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
1290 Result
.getValueType(),
1291 Result
, DAG
.getValueType(SrcVT
));
1293 ValRes
= DAG
.getZeroExtendInReg(Result
, dl
, SrcVT
);
1294 Tmp1
= LegalizeOp(ValRes
); // Relegalize new nodes.
1295 Tmp2
= LegalizeOp(Result
.getValue(1)); // Relegalize new nodes.
1300 // Since loads produce two values, make sure to remember that we legalized
1302 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
1303 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
1304 return Op
.getResNo() ? Tmp2
: Tmp1
;
1308 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
1309 Tmp1
= LegalizeOp(ST
->getChain()); // Legalize the chain.
1310 Tmp2
= LegalizeOp(ST
->getBasePtr()); // Legalize the pointer.
1311 int SVOffset
= ST
->getSrcValueOffset();
1312 unsigned Alignment
= ST
->getAlignment();
1313 bool isVolatile
= ST
->isVolatile();
1315 if (!ST
->isTruncatingStore()) {
1316 if (SDNode
*OptStore
= OptimizeFloatStore(ST
).getNode()) {
1317 Result
= SDValue(OptStore
, 0);
1322 Tmp3
= LegalizeOp(ST
->getValue());
1323 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp3
, Tmp2
,
1326 MVT VT
= Tmp3
.getValueType();
1327 switch (TLI
.getOperationAction(ISD::STORE
, VT
)) {
1328 default: llvm_unreachable("This action is not supported yet!");
1329 case TargetLowering::Legal
:
1330 // If this is an unaligned store and the target doesn't support it,
1332 if (!TLI
.allowsUnalignedMemoryAccesses()) {
1333 unsigned ABIAlignment
= TLI
.getTargetData()->
1334 getABITypeAlignment(ST
->getMemoryVT().getTypeForMVT());
1335 if (ST
->getAlignment() < ABIAlignment
)
1336 Result
= ExpandUnalignedStore(cast
<StoreSDNode
>(Result
.getNode()), DAG
,
1340 case TargetLowering::Custom
:
1341 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
1342 if (Tmp1
.getNode()) Result
= Tmp1
;
1344 case TargetLowering::Promote
:
1345 assert(VT
.isVector() && "Unknown legal promote case!");
1346 Tmp3
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
1347 TLI
.getTypeToPromoteTo(ISD::STORE
, VT
), Tmp3
);
1348 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
,
1349 ST
->getSrcValue(), SVOffset
, isVolatile
,
1356 Tmp3
= LegalizeOp(ST
->getValue());
1358 MVT StVT
= ST
->getMemoryVT();
1359 unsigned StWidth
= StVT
.getSizeInBits();
1361 if (StWidth
!= StVT
.getStoreSizeInBits()) {
1362 // Promote to a byte-sized store with upper bits zero if not
1363 // storing an integral number of bytes. For example, promote
1364 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1365 MVT NVT
= MVT::getIntegerVT(StVT
.getStoreSizeInBits());
1366 Tmp3
= DAG
.getZeroExtendInReg(Tmp3
, dl
, StVT
);
1367 Result
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
1368 SVOffset
, NVT
, isVolatile
, Alignment
);
1369 } else if (StWidth
& (StWidth
- 1)) {
1370 // If not storing a power-of-2 number of bits, expand as two stores.
1371 assert(StVT
.isExtended() && !StVT
.isVector() &&
1372 "Unsupported truncstore!");
1373 unsigned RoundWidth
= 1 << Log2_32(StWidth
);
1374 assert(RoundWidth
< StWidth
);
1375 unsigned ExtraWidth
= StWidth
- RoundWidth
;
1376 assert(ExtraWidth
< RoundWidth
);
1377 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
1378 "Store size not an integral number of bytes!");
1379 MVT RoundVT
= MVT::getIntegerVT(RoundWidth
);
1380 MVT ExtraVT
= MVT::getIntegerVT(ExtraWidth
);
1382 unsigned IncrementSize
;
1384 if (TLI
.isLittleEndian()) {
1385 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1386 // Store the bottom RoundWidth bits.
1387 Lo
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
1389 isVolatile
, Alignment
);
1391 // Store the remaining ExtraWidth bits.
1392 IncrementSize
= RoundWidth
/ 8;
1393 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
1394 DAG
.getIntPtrConstant(IncrementSize
));
1395 Hi
= DAG
.getNode(ISD::SRL
, dl
, Tmp3
.getValueType(), Tmp3
,
1396 DAG
.getConstant(RoundWidth
, TLI
.getShiftAmountTy()));
1397 Hi
= DAG
.getTruncStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
1398 SVOffset
+ IncrementSize
, ExtraVT
, isVolatile
,
1399 MinAlign(Alignment
, IncrementSize
));
1401 // Big endian - avoid unaligned stores.
1402 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1403 // Store the top RoundWidth bits.
1404 Hi
= DAG
.getNode(ISD::SRL
, dl
, Tmp3
.getValueType(), Tmp3
,
1405 DAG
.getConstant(ExtraWidth
, TLI
.getShiftAmountTy()));
1406 Hi
= DAG
.getTruncStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
1407 SVOffset
, RoundVT
, isVolatile
, Alignment
);
1409 // Store the remaining ExtraWidth bits.
1410 IncrementSize
= RoundWidth
/ 8;
1411 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
1412 DAG
.getIntPtrConstant(IncrementSize
));
1413 Lo
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
1414 SVOffset
+ IncrementSize
, ExtraVT
, isVolatile
,
1415 MinAlign(Alignment
, IncrementSize
));
1418 // The order of the stores doesn't matter.
1419 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
1421 if (Tmp1
!= ST
->getChain() || Tmp3
!= ST
->getValue() ||
1422 Tmp2
!= ST
->getBasePtr())
1423 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp3
, Tmp2
,
1426 switch (TLI
.getTruncStoreAction(ST
->getValue().getValueType(), StVT
)) {
1427 default: llvm_unreachable("This action is not supported yet!");
1428 case TargetLowering::Legal
:
1429 // If this is an unaligned store and the target doesn't support it,
1431 if (!TLI
.allowsUnalignedMemoryAccesses()) {
1432 unsigned ABIAlignment
= TLI
.getTargetData()->
1433 getABITypeAlignment(ST
->getMemoryVT().getTypeForMVT());
1434 if (ST
->getAlignment() < ABIAlignment
)
1435 Result
= ExpandUnalignedStore(cast
<StoreSDNode
>(Result
.getNode()), DAG
,
1439 case TargetLowering::Custom
:
1440 Result
= TLI
.LowerOperation(Result
, DAG
);
1443 // TRUNCSTORE:i16 i32 -> STORE i16
1444 assert(isTypeLegal(StVT
) && "Do not know how to expand this store!");
1445 Tmp3
= DAG
.getNode(ISD::TRUNCATE
, dl
, StVT
, Tmp3
);
1446 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
1447 SVOffset
, isVolatile
, Alignment
);
1455 assert(Result
.getValueType() == Op
.getValueType() &&
1456 "Bad legalization!");
1458 // Make sure that the generated code is itself legal.
1460 Result
= LegalizeOp(Result
);
1462 // Note that LegalizeOp may be reentered even from single-use nodes, which
1463 // means that we always must cache transformed nodes.
1464 AddLegalizedOperand(Op
, Result
);
1468 SDValue
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op
) {
1469 SDValue Vec
= Op
.getOperand(0);
1470 SDValue Idx
= Op
.getOperand(1);
1471 DebugLoc dl
= Op
.getDebugLoc();
1472 // Store the value to a temporary stack slot, then LOAD the returned part.
1473 SDValue StackPtr
= DAG
.CreateStackTemporary(Vec
.getValueType());
1474 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
, NULL
, 0);
1476 // Add the offset to the index.
1478 Vec
.getValueType().getVectorElementType().getSizeInBits()/8;
1479 Idx
= DAG
.getNode(ISD::MUL
, dl
, Idx
.getValueType(), Idx
,
1480 DAG
.getConstant(EltSize
, Idx
.getValueType()));
1482 if (Idx
.getValueType().bitsGT(TLI
.getPointerTy()))
1483 Idx
= DAG
.getNode(ISD::TRUNCATE
, dl
, TLI
.getPointerTy(), Idx
);
1485 Idx
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TLI
.getPointerTy(), Idx
);
1487 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(), Idx
, StackPtr
);
1489 if (Op
.getValueType().isVector())
1490 return DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, NULL
, 0);
1492 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Op
.getValueType(), Ch
, StackPtr
,
1493 NULL
, 0, Vec
.getValueType().getVectorElementType());
1496 SDValue
SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode
* Node
) {
1497 // We can't handle this case efficiently. Allocate a sufficiently
1498 // aligned object on the stack, store each element into it, then load
1499 // the result as a vector.
1500 // Create the stack frame object.
1501 MVT VT
= Node
->getValueType(0);
1502 MVT OpVT
= Node
->getOperand(0).getValueType();
1503 DebugLoc dl
= Node
->getDebugLoc();
1504 SDValue FIPtr
= DAG
.CreateStackTemporary(VT
);
1505 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
1506 const Value
*SV
= PseudoSourceValue::getFixedStack(FI
);
1508 // Emit a store of each element to the stack slot.
