It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blob4be5b3d6630d4c09f8e10bd2dfdf61c5a5c1c3f8
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include <map>
42 using namespace llvm;
44 //===----------------------------------------------------------------------===//
45 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46 /// hacks on it until the target machine can handle it. This involves
47 /// eliminating value sizes the machine cannot handle (promoting small sizes to
48 /// large sizes or splitting up large values into small values) as well as
49 /// eliminating operations the machine cannot handle.
50 ///
51 /// This code also does a small amount of optimization and recognition of idioms
52 /// as part of its processing. For example, if a target does not support a
53 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54 /// will attempt merge setcc and brc instructions into brcc's.
55 ///
56 namespace {
57 class VISIBILITY_HIDDEN SelectionDAGLegalize {
58 TargetLowering &TLI;
59 SelectionDAG &DAG;
60 CodeGenOpt::Level OptLevel;
62 // Libcall insertion helpers.
64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65 /// legalized. We use this to ensure that calls are properly serialized
66 /// against each other, including inserted libcalls.
67 SDValue LastCALLSEQ_END;
69 /// IsLegalizingCall - This member is used *only* for purposes of providing
70 /// helpful assertions that a libcall isn't created while another call is
71 /// being legalized (which could lead to non-serialized call sequences).
72 bool IsLegalizingCall;
74 enum LegalizeAction {
75 Legal, // The target natively supports this operation.
76 Promote, // This operation should be executed in a larger type.
77 Expand // Try to expand this to other ops, otherwise use a libcall.
80 /// ValueTypeActions - This is a bitvector that contains two bits for each
81 /// value type, where the two bits correspond to the LegalizeAction enum.
82 /// This can be queried with "getTypeAction(VT)".
83 TargetLowering::ValueTypeActionImpl ValueTypeActions;
85 /// LegalizedNodes - For nodes that are of legal width, and that have more
86 /// than one use, this map indicates what regularized operand to use. This
87 /// allows us to avoid legalizing the same thing more than once.
88 DenseMap<SDValue, SDValue> LegalizedNodes;
90 void AddLegalizedOperand(SDValue From, SDValue To) {
91 LegalizedNodes.insert(std::make_pair(From, To));
92 // If someone requests legalization of the new node, return itself.
93 if (From != To)
94 LegalizedNodes.insert(std::make_pair(To, To));
97 public:
98 SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100 /// getTypeAction - Return how we should legalize values of this type, either
101 /// it is already legal or we need to expand it into multiple registers of
102 /// smaller integer type, or we need to promote it to a larger type.
103 LegalizeAction getTypeAction(MVT VT) const {
104 return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
107 /// isTypeLegal - Return true if this type is legal on this target.
109 bool isTypeLegal(MVT VT) const {
110 return getTypeAction(VT) == Legal;
113 void LegalizeDAG();
115 private:
116 /// LegalizeOp - We know that the specified value has a legal type.
117 /// Recursively ensure that the operands have legal types, then return the
118 /// result.
119 SDValue LegalizeOp(SDValue O);
121 SDValue OptimizeFloatStore(StoreSDNode *ST);
123 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
125 /// is necessary to spill the vector being inserted into to memory, perform
126 /// the insert there, and then read the result back.
127 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128 SDValue Idx, DebugLoc dl);
129 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130 SDValue Idx, DebugLoc dl);
132 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133 /// performs the same shuffe in terms of order or result bytes, but on a type
134 /// whose vector element type is narrower than the original shuffle type.
135 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136 SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
137 SDValue N1, SDValue N2,
138 SmallVectorImpl<int> &Mask) const;
140 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144 DebugLoc dl);
146 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
148 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
149 RTLIB::Libcall Call_PPCF128);
150 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
151 RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
152 RTLIB::Libcall Call_I128);
154 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
155 SDValue ExpandBUILD_VECTOR(SDNode *Node);
156 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
157 SDValue ExpandDBG_STOPPOINT(SDNode *Node);
158 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
159 SmallVectorImpl<SDValue> &Results);
160 SDValue ExpandFCOPYSIGN(SDNode *Node);
161 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
162 DebugLoc dl);
163 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
164 DebugLoc dl);
165 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
166 DebugLoc dl);
168 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
169 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
172 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
175 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
180 /// performs the same shuffe in terms of order or result bytes, but on a type
181 /// whose vector element type is narrower than the original shuffle type.
182 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
183 SDValue
184 SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
185 SDValue N1, SDValue N2,
186 SmallVectorImpl<int> &Mask) const {
187 MVT EltVT = NVT.getVectorElementType();
188 unsigned NumMaskElts = VT.getVectorNumElements();
189 unsigned NumDestElts = NVT.getVectorNumElements();
190 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
192 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
194 if (NumEltsGrowth == 1)
195 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
197 SmallVector<int, 8> NewMask;
198 for (unsigned i = 0; i != NumMaskElts; ++i) {
199 int Idx = Mask[i];
200 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201 if (Idx < 0)
202 NewMask.push_back(-1);
203 else
204 NewMask.push_back(Idx * NumEltsGrowth + j);
207 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
212 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213 CodeGenOpt::Level ol)
214 : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
215 ValueTypeActions(TLI.getValueTypeActions()) {
216 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
217 "Too many value types for ValueTypeActions to hold!");
220 void SelectionDAGLegalize::LegalizeDAG() {
221 LastCALLSEQ_END = DAG.getEntryNode();
222 IsLegalizingCall = false;
224 // The legalize process is inherently a bottom-up recursive process (users
225 // legalize their uses before themselves). Given infinite stack space, we
226 // could just start legalizing on the root and traverse the whole graph. In
227 // practice however, this causes us to run out of stack space on large basic
228 // blocks. To avoid this problem, compute an ordering of the nodes where each
229 // node is only legalized after all of its operands are legalized.
230 DAG.AssignTopologicalOrder();
231 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
232 E = prior(DAG.allnodes_end()); I != next(E); ++I)
233 LegalizeOp(SDValue(I, 0));
235 // Finally, it's possible the root changed. Get the new root.
236 SDValue OldRoot = DAG.getRoot();
237 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
238 DAG.setRoot(LegalizedNodes[OldRoot]);
240 LegalizedNodes.clear();
242 // Remove dead nodes now.
243 DAG.RemoveDeadNodes();
247 /// FindCallEndFromCallStart - Given a chained node that is part of a call
248 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
249 static SDNode *FindCallEndFromCallStart(SDNode *Node) {
250 if (Node->getOpcode() == ISD::CALLSEQ_END)
251 return Node;
252 if (Node->use_empty())
253 return 0; // No CallSeqEnd
255 // The chain is usually at the end.
256 SDValue TheChain(Node, Node->getNumValues()-1);
257 if (TheChain.getValueType() != MVT::Other) {
258 // Sometimes it's at the beginning.
259 TheChain = SDValue(Node, 0);
260 if (TheChain.getValueType() != MVT::Other) {
261 // Otherwise, hunt for it.
262 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
263 if (Node->getValueType(i) == MVT::Other) {
264 TheChain = SDValue(Node, i);
265 break;
268 // Otherwise, we walked into a node without a chain.
269 if (TheChain.getValueType() != MVT::Other)
270 return 0;
274 for (SDNode::use_iterator UI = Node->use_begin(),
275 E = Node->use_end(); UI != E; ++UI) {
277 // Make sure to only follow users of our token chain.
278 SDNode *User = *UI;
279 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
280 if (User->getOperand(i) == TheChain)
281 if (SDNode *Result = FindCallEndFromCallStart(User))
282 return Result;
284 return 0;
287 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
288 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
289 static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
290 assert(Node && "Didn't find callseq_start for a call??");
291 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293 assert(Node->getOperand(0).getValueType() == MVT::Other &&
294 "Node doesn't have a token chain argument!");
295 return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
298 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
299 /// see if any uses can reach Dest. If no dest operands can get to dest,
300 /// legalize them, legalize ourself, and return false, otherwise, return true.
302 /// Keep track of the nodes we fine that actually do lead to Dest in
303 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
305 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
306 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
307 if (N == Dest) return true; // N certainly leads to Dest :)
309 // If we've already processed this node and it does lead to Dest, there is no
310 // need to reprocess it.
311 if (NodesLeadingTo.count(N)) return true;
313 // If the first result of this node has been already legalized, then it cannot
314 // reach N.
315 if (LegalizedNodes.count(SDValue(N, 0))) return false;
317 // Okay, this node has not already been legalized. Check and legalize all
318 // operands. If none lead to Dest, then we can legalize this node.
319 bool OperandsLeadToDest = false;
320 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
321 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
322 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324 if (OperandsLeadToDest) {
325 NodesLeadingTo.insert(N);
326 return true;
329 // Okay, this node looks safe, legalize it and return false.
330 LegalizeOp(SDValue(N, 0));
331 return false;
334 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
335 /// a load from the constant pool.
336 static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
337 SelectionDAG &DAG, const TargetLowering &TLI) {
338 bool Extend = false;
339 DebugLoc dl = CFP->getDebugLoc();
341 // If a FP immediate is precise when represented as a float and if the
342 // target can do an extending load from float to double, we put it into
343 // the constant pool as a float, even if it's is statically typed as a
344 // double. This shrinks FP constants and canonicalizes them for targets where
345 // an FP extending load is the same cost as a normal load (such as on the x87
346 // fp stack or PPC FP unit).
347 MVT VT = CFP->getValueType(0);
348 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
349 if (!UseCP) {
350 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
351 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
352 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
355 MVT OrigVT = VT;
356 MVT SVT = VT;
357 while (SVT != MVT::f32) {
358 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
359 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
360 // Only do this if the target has a native EXTLOAD instruction from
361 // smaller type.
362 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
363 TLI.ShouldShrinkFPConstant(OrigVT)) {
364 const Type *SType = SVT.getTypeForMVT();
365 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
366 VT = SVT;
367 Extend = true;
371 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
372 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
373 if (Extend)
374 return DAG.getExtLoad(ISD::EXTLOAD, dl,
375 OrigVT, DAG.getEntryNode(),
376 CPIdx, PseudoSourceValue::getConstantPool(),
377 0, VT, false, Alignment);
378 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
379 PseudoSourceValue::getConstantPool(), 0, false, Alignment);
382 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
383 static
384 SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
385 const TargetLowering &TLI) {
386 SDValue Chain = ST->getChain();
387 SDValue Ptr = ST->getBasePtr();
388 SDValue Val = ST->getValue();
389 MVT VT = Val.getValueType();
390 int Alignment = ST->getAlignment();
391 int SVOffset = ST->getSrcValueOffset();
392 DebugLoc dl = ST->getDebugLoc();
393 if (ST->getMemoryVT().isFloatingPoint() ||
394 ST->getMemoryVT().isVector()) {
395 MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
396 if (TLI.isTypeLegal(intVT)) {
397 // Expand to a bitconvert of the value to the integer type of the
398 // same size, then a (misaligned) int store.
399 // FIXME: Does not handle truncating floating point stores!
400 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
401 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
402 SVOffset, ST->isVolatile(), Alignment);
403 } else {
404 // Do a (aligned) store to a stack slot, then copy from the stack slot
405 // to the final destination using (unaligned) integer loads and stores.
406 MVT StoredVT = ST->getMemoryVT();
407 MVT RegVT =
408 TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
409 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
410 unsigned RegBytes = RegVT.getSizeInBits() / 8;
411 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413 // Make sure the stack slot is also aligned for the register type.
414 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416 // Perform the original store, only redirected to the stack slot.
