It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuild.h
blob379ced966fab2a6b2751b238c0c08cc1b9ebd9ca
1 //===-- SelectionDAGBuild.h - Selection-DAG building ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #ifndef SELECTIONDAGBUILD_H
15 #define SELECTIONDAGBUILD_H
17 #include "llvm/Constants.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #ifndef NDEBUG
22 #include "llvm/ADT/SmallSet.h"
23 #endif
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/Support/CallSite.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include <vector>
30 #include <set>
32 namespace llvm {
34 class AliasAnalysis;
35 class AllocaInst;
36 class BasicBlock;
37 class BitCastInst;
38 class BranchInst;
39 class CallInst;
40 class ExtractElementInst;
41 class ExtractValueInst;
42 class FCmpInst;
43 class FPExtInst;
44 class FPToSIInst;
45 class FPToUIInst;
46 class FPTruncInst;
47 class FreeInst;
48 class Function;
49 class GetElementPtrInst;
50 class GCFunctionInfo;
51 class ICmpInst;
52 class IntToPtrInst;
53 class InvokeInst;
54 class InsertElementInst;
55 class InsertValueInst;
56 class Instruction;
57 class LoadInst;
58 class MachineBasicBlock;
59 class MachineFunction;
60 class MachineInstr;
61 class MachineModuleInfo;
62 class MachineRegisterInfo;
63 class MallocInst;
64 class PHINode;
65 class PtrToIntInst;
66 class ReturnInst;
67 class SDISelAsmOperandInfo;
68 class SExtInst;
69 class SelectInst;
70 class ShuffleVectorInst;
71 class SIToFPInst;
72 class StoreInst;
73 class SwitchInst;
74 class TargetData;
75 class TargetLowering;
76 class TruncInst;
77 class UIToFPInst;
78 class UnreachableInst;
79 class UnwindInst;
80 class VAArgInst;
81 class ZExtInst;
83 //===--------------------------------------------------------------------===//
84 /// FunctionLoweringInfo - This contains information that is global to a
85 /// function that is used when lowering a region of the function.
86 ///
87 class FunctionLoweringInfo {
88 public:
89 TargetLowering &TLI;
90 Function *Fn;
91 MachineFunction *MF;
92 MachineRegisterInfo *RegInfo;
94 explicit FunctionLoweringInfo(TargetLowering &TLI);
96 /// set - Initialize this FunctionLoweringInfo with the given Function
97 /// and its associated MachineFunction.
98 ///
99 void set(Function &Fn, MachineFunction &MF, SelectionDAG &DAG,
100 bool EnableFastISel);
102 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
103 DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
105 /// ValueMap - Since we emit code for the function a basic block at a time,
106 /// we must remember which virtual registers hold the values for
107 /// cross-basic-block values.
108 DenseMap<const Value*, unsigned> ValueMap;
110 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
111 /// the entry block. This allows the allocas to be efficiently referenced
112 /// anywhere in the function.
113 DenseMap<const AllocaInst*, int> StaticAllocaMap;
115 #ifndef NDEBUG
116 SmallSet<Instruction*, 8> CatchInfoLost;
117 SmallSet<Instruction*, 8> CatchInfoFound;
118 #endif
120 unsigned MakeReg(MVT VT);
122 /// isExportedInst - Return true if the specified value is an instruction
123 /// exported from its block.
124 bool isExportedInst(const Value *V) {
125 return ValueMap.count(V);
128 unsigned CreateRegForValue(const Value *V);
130 unsigned InitializeRegForValue(const Value *V) {
131 unsigned &R = ValueMap[V];
132 assert(R == 0 && "Already initialized this value register!");
133 return R = CreateRegForValue(V);
136 struct LiveOutInfo {
137 unsigned NumSignBits;
138 APInt KnownOne, KnownZero;
139 LiveOutInfo() : NumSignBits(0), KnownOne(1, 0), KnownZero(1, 0) {}
142 /// LiveOutRegInfo - Information about live out vregs, indexed by their
143 /// register number offset by 'FirstVirtualRegister'.
144 std::vector<LiveOutInfo> LiveOutRegInfo;
146 /// clear - Clear out all the function-specific state. This returns this
147 /// FunctionLoweringInfo to an empty state, ready to be used for a
148 /// different function.