1509 SmallVector
<SDValue
, 8> Stores
;
1510 unsigned TypeByteSize
= OpVT
.getSizeInBits() / 8;
1511 // Store (in the right endianness) the elements to memory.
1512 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1513 // Ignore undef elements.
1514 if (Node
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
1516 unsigned Offset
= TypeByteSize
*i
;
1518 SDValue Idx
= DAG
.getConstant(Offset
, FIPtr
.getValueType());
1519 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
, Idx
);
1521 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, Node
->getOperand(i
),
1526 if (!Stores
.empty()) // Not all undef elements?
1527 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1528 &Stores
[0], Stores
.size());
1530 StoreChain
= DAG
.getEntryNode();
1532 // Result is a load from the stack slot.
1533 return DAG
.getLoad(VT
, dl
, StoreChain
, FIPtr
, SV
, 0);
1536 SDValue
SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode
* Node
) {
1537 DebugLoc dl
= Node
->getDebugLoc();
1538 SDValue Tmp1
= Node
->getOperand(0);
1539 SDValue Tmp2
= Node
->getOperand(1);
1540 assert((Tmp2
.getValueType() == MVT::f32
||
1541 Tmp2
.getValueType() == MVT::f64
) &&
1542 "Ugly special-cased code!");
1543 // Get the sign bit of the RHS.
1545 MVT IVT
= Tmp2
.getValueType() == MVT::f64
? MVT::i64
: MVT::i32
;
1546 if (isTypeLegal(IVT
)) {
1547 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, IVT
, Tmp2
);
1549 assert(isTypeLegal(TLI
.getPointerTy()) &&
1550 (TLI
.getPointerTy() == MVT::i32
||
1551 TLI
.getPointerTy() == MVT::i64
) &&
1552 "Legal type for load?!");
1553 SDValue StackPtr
= DAG
.CreateStackTemporary(Tmp2
.getValueType());
1554 SDValue StorePtr
= StackPtr
, LoadPtr
= StackPtr
;
1556 DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp2
, StorePtr
, NULL
, 0);
1557 if (Tmp2
.getValueType() == MVT::f64
&& TLI
.isLittleEndian())
1558 LoadPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(),
1559 LoadPtr
, DAG
.getIntPtrConstant(4));
1560 SignBit
= DAG
.getExtLoad(ISD::SEXTLOAD
, dl
, TLI
.getPointerTy(),
1561 Ch
, LoadPtr
, NULL
, 0, MVT::i32
);
1564 DAG
.getSetCC(dl
, TLI
.getSetCCResultType(SignBit
.getValueType()),
1565 SignBit
, DAG
.getConstant(0, SignBit
.getValueType()),
1567 // Get the absolute value of the result.
1568 SDValue AbsVal
= DAG
.getNode(ISD::FABS
, dl
, Tmp1
.getValueType(), Tmp1
);
1569 // Select between the nabs and abs value based on the sign bit of
1571 return DAG
.getNode(ISD::SELECT
, dl
, AbsVal
.getValueType(), SignBit
,
1572 DAG
.getNode(ISD::FNEG
, dl
, AbsVal
.getValueType(), AbsVal
),
1576 SDValue
SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode
* Node
) {
1577 DebugLoc dl
= Node
->getDebugLoc();
1578 DwarfWriter
*DW
= DAG
.getDwarfWriter();
1579 bool useDEBUG_LOC
= TLI
.isOperationLegalOrCustom(ISD::DEBUG_LOC
,
1581 bool useLABEL
= TLI
.isOperationLegalOrCustom(ISD::DBG_LABEL
, MVT::Other
);
1583 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(Node
);
1584 GlobalVariable
*CU_GV
= cast
<GlobalVariable
>(DSP
->getCompileUnit());
1585 if (DW
&& (useDEBUG_LOC
|| useLABEL
) && !CU_GV
->isDeclaration()) {
1586 DICompileUnit
CU(cast
<GlobalVariable
>(DSP
->getCompileUnit()));
1588 unsigned Line
= DSP
->getLine();
1589 unsigned Col
= DSP
->getColumn();
1591 if (OptLevel
== CodeGenOpt::None
) {
1592 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1593 // won't hurt anything.
1595 return DAG
.getNode(ISD::DEBUG_LOC
, dl
, MVT::Other
, Node
->getOperand(0),
1596 DAG
.getConstant(Line
, MVT::i32
),
1597 DAG
.getConstant(Col
, MVT::i32
),
1598 DAG
.getSrcValue(CU
.getGV()));
1600 unsigned ID
= DW
->RecordSourceLine(Line
, Col
, CU
);
1601 return DAG
.getLabel(ISD::DBG_LABEL
, dl
, Node
->getOperand(0), ID
);
1605 return Node
->getOperand(0);
1608 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode
* Node
,
1609 SmallVectorImpl
<SDValue
> &Results
) {
1610 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
1611 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
1612 " not tell us which reg is the stack pointer!");
1613 DebugLoc dl
= Node
->getDebugLoc();
1614 MVT VT
= Node
->getValueType(0);
1615 SDValue Tmp1
= SDValue(Node
, 0);
1616 SDValue Tmp2
= SDValue(Node
, 1);
1617 SDValue Tmp3
= Node
->getOperand(2);
1618 SDValue Chain
= Tmp1
.getOperand(0);
1620 // Chain the dynamic stack allocation so that it doesn't modify the stack
1621 // pointer when other instructions are using the stack.
1622 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
1624 SDValue Size
= Tmp2
.getOperand(1);
1625 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, SPReg
, VT
);
1626 Chain
= SP
.getValue(1);
1627 unsigned Align
= cast
<ConstantSDNode
>(Tmp3
)->getZExtValue();
1628 unsigned StackAlign
=
1629 TLI
.getTargetMachine().getFrameInfo()->getStackAlignment();
1630 if (Align
> StackAlign
)
1631 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
,
1632 DAG
.getConstant(-(uint64_t)Align
, VT
));
1633 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, SP
, Size
); // Value
1634 Chain
= DAG
.getCopyToReg(Chain
, dl
, SPReg
, Tmp1
); // Output chain
1636 Tmp2
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, true),
1637 DAG
.getIntPtrConstant(0, true), SDValue());
1639 Results
.push_back(Tmp1
);
1640 Results
.push_back(Tmp2
);
1643 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1644 /// condition code CC on the current target. This routine assumes LHS and rHS
1645 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1646 /// illegal condition code into AND / OR of multiple SETCC values.
1647 void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT
,
1648 SDValue
&LHS
, SDValue
&RHS
,
1651 MVT OpVT
= LHS
.getValueType();
1652 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
1653 switch (TLI
.getCondCodeAction(CCCode
, OpVT
)) {
1654 default: llvm_unreachable("Unknown condition code action!");
1655 case TargetLowering::Legal
:
1658 case TargetLowering::Expand
: {
1659 ISD::CondCode CC1
= ISD::SETCC_INVALID
, CC2
= ISD::SETCC_INVALID
;
1662 default: llvm_unreachable("Don't know how to expand this condition!");
1663 case ISD::SETOEQ
: CC1
= ISD::SETEQ
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
1664 case ISD::SETOGT
: CC1
= ISD::SETGT
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
1665 case ISD::SETOGE
: CC1
= ISD::SETGE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
1666 case ISD::SETOLT
: CC1
= ISD::SETLT
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
1667 case ISD::SETOLE
: CC1
= ISD::SETLE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
1668 case ISD::SETONE
: CC1
= ISD::SETNE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
1669 case ISD::SETUEQ
: CC1
= ISD::SETEQ
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
1670 case ISD::SETUGT
: CC1
= ISD::SETGT
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
1671 case ISD::SETUGE
: CC1
= ISD::SETGE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
1672 case ISD::SETULT
: CC1
= ISD::SETLT
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
1673 case ISD::SETULE
: CC1
= ISD::SETLE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
1674 case ISD::SETUNE
: CC1
= ISD::SETNE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
1675 // FIXME: Implement more expansions.
1678 SDValue SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC1
);
1679 SDValue SetCC2
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC2
);
1680 LHS
= DAG
.getNode(Opc
, dl
, VT
, SetCC1
, SetCC2
);
1688 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
1689 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1690 /// a load from the stack slot to DestVT, extending it if needed.
1691 /// The resultant code need not be legal.
1692 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
,
1696 // Create the stack frame object.
1698 TLI
.getTargetData()->getPrefTypeAlignment(SrcOp
.getValueType().
1700 SDValue FIPtr
= DAG
.CreateStackTemporary(SlotVT
, SrcAlign
);
1702 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(FIPtr
);
1703 int SPFI
= StackPtrFI
->getIndex();
1704 const Value
*SV
= PseudoSourceValue::getFixedStack(SPFI
);
1706 unsigned SrcSize
= SrcOp
.getValueType().getSizeInBits();
1707 unsigned SlotSize
= SlotVT
.getSizeInBits();
1708 unsigned DestSize
= DestVT
.getSizeInBits();
1709 unsigned DestAlign
=
1710 TLI
.getTargetData()->getPrefTypeAlignment(DestVT
.getTypeForMVT());
1712 // Emit a store to the stack slot. Use a truncstore if the input value is
1713 // later than DestVT.