417 SDValue Store = DAG.getTruncStore(Chain, dl,
418 Val, StackPtr, NULL, 0, StoredVT);
419 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
420 SmallVector<SDValue, 8> Stores;
421 unsigned Offset = 0;
423 // Do all but one copies using the full register width.
424 for (unsigned i = 1; i < NumRegs; i++) {
425 // Load one integer register's worth from the stack slot.
426 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
427 // Store it to the final location. Remember the store.
428 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
429 ST->getSrcValue(), SVOffset + Offset,
430 ST->isVolatile(),
431 MinAlign(ST->getAlignment(), Offset)));
432 // Increment the pointers.
433 Offset += RegBytes;
434 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
435 Increment);
436 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
439 // The last store may be partial. Do a truncating store. On big-endian
440 // machines this requires an extending load from the stack slot to ensure
441 // that the bits are in the right place.
442 MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
444 // Load from the stack slot.
445 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
446 NULL, 0, MemVT);
448 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
449 ST->getSrcValue(), SVOffset + Offset,
450 MemVT, ST->isVolatile(),
451 MinAlign(ST->getAlignment(), Offset)));
452 // The order of the stores doesn't matter - say it with a TokenFactor.
453 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
454 Stores.size());
457 assert(ST->getMemoryVT().isInteger() &&
458 !ST->getMemoryVT().isVector() &&
459 "Unaligned store of unknown type.");
460 // Get the half-size VT
461 MVT NewStoredVT =
462 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
463 int NumBits = NewStoredVT.getSizeInBits();
464 int IncrementSize = NumBits / 8;
466 // Divide the stored value in two parts.
467 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
468 SDValue Lo = Val;
469 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
471 // Store the two parts
472 SDValue Store1, Store2;
473 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
474 ST->getSrcValue(), SVOffset, NewStoredVT,
475 ST->isVolatile(), Alignment);
476 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
477 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
478 Alignment = MinAlign(Alignment, IncrementSize);
479 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
480 ST->getSrcValue(), SVOffset + IncrementSize,
481 NewStoredVT, ST->isVolatile(), Alignment);
483 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
486 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
487 static
488 SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
489 const TargetLowering &TLI) {
490 int SVOffset = LD->getSrcValueOffset();
491 SDValue Chain = LD->getChain();
492 SDValue Ptr = LD->getBasePtr();
493 MVT VT = LD->getValueType(0);
494 MVT LoadedVT = LD->getMemoryVT();
495 DebugLoc dl = LD->getDebugLoc();
496 if (VT.isFloatingPoint() || VT.isVector()) {
497 MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
498 if (TLI.isTypeLegal(intVT)) {
499 // Expand to a (misaligned) integer load of the same size,
500 // then bitconvert to floating point or vector.
501 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
502 SVOffset, LD->isVolatile(),
503 LD->getAlignment());
504 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
505 if (VT.isFloatingPoint() && LoadedVT != VT)
506 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
508 SDValue Ops[] = { Result, Chain };
509 return DAG.getMergeValues(Ops, 2, dl);
510 } else {
511 // Copy the value to a (aligned) stack slot using (unaligned) integer
512 // loads and stores, then do a (aligned) load from the stack slot.
513 MVT RegVT = TLI.getRegisterType(intVT);
514 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
515 unsigned RegBytes = RegVT.getSizeInBits() / 8;
516 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
518 // Make sure the stack slot is also aligned for the register type.
519 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
521 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
522 SmallVector<SDValue, 8> Stores;
523 SDValue StackPtr = StackBase;
524 unsigned Offset = 0;
526 // Do all but one copies using the full register width.
527 for (unsigned i = 1; i < NumRegs; i++) {
528 // Load one integer register's worth from the original location.
529 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
530 SVOffset + Offset, LD->isVolatile(),
531 MinAlign(LD->getAlignment(), Offset));
532 // Follow the load with a store to the stack slot. Remember the store.
533 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
534 NULL, 0));
535 // Increment the pointers.
536 Offset += RegBytes;
537 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
538 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
539 Increment);
542 // The last copy may be partial. Do an extending load.
543 MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
544 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
545 LD->getSrcValue(), SVOffset + Offset,
546 MemVT, LD->isVolatile(),
547 MinAlign(LD->getAlignment(), Offset));
548 // Follow the load with a store to the stack slot. Remember the store.
549 // On big-endian machines this requires a truncating store to ensure
550 // that the bits end up in the right place.
551 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
552 NULL, 0, MemVT));
554 // The order of the stores doesn't matter - say it with a TokenFactor.
555 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
556 Stores.size());
558 // Finally, perform the original load only redirected to the stack slot.
559 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
560 NULL, 0, LoadedVT);
562 // Callers expect a MERGE_VALUES node.
563 SDValue Ops[] = { Load, TF };
564 return DAG.getMergeValues(Ops, 2, dl);
567 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
568 "Unaligned load of unsupported type.");
570 // Compute the new VT that is half the size of the old one. This is an
571 // integer MVT.
572 unsigned NumBits = LoadedVT.getSizeInBits();
573 MVT NewLoadedVT;
574 NewLoadedVT = MVT::getIntegerVT(NumBits/2);
575 NumBits >>= 1;
577 unsigned Alignment = LD->getAlignment();
578 unsigned IncrementSize = NumBits / 8;
579 ISD::LoadExtType HiExtType = LD->getExtensionType();
581 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
582 if (HiExtType == ISD::NON_EXTLOAD)
583 HiExtType = ISD::ZEXTLOAD;
585 // Load the value in two parts
586 SDValue Lo, Hi;
587 if (TLI.isLittleEndian()) {
588 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
589 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
590 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
591 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
592 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
593 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
594 MinAlign(Alignment, IncrementSize));
595 } else {
596 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
597 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
598 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
599 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
600 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
601 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
602 MinAlign(Alignment, IncrementSize));
605 // aggregate the two parts
606 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
607 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
608 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
610 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
611 Hi.getValue(1));
613 SDValue Ops[] = { Result, TF };
614 return DAG.getMergeValues(Ops, 2, dl);
617 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
618 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
619 /// is necessary to spill the vector being inserted into to memory, perform
620 /// the insert there, and then read the result back.
621 SDValue SelectionDAGLegalize::
622 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
623 DebugLoc dl) {
624 SDValue Tmp1 = Vec;
625 SDValue Tmp2 = Val;
626 SDValue Tmp3 = Idx;
628 // If the target doesn't support this, we have to spill the input vector
629 // to a temporary stack slot, update the element, then reload it. This is
630 // badness. We could also load the value into a vector register (either
631 // with a "move to register" or "extload into register" instruction, then
632 // permute it into place, if the idx is a constant and if the idx is
633 // supported by the target.
634 MVT VT = Tmp1.getValueType();
635 MVT EltVT = VT.getVectorElementType();
636 MVT IdxVT = Tmp3.getValueType();
637 MVT PtrVT = TLI.getPointerTy();
638 SDValue StackPtr = DAG.CreateStackTemporary(VT);
640 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
642 // Store the vector.
643 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
644 PseudoSourceValue::getFixedStack(SPFI), 0);
646 // Truncate or zero extend offset to target pointer type.
647 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
648 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
649 // Add the offset to the index.
650 unsigned EltSize = EltVT.getSizeInBits()/8;
651 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
652 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
653 // Store the scalar value.
654 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
655 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
656 // Load the updated vector.
657 return DAG.getLoad(VT, dl, Ch, StackPtr,
658 PseudoSourceValue::getFixedStack(SPFI), 0);
662 SDValue SelectionDAGLegalize::
663 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
664 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
665 // SCALAR_TO_VECTOR requires that the type of the value being inserted
666 // match the element type of the vector being created, except for
667 // integers in which case the inserted value can be over width.
668 MVT EltVT = Vec.getValueType().getVectorElementType();
669 if (Val.getValueType() == EltVT ||
670 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
671 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
672 Vec.getValueType(), Val);
674 unsigned NumElts = Vec.getValueType().getVectorNumElements();
675 // We generate a shuffle of InVec and ScVec, so the shuffle mask
676 // should be 0,1,2,3,4,5... with the appropriate element replaced with
677 // elt 0 of the RHS.
678 SmallVector<int, 8> ShufOps;
679 for (unsigned i = 0; i != NumElts; ++i)
680 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
682 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
683 &ShufOps[0]);
686 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
689 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
690 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
691 // FIXME: We shouldn't do this for TargetConstantFP's.
692 // FIXME: move this to the DAG Combiner! Note that we can't regress due
693 // to phase ordering between legalized code and the dag combiner. This
694 // probably means that we need to integrate dag combiner and legalizer
695 // together.
696 // We generally can't do this one for long doubles.
697 SDValue Tmp1 = ST->getChain();
698 SDValue Tmp2 = ST->getBasePtr();
699 SDValue Tmp3;
700 int SVOffset = ST->getSrcValueOffset();
701 unsigned Alignment = ST->getAlignment();
702 bool isVolatile = ST->isVolatile();
703 DebugLoc dl = ST->getDebugLoc();
704 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
705 if (CFP->getValueType(0) == MVT::f32 &&
706 getTypeAction(MVT::i32) == Legal) {
707 Tmp3 = DAG.getConstant(CFP->getValueAPF().
708 bitcastToAPInt().zextOrTrunc(32),
709 MVT::i32);
710 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
711 SVOffset, isVolatile, Alignment);
712 } else if (CFP->getValueType(0) == MVT::f64) {
713 // If this target supports 64-bit registers, do a single 64-bit store.
714 if (getTypeAction(MVT::i64) == Legal) {
715 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
716 zextOrTrunc(64), MVT::i64);
717 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
718 SVOffset, isVolatile, Alignment);
719 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
720 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
721 // stores. If the target supports neither 32- nor 64-bits, this
722 // xform is certainly not worth it.
723 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
724 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
725 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
726 if (TLI.isBigEndian()) std::swap(Lo, Hi);
728 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
729 SVOffset, isVolatile, Alignment);
730 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
731 DAG.getIntPtrConstant(4));
732 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
733 isVolatile, MinAlign(Alignment, 4U));
735 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
739 return SDValue();
742 /// LegalizeOp - We know that the specified value has a legal type, and
743 /// that its operands are legal. Now ensure that the operation itself
744 /// is legal, recursively ensuring that the operands' operations remain
745 /// legal.
746 SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
747 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
748 return Op;
750 SDNode *Node = Op.getNode();
751 DebugLoc dl = Node->getDebugLoc();
753 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
754 assert(getTypeAction(Node->getValueType(i)) == Legal &&
755 "Unexpected illegal type!");
757 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
758 assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
759 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
760 "Unexpected illegal type!");
762 // Note that LegalizeOp may be reentered even from single-use nodes, which
763 // means that we always must cache transformed nodes.
