It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blob3c5305d226c4f8c88904da5c0d5a20db34c9bfde
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/Target/TargetAsmInfo.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Target/TargetLoweringObjectFile.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtarget.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 using namespace llvm;
31 namespace llvm {
32 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
33 bool isLocal = GV->hasLocalLinkage();
34 bool isDeclaration = GV->isDeclaration();
35 // FIXME: what should we do for protected and internal visibility?
36 // For variables, is internal different from hidden?
37 bool isHidden = GV->hasHiddenVisibility();
39 if (reloc == Reloc::PIC_) {
40 if (isLocal || isHidden)
41 return TLSModel::LocalDynamic;
42 else
43 return TLSModel::GeneralDynamic;
44 } else {
45 if (!isDeclaration || isHidden)
46 return TLSModel::LocalExec;
47 else
48 return TLSModel::InitialExec;
53 /// InitLibcallNames - Set default libcall names.
54 ///
55 static void InitLibcallNames(const char **Names) {
56 Names[RTLIB::SHL_I16] = "__ashlhi3";
57 Names[RTLIB::SHL_I32] = "__ashlsi3";
58 Names[RTLIB::SHL_I64] = "__ashldi3";
59 Names[RTLIB::SHL_I128] = "__ashlti3";
60 Names[RTLIB::SRL_I16] = "__lshrhi3";
61 Names[RTLIB::SRL_I32] = "__lshrsi3";
62 Names[RTLIB::SRL_I64] = "__lshrdi3";
63 Names[RTLIB::SRL_I128] = "__lshrti3";
64 Names[RTLIB::SRA_I16] = "__ashrhi3";
65 Names[RTLIB::SRA_I32] = "__ashrsi3";
66 Names[RTLIB::SRA_I64] = "__ashrdi3";
67 Names[RTLIB::SRA_I128] = "__ashrti3";
68 Names[RTLIB::MUL_I16] = "__mulhi3";
69 Names[RTLIB::MUL_I32] = "__mulsi3";
70 Names[RTLIB::MUL_I64] = "__muldi3";
71 Names[RTLIB::MUL_I128] = "__multi3";
72 Names[RTLIB::SDIV_I16] = "__divhi3";
73 Names[RTLIB::SDIV_I32] = "__divsi3";
74 Names[RTLIB::SDIV_I64] = "__divdi3";
75 Names[RTLIB::SDIV_I128] = "__divti3";
76 Names[RTLIB::UDIV_I16] = "__udivhi3";
77 Names[RTLIB::UDIV_I32] = "__udivsi3";
78 Names[RTLIB::UDIV_I64] = "__udivdi3";
79 Names[RTLIB::UDIV_I128] = "__udivti3";
80 Names[RTLIB::SREM_I16] = "__modhi3";
81 Names[RTLIB::SREM_I32] = "__modsi3";
82 Names[RTLIB::SREM_I64] = "__moddi3";
83 Names[RTLIB::SREM_I128] = "__modti3";
84 Names[RTLIB::UREM_I16] = "__umodhi3";
85 Names[RTLIB::UREM_I32] = "__umodsi3";
86 Names[RTLIB::UREM_I64] = "__umoddi3";
87 Names[RTLIB::UREM_I128] = "__umodti3";
88 Names[RTLIB::NEG_I32] = "__negsi2";
89 Names[RTLIB::NEG_I64] = "__negdi2";
90 Names[RTLIB::ADD_F32] = "__addsf3";
91 Names[RTLIB::ADD_F64] = "__adddf3";
92 Names[RTLIB::ADD_F80] = "__addxf3";
93 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
94 Names[RTLIB::SUB_F32] = "__subsf3";
95 Names[RTLIB::SUB_F64] = "__subdf3";
96 Names[RTLIB::SUB_F80] = "__subxf3";
97 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
98 Names[RTLIB::MUL_F32] = "__mulsf3";
99 Names[RTLIB::MUL_F64] = "__muldf3";
100 Names[RTLIB::MUL_F80] = "__mulxf3";
101 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
102 Names[RTLIB::DIV_F32] = "__divsf3";
103 Names[RTLIB::DIV_F64] = "__divdf3";
104 Names[RTLIB::DIV_F80] = "__divxf3";
105 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
106 Names[RTLIB::REM_F32] = "fmodf";
107 Names[RTLIB::REM_F64] = "fmod";
108 Names[RTLIB::REM_F80] = "fmodl";
109 Names[RTLIB::REM_PPCF128] = "fmodl";
110 Names[RTLIB::POWI_F32] = "__powisf2";
111 Names[RTLIB::POWI_F64] = "__powidf2";
112 Names[RTLIB::POWI_F80] = "__powixf2";
113 Names[RTLIB::POWI_PPCF128] = "__powitf2";
114 Names[RTLIB::SQRT_F32] = "sqrtf";
115 Names[RTLIB::SQRT_F64] = "sqrt";
116 Names[RTLIB::SQRT_F80] = "sqrtl";
117 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
118 Names[RTLIB::LOG_F32] = "logf";
119 Names[RTLIB::LOG_F64] = "log";
120 Names[RTLIB::LOG_F80] = "logl";
121 Names[RTLIB::LOG_PPCF128] = "logl";
122 Names[RTLIB::LOG2_F32] = "log2f";
123 Names[RTLIB::LOG2_F64] = "log2";
124 Names[RTLIB::LOG2_F80] = "log2l";
125 Names[RTLIB::LOG2_PPCF128] = "log2l";
126 Names[RTLIB::LOG10_F32] = "log10f";
127 Names[RTLIB::LOG10_F64] = "log10";
128 Names[RTLIB::LOG10_F80] = "log10l";
129 Names[RTLIB::LOG10_PPCF128] = "log10l";
130 Names[RTLIB::EXP_F32] = "expf";
131 Names[RTLIB::EXP_F64] = "exp";
132 Names[RTLIB::EXP_F80] = "expl";
133 Names[RTLIB::EXP_PPCF128] = "expl";
134 Names[RTLIB::EXP2_F32] = "exp2f";
135 Names[RTLIB::EXP2_F64] = "exp2";
136 Names[RTLIB::EXP2_F80] = "exp2l";
137 Names[RTLIB::EXP2_PPCF128] = "exp2l";
138 Names[RTLIB::SIN_F32] = "sinf";
139 Names[RTLIB::SIN_F64] = "sin";
140 Names[RTLIB::SIN_F80] = "sinl";
141 Names[RTLIB::SIN_PPCF128] = "sinl";
142 Names[RTLIB::COS_F32] = "cosf";
143 Names[RTLIB::COS_F64] = "cos";
144 Names[RTLIB::COS_F80] = "cosl";
145 Names[RTLIB::COS_PPCF128] = "cosl";
146 Names[RTLIB::POW_F32] = "powf";
147 Names[RTLIB::POW_F64] = "pow";
148 Names[RTLIB::POW_F80] = "powl";
149 Names[RTLIB::POW_PPCF128] = "powl";
150 Names[RTLIB::CEIL_F32] = "ceilf";
151 Names[RTLIB::CEIL_F64] = "ceil";
152 Names[RTLIB::CEIL_F80] = "ceill";