1716 if (SrcSize
> SlotSize
)
1717 Store
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
,
1718 SV
, 0, SlotVT
, false, SrcAlign
);
1720 assert(SrcSize
== SlotSize
&& "Invalid store");
1721 Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
,
1722 SV
, 0, false, SrcAlign
);
1725 // Result is a load from the stack slot.
1726 if (SlotSize
== DestSize
)
1727 return DAG
.getLoad(DestVT
, dl
, Store
, FIPtr
, SV
, 0, false, DestAlign
);
1729 assert(SlotSize
< DestSize
&& "Unknown extension!");
1730 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
, Store
, FIPtr
, SV
, 0, SlotVT
,
1734 SDValue
SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode
*Node
) {
1735 DebugLoc dl
= Node
->getDebugLoc();
1736 // Create a vector sized/aligned stack slot, store the value to element #0,
1737 // then load the whole vector back out.
1738 SDValue StackPtr
= DAG
.CreateStackTemporary(Node
->getValueType(0));
1740 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(StackPtr
);
1741 int SPFI
= StackPtrFI
->getIndex();
1743 SDValue Ch
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, Node
->getOperand(0),
1745 PseudoSourceValue::getFixedStack(SPFI
), 0,
1746 Node
->getValueType(0).getVectorElementType());
1747 return DAG
.getLoad(Node
->getValueType(0), dl
, Ch
, StackPtr
,
1748 PseudoSourceValue::getFixedStack(SPFI
), 0);
1752 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1753 /// support the operation, but do support the resultant vector type.
1754 SDValue
SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode
*Node
) {
1755 unsigned NumElems
= Node
->getNumOperands();
1756 SDValue Value1
, Value2
;
1757 DebugLoc dl
= Node
->getDebugLoc();
1758 MVT VT
= Node
->getValueType(0);
1759 MVT OpVT
= Node
->getOperand(0).getValueType();
1760 MVT EltVT
= VT
.getVectorElementType();
1762 // If the only non-undef value is the low element, turn this into a
1763 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1764 bool isOnlyLowElement
= true;
1765 bool MoreThanTwoValues
= false;
1766 bool isConstant
= true;
1767 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1768 SDValue V
= Node
->getOperand(i
);
1769 if (V
.getOpcode() == ISD::UNDEF
)
1772 isOnlyLowElement
= false;
1773 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
1776 if (!Value1
.getNode()) {
1778 } else if (!Value2
.getNode()) {
1781 } else if (V
!= Value1
&& V
!= Value2
) {
1782 MoreThanTwoValues
= true;
1786 if (!Value1
.getNode())
1787 return DAG
.getUNDEF(VT
);
1789 if (isOnlyLowElement
)
1790 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Node
->getOperand(0));
1792 // If all elements are constants, create a load from the constant pool.
1794 std::vector
<Constant
*> CV
;
1795 for (unsigned i
= 0, e
= NumElems
; i
!= e
; ++i
) {
1796 if (ConstantFPSDNode
*V
=
1797 dyn_cast
<ConstantFPSDNode
>(Node
->getOperand(i
))) {
1798 CV
.push_back(const_cast<ConstantFP
*>(V
->getConstantFPValue()));
1799 } else if (ConstantSDNode
*V
=
1800 dyn_cast
<ConstantSDNode
>(Node
->getOperand(i
))) {
1801 CV
.push_back(const_cast<ConstantInt
*>(V
->getConstantIntValue()));
1803 assert(Node
->getOperand(i
).getOpcode() == ISD::UNDEF
);
1804 const Type
*OpNTy
= OpVT
.getTypeForMVT();
1805 CV
.push_back(UndefValue::get(OpNTy
));
1808 Constant
*CP
= ConstantVector::get(CV
);
1809 SDValue CPIdx
= DAG
.getConstantPool(CP
, TLI
.getPointerTy());
1810 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
1811 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
1812 PseudoSourceValue::getConstantPool(), 0,
1816 if (!MoreThanTwoValues
) {
1817 SmallVector
<int, 8> ShuffleVec(NumElems
, -1);
1818 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1819 SDValue V
= Node
->getOperand(i
);
1820 if (V
.getOpcode() == ISD::UNDEF
)
1822 ShuffleVec
[i
] = V
== Value1
? 0 : NumElems
;
1824 if (TLI
.isShuffleMaskLegal(ShuffleVec
, Node
->getValueType(0))) {
1825 // Get the splatted value into the low element of a vector register.
1826 SDValue Vec1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value1
);
1828 if (Value2
.getNode())
1829 Vec2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value2
);
1831 Vec2
= DAG
.getUNDEF(VT
);
1833 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1834 return DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
.data());
1838 // Otherwise, we can't handle this case efficiently.
1839 return ExpandVectorBuildThroughStack(Node
);
1842 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
1843 // does not fit into a register, return the lo part and set the hi part to the
1844 // by-reg argument. If it does fit into a single register, return the result
1845 // and leave the Hi part unset.
1846 SDValue
SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
1848 assert(!IsLegalizingCall
&& "Cannot overlap legalization of calls!");
1849 // The input chain to this libcall is the entry node of the function.
1850 // Legalizing the call will automatically add the previous call to the
1852 SDValue InChain
= DAG
.getEntryNode();
1854 TargetLowering::ArgListTy Args
;
1855 TargetLowering::ArgListEntry Entry
;
1856 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1857 MVT ArgVT
= Node
->getOperand(i
).getValueType();
1858 const Type
*ArgTy
= ArgVT
.getTypeForMVT();
1859 Entry
.Node
= Node
->getOperand(i
); Entry
.Ty
= ArgTy
;
1860 Entry
.isSExt
= isSigned
;
1861 Entry
.isZExt
= !isSigned
;
1862 Args
.push_back(Entry
);
1864 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
1865 TLI
.getPointerTy());
1867 // Splice the libcall in wherever FindInputOutputChains tells us to.
1868 const Type
*RetTy
= Node
->getValueType(0).getTypeForMVT();
1869 std::pair
<SDValue
, SDValue
> CallInfo
=
1870 TLI
.LowerCallTo(InChain
, RetTy
, isSigned
, !isSigned
, false, false,
1871 0, CallingConv::C
, false,
1872 /*isReturnValueUsed=*/true,
1874 Node
->getDebugLoc());
1876 // Legalize the call sequence, starting with the chain. This will advance
1877 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1878 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1879 LegalizeOp(CallInfo
.second
);
1880 return CallInfo
.first
;
1883 SDValue
SelectionDAGLegalize::ExpandFPLibCall(SDNode
* Node
,
1884 RTLIB::Libcall Call_F32
,
1885 RTLIB::Libcall Call_F64
,
1886 RTLIB::Libcall Call_F80
,
1887 RTLIB::Libcall Call_PPCF128
) {
1889 switch (Node
->getValueType(0).getSimpleVT()) {
1890 default: llvm_unreachable("Unexpected request for libcall!");
1891 case MVT::f32
: LC
= Call_F32
; break;
1892 case MVT::f64
: LC
= Call_F64
; break;
1893 case MVT::f80
: LC
= Call_F80
; break;
1894 case MVT::ppcf128
: LC
= Call_PPCF128
; break;
1896 return ExpandLibCall(LC
, Node
, false);
1899 SDValue
SelectionDAGLegalize::ExpandIntLibCall(SDNode
* Node
, bool isSigned
,
1900 RTLIB::Libcall Call_I16
,
1901 RTLIB::Libcall Call_I32
,
1902 RTLIB::Libcall Call_I64
,
1903 RTLIB::Libcall Call_I128
) {
1905 switch (Node
->getValueType(0).getSimpleVT()) {
1906 default: llvm_unreachable("Unexpected request for libcall!");
1907 case MVT::i16
: LC
= Call_I16
; break;
1908 case MVT::i32
: LC
= Call_I32
; break;
1909 case MVT::i64
: LC
= Call_I64
; break;
1910 case MVT::i128
: LC
= Call_I128
; break;
1912 return ExpandLibCall(LC
, Node
, isSigned
);
1915 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1916 /// INT_TO_FP operation of the specified operand when the target requests that
1917 /// we expand it. At this point, we know that the result and operand types are
1918 /// legal for the target.
1919 SDValue
SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned
,
1923 if (Op0
.getValueType() == MVT::i32
) {
1924 // simple 32-bit [signed|unsigned] integer to float/double expansion
1926 // Get the stack frame index of a 8 byte buffer.