764 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
765 if (I != LegalizedNodes.end()) return I->second;
767 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
768 SDValue Result = Op;
769 bool isCustom = false;
771 // Figure out the correct action; the way to query this varies by opcode
772 TargetLowering::LegalizeAction Action;
773 bool SimpleFinishLegalizing = true;
774 switch (Node->getOpcode()) {
775 case ISD::INTRINSIC_W_CHAIN:
776 case ISD::INTRINSIC_WO_CHAIN:
777 case ISD::INTRINSIC_VOID:
778 case ISD::VAARG:
779 case ISD::STACKSAVE:
780 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
781 break;
782 case ISD::SINT_TO_FP:
783 case ISD::UINT_TO_FP:
784 case ISD::EXTRACT_VECTOR_ELT:
785 Action = TLI.getOperationAction(Node->getOpcode(),
786 Node->getOperand(0).getValueType());
787 break;
788 case ISD::FP_ROUND_INREG:
789 case ISD::SIGN_EXTEND_INREG: {
790 MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
791 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
792 break;
794 case ISD::SELECT_CC:
795 case ISD::SETCC:
796 case ISD::BR_CC: {
797 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
798 Node->getOpcode() == ISD::SETCC ? 2 : 1;
799 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
800 MVT OpVT = Node->getOperand(CompareOperand).getValueType();
801 ISD::CondCode CCCode =
802 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
803 Action = TLI.getCondCodeAction(CCCode, OpVT);
804 if (Action == TargetLowering::Legal) {
805 if (Node->getOpcode() == ISD::SELECT_CC)
806 Action = TLI.getOperationAction(Node->getOpcode(),
807 Node->getValueType(0));
808 else
809 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
811 break;
813 case ISD::LOAD:
814 case ISD::STORE:
815 // FIXME: Model these properly. LOAD and STORE are complicated, and
816 // STORE expects the unlegalized operand in some cases.
817 SimpleFinishLegalizing = false;
818 break;
819 case ISD::CALLSEQ_START:
820 case ISD::CALLSEQ_END:
821 // FIXME: This shouldn't be necessary. These nodes have special properties
822 // dealing with the recursive nature of legalization. Removing this
823 // special case should be done as part of making LegalizeDAG non-recursive.
824 SimpleFinishLegalizing = false;
825 break;
826 case ISD::EXTRACT_ELEMENT:
827 case ISD::FLT_ROUNDS_:
828 case ISD::SADDO:
829 case ISD::SSUBO:
830 case ISD::UADDO:
831 case ISD::USUBO:
832 case ISD::SMULO:
833 case ISD::UMULO:
834 case ISD::FPOWI:
835 case ISD::MERGE_VALUES:
836 case ISD::EH_RETURN:
837 case ISD::FRAME_TO_ARGS_OFFSET:
838 // These operations lie about being legal: when they claim to be legal,
839 // they should actually be expanded.
840 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
841 if (Action == TargetLowering::Legal)
842 Action = TargetLowering::Expand;
843 break;
844 case ISD::TRAMPOLINE:
845 case ISD::FRAMEADDR:
846 case ISD::RETURNADDR:
847 // These operations lie about being legal: when they claim to be legal,
848 // they should actually be custom-lowered.
849 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
850 if (Action == TargetLowering::Legal)
851 Action = TargetLowering::Custom;
852 break;
853 case ISD::BUILD_VECTOR:
854 // A weird case: legalization for BUILD_VECTOR never legalizes the
855 // operands!
856 // FIXME: This really sucks... changing it isn't semantically incorrect,
857 // but it massively pessimizes the code for floating-point BUILD_VECTORs
858 // because ConstantFP operands get legalized into constant pool loads
859 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
860 // though, because BUILD_VECTORS usually get lowered into other nodes
861 // which get legalized properly.
862 SimpleFinishLegalizing = false;
863 break;
864 default:
865 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
866 Action = TargetLowering::Legal;
867 } else {
868 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
870 break;
873 if (SimpleFinishLegalizing) {
874 SmallVector<SDValue, 8> Ops, ResultVals;
875 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
876 Ops.push_back(LegalizeOp(Node->getOperand(i)));
877 switch (Node->getOpcode()) {
878 default: break;
879 case ISD::BR:
880 case ISD::BRIND:
881 case ISD::BR_JT:
882 case ISD::BR_CC:
883 case ISD::BRCOND:
884 // Branches tweak the chain to include LastCALLSEQ_END
885 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
886 LastCALLSEQ_END);
887 Ops[0] = LegalizeOp(Ops[0]);
888 LastCALLSEQ_END = DAG.getEntryNode();
889 break;
890 case ISD::SHL:
891 case ISD::SRL:
892 case ISD::SRA:
893 case ISD::ROTL:
894 case ISD::ROTR:
895 // Legalizing shifts/rotates requires adjusting the shift amount
896 // to the appropriate width.
897 if (!Ops[1].getValueType().isVector())
898 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
899 break;
902 Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
903 Ops.size());
904 switch (Action) {
905 case TargetLowering::Legal:
906 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
907 ResultVals.push_back(Result.getValue(i));
908 break;
909 case TargetLowering::Custom:
910 // FIXME: The handling for custom lowering with multiple results is
911 // a complete mess.
912 Tmp1 = TLI.LowerOperation(Result, DAG);
913 if (Tmp1.getNode()) {
914 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
915 if (e == 1)
916 ResultVals.push_back(Tmp1);
917 else
918 ResultVals.push_back(Tmp1.getValue(i));
920 break;
923 // FALL THROUGH
924 case TargetLowering::Expand:
925 ExpandNode(Result.getNode(), ResultVals);
926 break;
927 case TargetLowering::Promote:
928 PromoteNode(Result.getNode(), ResultVals);
929 break;
931 if (!ResultVals.empty()) {
932 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
933 if (ResultVals[i] != SDValue(Node, i))
934 ResultVals[i] = LegalizeOp(ResultVals[i]);
935 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
937 return ResultVals[Op.getResNo()];
941 switch (Node->getOpcode()) {
942 default:
943 #ifndef NDEBUG
944 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
945 #endif
946 llvm_unreachable("Do not know how to legalize this operator!");
948 case ISD::BUILD_VECTOR:
949 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
950 default: llvm_unreachable("This action is not supported yet!");
951 case TargetLowering::Custom:
952 Tmp3 = TLI.LowerOperation(Result, DAG);
953 if (Tmp3.getNode()) {
954 Result = Tmp3;
955 break;
957 // FALLTHROUGH
958 case TargetLowering::Expand:
959 Result = ExpandBUILD_VECTOR(Result.getNode());
960 break;
962 break;
963 case ISD::CALLSEQ_START: {
964 SDNode *CallEnd = FindCallEndFromCallStart(Node);
966 // Recursively Legalize all of the inputs of the call end that do not lead
967 // to this call start. This ensures that any libcalls that need be inserted
968 // are inserted *before* the CALLSEQ_START.
969 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
970 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
971 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
972 NodesLeadingTo);
975 // Now that we legalized all of the inputs (which may have inserted
976 // libcalls) create the new CALLSEQ_START node.
977 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
979 // Merge in the last call, to ensure that this call start after the last
980 // call ended.
981 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
982 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
983 Tmp1, LastCALLSEQ_END);
984 Tmp1 = LegalizeOp(Tmp1);
987 // Do not try to legalize the target-specific arguments (#1+).
988 if (Tmp1 != Node->getOperand(0)) {
989 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
990 Ops[0] = Tmp1;
991 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
994 // Remember that the CALLSEQ_START is legalized.
995 AddLegalizedOperand(Op.getValue(0), Result);
996 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
997 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
999 // Now that the callseq_start and all of the non-call nodes above this call
1000 // sequence have been legalized, legalize the call itself. During this
1001 // process, no libcalls can/will be inserted, guaranteeing that no calls
1002 // can overlap.
1003 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1004 // Note that we are selecting this call!
1005 LastCALLSEQ_END = SDValue(CallEnd, 0);
1006 IsLegalizingCall = true;
1008 // Legalize the call, starting from the CALLSEQ_END.
1009 LegalizeOp(LastCALLSEQ_END);
1010 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1011 return Result;
1013 case ISD::CALLSEQ_END:
1014 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1015 // will cause this node to be legalized as well as handling libcalls right.
1016 if (LastCALLSEQ_END.getNode() != Node) {
1017 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1018 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1019 assert(I != LegalizedNodes.end() &&
1020 "Legalizing the call start should have legalized this node!");
1021 return I->second;
1024 // Otherwise, the call start has been legalized and everything is going
1025 // according to plan. Just legalize ourselves normally here.
1026 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1027 // Do not try to legalize the target-specific arguments (#1+), except for
1028 // an optional flag input.
1029 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1030 if (Tmp1 != Node->getOperand(0)) {
1031 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1032 Ops[0] = Tmp1;
1033 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1035 } else {
1036 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1037 if (Tmp1 != Node->getOperand(0) ||
1038 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1039 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1040 Ops[0] = Tmp1;
1041 Ops.back() = Tmp2;
1042 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1045 assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1046 // This finishes up call legalization.
1047 IsLegalizingCall = false;
1049 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1050 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1051 if (Node->getNumValues() == 2)
1052 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1053 return Result.getValue(Op.getResNo());
1054 case ISD::LOAD: {
1055 LoadSDNode *LD = cast<LoadSDNode>(Node);
1056 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
1057 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1059 ISD::LoadExtType ExtType = LD->getExtensionType();
1060 if (ExtType == ISD::NON_EXTLOAD) {
1061 MVT VT = Node->getValueType(0);
1062 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1063 Tmp3 = Result.getValue(0);
1064 Tmp4 = Result.getValue(1);
1066 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1067 default: llvm_unreachable("This action is not supported yet!");
1068 case TargetLowering::Legal:
1069 // If this is an unaligned load and the target doesn't support it,
1070 // expand it.
1071 if (!TLI.allowsUnalignedMemoryAccesses()) {
1072 unsigned ABIAlignment = TLI.getTargetData()->
1073 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1074 if (LD->getAlignment() < ABIAlignment){
1075 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1076 DAG, TLI);
1077 Tmp3 = Result.getOperand(0);
1078 Tmp4 = Result.getOperand(1);
1079 Tmp3 = LegalizeOp(Tmp3);
1080 Tmp4 = LegalizeOp(Tmp4);
1083 break;
1084 case TargetLowering::Custom:
1085 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1086 if (Tmp1.getNode()) {
1087 Tmp3 = LegalizeOp(Tmp1);
1088 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1090 break;
1091 case TargetLowering::Promote: {
1092 // Only promote a load of vector type to another.
1093 assert(VT.isVector() && "Cannot promote this load!");
1094 // Change base type to a different vector type.
1095 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1097 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1098 LD->getSrcValueOffset(),
1099 LD->isVolatile(), LD->getAlignment());
1100 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1101 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1102 break;
1105 // Since loads produce two values, make sure to remember that we
1106 // legalized both of them.
1107 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1108 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1109 return Op.getResNo() ? Tmp4 : Tmp3;
1110 } else {
1111 MVT SrcVT = LD->getMemoryVT();
1112 unsigned SrcWidth = SrcVT.getSizeInBits();
1113 int SVOffset = LD->getSrcValueOffset();
1114 unsigned Alignment = LD->getAlignment();
1115 bool isVolatile = LD->isVolatile();
1117 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1118 // Some targets pretend to have an i1 loading operation, and actually
1119 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1120 // bits are guaranteed to be zero; it helps the optimizers understand
1121 // that these bits are zero. It is also useful for EXTLOAD, since it
1122 // tells the optimizers that those bits are undefined. It would be
1123 // nice to have an effective generic way of getting these benefits...
1124 // Until such a way is found, don't insist on promoting i1 here.
1125 (SrcVT != MVT::i1 ||
1126 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1127 // Promote to a byte-sized load if not loading an integral number of
1128 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1129 unsigned NewWidth = SrcVT.getStoreSizeInBits();
1130 MVT NVT = MVT::getIntegerVT(NewWidth);
1131 SDValue Ch;
1133 // The extra bits are guaranteed to be zero, since we stored them that
1134 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1136 ISD::LoadExtType NewExtType =
1137 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1139 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1140 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1141 NVT, isVolatile, Alignment);
1143 Ch = Result.getValue(1); // The chain.
1145 if (ExtType == ISD::SEXTLOAD)
1146 // Having the top bits zero doesn't help when sign extending.