153 Names[RTLIB::CEIL_PPCF128] = "ceill";
154 Names[RTLIB::TRUNC_F32] = "truncf";
155 Names[RTLIB::TRUNC_F64] = "trunc";
156 Names[RTLIB::TRUNC_F80] = "truncl";
157 Names[RTLIB::TRUNC_PPCF128] = "truncl";
158 Names[RTLIB::RINT_F32] = "rintf";
159 Names[RTLIB::RINT_F64] = "rint";
160 Names[RTLIB::RINT_F80] = "rintl";
161 Names[RTLIB::RINT_PPCF128] = "rintl";
162 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
163 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
164 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
165 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
166 Names[RTLIB::FLOOR_F32] = "floorf";
167 Names[RTLIB::FLOOR_F64] = "floor";
168 Names[RTLIB::FLOOR_F80] = "floorl";
169 Names[RTLIB::FLOOR_PPCF128] = "floorl";
170 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
171 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
172 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
173 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
174 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
175 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
176 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
177 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
178 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
179 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
180 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
181 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
182 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
183 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
184 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
185 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
186 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
187 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
188 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
189 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
190 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
191 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
192 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
193 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
194 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
195 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
196 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
197 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
198 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
199 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
200 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
201 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
202 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
203 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
204 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
205 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
206 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
207 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
208 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
209 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
210 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
211 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
212 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
213 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
214 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
215 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
216 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
217 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
218 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
219 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
220 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
221 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
222 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
223 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
224 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
225 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
226 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
227 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
228 Names[RTLIB::OEQ_F32] = "__eqsf2";
229 Names[RTLIB::OEQ_F64] = "__eqdf2";
230 Names[RTLIB::UNE_F32] = "__nesf2";
231 Names[RTLIB::UNE_F64] = "__nedf2";
232 Names[RTLIB::OGE_F32] = "__gesf2";
233 Names[RTLIB::OGE_F64] = "__gedf2";
234 Names[RTLIB::OLT_F32] = "__ltsf2";
235 Names[RTLIB::OLT_F64] = "__ltdf2";
236 Names[RTLIB::OLE_F32] = "__lesf2";
237 Names[RTLIB::OLE_F64] = "__ledf2";
238 Names[RTLIB::OGT_F32] = "__gtsf2";
239 Names[RTLIB::OGT_F64] = "__gtdf2";
240 Names[RTLIB::UO_F32] = "__unordsf2";
241 Names[RTLIB::UO_F64] = "__unorddf2";
242 Names[RTLIB::O_F32] = "__unordsf2";
243 Names[RTLIB::O_F64] = "__unorddf2";
244 Names[RTLIB::MEMCPY] = "memcpy";
245 Names[RTLIB::MEMMOVE] = "memmove";
246 Names[RTLIB::MEMSET] = "memset";
247 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
250 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
251 /// UNKNOWN_LIBCALL if there is none.