1927 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::f64
);
1929 // word offset constant for Hi/Lo address computation
1930 SDValue WordOff
= DAG
.getConstant(sizeof(int), TLI
.getPointerTy());
1931 // set up Hi and Lo (into buffer) address based on endian
1932 SDValue Hi
= StackSlot
;
1933 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
,
1934 TLI
.getPointerTy(), StackSlot
, WordOff
);
1935 if (TLI
.isLittleEndian())
1938 // if signed map to unsigned space
1941 // constant used to invert sign bit (signed to unsigned mapping)
1942 SDValue SignBit
= DAG
.getConstant(0x80000000u
, MVT::i32
);
1943 Op0Mapped
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Op0
, SignBit
);
1947 // store the lo of the constructed double - based on integer input
1948 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
,
1949 Op0Mapped
, Lo
, NULL
, 0);
1950 // initial hi portion of constructed double
1951 SDValue InitialHi
= DAG
.getConstant(0x43300000u
, MVT::i32
);
1952 // store the hi of the constructed double - biased exponent
1953 SDValue Store2
=DAG
.getStore(Store1
, dl
, InitialHi
, Hi
, NULL
, 0);
1954 // load the constructed double
1955 SDValue Load
= DAG
.getLoad(MVT::f64
, dl
, Store2
, StackSlot
, NULL
, 0);
1956 // FP constant to bias correct the final result
1957 SDValue Bias
= DAG
.getConstantFP(isSigned
?
1958 BitsToDouble(0x4330000080000000ULL
) :
1959 BitsToDouble(0x4330000000000000ULL
),
1961 // subtract the bias
1962 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Load
, Bias
);
1965 // handle final rounding
1966 if (DestVT
== MVT::f64
) {
1969 } else if (DestVT
.bitsLT(MVT::f64
)) {
1970 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
1971 DAG
.getIntPtrConstant(0));
1972 } else if (DestVT
.bitsGT(MVT::f64
)) {
1973 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
1977 assert(!isSigned
&& "Legalize cannot Expand SINT_TO_FP for i64 yet");
1978 SDValue Tmp1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestVT
, Op0
);
1980 SDValue SignSet
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Op0
.getValueType()),
1981 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
1983 SDValue Zero
= DAG
.getIntPtrConstant(0), Four
= DAG
.getIntPtrConstant(4);
1984 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(),
1985 SignSet
, Four
, Zero
);
1987 // If the sign bit of the integer is set, the large number will be treated
1988 // as a negative number. To counteract this, the dynamic code adds an
1989 // offset depending on the data type.
1991 switch (Op0
.getValueType().getSimpleVT()) {
1992 default: llvm_unreachable("Unsupported integer type!");
1993 case MVT::i8
: FF
= 0x43800000ULL
; break; // 2^8 (as a float)
1994 case MVT::i16
: FF
= 0x47800000ULL
; break; // 2^16 (as a float)
1995 case MVT::i32
: FF
= 0x4F800000ULL
; break; // 2^32 (as a float)
1996 case MVT::i64
: FF
= 0x5F800000ULL
; break; // 2^64 (as a float)
1998 if (TLI
.isLittleEndian()) FF
<<= 32;
1999 Constant
*FudgeFactor
= ConstantInt::get(Type::Int64Ty
, FF
);
2001 SDValue CPIdx
= DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy());
2002 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
2003 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), CPIdx
, CstOffset
);
2004 Alignment
= std::min(Alignment
, 4u);
2006 if (DestVT
== MVT::f32
)
2007 FudgeInReg
= DAG
.getLoad(MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
2008 PseudoSourceValue::getConstantPool(), 0,
2012 LegalizeOp(DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
,
2013 DAG
.getEntryNode(), CPIdx
,
2014 PseudoSourceValue::getConstantPool(), 0,
2015 MVT::f32
, false, Alignment
));
2018 return DAG
.getNode(ISD::FADD
, dl
, DestVT
, Tmp1
, FudgeInReg
);
2021 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2022 /// *INT_TO_FP operation of the specified operand when the target requests that
2023 /// we promote it. At this point, we know that the result and operand types are
2024 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2025 /// operation that takes a larger input.
2026 SDValue
SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp
,
2030 // First step, figure out the appropriate *INT_TO_FP operation to use.
2031 MVT NewInTy
= LegalOp
.getValueType();
2033 unsigned OpToUse
= 0;
2035 // Scan for the appropriate larger type to use.
2037 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT()+1);
2038 assert(NewInTy
.isInteger() && "Ran out of possibilities!");
2040 // If the target supports SINT_TO_FP of this type, use it.
2041 if (TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, NewInTy
)) {
2042 OpToUse
= ISD::SINT_TO_FP
;
2045 if (isSigned
) continue;
2047 // If the target supports UINT_TO_FP of this type, use it.
2048 if (TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, NewInTy
)) {
2049 OpToUse
= ISD::UINT_TO_FP
;
2053 // Otherwise, try a larger type.
2056 // Okay, we found the operation and type to use. Zero extend our input to the
2057 // desired type then run the operation on it.
2058 return DAG
.getNode(OpToUse
, dl
, DestVT
,
2059 DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
2060 dl
, NewInTy
, LegalOp
));
2063 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2064 /// FP_TO_*INT operation of the specified operand when the target requests that
2065 /// we promote it. At this point, we know that the result and operand types are
2066 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2067 /// operation that returns a larger result.
2068 SDValue
SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp
,
2072 // First step, figure out the appropriate FP_TO*INT operation to use.
2073 MVT NewOutTy
= DestVT
;
2075 unsigned OpToUse
= 0;
2077 // Scan for the appropriate larger type to use.
2079 NewOutTy
= (MVT::SimpleValueType
)(NewOutTy
.getSimpleVT()+1);
2080 assert(NewOutTy
.isInteger() && "Ran out of possibilities!");
2082 if (TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NewOutTy
)) {
2083 OpToUse
= ISD::FP_TO_SINT
;
2087 if (TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NewOutTy
)) {
2088 OpToUse
= ISD::FP_TO_UINT
;
2092 // Otherwise, try a larger type.
2096 // Okay, we found the operation and type to use.
2097 SDValue Operation
= DAG
.getNode(OpToUse
, dl
, NewOutTy
, LegalOp
);
2099 // Truncate the result of the extended FP_TO_*INT operation to the desired
2101 return DAG
.getNode(ISD::TRUNCATE
, dl
, DestVT
, Operation
);
2104 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2106 SDValue
SelectionDAGLegalize::ExpandBSWAP(SDValue Op
, DebugLoc dl
) {
2107 MVT VT
= Op
.getValueType();
2108 MVT SHVT
= TLI
.getShiftAmountTy();
2109 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
, Tmp5
, Tmp6
, Tmp7
, Tmp8
;
2110 switch (VT
.getSimpleVT()) {
2111 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2113 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
2114 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
2115 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
2117 Tmp4
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
2118 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
2119 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
2120 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
2121 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
, DAG
.getConstant(0xFF0000, VT
));
2122 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(0xFF00, VT
));
2123 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2124 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2125 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2127 Tmp8
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(56, SHVT
));
2128 Tmp7
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(40, SHVT
));
2129 Tmp6
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
2130 Tmp5
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
2131 Tmp4
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
2132 Tmp3
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
2133 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(40, SHVT
));
2134 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(56, SHVT
));
2135 Tmp7
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp7
, DAG
.getConstant(255ULL<<48, VT
));
2136 Tmp6
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp6
, DAG
.getConstant(255ULL<<40, VT
));
2137 Tmp5
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp5
, DAG
.getConstant(255ULL<<32, VT
));
2138 Tmp4
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp4
, DAG
.getConstant(255ULL<<24, VT
));
2139 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
, DAG
.getConstant(255ULL<<16, VT
));
2140 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(255ULL<<8 , VT
));
2141 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp7
);
2142 Tmp6
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp6
, Tmp5
);
2143 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2144 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2145 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp6
);
2146 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2147 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp4
);
2151 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2153 SDValue
SelectionDAGLegalize::ExpandBitCount(unsigned Opc
, SDValue Op
,
2156 default: llvm_unreachable("Cannot expand this yet!");
2158 static const uint64_t mask
[6] = {
2159 0x5555555555555555ULL
, 0x3333333333333333ULL
,
2160 0x0F0F0F0F0F0F0F0FULL
, 0x00FF00FF00FF00FFULL
,
2161 0x0000FFFF0000FFFFULL
, 0x00000000FFFFFFFFULL
2163 MVT VT
= Op
.getValueType();
2164 MVT ShVT
= TLI
.getShiftAmountTy();
2165 unsigned len
= VT
.getSizeInBits();
2166 for (unsigned i
= 0; (1U << i
) <= (len
/ 2); ++i
) {
2167 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2168 unsigned EltSize
= VT
.isVector() ?