1147 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1148 Result.getValueType(),
1149 Result, DAG.getValueType(SrcVT));
1150 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1151 // All the top bits are guaranteed to be zero - inform the optimizers.
1152 Result = DAG.getNode(ISD::AssertZext, dl,
1153 Result.getValueType(), Result,
1154 DAG.getValueType(SrcVT));
1156 Tmp1 = LegalizeOp(Result);
1157 Tmp2 = LegalizeOp(Ch);
1158 } else if (SrcWidth & (SrcWidth - 1)) {
1159 // If not loading a power-of-2 number of bits, expand as two loads.
1160 assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1161 "Unsupported extload!");
1162 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1163 assert(RoundWidth < SrcWidth);
1164 unsigned ExtraWidth = SrcWidth - RoundWidth;
1165 assert(ExtraWidth < RoundWidth);
1166 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1167 "Load size not an integral number of bytes!");
1168 MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1169 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1170 SDValue Lo, Hi, Ch;
1171 unsigned IncrementSize;
1173 if (TLI.isLittleEndian()) {
1174 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1175 // Load the bottom RoundWidth bits.
1176 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1177 Node->getValueType(0), Tmp1, Tmp2,
1178 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1179 Alignment);
1181 // Load the remaining ExtraWidth bits.
1182 IncrementSize = RoundWidth / 8;
1183 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1184 DAG.getIntPtrConstant(IncrementSize));
1185 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1186 LD->getSrcValue(), SVOffset + IncrementSize,
1187 ExtraVT, isVolatile,
1188 MinAlign(Alignment, IncrementSize));
1190 // Build a factor node to remember that this load is independent of the
1191 // other one.
1192 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1193 Hi.getValue(1));
1195 // Move the top bits to the right place.
1196 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1197 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1199 // Join the hi and lo parts.
1200 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1201 } else {
1202 // Big endian - avoid unaligned loads.
1203 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1204 // Load the top RoundWidth bits.
1205 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1206 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1207 Alignment);
1209 // Load the remaining ExtraWidth bits.
1210 IncrementSize = RoundWidth / 8;
1211 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1212 DAG.getIntPtrConstant(IncrementSize));
1213 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1214 Node->getValueType(0), Tmp1, Tmp2,
1215 LD->getSrcValue(), SVOffset + IncrementSize,
1216 ExtraVT, isVolatile,
1217 MinAlign(Alignment, IncrementSize));
1219 // Build a factor node to remember that this load is independent of the
1220 // other one.
1221 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1222 Hi.getValue(1));
1224 // Move the top bits to the right place.
1225 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1226 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1228 // Join the hi and lo parts.
1229 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1232 Tmp1 = LegalizeOp(Result);
1233 Tmp2 = LegalizeOp(Ch);
1234 } else {
1235 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1236 default: llvm_unreachable("This action is not supported yet!");
1237 case TargetLowering::Custom:
1238 isCustom = true;
1239 // FALLTHROUGH
1240 case TargetLowering::Legal:
1241 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1242 Tmp1 = Result.getValue(0);
1243 Tmp2 = Result.getValue(1);
1245 if (isCustom) {
1246 Tmp3 = TLI.LowerOperation(Result, DAG);
1247 if (Tmp3.getNode()) {
1248 Tmp1 = LegalizeOp(Tmp3);
1249 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1251 } else {
1252 // If this is an unaligned load and the target doesn't support it,
1253 // expand it.
1254 if (!TLI.allowsUnalignedMemoryAccesses()) {
1255 unsigned ABIAlignment = TLI.getTargetData()->
1256 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1257 if (LD->getAlignment() < ABIAlignment){
1258 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1259 DAG, TLI);
1260 Tmp1 = Result.getOperand(0);
1261 Tmp2 = Result.getOperand(1);
1262 Tmp1 = LegalizeOp(Tmp1);
1263 Tmp2 = LegalizeOp(Tmp2);
1267 break;
1268 case TargetLowering::Expand:
1269 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1270 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1271 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1272 LD->getSrcValueOffset(),
1273 LD->isVolatile(), LD->getAlignment());
1274 Result = DAG.getNode(ISD::FP_EXTEND, dl,
1275 Node->getValueType(0), Load);
1276 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
1277 Tmp2 = LegalizeOp(Load.getValue(1));
1278 break;
1280 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1281 // Turn the unsupported load into an EXTLOAD followed by an explicit
1282 // zero/sign extend inreg.
1283 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1284 Tmp1, Tmp2, LD->getSrcValue(),
1285 LD->getSrcValueOffset(), SrcVT,
1286 LD->isVolatile(), LD->getAlignment());
1287 SDValue ValRes;
1288 if (ExtType == ISD::SEXTLOAD)
1289 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1290 Result.getValueType(),
1291 Result, DAG.getValueType(SrcVT));
1292 else
1293 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1294 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1295 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
1296 break;
1300 // Since loads produce two values, make sure to remember that we legalized
1301 // both of them.
1302 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1303 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1304 return Op.getResNo() ? Tmp2 : Tmp1;
1307 case ISD::STORE: {
1308 StoreSDNode *ST = cast<StoreSDNode>(Node);
1309 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
1310 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
1311 int SVOffset = ST->getSrcValueOffset();
1312 unsigned Alignment = ST->getAlignment();
1313 bool isVolatile = ST->isVolatile();
1315 if (!ST->isTruncatingStore()) {
1316 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1317 Result = SDValue(OptStore, 0);
1318 break;
1322 Tmp3 = LegalizeOp(ST->getValue());
1323 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1324 ST->getOffset());
1326 MVT VT = Tmp3.getValueType();
1327 switch (TLI.getOperationAction(ISD::STORE, VT)) {
1328 default: llvm_unreachable("This action is not supported yet!");
1329 case TargetLowering::Legal:
1330 // If this is an unaligned store and the target doesn't support it,
1331 // expand it.
1332 if (!TLI.allowsUnalignedMemoryAccesses()) {
1333 unsigned ABIAlignment = TLI.getTargetData()->
1334 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1335 if (ST->getAlignment() < ABIAlignment)
1336 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1337 TLI);
1339 break;
1340 case TargetLowering::Custom:
1341 Tmp1 = TLI.LowerOperation(Result, DAG);
1342 if (Tmp1.getNode()) Result = Tmp1;
1343 break;
1344 case TargetLowering::Promote:
1345 assert(VT.isVector() && "Unknown legal promote case!");
1346 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1347 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1348 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1349 ST->getSrcValue(), SVOffset, isVolatile,
1350 Alignment);
1351 break;
1353 break;
1355 } else {
1356 Tmp3 = LegalizeOp(ST->getValue());
1358 MVT StVT = ST->getMemoryVT();
1359 unsigned StWidth = StVT.getSizeInBits();
1361 if (StWidth != StVT.getStoreSizeInBits()) {
1362 // Promote to a byte-sized store with upper bits zero if not
1363 // storing an integral number of bytes. For example, promote
1364 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1365 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1366 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1367 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1368 SVOffset, NVT, isVolatile, Alignment);
1369 } else if (StWidth & (StWidth - 1)) {
1370 // If not storing a power-of-2 number of bits, expand as two stores.
1371 assert(StVT.isExtended() && !StVT.isVector() &&
1372 "Unsupported truncstore!");
1373 unsigned RoundWidth = 1 << Log2_32(StWidth);
1374 assert(RoundWidth < StWidth);
1375 unsigned ExtraWidth = StWidth - RoundWidth;
1376 assert(ExtraWidth < RoundWidth);
1377 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1378 "Store size not an integral number of bytes!");
1379 MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1380 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1381 SDValue Lo, Hi;
1382 unsigned IncrementSize;
1384 if (TLI.isLittleEndian()) {
1385 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1386 // Store the bottom RoundWidth bits.
1387 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1388 SVOffset, RoundVT,
1389 isVolatile, Alignment);
1391 // Store the remaining ExtraWidth bits.
1392 IncrementSize = RoundWidth / 8;
1393 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1394 DAG.getIntPtrConstant(IncrementSize));
1395 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1396 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1397 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1398 SVOffset + IncrementSize, ExtraVT, isVolatile,
1399 MinAlign(Alignment, IncrementSize));
1400 } else {
1401 // Big endian - avoid unaligned stores.
1402 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1403 // Store the top RoundWidth bits.
1404 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1405 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1406 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1407 SVOffset, RoundVT, isVolatile, Alignment);
1409 // Store the remaining ExtraWidth bits.
1410 IncrementSize = RoundWidth / 8;
1411 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1412 DAG.getIntPtrConstant(IncrementSize));
1413 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1414 SVOffset + IncrementSize, ExtraVT, isVolatile,
1415 MinAlign(Alignment, IncrementSize));
1418 // The order of the stores doesn't matter.
1419 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1420 } else {
1421 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1422 Tmp2 != ST->getBasePtr())
1423 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1424 ST->getOffset());
1426 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1427 default: llvm_unreachable("This action is not supported yet!");
1428 case TargetLowering::Legal:
1429 // If this is an unaligned store and the target doesn't support it,
1430 // expand it.
1431 if (!TLI.allowsUnalignedMemoryAccesses()) {
1432 unsigned ABIAlignment = TLI.getTargetData()->
1433 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1434 if (ST->getAlignment() < ABIAlignment)
1435 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1436 TLI);
1438 break;
1439 case TargetLowering::Custom:
1440 Result = TLI.LowerOperation(Result, DAG);
1441 break;
1442 case Expand:
1443 // TRUNCSTORE:i16 i32 -> STORE i16
1444 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1445 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1446 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1447 SVOffset, isVolatile, Alignment);
1448 break;
1452 break;
1455 assert(Result.getValueType() == Op.getValueType() &&
1456 "Bad legalization!");
1458 // Make sure that the generated code is itself legal.
1459 if (Result != Op)
1460 Result = LegalizeOp(Result);
1462 // Note that LegalizeOp may be reentered even from single-use nodes, which
1463 // means that we always must cache transformed nodes.
1464 AddLegalizedOperand(Op, Result);
1465 return Result;
1468 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1469 SDValue Vec = Op.getOperand(0);
1470 SDValue Idx = Op.getOperand(1);
1471 DebugLoc dl = Op.getDebugLoc();
1472 // Store the value to a temporary stack slot, then LOAD the returned part.
1473 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1474 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1476 // Add the offset to the index.
1477 unsigned EltSize =
1478 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1479 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1480 DAG.getConstant(EltSize, Idx.getValueType()));
1482 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1483 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1484 else
1485 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1487 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1489 if (Op.getValueType().isVector())
1490 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1491 else
1492 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1493 NULL, 0, Vec.getValueType().getVectorElementType());
1496 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1497 // We can't handle this case efficiently. Allocate a sufficiently
1498 // aligned object on the stack, store each element into it, then load
1499 // the result as a vector.
1500 // Create the stack frame object.
1501 MVT VT = Node->getValueType(0);
1502 MVT OpVT = Node->getOperand(0).getValueType();
1503 DebugLoc dl = Node->getDebugLoc();
1504 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1505 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1506 const Value *SV = PseudoSourceValue::getFixedStack(FI);
1508 // Emit a store of each element to the stack slot.