252 RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
253 if (OpVT == MVT::f32) {
254 if (RetVT == MVT::f64)
255 return FPEXT_F32_F64;
257 return UNKNOWN_LIBCALL;
260 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
261 /// UNKNOWN_LIBCALL if there is none.
262 RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
263 if (RetVT == MVT::f32) {
264 if (OpVT == MVT::f64)
265 return FPROUND_F64_F32;
266 if (OpVT == MVT::f80)
267 return FPROUND_F80_F32;
268 if (OpVT == MVT::ppcf128)
269 return FPROUND_PPCF128_F32;
270 } else if (RetVT == MVT::f64) {
271 if (OpVT == MVT::f80)
272 return FPROUND_F80_F64;
273 if (OpVT == MVT::ppcf128)
274 return FPROUND_PPCF128_F64;
276 return UNKNOWN_LIBCALL;
279 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
280 /// UNKNOWN_LIBCALL if there is none.
281 RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
282 if (OpVT == MVT::f32) {
283 if (RetVT == MVT::i8)
284 return FPTOSINT_F32_I8;
285 if (RetVT == MVT::i16)
286 return FPTOSINT_F32_I16;
287 if (RetVT == MVT::i32)
288 return FPTOSINT_F32_I32;
289 if (RetVT == MVT::i64)
290 return FPTOSINT_F32_I64;
291 if (RetVT == MVT::i128)
292 return FPTOSINT_F32_I128;
293 } else if (OpVT == MVT::f64) {
294 if (RetVT == MVT::i32)
295 return FPTOSINT_F64_I32;
296 if (RetVT == MVT::i64)
297 return FPTOSINT_F64_I64;
298 if (RetVT == MVT::i128)
299 return FPTOSINT_F64_I128;
300 } else if (OpVT == MVT::f80) {
301 if (RetVT == MVT::i32)
302 return FPTOSINT_F80_I32;
303 if (RetVT == MVT::i64)
304 return FPTOSINT_F80_I64;
305 if (RetVT == MVT::i128)
306 return FPTOSINT_F80_I128;
307 } else if (OpVT == MVT::ppcf128) {
308 if (RetVT == MVT::i32)
309 return FPTOSINT_PPCF128_I32;
310 if (RetVT == MVT::i64)
311 return FPTOSINT_PPCF128_I64;
312 if (RetVT == MVT::i128)
313 return FPTOSINT_PPCF128_I128;
315 return UNKNOWN_LIBCALL;
318 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
321 if (OpVT == MVT::f32) {
322 if (RetVT == MVT::i8)
323 return FPTOUINT_F32_I8;
324 if (RetVT == MVT::i16)
325 return FPTOUINT_F32_I16;
326 if (RetVT == MVT::i32)
327 return FPTOUINT_F32_I32;
328 if (RetVT == MVT::i64)
329 return FPTOUINT_F32_I64;
330 if (RetVT == MVT::i128)
331 return FPTOUINT_F32_I128;
332 } else if (OpVT == MVT::f64) {
333 if (RetVT == MVT::i32)
334 return FPTOUINT_F64_I32;
335 if (RetVT == MVT::i64)
336 return FPTOUINT_F64_I64;
337 if (RetVT == MVT::i128)
338 return FPTOUINT_F64_I128;
339 } else if (OpVT == MVT::f80) {
340 if (RetVT == MVT::i32)
341 return FPTOUINT_F80_I32;
342 if (RetVT == MVT::i64)
343 return FPTOUINT_F80_I64;
344 if (RetVT == MVT::i128)
345 return FPTOUINT_F80_I128;
346 } else if (OpVT == MVT::ppcf128) {
347 if (RetVT == MVT::i32)
348 return FPTOUINT_PPCF128_I32;
349 if (RetVT == MVT::i64)
350 return FPTOUINT_PPCF128_I64;
351 if (RetVT == MVT::i128)
352 return FPTOUINT_PPCF128_I128;
354 return UNKNOWN_LIBCALL;
357 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
358 /// UNKNOWN_LIBCALL if there is none.