2169 VT
.getVectorElementType().getSizeInBits() : len
;
2170 SDValue Tmp2
= DAG
.getConstant(APInt(EltSize
, mask
[i
]), VT
);
2171 SDValue Tmp3
= DAG
.getConstant(1ULL << i
, ShVT
);
2172 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
,
2173 DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Tmp2
),
2174 DAG
.getNode(ISD::AND
, dl
, VT
,
2175 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp3
),
2181 // for now, we do this:
2182 // x = x | (x >> 1);
2183 // x = x | (x >> 2);
2185 // x = x | (x >>16);
2186 // x = x | (x >>32); // for 64-bit input
2187 // return popcount(~x);
2189 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2190 MVT VT
= Op
.getValueType();
2191 MVT ShVT
= TLI
.getShiftAmountTy();
2192 unsigned len
= VT
.getSizeInBits();
2193 for (unsigned i
= 0; (1U << i
) <= (len
/ 2); ++i
) {
2194 SDValue Tmp3
= DAG
.getConstant(1ULL << i
, ShVT
);
2195 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
2196 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp3
));
2198 Op
= DAG
.getNOT(dl
, Op
, VT
);
2199 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
2202 // for now, we use: { return popcount(~x & (x - 1)); }
2203 // unless the target has ctlz but not ctpop, in which case we use:
2204 // { return 32 - nlz(~x & (x-1)); }
2205 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2206 MVT VT
= Op
.getValueType();
2207 SDValue Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
,
2208 DAG
.getNOT(dl
, Op
, VT
),
2209 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
2210 DAG
.getConstant(1, VT
)));
2211 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2212 if (!TLI
.isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
2213 TLI
.isOperationLegalOrCustom(ISD::CTLZ
, VT
))
2214 return DAG
.getNode(ISD::SUB
, dl
, VT
,
2215 DAG
.getConstant(VT
.getSizeInBits(), VT
),
2216 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp3
));
2217 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp3
);
2222 void SelectionDAGLegalize::ExpandNode(SDNode
*Node
,
2223 SmallVectorImpl
<SDValue
> &Results
) {
2224 DebugLoc dl
= Node
->getDebugLoc();
2225 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
2226 switch (Node
->getOpcode()) {
2230 Tmp1
= ExpandBitCount(Node
->getOpcode(), Node
->getOperand(0), dl
);
2231 Results
.push_back(Tmp1
);
2234 Results
.push_back(ExpandBSWAP(Node
->getOperand(0), dl
));
2236 case ISD::FRAMEADDR
:
2237 case ISD::RETURNADDR
:
2238 case ISD::FRAME_TO_ARGS_OFFSET
:
2239 Results
.push_back(DAG
.getConstant(0, Node
->getValueType(0)));
2241 case ISD::FLT_ROUNDS_
:
2242 Results
.push_back(DAG
.getConstant(1, Node
->getValueType(0)));
2244 case ISD::EH_RETURN
:
2246 case ISD::DBG_LABEL
:
2249 case ISD::MEMBARRIER
:
2251 Results
.push_back(Node
->getOperand(0));
2253 case ISD::DBG_STOPPOINT
:
2254 Results
.push_back(ExpandDBG_STOPPOINT(Node
));
2256 case ISD::DYNAMIC_STACKALLOC
:
2257 ExpandDYNAMIC_STACKALLOC(Node
, Results
);
2259 case ISD::MERGE_VALUES
:
2260 for (unsigned i
= 0; i
< Node
->getNumValues(); i
++)
2261 Results
.push_back(Node
->getOperand(i
));
2264 MVT VT
= Node
->getValueType(0);
2266 Results
.push_back(DAG
.getConstant(0, VT
));
2267 else if (VT
.isFloatingPoint())
2268 Results
.push_back(DAG
.getConstantFP(0, VT
));
2270 llvm_unreachable("Unknown value type!");
2274 // If this operation is not supported, lower it to 'abort()' call
2275 TargetLowering::ArgListTy Args
;
2276 std::pair
<SDValue
, SDValue
> CallResult
=
2277 TLI
.LowerCallTo(Node
->getOperand(0), Type::VoidTy
,
2278 false, false, false, false, 0, CallingConv::C
, false,
2279 /*isReturnValueUsed=*/true,
2280 DAG
.getExternalSymbol("abort", TLI
.getPointerTy()),
2282 Results
.push_back(CallResult
.second
);
2286 case ISD::BIT_CONVERT
:
2287 Tmp1
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
2288 Node
->getValueType(0), dl
);
2289 Results
.push_back(Tmp1
);
2291 case ISD::FP_EXTEND
:
2292 Tmp1
= EmitStackConvert(Node
->getOperand(0),
2293 Node
->getOperand(0).getValueType(),
2294 Node
->getValueType(0), dl
);
2295 Results
.push_back(Tmp1
);
2297 case ISD::SIGN_EXTEND_INREG
: {
2298 // NOTE: we could fall back on load/store here too for targets without
2299 // SAR. However, it is doubtful that any exist.
2300 MVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2301 unsigned BitsDiff
= Node
->getValueType(0).getSizeInBits() -
2302 ExtraVT
.getSizeInBits();
2303 SDValue ShiftCst
= DAG
.getConstant(BitsDiff
, TLI
.getShiftAmountTy());
2304 Tmp1
= DAG
.getNode(ISD::SHL
, dl
, Node
->getValueType(0),
2305 Node
->getOperand(0), ShiftCst
);
2306 Tmp1
= DAG
.getNode(ISD::SRA
, dl
, Node
->getValueType(0), Tmp1
, ShiftCst
);
2307 Results
.push_back(Tmp1
);
2310 case ISD::FP_ROUND_INREG
: {
2311 // The only way we can lower this is to turn it into a TRUNCSTORE,
2312 // EXTLOAD pair, targetting a temporary location (a stack slot).
2314 // NOTE: there is a choice here between constantly creating new stack
2315 // slots and always reusing the same one. We currently always create
2316 // new ones, as reuse may inhibit scheduling.
2317 MVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2318 Tmp1
= EmitStackConvert(Node
->getOperand(0), ExtraVT
,
2319 Node
->getValueType(0), dl
);
2320 Results
.push_back(Tmp1
);
2323 case ISD::SINT_TO_FP
:
2324 case ISD::UINT_TO_FP
:
2325 Tmp1
= ExpandLegalINT_TO_FP(Node
->getOpcode() == ISD::SINT_TO_FP
,
2326 Node
->getOperand(0), Node
->getValueType(0), dl
);
2327 Results
.push_back(Tmp1
);
2329 case ISD::FP_TO_UINT
: {
2330 SDValue True
, False
;
2331 MVT VT
= Node
->getOperand(0).getValueType();
2332 MVT NVT
= Node
->getValueType(0);
2333 const uint64_t zero
[] = {0, 0};
2334 APFloat apf
= APFloat(APInt(VT
.getSizeInBits(), 2, zero
));
2335 APInt x
= APInt::getSignBit(NVT
.getSizeInBits());
2336 (void)apf
.convertFromAPInt(x
, false, APFloat::rmNearestTiesToEven
);
2337 Tmp1
= DAG
.getConstantFP(apf
, VT
);
2338 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(VT
),
2339 Node
->getOperand(0),
2341 True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
, Node
->getOperand(0));
2342 False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
,
2343 DAG
.getNode(ISD::FSUB
, dl
, VT
,
2344 Node
->getOperand(0), Tmp1
));
2345 False
= DAG
.getNode(ISD::XOR
, dl
, NVT
, False
,
2346 DAG
.getConstant(x
, NVT
));
2347 Tmp1
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp2
, True
, False
);
2348 Results
.push_back(Tmp1
);
2352 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2353 MVT VT
= Node
->getValueType(0);
2354 Tmp1
= Node
->getOperand(0);
2355 Tmp2
= Node
->getOperand(1);
2356 SDValue VAList
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp2
, V
, 0);
2357 // Increment the pointer, VAList, to the next vaarg
2358 Tmp3
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), VAList
,
2359 DAG
.getConstant(TLI
.getTargetData()->
2360 getTypeAllocSize(VT
.getTypeForMVT()),
2361 TLI
.getPointerTy()));
2362 // Store the incremented VAList to the legalized pointer
2363 Tmp3
= DAG
.getStore(VAList
.getValue(1), dl
, Tmp3
, Tmp2
, V
, 0);
2364 // Load the actual argument out of the pointer VAList
2365 Results
.push_back(DAG
.getLoad(VT
, dl
, Tmp3
, VAList
, NULL
, 0));
2366 Results
.push_back(Results
[0].getValue(1));
2370 // This defaults to loading a pointer from the input and storing it to the
2371 // output, returning the chain.
2372 const Value
*VD
= cast
<SrcValueSDNode
>(Node
->getOperand(3))->getValue();
2373 const Value
*VS
= cast
<SrcValueSDNode
>(Node
->getOperand(4))->getValue();
2374 Tmp1
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Node
->getOperand(0),
2375 Node
->getOperand(2), VS
, 0);
2376 Tmp1
= DAG
.getStore(Tmp1
.getValue(1), dl
, Tmp1
, Node
->getOperand(1), VD
, 0);
2377 Results
.push_back(Tmp1
);
2380 case ISD::EXTRACT_VECTOR_ELT
:
2381 if (Node
->getOperand(0).getValueType().getVectorNumElements() == 1)
2382 // This must be an access of the only element. Return it.