1509 SmallVector<SDValue, 8> Stores;
1510 unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1511 // Store (in the right endianness) the elements to memory.
1512 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1513 // Ignore undef elements.
1514 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1516 unsigned Offset = TypeByteSize*i;
1518 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1519 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1521 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1522 Idx, SV, Offset));
1525 SDValue StoreChain;
1526 if (!Stores.empty()) // Not all undef elements?
1527 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1528 &Stores[0], Stores.size());
1529 else
1530 StoreChain = DAG.getEntryNode();
1532 // Result is a load from the stack slot.
1533 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1536 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1537 DebugLoc dl = Node->getDebugLoc();
1538 SDValue Tmp1 = Node->getOperand(0);
1539 SDValue Tmp2 = Node->getOperand(1);
1540 assert((Tmp2.getValueType() == MVT::f32 ||
1541 Tmp2.getValueType() == MVT::f64) &&
1542 "Ugly special-cased code!");
1543 // Get the sign bit of the RHS.
1544 SDValue SignBit;
1545 MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1546 if (isTypeLegal(IVT)) {
1547 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1548 } else {
1549 assert(isTypeLegal(TLI.getPointerTy()) &&
1550 (TLI.getPointerTy() == MVT::i32 ||
1551 TLI.getPointerTy() == MVT::i64) &&
1552 "Legal type for load?!");
1553 SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1554 SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1555 SDValue Ch =
1556 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1557 if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1558 LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1559 LoadPtr, DAG.getIntPtrConstant(4));
1560 SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1561 Ch, LoadPtr, NULL, 0, MVT::i32);
1563 SignBit =
1564 DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1565 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1566 ISD::SETLT);
1567 // Get the absolute value of the result.
1568 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1569 // Select between the nabs and abs value based on the sign bit of
1570 // the input.
1571 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1572 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1573 AbsVal);
1576 SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1577 DebugLoc dl = Node->getDebugLoc();
1578 DwarfWriter *DW = DAG.getDwarfWriter();
1579 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1580 MVT::Other);
1581 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1583 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1584 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1585 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1586 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1588 unsigned Line = DSP->getLine();
1589 unsigned Col = DSP->getColumn();
1591 if (OptLevel == CodeGenOpt::None) {
1592 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1593 // won't hurt anything.
1594 if (useDEBUG_LOC) {
1595 return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1596 DAG.getConstant(Line, MVT::i32),
1597 DAG.getConstant(Col, MVT::i32),
1598 DAG.getSrcValue(CU.getGV()));
1599 } else {
1600 unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1601 return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1605 return Node->getOperand(0);
1608 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1609 SmallVectorImpl<SDValue> &Results) {
1610 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1611 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1612 " not tell us which reg is the stack pointer!");
1613 DebugLoc dl = Node->getDebugLoc();
1614 MVT VT = Node->getValueType(0);
1615 SDValue Tmp1 = SDValue(Node, 0);
1616 SDValue Tmp2 = SDValue(Node, 1);
1617 SDValue Tmp3 = Node->getOperand(2);
1618 SDValue Chain = Tmp1.getOperand(0);
1620 // Chain the dynamic stack allocation so that it doesn't modify the stack
1621 // pointer when other instructions are using the stack.
1622 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1624 SDValue Size = Tmp2.getOperand(1);
1625 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1626 Chain = SP.getValue(1);
1627 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1628 unsigned StackAlign =
1629 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1630 if (Align > StackAlign)
1631 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1632 DAG.getConstant(-(uint64_t)Align, VT));
1633 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1634 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1636 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1637 DAG.getIntPtrConstant(0, true), SDValue());
1639 Results.push_back(Tmp1);
1640 Results.push_back(Tmp2);
1643 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1644 /// condition code CC on the current target. This routine assumes LHS and rHS
1645 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1646 /// illegal condition code into AND / OR of multiple SETCC values.
1647 void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1648 SDValue &LHS, SDValue &RHS,
1649 SDValue &CC,
1650 DebugLoc dl) {
1651 MVT OpVT = LHS.getValueType();
1652 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1653 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1654 default: llvm_unreachable("Unknown condition code action!");
1655 case TargetLowering::Legal:
1656 // Nothing to do.
1657 break;
1658 case TargetLowering::Expand: {
1659 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1660 unsigned Opc = 0;
1661 switch (CCCode) {
1662 default: llvm_unreachable("Don't know how to expand this condition!");
1663 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
1664 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1665 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1666 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1667 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1668 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1669 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1670 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1671 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1672 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1673 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1674 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1675 // FIXME: Implement more expansions.
1678 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1679 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1680 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1681 RHS = SDValue();
1682 CC = SDValue();
1683 break;
1688 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
1689 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1690 /// a load from the stack slot to DestVT, extending it if needed.
1691 /// The resultant code need not be legal.
1692 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1693 MVT SlotVT,
1694 MVT DestVT,
1695 DebugLoc dl) {
1696 // Create the stack frame object.
1697 unsigned SrcAlign =
1698 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1699 getTypeForMVT());
1700 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1702 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1703 int SPFI = StackPtrFI->getIndex();
1704 const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1706 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1707 unsigned SlotSize = SlotVT.getSizeInBits();
1708 unsigned DestSize = DestVT.getSizeInBits();
1709 unsigned DestAlign =
1710 TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
1712 // Emit a store to the stack slot. Use a truncstore if the input value is
1713 // later than DestVT.
1714 SDValue Store;
1716 if (SrcSize > SlotSize)
1717 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1718 SV, 0, SlotVT, false, SrcAlign);
1719 else {
1720 assert(SrcSize == SlotSize && "Invalid store");
1721 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1722 SV, 0, false, SrcAlign);
1725 // Result is a load from the stack slot.
1726 if (SlotSize == DestSize)
1727 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1729 assert(SlotSize < DestSize && "Unknown extension!");
1730 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1731 false, DestAlign);
1734 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1735 DebugLoc dl = Node->getDebugLoc();
1736 // Create a vector sized/aligned stack slot, store the value to element #0,
1737 // then load the whole vector back out.
1738 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1740 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1741 int SPFI = StackPtrFI->getIndex();
1743 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1744 StackPtr,
1745 PseudoSourceValue::getFixedStack(SPFI), 0,
1746 Node->getValueType(0).getVectorElementType());
1747 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1748 PseudoSourceValue::getFixedStack(SPFI), 0);
1752 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1753 /// support the operation, but do support the resultant vector type.
1754 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1755 unsigned NumElems = Node->getNumOperands();
1756 SDValue Value1, Value2;
1757 DebugLoc dl = Node->getDebugLoc();
1758 MVT VT = Node->getValueType(0);
1759 MVT OpVT = Node->getOperand(0).getValueType();
1760 MVT EltVT = VT.getVectorElementType();
1762 // If the only non-undef value is the low element, turn this into a
1763 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1764 bool isOnlyLowElement = true;
1765 bool MoreThanTwoValues = false;
1766 bool isConstant = true;
1767 for (unsigned i = 0; i < NumElems; ++i) {
1768 SDValue V = Node->getOperand(i);
1769 if (V.getOpcode() == ISD::UNDEF)
1770 continue;
1771 if (i > 0)
1772 isOnlyLowElement = false;
1773 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1774 isConstant = false;
1776 if (!Value1.getNode()) {
1777 Value1 = V;
1778 } else if (!Value2.getNode()) {
1779 if (V != Value1)
1780 Value2 = V;
1781 } else if (V != Value1 && V != Value2) {
1782 MoreThanTwoValues = true;
1786 if (!Value1.getNode())
1787 return DAG.getUNDEF(VT);
1789 if (isOnlyLowElement)
1790 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1792 // If all elements are constants, create a load from the constant pool.
1793 if (isConstant) {
1794 std::vector<Constant*> CV;
1795 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1796 if (ConstantFPSDNode *V =
1797 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1798 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1799 } else if (ConstantSDNode *V =
1800 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1801 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1802 } else {
1803 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1804 const Type *OpNTy = OpVT.getTypeForMVT();
1805 CV.push_back(UndefValue::get(OpNTy));
1808 Constant *CP = ConstantVector::get(CV);
1809 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1810 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1811 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1812 PseudoSourceValue::getConstantPool(), 0,
1813 false, Alignment);
1816 if (!MoreThanTwoValues) {
1817 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1818 for (unsigned i = 0; i < NumElems; ++i) {
1819 SDValue V = Node->getOperand(i);
1820 if (V.getOpcode() == ISD::UNDEF)
1821 continue;
1822 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1824 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1825 // Get the splatted value into the low element of a vector register.
1826 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1827 SDValue Vec2;
1828 if (Value2.getNode())
1829 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1830 else
1831 Vec2 = DAG.getUNDEF(VT);
1833 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1834 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1838 // Otherwise, we can't handle this case efficiently.
1839 return ExpandVectorBuildThroughStack(Node);
1842 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
1843 // does not fit into a register, return the lo part and set the hi part to the
1844 // by-reg argument. If it does fit into a single register, return the result
1845 // and leave the Hi part unset.
1846 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1847 bool isSigned) {
1848 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1849 // The input chain to this libcall is the entry node of the function.
1850 // Legalizing the call will automatically add the previous call to the
1851 // dependence.
1852 SDValue InChain = DAG.getEntryNode();
1854 TargetLowering::ArgListTy Args;
1855 TargetLowering::ArgListEntry Entry;
1856 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1857 MVT ArgVT = Node->getOperand(i).getValueType();
1858 const Type *ArgTy = ArgVT.getTypeForMVT();
1859 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1860 Entry.isSExt = isSigned;
1861 Entry.isZExt = !isSigned;
1862 Args.push_back(Entry);
1864 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1865 TLI.getPointerTy());
1867 // Splice the libcall in wherever FindInputOutputChains tells us to.
1868 const Type *RetTy = Node->getValueType(0).getTypeForMVT();
1869 std::pair<SDValue, SDValue> CallInfo =
1870 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1871 0, CallingConv::C, false,
1872 /*isReturnValueUsed=*/true,
1873 Callee, Args, DAG,
1874 Node->getDebugLoc());
1876 // Legalize the call sequence, starting with the chain. This will advance
1877 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1878 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1879 LegalizeOp(CallInfo.second);
1880 return CallInfo.first;
1883 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1884 RTLIB::Libcall Call_F32,
1885 RTLIB::Libcall Call_F64,
1886 RTLIB::Libcall Call_F80,
1887 RTLIB::Libcall Call_PPCF128) {
1888 RTLIB::Libcall LC;
1889 switch (Node->getValueType(0).getSimpleVT()) {
1890 default: llvm_unreachable("Unexpected request for libcall!");
1891 case MVT::f32: LC = Call_F32; break;
1892 case MVT::f64: LC = Call_F64; break;
1893 case MVT::f80: LC = Call_F80; break;
1894 case MVT::ppcf128: LC = Call_PPCF128; break;
1896 return ExpandLibCall(LC, Node, false);
1899 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1900 RTLIB::Libcall Call_I16,
1901 RTLIB::Libcall Call_I32,
1902 RTLIB::Libcall Call_I64,
1903 RTLIB::Libcall Call_I128) {
1904 RTLIB::Libcall LC;
1905 switch (Node->getValueType(0).getSimpleVT()) {
1906 default: llvm_unreachable("Unexpected request for libcall!");
1907 case MVT::i16: LC = Call_I16; break;
1908 case MVT::i32: LC = Call_I32; break;
1909 case MVT::i64: LC = Call_I64; break;
1910 case MVT::i128: LC = Call_I128; break;
1912 return ExpandLibCall(LC, Node, isSigned);
1915 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1916 /// INT_TO_FP operation of the specified operand when the target requests that
1917 /// we expand it. At this point, we know that the result and operand types are
1918 /// legal for the target.