359 RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
360 if (OpVT == MVT::i32) {
361 if (RetVT == MVT::f32)
362 return SINTTOFP_I32_F32;
363 else if (RetVT == MVT::f64)
364 return SINTTOFP_I32_F64;
365 else if (RetVT == MVT::f80)
366 return SINTTOFP_I32_F80;
367 else if (RetVT == MVT::ppcf128)
368 return SINTTOFP_I32_PPCF128;
369 } else if (OpVT == MVT::i64) {
370 if (RetVT == MVT::f32)
371 return SINTTOFP_I64_F32;
372 else if (RetVT == MVT::f64)
373 return SINTTOFP_I64_F64;
374 else if (RetVT == MVT::f80)
375 return SINTTOFP_I64_F80;
376 else if (RetVT == MVT::ppcf128)
377 return SINTTOFP_I64_PPCF128;
378 } else if (OpVT == MVT::i128) {
379 if (RetVT == MVT::f32)
380 return SINTTOFP_I128_F32;
381 else if (RetVT == MVT::f64)
382 return SINTTOFP_I128_F64;
383 else if (RetVT == MVT::f80)
384 return SINTTOFP_I128_F80;
385 else if (RetVT == MVT::ppcf128)
386 return SINTTOFP_I128_PPCF128;
388 return UNKNOWN_LIBCALL;
391 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
392 /// UNKNOWN_LIBCALL if there is none.
393 RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
394 if (OpVT == MVT::i32) {
395 if (RetVT == MVT::f32)
396 return UINTTOFP_I32_F32;
397 else if (RetVT == MVT::f64)
398 return UINTTOFP_I32_F64;
399 else if (RetVT == MVT::f80)
400 return UINTTOFP_I32_F80;
401 else if (RetVT == MVT::ppcf128)
402 return UINTTOFP_I32_PPCF128;
403 } else if (OpVT == MVT::i64) {
404 if (RetVT == MVT::f32)
405 return UINTTOFP_I64_F32;
406 else if (RetVT == MVT::f64)
407 return UINTTOFP_I64_F64;
408 else if (RetVT == MVT::f80)
409 return UINTTOFP_I64_F80;
410 else if (RetVT == MVT::ppcf128)
411 return UINTTOFP_I64_PPCF128;
412 } else if (OpVT == MVT::i128) {
413 if (RetVT == MVT::f32)
414 return UINTTOFP_I128_F32;
415 else if (RetVT == MVT::f64)
416 return UINTTOFP_I128_F64;
417 else if (RetVT == MVT::f80)
418 return UINTTOFP_I128_F80;
419 else if (RetVT == MVT::ppcf128)
420 return UINTTOFP_I128_PPCF128;
422 return UNKNOWN_LIBCALL;
425 /// InitCmpLibcallCCs - Set default comparison libcall CC.
427 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
428 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
429 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
430 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
431 CCs[RTLIB::UNE_F32] = ISD::SETNE;
432 CCs[RTLIB::UNE_F64] = ISD::SETNE;
433 CCs[RTLIB::OGE_F32] = ISD::SETGE;
434 CCs[RTLIB::OGE_F64] = ISD::SETGE;
435 CCs[RTLIB::OLT_F32] = ISD::SETLT;
436 CCs[RTLIB::OLT_F64] = ISD::SETLT;
437 CCs[RTLIB::OLE_F32] = ISD::SETLE;
438 CCs[RTLIB::OLE_F64] = ISD::SETLE;
439 CCs[RTLIB::OGT_F32] = ISD::SETGT;
440 CCs[RTLIB::OGT_F64] = ISD::SETGT;
441 CCs[RTLIB::UO_F32] = ISD::SETNE;
442 CCs[RTLIB::UO_F64] = ISD::SETNE;
443 CCs[RTLIB::O_F32] = ISD::SETEQ;
444 CCs[RTLIB::O_F64] = ISD::SETEQ;
447 /// NOTE: The constructor takes ownership of TLOF.