2383 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0),
2384 Node
->getOperand(0));
2386 Tmp1
= ExpandExtractFromVectorThroughStack(SDValue(Node
, 0));
2387 Results
.push_back(Tmp1
);
2389 case ISD::EXTRACT_SUBVECTOR
:
2390 Results
.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node
, 0)));
2392 case ISD::CONCAT_VECTORS
: {
2393 Results
.push_back(ExpandVectorBuildThroughStack(Node
));
2396 case ISD::SCALAR_TO_VECTOR
:
2397 Results
.push_back(ExpandSCALAR_TO_VECTOR(Node
));
2399 case ISD::INSERT_VECTOR_ELT
:
2400 Results
.push_back(ExpandINSERT_VECTOR_ELT(Node
->getOperand(0),
2401 Node
->getOperand(1),
2402 Node
->getOperand(2), dl
));
2404 case ISD::VECTOR_SHUFFLE
: {
2405 SmallVector
<int, 8> Mask
;
2406 cast
<ShuffleVectorSDNode
>(Node
)->getMask(Mask
);
2408 MVT VT
= Node
->getValueType(0);
2409 MVT EltVT
= VT
.getVectorElementType();
2410 unsigned NumElems
= VT
.getVectorNumElements();
2411 SmallVector
<SDValue
, 8> Ops
;
2412 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2414 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2417 unsigned Idx
= Mask
[i
];
2419 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
2420 Node
->getOperand(0),
2421 DAG
.getIntPtrConstant(Idx
)));
2423 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
2424 Node
->getOperand(1),
2425 DAG
.getIntPtrConstant(Idx
- NumElems
)));
2427 Tmp1
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Ops
[0], Ops
.size());
2428 Results
.push_back(Tmp1
);
2431 case ISD::EXTRACT_ELEMENT
: {
2432 MVT OpTy
= Node
->getOperand(0).getValueType();
2433 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
2435 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, OpTy
, Node
->getOperand(0),
2436 DAG
.getConstant(OpTy
.getSizeInBits()/2,
2437 TLI
.getShiftAmountTy()));
2438 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Tmp1
);
2441 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0),
2442 Node
->getOperand(0));
2444 Results
.push_back(Tmp1
);
2447 case ISD::STACKSAVE
:
2448 // Expand to CopyFromReg if the target set
2449 // StackPointerRegisterToSaveRestore.
2450 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2451 Results
.push_back(DAG
.getCopyFromReg(Node
->getOperand(0), dl
, SP
,
2452 Node
->getValueType(0)));
2453 Results
.push_back(Results
[0].getValue(1));
2455 Results
.push_back(DAG
.getUNDEF(Node
->getValueType(0)));
2456 Results
.push_back(Node
->getOperand(0));
2459 case ISD::STACKRESTORE
:
2460 // Expand to CopyToReg if the target set
2461 // StackPointerRegisterToSaveRestore.
2462 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2463 Results
.push_back(DAG
.getCopyToReg(Node
->getOperand(0), dl
, SP
,
2464 Node
->getOperand(1)));
2466 Results
.push_back(Node
->getOperand(0));
2469 case ISD::FCOPYSIGN
:
2470 Results
.push_back(ExpandFCOPYSIGN(Node
));
2473 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2474 Tmp1
= DAG
.getConstantFP(-0.0, Node
->getValueType(0));
2475 Tmp1
= DAG
.getNode(ISD::FSUB
, dl
, Node
->getValueType(0), Tmp1
,
2476 Node
->getOperand(0));
2477 Results
.push_back(Tmp1
);
2480 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2481 MVT VT
= Node
->getValueType(0);
2482 Tmp1
= Node
->getOperand(0);
2483 Tmp2
= DAG
.getConstantFP(0.0, VT
);
2484 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()),
2485 Tmp1
, Tmp2
, ISD::SETUGT
);
2486 Tmp3
= DAG
.getNode(ISD::FNEG
, dl
, VT
, Tmp1
);
2487 Tmp1
= DAG
.getNode(ISD::SELECT
, dl
, VT
, Tmp2
, Tmp1
, Tmp3
);
2488 Results
.push_back(Tmp1
);
2492 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
2493 RTLIB::SQRT_F80
, RTLIB::SQRT_PPCF128
));
2496 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
2497 RTLIB::SIN_F80
, RTLIB::SIN_PPCF128
));
2500 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::COS_F32
, RTLIB::COS_F64
,
2501 RTLIB::COS_F80
, RTLIB::COS_PPCF128
));
2504 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
2505 RTLIB::LOG_F80
, RTLIB::LOG_PPCF128
));
2508 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
2509 RTLIB::LOG2_F80
, RTLIB::LOG2_PPCF128
));
2512 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
2513 RTLIB::LOG10_F80
, RTLIB::LOG10_PPCF128
));
2516 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
2517 RTLIB::EXP_F80
, RTLIB::EXP_PPCF128
));
2520 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
2521 RTLIB::EXP2_F80
, RTLIB::EXP2_PPCF128
));
2524 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
2525 RTLIB::TRUNC_F80
, RTLIB::TRUNC_PPCF128
));
2528 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
2529 RTLIB::FLOOR_F80
, RTLIB::FLOOR_PPCF128
));
2532 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
2533 RTLIB::CEIL_F80
, RTLIB::CEIL_PPCF128
));
2536 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
2537 RTLIB::RINT_F80
, RTLIB::RINT_PPCF128
));
2539 case ISD::FNEARBYINT
:
2540 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::NEARBYINT_F32
,
2541 RTLIB::NEARBYINT_F64
,
2542 RTLIB::NEARBYINT_F80
,
2543 RTLIB::NEARBYINT_PPCF128
));
2546 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POWI_F32
, RTLIB::POWI_F64
,
2547 RTLIB::POWI_F80
, RTLIB::POWI_PPCF128
));
2550 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_F32
, RTLIB::POW_F64
,
2551 RTLIB::POW_F80
, RTLIB::POW_PPCF128
));
2554 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::DIV_F32
, RTLIB::DIV_F64
,
2555 RTLIB::DIV_F80
, RTLIB::DIV_PPCF128
));
2558 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::REM_F32
, RTLIB::REM_F64
,
2559 RTLIB::REM_F80
, RTLIB::REM_PPCF128
));
2561 case ISD::ConstantFP
: {
2562 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
2563 // Check to see if this FP immediate is already legal.
2564 bool isLegal
= false;
2565 for (TargetLowering::legal_fpimm_iterator I
= TLI
.legal_fpimm_begin(),
2566 E
= TLI
.legal_fpimm_end(); I
!= E
; ++I
) {
2567 if (CFP
->isExactlyValue(*I
)) {
2572 // If this is a legal constant, turn it into a TargetConstantFP node.
2574 Results
.push_back(SDValue(Node
, 0));
2576 Results
.push_back(ExpandConstantFP(CFP
, true, DAG
, TLI
));
2579 case ISD::EHSELECTION
: {
2580 unsigned Reg
= TLI
.getExceptionSelectorRegister();
2581 assert(Reg
&& "Can't expand to unknown register!");
2582 Results
.push_back(DAG
.getCopyFromReg(Node
->getOperand(1), dl
, Reg
,
2583 Node
->getValueType(0)));
2584 Results
.push_back(Results
[0].getValue(1));
2587 case ISD::EXCEPTIONADDR
: {
2588 unsigned Reg
= TLI
.getExceptionAddressRegister();
2589 assert(Reg
&& "Can't expand to unknown register!");
2590 Results
.push_back(DAG
.getCopyFromReg(Node
->getOperand(0), dl
, Reg
,
2591 Node
->getValueType(0)));
2592 Results
.push_back(Results
[0].getValue(1));
2596 MVT VT
= Node
->getValueType(0);
2597 assert(TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
) &&
2598 TLI
.isOperationLegalOrCustom(ISD::XOR
, VT
) &&
2599 "Don't know how to expand this subtraction!");
2600 Tmp1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Node
->getOperand(1),
2601 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
));
2602 Tmp1
= DAG
.getNode(ISD::ADD
, dl
, VT
, Tmp2
, DAG
.getConstant(1, VT
));
2603 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, VT
, Node
->getOperand(0), Tmp1
));
2608 MVT VT
= Node
->getValueType(0);
2609 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
2610 bool isSigned
= Node
->getOpcode() == ISD::SREM
;
2611 unsigned DivOpc
= isSigned
? ISD::SDIV
: ISD::UDIV
;
2612 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
2613 Tmp2
= Node
->getOperand(0);
2614 Tmp3
= Node
->getOperand(1);
2615 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
2616 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Tmp2
, Tmp3
).getValue(1);
2617 } else if (TLI
.isOperationLegalOrCustom(DivOpc
, VT
)) {
2619 Tmp1
= DAG
.getNode(DivOpc
, dl
, VT
, Tmp2
, Tmp3
);
2620 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, VT
, Tmp1
, Tmp3
);
2621 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, Tmp2
, Tmp1
);
2622 } else if (isSigned
) {
2623 Tmp1
= ExpandIntLibCall(Node
, true, RTLIB::SREM_I16
, RTLIB::SREM_I32
,
2624 RTLIB::SREM_I64
, RTLIB::SREM_I128
);
2626 Tmp1
= ExpandIntLibCall(Node
, false, RTLIB::UREM_I16
, RTLIB::UREM_I32
,
2627 RTLIB::UREM_I64
, RTLIB::UREM_I128
);
2629 Results
.push_back(Tmp1
);
2634 bool isSigned
= Node
->getOpcode() == ISD::SDIV
;
2635 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
2636 MVT VT
= Node
->getValueType(0);
2637 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
2638 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
))
2639 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Node
->getOperand(0),
2640 Node
->getOperand(1));
2642 Tmp1
= ExpandIntLibCall(Node
, true, RTLIB::SDIV_I16
, RTLIB::SDIV_I32
,
2643 RTLIB::SDIV_I64
, RTLIB::SDIV_I128
);
2645 Tmp1
= ExpandIntLibCall(Node
, false, RTLIB::UDIV_I16
, RTLIB::UDIV_I32
,
2646 RTLIB::UDIV_I64
, RTLIB::UDIV_I128
);
2647 Results
.push_back(Tmp1
);
2652 unsigned ExpandOpcode
= Node
->getOpcode() == ISD::MULHU
? ISD::UMUL_LOHI
:
2654 MVT VT
= Node
->getValueType(0);
2655 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
2656 assert(TLI
.isOperationLegalOrCustom(ExpandOpcode
, VT
) &&
2657 "If this wasn't legal, it shouldn't have been created!");
2658 Tmp1
= DAG
.getNode(ExpandOpcode
, dl
, VTs
, Node
->getOperand(0),
2659 Node
->getOperand(1));
2660 Results
.push_back(Tmp1
.getValue(1));
2664 MVT VT
= Node
->getValueType(0);
2665 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
2666 // See if multiply or divide can be lowered using two-result operations.