149 void clear() {
150 MBBMap.clear();
151 ValueMap.clear();
152 StaticAllocaMap.clear();
153 #ifndef NDEBUG
154 CatchInfoLost.clear();
155 CatchInfoFound.clear();
156 #endif
157 LiveOutRegInfo.clear();
161 //===----------------------------------------------------------------------===//
162 /// SelectionDAGLowering - This is the common target-independent lowering
163 /// implementation that is parameterized by a TargetLowering object.
164 /// Also, targets can overload any lowering method.
166 class SelectionDAGLowering {
167 MachineBasicBlock *CurMBB;
169 /// CurDebugLoc - current file + line number. Changes as we build the DAG.
170 DebugLoc CurDebugLoc;
172 DenseMap<const Value*, SDValue> NodeMap;
174 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
175 /// them up and then emit token factor nodes when possible. This allows us to
176 /// get simple disambiguation between loads without worrying about alias
177 /// analysis.
178 SmallVector<SDValue, 8> PendingLoads;
180 /// PendingExports - CopyToReg nodes that copy values to virtual registers
181 /// for export to other blocks need to be emitted before any terminator
182 /// instruction, but they have no other ordering requirements. We bunch them
183 /// up and the emit a single tokenfactor for them just before terminator
184 /// instructions.
185 SmallVector<SDValue, 8> PendingExports;
187 /// Case - A struct to record the Value for a switch case, and the
188 /// case's target basic block.
189 struct Case {
190 Constant* Low;
191 Constant* High;
192 MachineBasicBlock* BB;
194 Case() : Low(0), High(0), BB(0) { }
195 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
196 Low(low), High(high), BB(bb) { }
197 uint64_t size() const {
198 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
199 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
200 return (rHigh - rLow + 1ULL);
204 struct CaseBits {
205 uint64_t Mask;
206 MachineBasicBlock* BB;
207 unsigned Bits;
209 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
210 Mask(mask), BB(bb), Bits(bits) { }
213 typedef std::vector<Case> CaseVector;
214 typedef std::vector<CaseBits> CaseBitsVector;
215 typedef CaseVector::iterator CaseItr;
216 typedef std::pair<CaseItr, CaseItr> CaseRange;
218 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
219 /// of conditional branches.
220 struct CaseRec {
221 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
222 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
224 /// CaseBB - The MBB in which to emit the compare and branch
225 MachineBasicBlock *CaseBB;
226 /// LT, GE - If nonzero, we know the current case value must be less-than or
227 /// greater-than-or-equal-to these Constants.
228 Constant *LT;
229 Constant *GE;
230 /// Range - A pair of iterators representing the range of case values to be
231 /// processed at this point in the binary search tree.
232 CaseRange Range;
235 typedef std::vector<CaseRec> CaseRecVector;
237 /// The comparison function for sorting the switch case values in the vector.
238 /// WARNING: Case ranges should be disjoint!
239 struct CaseCmp {
240 bool operator () (const Case& C1, const Case& C2) {
241 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
242 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
243 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
244 return CI1->getValue().slt(CI2->getValue());
248 struct CaseBitsCmp {
249 bool operator () (const CaseBits& C1, const CaseBits& C2) {
250 return C1.Bits > C2.Bits;
254 size_t Clusterify(CaseVector& Cases, const SwitchInst &SI);
256 /// CaseBlock - This structure is used to communicate between SDLowering and
257 /// SDISel for the code generation of additional basic blocks needed by multi-
258 /// case switch statements.
259 struct CaseBlock {
260 CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
261 MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
262 MachineBasicBlock *me)
263 : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
264 TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
265 // CC - the condition code to use for the case block's setcc node
266 ISD::CondCode CC;
267 // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
268 // Emit by default LHS op RHS. MHS is used for range comparisons:
269 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
270 Value *CmpLHS, *CmpMHS, *CmpRHS;
271 // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
272 MachineBasicBlock *TrueBB, *FalseBB;
273 // ThisBB - the block into which to emit the code for the setcc and branches
274 MachineBasicBlock *ThisBB;
276 struct JumpTable {
277 JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
278 MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
280 /// Reg - the virtual register containing the index of the jump table entry
281 //. to jump to.
282 unsigned Reg;
283 /// JTI - the JumpTableIndex for this jump table in the function.
284 unsigned JTI;
285 /// MBB - the MBB into which to emit the code for the indirect jump.
286 MachineBasicBlock *MBB;
287 /// Default - the MBB of the default bb, which is a successor of the range
288 /// check MBB. This is when updating PHI nodes in successors.