1919 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1920 SDValue Op0,
1921 MVT DestVT,
1922 DebugLoc dl) {
1923 if (Op0.getValueType() == MVT::i32) {
1924 // simple 32-bit [signed|unsigned] integer to float/double expansion
1926 // Get the stack frame index of a 8 byte buffer.
1927 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1929 // word offset constant for Hi/Lo address computation
1930 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1931 // set up Hi and Lo (into buffer) address based on endian
1932 SDValue Hi = StackSlot;
1933 SDValue Lo = DAG.getNode(ISD::ADD, dl,
1934 TLI.getPointerTy(), StackSlot, WordOff);
1935 if (TLI.isLittleEndian())
1936 std::swap(Hi, Lo);
1938 // if signed map to unsigned space
1939 SDValue Op0Mapped;
1940 if (isSigned) {
1941 // constant used to invert sign bit (signed to unsigned mapping)
1942 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1943 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1944 } else {
1945 Op0Mapped = Op0;
1947 // store the lo of the constructed double - based on integer input
1948 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1949 Op0Mapped, Lo, NULL, 0);
1950 // initial hi portion of constructed double
1951 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1952 // store the hi of the constructed double - biased exponent
1953 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1954 // load the constructed double
1955 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1956 // FP constant to bias correct the final result
1957 SDValue Bias = DAG.getConstantFP(isSigned ?
1958 BitsToDouble(0x4330000080000000ULL) :
1959 BitsToDouble(0x4330000000000000ULL),
1960 MVT::f64);
1961 // subtract the bias
1962 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1963 // final result
1964 SDValue Result;
1965 // handle final rounding
1966 if (DestVT == MVT::f64) {
1967 // do nothing
1968 Result = Sub;
1969 } else if (DestVT.bitsLT(MVT::f64)) {
1970 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1971 DAG.getIntPtrConstant(0));
1972 } else if (DestVT.bitsGT(MVT::f64)) {
1973 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1975 return Result;
1977 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1978 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1980 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1981 Op0, DAG.getConstant(0, Op0.getValueType()),
1982 ISD::SETLT);
1983 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1984 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1985 SignSet, Four, Zero);
1987 // If the sign bit of the integer is set, the large number will be treated
1988 // as a negative number. To counteract this, the dynamic code adds an
1989 // offset depending on the data type.
1990 uint64_t FF;
1991 switch (Op0.getValueType().getSimpleVT()) {
1992 default: llvm_unreachable("Unsupported integer type!");
1993 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
1994 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
1995 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
1996 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
1998 if (TLI.isLittleEndian()) FF <<= 32;
1999 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2001 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2002 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2003 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2004 Alignment = std::min(Alignment, 4u);
2005 SDValue FudgeInReg;
2006 if (DestVT == MVT::f32)
2007 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2008 PseudoSourceValue::getConstantPool(), 0,
2009 false, Alignment);
2010 else {
2011 FudgeInReg =
2012 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2013 DAG.getEntryNode(), CPIdx,
2014 PseudoSourceValue::getConstantPool(), 0,
2015 MVT::f32, false, Alignment));
2018 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2021 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2022 /// *INT_TO_FP operation of the specified operand when the target requests that
2023 /// we promote it. At this point, we know that the result and operand types are
2024 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2025 /// operation that takes a larger input.
2026 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2027 MVT DestVT,
2028 bool isSigned,
2029 DebugLoc dl) {
2030 // First step, figure out the appropriate *INT_TO_FP operation to use.
2031 MVT NewInTy = LegalOp.getValueType();
2033 unsigned OpToUse = 0;
2035 // Scan for the appropriate larger type to use.
2036 while (1) {
2037 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2038 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2040 // If the target supports SINT_TO_FP of this type, use it.
2041 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2042 OpToUse = ISD::SINT_TO_FP;
2043 break;
2045 if (isSigned) continue;
2047 // If the target supports UINT_TO_FP of this type, use it.
2048 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2049 OpToUse = ISD::UINT_TO_FP;
2050 break;
2053 // Otherwise, try a larger type.
2056 // Okay, we found the operation and type to use. Zero extend our input to the
2057 // desired type then run the operation on it.
2058 return DAG.getNode(OpToUse, dl, DestVT,
2059 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2060 dl, NewInTy, LegalOp));
2063 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2064 /// FP_TO_*INT operation of the specified operand when the target requests that
2065 /// we promote it. At this point, we know that the result and operand types are
2066 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2067 /// operation that returns a larger result.
2068 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2069 MVT DestVT,
2070 bool isSigned,
2071 DebugLoc dl) {
2072 // First step, figure out the appropriate FP_TO*INT operation to use.
2073 MVT NewOutTy = DestVT;
2075 unsigned OpToUse = 0;
2077 // Scan for the appropriate larger type to use.
2078 while (1) {
2079 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2080 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2082 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2083 OpToUse = ISD::FP_TO_SINT;
2084 break;
2087 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2088 OpToUse = ISD::FP_TO_UINT;
2089 break;
2092 // Otherwise, try a larger type.
2096 // Okay, we found the operation and type to use.
2097 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2099 // Truncate the result of the extended FP_TO_*INT operation to the desired
2100 // size.
2101 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2104 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2106 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2107 MVT VT = Op.getValueType();
2108 MVT SHVT = TLI.getShiftAmountTy();
2109 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2110 switch (VT.getSimpleVT()) {
2111 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2112 case MVT::i16:
2113 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2114 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2115 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2116 case MVT::i32:
2117 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2118 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2119 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2120 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2121 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2122 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2123 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2124 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2125 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2126 case MVT::i64:
2127 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2128 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2129 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2130 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2131 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2132 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2133 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2134 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2135 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2136 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2137 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2138 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2139 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2140 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2141 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2142 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2143 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2144 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2145 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2146 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2147 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2151 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2153 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2154 DebugLoc dl) {
2155 switch (Opc) {
2156 default: llvm_unreachable("Cannot expand this yet!");
2157 case ISD::CTPOP: {
2158 static const uint64_t mask[6] = {
2159 0x5555555555555555ULL, 0x3333333333333333ULL,
2160 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2161 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2163 MVT VT = Op.getValueType();
2164 MVT ShVT = TLI.getShiftAmountTy();
2165 unsigned len = VT.getSizeInBits();
2166 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2167 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2168 unsigned EltSize = VT.isVector() ?
2169 VT.getVectorElementType().getSizeInBits() : len;
2170 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2171 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2172 Op = DAG.getNode(ISD::ADD, dl, VT,
2173 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2174 DAG.getNode(ISD::AND, dl, VT,
2175 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2176 Tmp2));
2178 return Op;
2180 case ISD::CTLZ: {
2181 // for now, we do this:
2182 // x = x | (x >> 1);
2183 // x = x | (x >> 2);
2184 // ...
2185 // x = x | (x >>16);
2186 // x = x | (x >>32); // for 64-bit input
2187 // return popcount(~x);
2189 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2190 MVT VT = Op.getValueType();
2191 MVT ShVT = TLI.getShiftAmountTy();
2192 unsigned len = VT.getSizeInBits();
2193 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2194 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2195 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2196 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2198 Op = DAG.getNOT(dl, Op, VT);
2199 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2201 case ISD::CTTZ: {
2202 // for now, we use: { return popcount(~x & (x - 1)); }
2203 // unless the target has ctlz but not ctpop, in which case we use:
2204 // { return 32 - nlz(~x & (x-1)); }
2205 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2206 MVT VT = Op.getValueType();
2207 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2208 DAG.getNOT(dl, Op, VT),
2209 DAG.getNode(ISD::SUB, dl, VT, Op,
2210 DAG.getConstant(1, VT)));
2211 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2212 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2213 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2214 return DAG.getNode(ISD::SUB, dl, VT,
2215 DAG.getConstant(VT.getSizeInBits(), VT),
2216 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2217 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2222 void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2223 SmallVectorImpl<SDValue> &Results) {
2224 DebugLoc dl = Node->getDebugLoc();
2225 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2226 switch (Node->getOpcode()) {
2227 case ISD::CTPOP:
2228 case ISD::CTLZ:
2229 case ISD::CTTZ:
2230 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2231 Results.push_back(Tmp1);
2232 break;
2233 case ISD::BSWAP:
2234 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2235 break;
2236 case ISD::FRAMEADDR:
2237 case ISD::RETURNADDR:
2238 case ISD::FRAME_TO_ARGS_OFFSET:
2239 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2240 break;
2241 case ISD::FLT_ROUNDS_:
2242 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2243 break;
2244 case ISD::EH_RETURN:
2245 case ISD::DECLARE:
2246 case ISD::DBG_LABEL:
2247 case ISD::EH_LABEL:
2248 case ISD::PREFETCH:
2249 case ISD::MEMBARRIER:
2250 case ISD::VAEND:
2251 Results.push_back(Node->getOperand(0));
2252 break;
2253 case ISD::DBG_STOPPOINT:
2254 Results.push_back(ExpandDBG_STOPPOINT(Node));
2255 break;
2256 case ISD::DYNAMIC_STACKALLOC:
2257 ExpandDYNAMIC_STACKALLOC(Node, Results);
2258 break;
2259 case ISD::MERGE_VALUES:
2260 for (unsigned i = 0; i < Node->getNumValues(); i++)
2261 Results.push_back(Node->getOperand(i));
2262 break;
2263 case ISD::UNDEF: {
2264 MVT VT = Node->getValueType(0);
2265 if (VT.isInteger())
2266 Results.push_back(DAG.getConstant(0, VT));
2267 else if (VT.isFloatingPoint())
2268 Results.push_back(DAG.getConstantFP(0, VT));
2269 else
2270 llvm_unreachable("Unknown value type!");
2271 break;
2273 case ISD::TRAP: {
2274 // If this operation is not supported, lower it to 'abort()' call
2275 TargetLowering::ArgListTy Args;
2276 std::pair<SDValue, SDValue> CallResult =
2277 TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2278 false, false, false, false, 0, CallingConv::C, false,
2279 /*isReturnValueUsed=*/true,
2280 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2281 Args, DAG, dl);
2282 Results.push_back(CallResult.second);
2283 break;
2285 case ISD::FP_ROUND:
2286 case ISD::BIT_CONVERT:
2287 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2288 Node->getValueType(0), dl);
2289 Results.push_back(Tmp1);
2290 break;
2291 case ISD::FP_EXTEND:
2292 Tmp1 = EmitStackConvert(Node->getOperand(0),
2293 Node->getOperand(0).getValueType(),
2294 Node->getValueType(0), dl);
2295 Results.push_back(Tmp1);
2296 break;
2297 case ISD::SIGN_EXTEND_INREG: {
2298 // NOTE: we could fall back on load/store here too for targets without
2299 // SAR. However, it is doubtful that any exist.
2300 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2301 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2302 ExtraVT.getSizeInBits();
2303 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2304 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2305 Node->getOperand(0), ShiftCst);
2306 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2307 Results.push_back(Tmp1);
2308 break;
2310 case ISD::FP_ROUND_INREG: {
2311 // The only way we can lower this is to turn it into a TRUNCSTORE,
2312 // EXTLOAD pair, targetting a temporary location (a stack slot).