2667 // We just need the low half of the multiply; try both the signed
2668 // and unsigned forms. If the target supports both SMUL_LOHI and
2669 // UMUL_LOHI, form a preference by checking which forms of plain
2670 // MULH it supports.
2671 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
);
2672 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
);
2673 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
);
2674 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
);
2675 unsigned OpToUse
= 0;
2676 if (HasSMUL_LOHI
&& !HasMULHS
) {
2677 OpToUse
= ISD::SMUL_LOHI
;
2678 } else if (HasUMUL_LOHI
&& !HasMULHU
) {
2679 OpToUse
= ISD::UMUL_LOHI
;
2680 } else if (HasSMUL_LOHI
) {
2681 OpToUse
= ISD::SMUL_LOHI
;
2682 } else if (HasUMUL_LOHI
) {
2683 OpToUse
= ISD::UMUL_LOHI
;
2686 Results
.push_back(DAG
.getNode(OpToUse
, dl
, VTs
, Node
->getOperand(0),
2687 Node
->getOperand(1)));
2690 Tmp1
= ExpandIntLibCall(Node
, false, RTLIB::MUL_I16
, RTLIB::MUL_I32
,
2691 RTLIB::MUL_I64
, RTLIB::MUL_I128
);
2692 Results
.push_back(Tmp1
);
2697 SDValue LHS
= Node
->getOperand(0);
2698 SDValue RHS
= Node
->getOperand(1);
2699 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::SADDO
?
2700 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
2702 Results
.push_back(Sum
);
2703 MVT OType
= Node
->getValueType(1);
2705 SDValue Zero
= DAG
.getConstant(0, LHS
.getValueType());
2707 // LHSSign -> LHS >= 0
2708 // RHSSign -> RHS >= 0
2709 // SumSign -> Sum >= 0
2712 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2714 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2716 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
2717 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
2718 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
2719 Node
->getOpcode() == ISD::SADDO
?
2720 ISD::SETEQ
: ISD::SETNE
);
2722 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Sum
, Zero
, ISD::SETGE
);
2723 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
2725 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
2726 Results
.push_back(Cmp
);
2731 SDValue LHS
= Node
->getOperand(0);
2732 SDValue RHS
= Node
->getOperand(1);
2733 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::UADDO
?
2734 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
2736 Results
.push_back(Sum
);
2737 Results
.push_back(DAG
.getSetCC(dl
, Node
->getValueType(1), Sum
, LHS
,
2738 Node
->getOpcode () == ISD::UADDO
?
2739 ISD::SETULT
: ISD::SETUGT
));
2744 MVT VT
= Node
->getValueType(0);
2745 SDValue LHS
= Node
->getOperand(0);
2746 SDValue RHS
= Node
->getOperand(1);
2749 static unsigned Ops
[2][3] =
2750 { { ISD::MULHU
, ISD::UMUL_LOHI
, ISD::ZERO_EXTEND
},
2751 { ISD::MULHS
, ISD::SMUL_LOHI
, ISD::SIGN_EXTEND
}};
2752 bool isSigned
= Node
->getOpcode() == ISD::SMULO
;
2753 if (TLI
.isOperationLegalOrCustom(Ops
[isSigned
][0], VT
)) {
2754 BottomHalf
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
2755 TopHalf
= DAG
.getNode(Ops
[isSigned
][0], dl
, VT
, LHS
, RHS
);
2756 } else if (TLI
.isOperationLegalOrCustom(Ops
[isSigned
][1], VT
)) {
2757 BottomHalf
= DAG
.getNode(Ops
[isSigned
][1], dl
, DAG
.getVTList(VT
, VT
), LHS
,
2759 TopHalf
= BottomHalf
.getValue(1);
2760 } else if (TLI
.isTypeLegal(MVT::getIntegerVT(VT
.getSizeInBits() * 2))) {
2761 MVT WideVT
= MVT::getIntegerVT(VT
.getSizeInBits() * 2);
2762 LHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, LHS
);
2763 RHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, RHS
);
2764 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, WideVT
, LHS
, RHS
);
2765 BottomHalf
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, VT
, Tmp1
,
2766 DAG
.getIntPtrConstant(0));
2767 TopHalf
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, VT
, Tmp1
,
2768 DAG
.getIntPtrConstant(1));
2770 // FIXME: We should be able to fall back to a libcall with an illegal
2771 // type in some cases cases.
2772 // Also, we can fall back to a division in some cases, but that's a big
2773 // performance hit in the general case.
2774 llvm_unreachable("Don't know how to expand this operation yet!");
2777 Tmp1
= DAG
.getConstant(VT
.getSizeInBits() - 1, TLI
.getShiftAmountTy());
2778 Tmp1
= DAG
.getNode(ISD::SRA
, dl
, VT
, BottomHalf
, Tmp1
);
2779 TopHalf
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(VT
), TopHalf
, Tmp1
,
2782 TopHalf
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(VT
), TopHalf
,
2783 DAG
.getConstant(0, VT
), ISD::SETNE
);
2785 Results
.push_back(BottomHalf
);
2786 Results
.push_back(TopHalf
);
2789 case ISD::BUILD_PAIR
: {
2790 MVT PairTy
= Node
->getValueType(0);
2791 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PairTy
, Node
->getOperand(0));
2792 Tmp2
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, PairTy
, Node
->getOperand(1));
2793 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, PairTy
, Tmp2
,
2794 DAG
.getConstant(PairTy
.getSizeInBits()/2,
2795 TLI
.getShiftAmountTy()));
2796 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, PairTy
, Tmp1
, Tmp2
));
2800 Tmp1
= Node
->getOperand(0);
2801 Tmp2
= Node
->getOperand(1);
2802 Tmp3
= Node
->getOperand(2);
2803 if (Tmp1
.getOpcode() == ISD::SETCC
) {
2804 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
.getOperand(0), Tmp1
.getOperand(1),
2806 cast
<CondCodeSDNode
>(Tmp1
.getOperand(2))->get());
2808 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
,
2809 DAG
.getConstant(0, Tmp1
.getValueType()),
2810 Tmp2
, Tmp3
, ISD::SETNE
);
2812 Results
.push_back(Tmp1
);
2815 SDValue Chain
= Node
->getOperand(0);
2816 SDValue Table
= Node
->getOperand(1);
2817 SDValue Index
= Node
->getOperand(2);
2819 MVT PTy
= TLI
.getPointerTy();
2820 MachineFunction
&MF
= DAG
.getMachineFunction();
2821 unsigned EntrySize
= MF
.getJumpTableInfo()->getEntrySize();
2822 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
,
2823 Index
, DAG
.getConstant(EntrySize
, PTy
));
2824 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Index
, Table
);
2826 MVT MemVT
= MVT::getIntegerVT(EntrySize
* 8);
2827 SDValue LD
= DAG
.getExtLoad(ISD::SEXTLOAD
, dl
, PTy
, Chain
, Addr
,
2828 PseudoSourceValue::getJumpTable(), 0, MemVT
);
2830 if (TLI
.getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
2831 // For PIC, the sequence is:
2832 // BRIND(load(Jumptable + index) + RelocBase)
2833 // RelocBase can be JumpTable, GOT or some sort of global base.