448 TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
449 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
450 // All operations default to being supported.
451 memset(OpActions, 0, sizeof(OpActions));
452 memset(LoadExtActions, 0, sizeof(LoadExtActions));
453 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
454 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
455 memset(ConvertActions, 0, sizeof(ConvertActions));
456 memset(CondCodeActions, 0, sizeof(CondCodeActions));
458 // Set default actions for various operations.
459 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
460 // Default all indexed load / store to expand.
461 for (unsigned IM = (unsigned)ISD::PRE_INC;
462 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
463 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
464 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
467 // These operations default to expand.
468 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
469 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
472 // Most targets ignore the @llvm.prefetch intrinsic.
473 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
475 // ConstantFP nodes default to expand. Targets can either change this to
476 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
477 // to optimize expansions for certain constants.
478 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
479 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
480 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
482 // These library functions default to expand.
483 setOperationAction(ISD::FLOG , MVT::f64, Expand);
484 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
485 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
486 setOperationAction(ISD::FEXP , MVT::f64, Expand);
487 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
488 setOperationAction(ISD::FLOG , MVT::f32, Expand);
489 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
490 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
491 setOperationAction(ISD::FEXP , MVT::f32, Expand);
492 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
494 // Default ISD::TRAP to expand (which turns it into abort).
495 setOperationAction(ISD::TRAP, MVT::Other, Expand);
497 IsLittleEndian = TD->isLittleEndian();
498 UsesGlobalOffsetTable = false;
499 ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
500 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
501 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
502 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
503 allowUnalignedMemoryAccesses = false;
504 benefitFromCodePlacementOpt = false;
505 UseUnderscoreSetJmp = false;
506 UseUnderscoreLongJmp = false;
507 SelectIsExpensive = false;
508 IntDivIsCheap = false;
509 Pow2DivIsCheap = false;
510 StackPointerRegisterToSaveRestore = 0;
511 ExceptionPointerRegister = 0;
512 ExceptionSelectorRegister = 0;
513 BooleanContents = UndefinedBooleanContent;
514 SchedPreferenceInfo = SchedulingForLatency;
515 JumpBufSize = 0;
516 JumpBufAlignment = 0;
517 IfCvtBlockSizeLimit = 2;
518 IfCvtDupBlockSizeLimit = 0;
519 PrefLoopAlignment = 0;
521 InitLibcallNames(LibcallRoutineNames);
522 InitCmpLibcallCCs(CmpLibcallCCs);
524 // Tell Legalize whether the assembler supports DEBUG_LOC.
525 const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
526 if (!TASM || !TASM->hasDotLocAndDotFile())
527 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
530 TargetLowering::~TargetLowering() {
531 delete &TLOF;
534 /// computeRegisterProperties - Once all of the register classes are added,
535 /// this allows us to compute derived properties we expose.
536 void TargetLowering::computeRegisterProperties() {
537 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
538 "Too many value types for ValueTypeActions to hold!");
540 // Everything defaults to needing one register.
541 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
542 NumRegistersForVT[i] = 1;
543 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
545 // ...except isVoid, which doesn't need any registers.
546 NumRegistersForVT[MVT::isVoid] = 0;
548 // Find the largest integer register class.
549 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
550 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
551 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
553 // Every integer value type larger than this largest register takes twice as
554 // many registers to represent as the previous ValueType.
555 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
556 MVT EVT = (MVT::SimpleValueType)ExpandedReg;
557 if (!EVT.isInteger())
558 break;
559 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
560 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
561 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
562 ValueTypeActions.setTypeAction(EVT, Expand);
565 // Inspect all of the ValueType's smaller than the largest integer
566 // register to see which ones need promotion.
567 unsigned LegalIntReg = LargestIntReg;
568 for (unsigned IntReg = LargestIntReg - 1;
569 IntReg >= (unsigned)MVT::i1; --IntReg) {
570 MVT IVT = (MVT::SimpleValueType)IntReg;
571 if (isTypeLegal(IVT)) {
572 LegalIntReg = IntReg;
573 } else {
574 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
575 (MVT::SimpleValueType)LegalIntReg;
576 ValueTypeActions.setTypeAction(IVT, Promote);
580 // ppcf128 type is really two f64's.