289 MachineBasicBlock *Default;
291 struct JumpTableHeader {
292 JumpTableHeader(APInt F, APInt L, Value* SV, MachineBasicBlock* H,
293 bool E = false):
294 First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
295 APInt First;
296 APInt Last;
297 Value *SValue;
298 MachineBasicBlock *HeaderBB;
299 bool Emitted;
301 typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
303 struct BitTestCase {
304 BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
305 Mask(M), ThisBB(T), TargetBB(Tr) { }
306 uint64_t Mask;
307 MachineBasicBlock* ThisBB;
308 MachineBasicBlock* TargetBB;
311 typedef SmallVector<BitTestCase, 3> BitTestInfo;
313 struct BitTestBlock {
314 BitTestBlock(APInt F, APInt R, Value* SV,
315 unsigned Rg, bool E,
316 MachineBasicBlock* P, MachineBasicBlock* D,
317 const BitTestInfo& C):
318 First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
319 Parent(P), Default(D), Cases(C) { }
320 APInt First;
321 APInt Range;
322 Value *SValue;
323 unsigned Reg;
324 bool Emitted;
325 MachineBasicBlock *Parent;
326 MachineBasicBlock *Default;
327 BitTestInfo Cases;
330 public:
331 // TLI - This is information that describes the available target features we
332 // need for lowering. This indicates when operations are unavailable,
333 // implemented with a libcall, etc.
334 TargetLowering &TLI;
335 SelectionDAG &DAG;
336 const TargetData *TD;
337 AliasAnalysis *AA;
339 /// SwitchCases - Vector of CaseBlock structures used to communicate
340 /// SwitchInst code generation information.
341 std::vector<CaseBlock> SwitchCases;
342 /// JTCases - Vector of JumpTable structures used to communicate
343 /// SwitchInst code generation information.
344 std::vector<JumpTableBlock> JTCases;
345 /// BitTestCases - Vector of BitTestBlock structures used to communicate
346 /// SwitchInst code generation information.
347 std::vector<BitTestBlock> BitTestCases;
349 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
351 // Emit PHI-node-operand constants only once even if used by multiple
352 // PHI nodes.
353 DenseMap<Constant*, unsigned> ConstantsOut;
355 /// FuncInfo - Information about the function as a whole.
357 FunctionLoweringInfo &FuncInfo;
359 /// OptLevel - What optimization level we're generating code for.
360 ///
361 CodeGenOpt::Level OptLevel;
363 /// GFI - Garbage collection metadata for the function.
364 GCFunctionInfo *GFI;
366 /// HasTailCall - This is set to true if a call in the current
367 /// block has been translated as a tail call. In this case,
368 /// no subsequent DAG nodes should be created.
370 bool HasTailCall;
372 LLVMContext *Context;
374 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
375 FunctionLoweringInfo &funcinfo,
376 CodeGenOpt::Level ol)
377 : CurDebugLoc(DebugLoc::getUnknownLoc()),
378 TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
379 HasTailCall(false),
380 Context(dag.getContext()) {
383 void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
385 /// clear - Clear out the curret SelectionDAG and the associated
386 /// state and prepare this SelectionDAGLowering object to be used
387 /// for a new block. This doesn't clear out information about
388 /// additional blocks that are needed to complete switch lowering
389 /// or PHI node updating; that information is cleared out as it is
390 /// consumed.
391 void clear();
393 /// getRoot - Return the current virtual root of the Selection DAG,
394 /// flushing any PendingLoad items. This must be done before emitting
395 /// a store or any other node that may need to be ordered after any
396 /// prior load instructions.
398 SDValue getRoot();
400 /// getControlRoot - Similar to getRoot, but instead of flushing all the
401 /// PendingLoad items, flush all the PendingExports items. It is necessary
402 /// to do this before emitting a terminator instruction.
404 SDValue getControlRoot();
406 DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
407 void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; }
409 void CopyValueToVirtualRegister(Value *V, unsigned Reg);
411 void visit(Instruction &I);
413 void visit(unsigned Opcode, User &I);
415 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
417 SDValue getValue(const Value *V);
419 void setValue(const Value *V, SDValue NewN) {
420 SDValue &N = NodeMap[V];
421 assert(N.getNode() == 0 && "Already set a value for this node!");
422 N = NewN;
425 void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
426 std::set<unsigned> &OutputRegs,
427 std::set<unsigned> &InputRegs);
429 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
430 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
431 unsigned Opc);
432 void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB,
433 MachineBasicBlock *FBB,
434 MachineBasicBlock *CurBB);
435 bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
436 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
437 void CopyToExportRegsIfNeeded(Value *V);
438 void ExportFromCurrentBlock(Value *V);
439 void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
440 MachineBasicBlock *LandingPad = NULL);
442 private:
443 // Terminator instructions.