2834 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Addr
,
2835 TLI
.getPICJumpTableRelocBase(Table
, DAG
));
2837 Tmp1
= DAG
.getNode(ISD::BRIND
, dl
, MVT::Other
, LD
.getValue(1), Addr
);
2838 Results
.push_back(Tmp1
);
2842 // Expand brcond's setcc into its constituent parts and create a BR_CC
2844 Tmp1
= Node
->getOperand(0);
2845 Tmp2
= Node
->getOperand(1);
2846 if (Tmp2
.getOpcode() == ISD::SETCC
) {
2847 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
,
2848 Tmp1
, Tmp2
.getOperand(2),
2849 Tmp2
.getOperand(0), Tmp2
.getOperand(1),
2850 Node
->getOperand(2));
2852 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
, Tmp1
,
2853 DAG
.getCondCode(ISD::SETNE
), Tmp2
,
2854 DAG
.getConstant(0, Tmp2
.getValueType()),
2855 Node
->getOperand(2));
2857 Results
.push_back(Tmp1
);
2860 Tmp1
= Node
->getOperand(0);
2861 Tmp2
= Node
->getOperand(1);
2862 Tmp3
= Node
->getOperand(2);
2863 LegalizeSetCCCondCode(Node
->getValueType(0), Tmp1
, Tmp2
, Tmp3
, dl
);
2865 // If we expanded the SETCC into an AND/OR, return the new node
2866 if (Tmp2
.getNode() == 0) {
2867 Results
.push_back(Tmp1
);
2871 // Otherwise, SETCC for the given comparison type must be completely
2872 // illegal; expand it into a SELECT_CC.
2873 MVT VT
= Node
->getValueType(0);
2874 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Tmp1
, Tmp2
,
2875 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
), Tmp3
);
2876 Results
.push_back(Tmp1
);
2879 case ISD::SELECT_CC
: {
2880 Tmp1
= Node
->getOperand(0); // LHS
2881 Tmp2
= Node
->getOperand(1); // RHS
2882 Tmp3
= Node
->getOperand(2); // True
2883 Tmp4
= Node
->getOperand(3); // False
2884 SDValue CC
= Node
->getOperand(4);
2886 LegalizeSetCCCondCode(TLI
.getSetCCResultType(Tmp1
.getValueType()),
2887 Tmp1
, Tmp2
, CC
, dl
);
2889 assert(!Tmp2
.getNode() && "Can't legalize SELECT_CC with legal condition!");
2890 Tmp2
= DAG
.getConstant(0, Tmp1
.getValueType());
2891 CC
= DAG
.getCondCode(ISD::SETNE
);
2892 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
2894 Results
.push_back(Tmp1
);
2898 Tmp1
= Node
->getOperand(0); // Chain
2899 Tmp2
= Node
->getOperand(2); // LHS
2900 Tmp3
= Node
->getOperand(3); // RHS
2901 Tmp4
= Node
->getOperand(1); // CC
2903 LegalizeSetCCCondCode(TLI
.getSetCCResultType(Tmp2
.getValueType()),
2904 Tmp2
, Tmp3
, Tmp4
, dl
);
2905 LastCALLSEQ_END
= DAG
.getEntryNode();
2907 assert(!Tmp3
.getNode() && "Can't legalize BR_CC with legal condition!");
2908 Tmp3
= DAG
.getConstant(0, Tmp2
.getValueType());
2909 Tmp4
= DAG
.getCondCode(ISD::SETNE
);
2910 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
, Tmp4
, Tmp2
,
2911 Tmp3
, Node
->getOperand(4));
2912 Results
.push_back(Tmp1
);
2915 case ISD::GLOBAL_OFFSET_TABLE
:
2916 case ISD::GlobalAddress
:
2917 case ISD::GlobalTLSAddress
:
2918 case ISD::ExternalSymbol
:
2919 case ISD::ConstantPool
:
2920 case ISD::JumpTable
:
2921 case ISD::INTRINSIC_W_CHAIN
:
2922 case ISD::INTRINSIC_WO_CHAIN
:
2923 case ISD::INTRINSIC_VOID
:
2924 // FIXME: Custom lowering for these operations shouldn't return null!
2925 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
2926 Results
.push_back(SDValue(Node
, i
));
2930 void SelectionDAGLegalize::PromoteNode(SDNode
*Node
,
2931 SmallVectorImpl
<SDValue
> &Results
) {
2932 MVT OVT
= Node
->getValueType(0);
2933 if (Node
->getOpcode() == ISD::UINT_TO_FP
||
2934 Node
->getOpcode() == ISD::SINT_TO_FP
||
2935 Node
->getOpcode() == ISD::SETCC
) {
2936 OVT
= Node
->getOperand(0).getValueType();
2938 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
2939 DebugLoc dl
= Node
->getDebugLoc();
2940 SDValue Tmp1
, Tmp2
, Tmp3
;
2941 switch (Node
->getOpcode()) {
2945 // Zero extend the argument.
2946 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
2947 // Perform the larger operation.
2948 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
2949 if (Node
->getOpcode() == ISD::CTTZ
) {
2950 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2951 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
),
2952 Tmp1
, DAG
.getConstant(NVT
.getSizeInBits(), NVT
),
2954 Tmp1
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp2
,
2955 DAG
.getConstant(OVT
.getSizeInBits(), NVT
), Tmp1
);
2956 } else if (Node
->getOpcode() == ISD::CTLZ
) {
2957 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2958 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
2959 DAG
.getConstant(NVT
.getSizeInBits() -
2960 OVT
.getSizeInBits(), NVT
));
2962 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
2965 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
2966 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
2967 Tmp1
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Tmp1
);
2968 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
,
2969 DAG
.getConstant(DiffBits
, TLI
.getShiftAmountTy()));
2970 Results
.push_back(Tmp1
);
2973 case ISD::FP_TO_UINT
:
2974 case ISD::FP_TO_SINT
:
2975 Tmp1
= PromoteLegalFP_TO_INT(Node
->getOperand(0), Node
->getValueType(0),
2976 Node
->getOpcode() == ISD::FP_TO_SINT
, dl
);
2977 Results
.push_back(Tmp1
);
2979 case ISD::UINT_TO_FP
:
2980 case ISD::SINT_TO_FP
:
2981 Tmp1
= PromoteLegalINT_TO_FP(Node
->getOperand(0), Node
->getValueType(0),
2982 Node
->getOpcode() == ISD::SINT_TO_FP
, dl
);
2983 Results
.push_back(Tmp1
);
2988 unsigned ExtOp
, TruncOp
;
2989 if (OVT
.isVector()) {
2990 ExtOp
= ISD::BIT_CONVERT
;
2991 TruncOp
= ISD::BIT_CONVERT
;
2992 } else if (OVT
.isInteger()) {
2993 ExtOp
= ISD::ANY_EXTEND
;
2994 TruncOp
= ISD::TRUNCATE
;
2996 llvm_report_error("Cannot promote logic operation");
2998 // Promote each of the values to the new type.
2999 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
3000 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
3001 // Perform the larger operation, then convert back
3002 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
3003 Results
.push_back(DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
));
3007 unsigned ExtOp
, TruncOp
;
3008 if (Node
->getValueType(0).isVector()) {
3009 ExtOp
= ISD::BIT_CONVERT
;
3010 TruncOp
= ISD::BIT_CONVERT
;
3011 } else if (Node
->getValueType(0).isInteger()) {
3012 ExtOp
= ISD::ANY_EXTEND
;
3013 TruncOp
= ISD::TRUNCATE
;
3015 ExtOp
= ISD::FP_EXTEND
;
3016 TruncOp
= ISD::FP_ROUND
;
3018 Tmp1
= Node
->getOperand(0);
3019 // Promote each of the values to the new type.
3020 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
3021 Tmp3
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
3022 // Perform the larger operation, then round down.
3023 Tmp1
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp1
, Tmp2
, Tmp3
);
3024 if (TruncOp
!= ISD::FP_ROUND
)
3025 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
);
3027 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
,
3028 DAG
.getIntPtrConstant(0));
3029 Results
.push_back(Tmp1
);
3032 case ISD::VECTOR_SHUFFLE
: {
3033 SmallVector
<int, 8> Mask
;
3034 cast
<ShuffleVectorSDNode
>(Node
)->getMask(Mask
);
3036 // Cast the two input vectors.
3037 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
3038 Tmp2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(1));
3040 // Convert the shuffle mask to the right # elements.
3041 Tmp1
= ShuffleWithNarrowerEltType(NVT
, OVT
, dl
, Tmp1
, Tmp2
, Mask
);
3042 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, OVT
, Tmp1
);
3043 Results
.push_back(Tmp1
);
3047 unsigned ExtOp
= ISD::FP_EXTEND
;
3048 if (NVT
.isInteger()) {
3049 ISD::CondCode CCCode
=
3050 cast
<CondCodeSDNode
>(Node
->getOperand(2))->get();
3051 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
3053 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
3054 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
3055 Results
.push_back(DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0),
3056 Tmp1
, Tmp2
, Node
->getOperand(2)));
3062 // SelectionDAG::Legalize - This is the entry point for the file.
3064 void SelectionDAG::Legalize(bool TypesNeedLegalizing
,
3065 CodeGenOpt::Level OptLevel
) {
3066 /// run - This is the main entry point to this class.
3068 SelectionDAGLegalize(*this, OptLevel
).LegalizeDAG();