581 if (!isTypeLegal(MVT::ppcf128)) {
582 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
583 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
584 TransformToType[MVT::ppcf128] = MVT::f64;
585 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
588 // Decide how to handle f64. If the target does not have native f64 support,
589 // expand it to i64 and we will be generating soft float library calls.
590 if (!isTypeLegal(MVT::f64)) {
591 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
592 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
593 TransformToType[MVT::f64] = MVT::i64;
594 ValueTypeActions.setTypeAction(MVT::f64, Expand);
597 // Decide how to handle f32. If the target does not have native support for
598 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
599 if (!isTypeLegal(MVT::f32)) {
600 if (isTypeLegal(MVT::f64)) {
601 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
602 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
603 TransformToType[MVT::f32] = MVT::f64;
604 ValueTypeActions.setTypeAction(MVT::f32, Promote);
605 } else {
606 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
607 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
608 TransformToType[MVT::f32] = MVT::i32;
609 ValueTypeActions.setTypeAction(MVT::f32, Expand);
613 // Loop over all of the vector value types to see which need transformations.
614 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
615 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
616 MVT VT = (MVT::SimpleValueType)i;
617 if (!isTypeLegal(VT)) {
618 MVT IntermediateVT, RegisterVT;
619 unsigned NumIntermediates;
620 NumRegistersForVT[i] =
621 getVectorTypeBreakdown(VT,
622 IntermediateVT, NumIntermediates,
623 RegisterVT);
624 RegisterTypeForVT[i] = RegisterVT;
626 // Determine if there is a legal wider type.
627 bool IsLegalWiderType = false;
628 MVT EltVT = VT.getVectorElementType();
629 unsigned NElts = VT.getVectorNumElements();
630 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
631 MVT SVT = (MVT::SimpleValueType)nVT;
632 if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
633 SVT.getVectorNumElements() > NElts) {
634 TransformToType[i] = SVT;
635 ValueTypeActions.setTypeAction(VT, Promote);
636 IsLegalWiderType = true;
637 break;
640 if (!IsLegalWiderType) {
641 MVT NVT = VT.getPow2VectorType();
642 if (NVT == VT) {
643 // Type is already a power of 2. The default action is to split.
644 TransformToType[i] = MVT::Other;
645 ValueTypeActions.setTypeAction(VT, Expand);
646 } else {
647 TransformToType[i] = NVT;
648 ValueTypeActions.setTypeAction(VT, Promote);
655 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
656 return NULL;
660 MVT TargetLowering::getSetCCResultType(MVT VT) const {
661 return getValueType(TD->getIntPtrType());
665 /// getVectorTypeBreakdown - Vector types are broken down into some number of
666 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
667 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
668 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
670 /// This method returns the number of registers needed, and the VT for each
671 /// register. It also returns the VT and quantity of the intermediate values
672 /// before they are promoted/expanded.
674 unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
675 MVT &IntermediateVT,
676 unsigned &NumIntermediates,
677 MVT &RegisterVT) const {
678 // Figure out the right, legal destination reg to copy into.
679 unsigned NumElts = VT.getVectorNumElements();
680 MVT EltTy = VT.getVectorElementType();
682 unsigned NumVectorRegs = 1;
684 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
685 // could break down into LHS/RHS like LegalizeDAG does.
686 if (!isPowerOf2_32(NumElts)) {
687 NumVectorRegs = NumElts;
688 NumElts = 1;
691 // Divide the input until we get to a supported size. This will always
692 // end with a scalar if the target doesn't support vectors.
693 while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
694 NumElts >>= 1;
695 NumVectorRegs <<= 1;
698 NumIntermediates = NumVectorRegs;
700 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
701 if (!isTypeLegal(NewVT))
702 NewVT = EltTy;
703 IntermediateVT = NewVT;
705 MVT DestVT = getRegisterType(NewVT);
706 RegisterVT = DestVT;
707 if (DestVT.bitsLT(NewVT)) {
708 // Value is expanded, e.g. i64 -> i16.
709 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
710 } else {
711 // Otherwise, promotion or legal types use the same number of registers as
712 // the vector decimated to the appropriate level.