444 void visitRet(ReturnInst &I);
445 void visitBr(BranchInst &I);
446 void visitSwitch(SwitchInst &I);
447 void visitUnreachable(UnreachableInst &I) { /* noop */ }
449 // Helpers for visitSwitch
450 bool handleSmallSwitchRange(CaseRec& CR,
451 CaseRecVector& WorkList,
452 Value* SV,
453 MachineBasicBlock* Default);
454 bool handleJTSwitchCase(CaseRec& CR,
455 CaseRecVector& WorkList,
456 Value* SV,
457 MachineBasicBlock* Default);
458 bool handleBTSplitSwitchCase(CaseRec& CR,
459 CaseRecVector& WorkList,
460 Value* SV,
461 MachineBasicBlock* Default);
462 bool handleBitTestsSwitchCase(CaseRec& CR,
463 CaseRecVector& WorkList,
464 Value* SV,
465 MachineBasicBlock* Default);
466 public:
467 void visitSwitchCase(CaseBlock &CB);
468 void visitBitTestHeader(BitTestBlock &B);
469 void visitBitTestCase(MachineBasicBlock* NextMBB,
470 unsigned Reg,
471 BitTestCase &B);
472 void visitJumpTable(JumpTable &JT);
473 void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
475 private:
476 // These all get lowered before this pass.
477 void visitInvoke(InvokeInst &I);
478 void visitUnwind(UnwindInst &I);
480 void visitBinary(User &I, unsigned OpCode);
481 void visitShift(User &I, unsigned Opcode);
482 void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
483 void visitFAdd(User &I) { visitBinary(I, ISD::FADD); }
484 void visitSub(User &I) { visitBinary(I, ISD::SUB); }
485 void visitFSub(User &I);
486 void visitMul(User &I) { visitBinary(I, ISD::MUL); }
487 void visitFMul(User &I) { visitBinary(I, ISD::FMUL); }
488 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
489 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
490 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
491 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
492 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
493 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
494 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
495 void visitOr (User &I) { visitBinary(I, ISD::OR); }
496 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
497 void visitShl (User &I) { visitShift(I, ISD::SHL); }
498 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
499 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
500 void visitICmp(User &I);
501 void visitFCmp(User &I);
502 // Visit the conversion instructions
503 void visitTrunc(User &I);
504 void visitZExt(User &I);
505 void visitSExt(User &I);
506 void visitFPTrunc(User &I);
507 void visitFPExt(User &I);
508 void visitFPToUI(User &I);
509 void visitFPToSI(User &I);
510 void visitUIToFP(User &I);
511 void visitSIToFP(User &I);
512 void visitPtrToInt(User &I);
513 void visitIntToPtr(User &I);
514 void visitBitCast(User &I);
516 void visitExtractElement(User &I);
517 void visitInsertElement(User &I);
518 void visitShuffleVector(User &I);
520 void visitExtractValue(ExtractValueInst &I);
521 void visitInsertValue(InsertValueInst &I);
523 void visitGetElementPtr(User &I);
524 void visitSelect(User &I);
526 void visitMalloc(MallocInst &I);
527 void visitFree(FreeInst &I);
528 void visitAlloca(AllocaInst &I);
529 void visitLoad(LoadInst &I);
530 void visitStore(StoreInst &I);
531 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
532 void visitCall(CallInst &I);
533 void visitInlineAsm(CallSite CS);
534 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
535 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
537 void visitPow(CallInst &I);
538 void visitExp2(CallInst &I);
539 void visitExp(CallInst &I);
540 void visitLog(CallInst &I);
541 void visitLog2(CallInst &I);
542 void visitLog10(CallInst &I);
544 void visitVAStart(CallInst &I);
545 void visitVAArg(VAArgInst &I);
546 void visitVAEnd(CallInst &I);
547 void visitVACopy(CallInst &I);
549 void visitUserOp1(Instruction &I) {
550 llvm_unreachable("UserOp1 should not exist at instruction selection time!");
552 void visitUserOp2(Instruction &I) {
553 llvm_unreachable("UserOp2 should not exist at instruction selection time!");
556 const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
557 const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op);
560 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
561 /// call, and add them to the specified machine basic block.
562 void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
563 MachineBasicBlock *MBB);
565 } // end namespace llvm
567 #endif