2314 // NOTE: there is a choice here between constantly creating new stack
2315 // slots and always reusing the same one. We currently always create
2316 // new ones, as reuse may inhibit scheduling.
2317 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2318 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2319 Node->getValueType(0), dl);
2320 Results.push_back(Tmp1);
2321 break;
2323 case ISD::SINT_TO_FP:
2324 case ISD::UINT_TO_FP:
2325 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2326 Node->getOperand(0), Node->getValueType(0), dl);
2327 Results.push_back(Tmp1);
2328 break;
2329 case ISD::FP_TO_UINT: {
2330 SDValue True, False;
2331 MVT VT = Node->getOperand(0).getValueType();
2332 MVT NVT = Node->getValueType(0);
2333 const uint64_t zero[] = {0, 0};
2334 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2335 APInt x = APInt::getSignBit(NVT.getSizeInBits());
2336 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2337 Tmp1 = DAG.getConstantFP(apf, VT);
2338 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2339 Node->getOperand(0),
2340 Tmp1, ISD::SETLT);
2341 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2342 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2343 DAG.getNode(ISD::FSUB, dl, VT,
2344 Node->getOperand(0), Tmp1));
2345 False = DAG.getNode(ISD::XOR, dl, NVT, False,
2346 DAG.getConstant(x, NVT));
2347 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2348 Results.push_back(Tmp1);
2349 break;
2351 case ISD::VAARG: {
2352 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2353 MVT VT = Node->getValueType(0);
2354 Tmp1 = Node->getOperand(0);
2355 Tmp2 = Node->getOperand(1);
2356 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2357 // Increment the pointer, VAList, to the next vaarg
2358 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2359 DAG.getConstant(TLI.getTargetData()->
2360 getTypeAllocSize(VT.getTypeForMVT()),
2361 TLI.getPointerTy()));
2362 // Store the incremented VAList to the legalized pointer
2363 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2364 // Load the actual argument out of the pointer VAList
2365 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2366 Results.push_back(Results[0].getValue(1));
2367 break;
2369 case ISD::VACOPY: {
2370 // This defaults to loading a pointer from the input and storing it to the
2371 // output, returning the chain.
2372 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2373 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2374 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2375 Node->getOperand(2), VS, 0);
2376 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2377 Results.push_back(Tmp1);
2378 break;
2380 case ISD::EXTRACT_VECTOR_ELT:
2381 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2382 // This must be an access of the only element. Return it.
2383 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2384 Node->getOperand(0));
2385 else
2386 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2387 Results.push_back(Tmp1);
2388 break;
2389 case ISD::EXTRACT_SUBVECTOR:
2390 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2391 break;
2392 case ISD::CONCAT_VECTORS: {
2393 Results.push_back(ExpandVectorBuildThroughStack(Node));
2394 break;
2396 case ISD::SCALAR_TO_VECTOR:
2397 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2398 break;
2399 case ISD::INSERT_VECTOR_ELT:
2400 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2401 Node->getOperand(1),
2402 Node->getOperand(2), dl));
2403 break;
2404 case ISD::VECTOR_SHUFFLE: {
2405 SmallVector<int, 8> Mask;
2406 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2408 MVT VT = Node->getValueType(0);
2409 MVT EltVT = VT.getVectorElementType();
2410 unsigned NumElems = VT.getVectorNumElements();
2411 SmallVector<SDValue, 8> Ops;
2412 for (unsigned i = 0; i != NumElems; ++i) {
2413 if (Mask[i] < 0) {
2414 Ops.push_back(DAG.getUNDEF(EltVT));
2415 continue;
2417 unsigned Idx = Mask[i];
2418 if (Idx < NumElems)
2419 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2420 Node->getOperand(0),
2421 DAG.getIntPtrConstant(Idx)));
2422 else
2423 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2424 Node->getOperand(1),
2425 DAG.getIntPtrConstant(Idx - NumElems)));
2427 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2428 Results.push_back(Tmp1);
2429 break;
2431 case ISD::EXTRACT_ELEMENT: {
2432 MVT OpTy = Node->getOperand(0).getValueType();
2433 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2434 // 1 -> Hi
2435 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2436 DAG.getConstant(OpTy.getSizeInBits()/2,
2437 TLI.getShiftAmountTy()));
2438 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2439 } else {
2440 // 0 -> Lo
2441 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2442 Node->getOperand(0));
2444 Results.push_back(Tmp1);
2445 break;
2447 case ISD::STACKSAVE:
2448 // Expand to CopyFromReg if the target set
2449 // StackPointerRegisterToSaveRestore.
2450 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2451 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2452 Node->getValueType(0)));
2453 Results.push_back(Results[0].getValue(1));
2454 } else {
2455 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2456 Results.push_back(Node->getOperand(0));
2458 break;
2459 case ISD::STACKRESTORE:
2460 // Expand to CopyToReg if the target set
2461 // StackPointerRegisterToSaveRestore.
2462 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2463 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2464 Node->getOperand(1)));
2465 } else {
2466 Results.push_back(Node->getOperand(0));
2468 break;
2469 case ISD::FCOPYSIGN:
2470 Results.push_back(ExpandFCOPYSIGN(Node));
2471 break;
2472 case ISD::FNEG:
2473 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2474 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2475 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2476 Node->getOperand(0));
2477 Results.push_back(Tmp1);
2478 break;
2479 case ISD::FABS: {
2480 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2481 MVT VT = Node->getValueType(0);
2482 Tmp1 = Node->getOperand(0);
2483 Tmp2 = DAG.getConstantFP(0.0, VT);
2484 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2485 Tmp1, Tmp2, ISD::SETUGT);
2486 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2487 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2488 Results.push_back(Tmp1);
2489 break;
2491 case ISD::FSQRT:
2492 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2493 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2494 break;
2495 case ISD::FSIN:
2496 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2497 RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2498 break;
2499 case ISD::FCOS:
2500 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2501 RTLIB::COS_F80, RTLIB::COS_PPCF128));
2502 break;
2503 case ISD::FLOG:
2504 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2505 RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2506 break;
2507 case ISD::FLOG2:
2508 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2509 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2510 break;
2511 case ISD::FLOG10:
2512 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2513 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2514 break;
2515 case ISD::FEXP:
2516 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2517 RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2518 break;
2519 case ISD::FEXP2:
2520 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2521 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2522 break;
2523 case ISD::FTRUNC:
2524 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2525 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2526 break;
2527 case ISD::FFLOOR:
2528 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2529 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2530 break;
2531 case ISD::FCEIL:
2532 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2533 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2534 break;
2535 case ISD::FRINT:
2536 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2537 RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2538 break;
2539 case ISD::FNEARBYINT:
2540 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2541 RTLIB::NEARBYINT_F64,
2542 RTLIB::NEARBYINT_F80,
2543 RTLIB::NEARBYINT_PPCF128));
2544 break;
2545 case ISD::FPOWI:
2546 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2547 RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2548 break;
2549 case ISD::FPOW:
2550 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2551 RTLIB::POW_F80, RTLIB::POW_PPCF128));
2552 break;
2553 case ISD::FDIV:
2554 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2555 RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2556 break;
2557 case ISD::FREM:
2558 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2559 RTLIB::REM_F80, RTLIB::REM_PPCF128));
2560 break;
2561 case ISD::ConstantFP: {
2562 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2563 // Check to see if this FP immediate is already legal.
2564 bool isLegal = false;
2565 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2566 E = TLI.legal_fpimm_end(); I != E; ++I) {
2567 if (CFP->isExactlyValue(*I)) {
2568 isLegal = true;
2569 break;
2572 // If this is a legal constant, turn it into a TargetConstantFP node.
2573 if (isLegal)
2574 Results.push_back(SDValue(Node, 0));
2575 else
2576 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2577 break;
2579 case ISD::EHSELECTION: {
2580 unsigned Reg = TLI.getExceptionSelectorRegister();
2581 assert(Reg && "Can't expand to unknown register!");
2582 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2583 Node->getValueType(0)));
2584 Results.push_back(Results[0].getValue(1));
2585 break;
2587 case ISD::EXCEPTIONADDR: {
2588 unsigned Reg = TLI.getExceptionAddressRegister();
2589 assert(Reg && "Can't expand to unknown register!");
2590 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2591 Node->getValueType(0)));
2592 Results.push_back(Results[0].getValue(1));
2593 break;
2595 case ISD::SUB: {
2596 MVT VT = Node->getValueType(0);
2597 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2598 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2599 "Don't know how to expand this subtraction!");
2600 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2601 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2602 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2603 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2604 break;
2606 case ISD::UREM:
2607 case ISD::SREM: {
2608 MVT VT = Node->getValueType(0);
2609 SDVTList VTs = DAG.getVTList(VT, VT);
2610 bool isSigned = Node->getOpcode() == ISD::SREM;
2611 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2612 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2613 Tmp2 = Node->getOperand(0);
2614 Tmp3 = Node->getOperand(1);
2615 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2616 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2617 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2618 // X % Y -> X-X/Y*Y
2619 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2620 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2621 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2622 } else if (isSigned) {
2623 Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2624 RTLIB::SREM_I64, RTLIB::SREM_I128);
2625 } else {
2626 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2627 RTLIB::UREM_I64, RTLIB::UREM_I128);
2629 Results.push_back(Tmp1);
2630 break;
2632 case ISD::UDIV:
2633 case ISD::SDIV: {
2634 bool isSigned = Node->getOpcode() == ISD::SDIV;
2635 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2636 MVT VT = Node->getValueType(0);
2637 SDVTList VTs = DAG.getVTList(VT, VT);
2638 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2639 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2640 Node->getOperand(1));
2641 else if (isSigned)
2642 Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2643 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2644 else
2645 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2646 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2647 Results.push_back(Tmp1);
2648 break;
2650 case ISD::MULHU:
2651 case ISD::MULHS: {
2652 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2653 ISD::SMUL_LOHI;
2654 MVT VT = Node->getValueType(0);
2655 SDVTList VTs = DAG.getVTList(VT, VT);
2656 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2657 "If this wasn't legal, it shouldn't have been created!");
2658 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2659 Node->getOperand(1));
2660 Results.push_back(Tmp1.getValue(1));
2661 break;
2663 case ISD::MUL: {
2664 MVT VT = Node->getValueType(0);
2665 SDVTList VTs = DAG.getVTList(VT, VT);
2666 // See if multiply or divide can be lowered using two-result operations.
2667 // We just need the low half of the multiply; try both the signed
2668 // and unsigned forms. If the target supports both SMUL_LOHI and
2669 // UMUL_LOHI, form a preference by checking which forms of plain
2670 // MULH it supports.
2671 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2672 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2673 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2674 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2675 unsigned OpToUse = 0;
2676 if (HasSMUL_LOHI && !HasMULHS) {
2677 OpToUse = ISD::SMUL_LOHI;
2678 } else if (HasUMUL_LOHI && !HasMULHU) {
2679 OpToUse = ISD::UMUL_LOHI;
2680 } else if (HasSMUL_LOHI) {
2681 OpToUse = ISD::SMUL_LOHI;
2682 } else if (HasUMUL_LOHI) {
2683 OpToUse = ISD::UMUL_LOHI;
2685 if (OpToUse) {
2686 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2687 Node->getOperand(1)));
2688 break;
2690 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2691 RTLIB::MUL_I64, RTLIB::MUL_I128);
2692 Results.push_back(Tmp1);
2693 break;
2695 case ISD::SADDO:
2696 case ISD::SSUBO: {
2697 SDValue LHS = Node->getOperand(0);
2698 SDValue RHS = Node->getOperand(1);
2699 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2700 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2701 LHS, RHS);
2702 Results.push_back(Sum);
2703 MVT OType = Node->getValueType(1);
2705 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2707 // LHSSign -> LHS >= 0
2708 // RHSSign -> RHS >= 0
2709 // SumSign -> Sum >= 0
2711 // Add:
2712 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2713 // Sub:
2714 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2716 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2717 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2718 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2719 Node->getOpcode() == ISD::SADDO ?
2720 ISD::SETEQ : ISD::SETNE);
2722 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2723 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2725 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2726 Results.push_back(Cmp);
2727 break;
2729 case ISD::UADDO:
2730 case ISD::USUBO: {
2731 SDValue LHS = Node->getOperand(0);
2732 SDValue RHS = Node->getOperand(1);
2733 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2734 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2735 LHS, RHS);
2736 Results.push_back(Sum);
2737 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2738 Node->getOpcode () == ISD::UADDO ?
2739 ISD::SETULT : ISD::SETUGT));
2740 break;
2742 case ISD::UMULO:
2743 case ISD::SMULO: {
2744 MVT VT = Node->getValueType(0);
2745 SDValue LHS = Node->getOperand(0);
2746 SDValue RHS = Node->getOperand(1);
2747 SDValue BottomHalf;
2748 SDValue TopHalf;
2749 static unsigned Ops[2][3] =
2750 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2751 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2752 bool isSigned = Node->getOpcode() == ISD::SMULO;
2753 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2754 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2755 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2756 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2757 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2758 RHS);
2759 TopHalf = BottomHalf.getValue(1);
2760 } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
2761 MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
2762 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2763 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2764 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2765 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2766 DAG.getIntPtrConstant(0));
2767 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2768 DAG.getIntPtrConstant(1));
2769 } else {
2770 // FIXME: We should be able to fall back to a libcall with an illegal
2771 // type in some cases cases.
2772 // Also, we can fall back to a division in some cases, but that's a big
2773 // performance hit in the general case.
2774 llvm_unreachable("Don't know how to expand this operation yet!");
2776 if (isSigned) {
2777 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2778 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2779 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2780 ISD::SETNE);
2781 } else {
2782 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2783 DAG.getConstant(0, VT), ISD::SETNE);
2785 Results.push_back(BottomHalf);
2786 Results.push_back(TopHalf);
2787 break;
2789 case ISD::BUILD_PAIR: {
2790 MVT PairTy = Node->getValueType(0);
2791 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2792 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2793 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2794 DAG.getConstant(PairTy.getSizeInBits()/2,
2795 TLI.getShiftAmountTy()));
2796 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2797 break;
2799 case ISD::SELECT:
2800 Tmp1 = Node->getOperand(0);
2801 Tmp2 = Node->getOperand(1);
2802 Tmp3 = Node->getOperand(2);
2803 if (Tmp1.getOpcode() == ISD::SETCC) {
2804 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2805 Tmp2, Tmp3,
2806 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2807 } else {
2808 Tmp1 = DAG.getSelectCC(dl, Tmp1,
2809 DAG.getConstant(0, Tmp1.getValueType()),
2810 Tmp2, Tmp3, ISD::SETNE);
2812 Results.push_back(Tmp1);
2813 break;
2814 case ISD::BR_JT: {
2815 SDValue Chain = Node->getOperand(0);
2816 SDValue Table = Node->getOperand(1);
2817 SDValue Index = Node->getOperand(2);
2819 MVT PTy = TLI.getPointerTy();
2820 MachineFunction &MF = DAG.getMachineFunction();
2821 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2822 Index= DAG.getNode(ISD::MUL, dl, PTy,
2823 Index, DAG.getConstant(EntrySize, PTy));
2824 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2826 MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2827 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2828 PseudoSourceValue::getJumpTable(), 0, MemVT);
2829 Addr = LD;
2830 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2831 // For PIC, the sequence is:
2832 // BRIND(load(Jumptable + index) + RelocBase)
2833 // RelocBase can be JumpTable, GOT or some sort of global base.
2834 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2835 TLI.getPICJumpTableRelocBase(Table, DAG));
2837 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2838 Results.push_back(Tmp1);
2839 break;
2841 case ISD::BRCOND:
2842 // Expand brcond's setcc into its constituent parts and create a BR_CC
2843 // Node.
2844 Tmp1 = Node->getOperand(0);
2845 Tmp2 = Node->getOperand(1);
2846 if (Tmp2.getOpcode() == ISD::SETCC) {
2847 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2848 Tmp1, Tmp2.getOperand(2),
2849 Tmp2.getOperand(0), Tmp2.getOperand(1),
2850 Node->getOperand(2));
2851 } else {
2852 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2853 DAG.getCondCode(ISD::SETNE), Tmp2,
2854 DAG.getConstant(0, Tmp2.getValueType()),
2855 Node->getOperand(2));
2857 Results.push_back(Tmp1);
2858 break;
2859 case ISD::SETCC: {
2860 Tmp1 = Node->getOperand(0);
2861 Tmp2 = Node->getOperand(1);
2862 Tmp3 = Node->getOperand(2);
2863 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2865 // If we expanded the SETCC into an AND/OR, return the new node
2866 if (Tmp2.getNode() == 0) {
2867 Results.push_back(Tmp1);
2868 break;
2871 // Otherwise, SETCC for the given comparison type must be completely
2872 // illegal; expand it into a SELECT_CC.
2873 MVT VT = Node->getValueType(0);
2874 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2875 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2876 Results.push_back(Tmp1);
2877 break;
2879 case ISD::SELECT_CC: {
2880 Tmp1 = Node->getOperand(0); // LHS
2881 Tmp2 = Node->getOperand(1); // RHS
2882 Tmp3 = Node->getOperand(2); // True
2883 Tmp4 = Node->getOperand(3); // False
2884 SDValue CC = Node->getOperand(4);
2886 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2887 Tmp1, Tmp2, CC, dl);
2889 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2890 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2891 CC = DAG.getCondCode(ISD::SETNE);
2892 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2893 Tmp3, Tmp4, CC);
2894 Results.push_back(Tmp1);
2895 break;
2897 case ISD::BR_CC: {
2898 Tmp1 = Node->getOperand(0); // Chain
2899 Tmp2 = Node->getOperand(2); // LHS
2900 Tmp3 = Node->getOperand(3); // RHS
2901 Tmp4 = Node->getOperand(1); // CC
2903 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2904 Tmp2, Tmp3, Tmp4, dl);
2905 LastCALLSEQ_END = DAG.getEntryNode();
2907 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2908 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2909 Tmp4 = DAG.getCondCode(ISD::SETNE);
2910 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2911 Tmp3, Node->getOperand(4));
2912 Results.push_back(Tmp1);
2913 break;
2915 case ISD::GLOBAL_OFFSET_TABLE:
2916 case ISD::GlobalAddress:
2917 case ISD::GlobalTLSAddress:
2918 case ISD::ExternalSymbol:
2919 case ISD::ConstantPool:
2920 case ISD::JumpTable:
2921 case ISD::INTRINSIC_W_CHAIN:
2922 case ISD::INTRINSIC_WO_CHAIN:
2923 case ISD::INTRINSIC_VOID:
2924 // FIXME: Custom lowering for these operations shouldn't return null!
2925 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2926 Results.push_back(SDValue(Node, i));
2927 break;
2930 void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2931 SmallVectorImpl<SDValue> &Results) {
2932 MVT OVT = Node->getValueType(0);
2933 if (Node->getOpcode() == ISD::UINT_TO_FP ||
2934 Node->getOpcode() == ISD::SINT_TO_FP ||
2935 Node->getOpcode() == ISD::SETCC) {
2936 OVT = Node->getOperand(0).getValueType();
2938 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2939 DebugLoc dl = Node->getDebugLoc();
2940 SDValue Tmp1, Tmp2, Tmp3;
2941 switch (Node->getOpcode()) {
2942 case ISD::CTTZ:
2943 case ISD::CTLZ:
2944 case ISD::CTPOP:
2945 // Zero extend the argument.
2946 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2947 // Perform the larger operation.
2948 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2949 if (Node->getOpcode() == ISD::CTTZ) {
2950 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2951 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2952 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2953 ISD::SETEQ);
2954 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2955 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2956 } else if (Node->getOpcode() == ISD::CTLZ) {
2957 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2958 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2959 DAG.getConstant(NVT.getSizeInBits() -
2960 OVT.getSizeInBits(), NVT));
2962 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2963 break;
2964 case ISD::BSWAP: {
2965 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2966 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2967 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2968 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2969 DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2970 Results.push_back(Tmp1);
2971 break;
2973 case ISD::FP_TO_UINT:
2974 case ISD::FP_TO_SINT:
2975 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2976 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2977 Results.push_back(Tmp1);
2978 break;
2979 case ISD::UINT_TO_FP:
2980 case ISD::SINT_TO_FP:
2981 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2982 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2983 Results.push_back(Tmp1);
2984 break;
2985 case ISD::AND:
2986 case ISD::OR:
2987 case ISD::XOR: {
2988 unsigned ExtOp, TruncOp;
2989 if (OVT.isVector()) {
2990 ExtOp = ISD::BIT_CONVERT;
2991 TruncOp = ISD::BIT_CONVERT;
2992 } else if (OVT.isInteger()) {
2993 ExtOp = ISD::ANY_EXTEND;
2994 TruncOp = ISD::TRUNCATE;
2995 } else {
2996 llvm_report_error("Cannot promote logic operation");
2998 // Promote each of the values to the new type.
2999 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3000 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3001 // Perform the larger operation, then convert back
3002 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3003 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3004 break;
3006 case ISD::SELECT: {
3007 unsigned ExtOp, TruncOp;
3008 if (Node->getValueType(0).isVector()) {
3009 ExtOp = ISD::BIT_CONVERT;
3010 TruncOp = ISD::BIT_CONVERT;
3011 } else if (Node->getValueType(0).isInteger()) {
3012 ExtOp = ISD::ANY_EXTEND;
3013 TruncOp = ISD::TRUNCATE;
3014 } else {
3015 ExtOp = ISD::FP_EXTEND;
3016 TruncOp = ISD::FP_ROUND;
3018 Tmp1 = Node->getOperand(0);
3019 // Promote each of the values to the new type.
3020 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3021 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3022 // Perform the larger operation, then round down.
3023 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3024 if (TruncOp != ISD::FP_ROUND)
3025 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3026 else
3027 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3028 DAG.getIntPtrConstant(0));
3029 Results.push_back(Tmp1);
3030 break;
3032 case ISD::VECTOR_SHUFFLE: {
3033 SmallVector<int, 8> Mask;
3034 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3036 // Cast the two input vectors.
3037 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3038 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3040 // Convert the shuffle mask to the right # elements.
3041 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3042 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3043 Results.push_back(Tmp1);
3044 break;
3046 case ISD::SETCC: {
3047 unsigned ExtOp = ISD::FP_EXTEND;
3048 if (NVT.isInteger()) {
3049 ISD::CondCode CCCode =
3050 cast<CondCodeSDNode>(Node->getOperand(2))->get();
3051 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3053 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3054 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3055 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3056 Tmp1, Tmp2, Node->getOperand(2)));
3057 break;
3062 // SelectionDAG::Legalize - This is the entry point for the file.
3064 void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3065 CodeGenOpt::Level OptLevel) {
3066 /// run - This is the main entry point to this class.
3068 SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();