713 return NumVectorRegs;
716 return 1;
719 /// getWidenVectorType: given a vector type, returns the type to widen to
720 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
721 /// If there is no vector type that we want to widen to, returns MVT::Other
722 /// When and where to widen is target dependent based on the cost of
723 /// scalarizing vs using the wider vector type.
724 MVT TargetLowering::getWidenVectorType(MVT VT) const {
725 assert(VT.isVector());
726 if (isTypeLegal(VT))
727 return VT;
729 // Default is not to widen until moved to LegalizeTypes
730 return MVT::Other;
733 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
734 /// function arguments in the caller parameter area. This is the actual
735 /// alignment, not its logarithm.
736 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
737 return TD->getCallFrameTypeAlignment(Ty);
740 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
741 SelectionDAG &DAG) const {
742 if (usesGlobalOffsetTable())
743 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
744 return Table;
747 bool
748 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
749 // Assume that everything is safe in static mode.
750 if (getTargetMachine().getRelocationModel() == Reloc::Static)
751 return true;
753 // In dynamic-no-pic mode, assume that known defined values are safe.
754 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
755 GA &&
756 !GA->getGlobal()->isDeclaration() &&
757 !GA->getGlobal()->isWeakForLinker())
758 return true;
760 // Otherwise assume nothing is safe.
761 return false;
764 //===----------------------------------------------------------------------===//
765 // Optimization Methods
766 //===----------------------------------------------------------------------===//
768 /// ShrinkDemandedConstant - Check to see if the specified operand of the
769 /// specified instruction is a constant integer. If so, check to see if there
770 /// are any bits set in the constant that are not demanded. If so, shrink the
771 /// constant and return true.
772 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
773 const APInt &Demanded) {
774 DebugLoc dl = Op.getDebugLoc();
776 // FIXME: ISD::SELECT, ISD::SELECT_CC
777 switch (Op.getOpcode()) {
778 default: break;
779 case ISD::XOR:
780 case ISD::AND:
781 case ISD::OR: {
782 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
783 if (!C) return false;
785 if (Op.getOpcode() == ISD::XOR &&
786 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
787 return false;
789 // if we can expand it to have all bits set, do it
790 if (C->getAPIntValue().intersects(~Demanded)) {
791 MVT VT = Op.getValueType();
792 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
793 DAG.getConstant(Demanded &
794 C->getAPIntValue(),
795 VT));
796 return CombineTo(Op, New);
799 break;
803 return false;
806 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
807 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
808 /// cast, but it could be generalized for targets with other types of
809 /// implicit widening casts.
810 bool
811 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
812 unsigned BitWidth,
813 const APInt &Demanded,
814 DebugLoc dl) {
815 assert(Op.getNumOperands() == 2 &&
816 "ShrinkDemandedOp only supports binary operators!");
817 assert(Op.getNode()->getNumValues() == 1 &&
818 "ShrinkDemandedOp only supports nodes with one result!");
820 // Don't do this if the node has another user, which may require the
821 // full value.
822 if (!Op.getNode()->hasOneUse())
823 return false;
825 // Search for the smallest integer type with free casts to and from
826 // Op's type. For expedience, just check power-of-2 integer types.
827 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
828 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
829 if (!isPowerOf2_32(SmallVTBits))
830 SmallVTBits = NextPowerOf2(SmallVTBits);
831 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
832 MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
833 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
834 TLI.isZExtFree(SmallVT, Op.getValueType())) {
835 // We found a type with free casts.
836 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
837 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
838 Op.getNode()->getOperand(0)),
839 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
840 Op.getNode()->getOperand(1)));
841 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
842 return CombineTo(Op, Z);
845 return false;
848 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
849 /// DemandedMask bits of the result of Op are ever used downstream. If we can
850 /// use this information to simplify Op, create a new simplified DAG node and
851 /// return true, returning the original and new nodes in Old and New. Otherwise,
852 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
853 /// the expression (used to simplify the caller). The KnownZero/One bits may
854 /// only be accurate for those bits in the DemandedMask.
855 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
856 const APInt &DemandedMask,
857 APInt &KnownZero,
858 APInt &KnownOne,
859 TargetLoweringOpt &TLO,
860 unsigned Depth) const {
861 unsigned BitWidth = DemandedMask.getBitWidth();
862 assert(Op.getValueSizeInBits() == BitWidth &&
863 "Mask size mismatches value type size!");
864 APInt NewMask = DemandedMask;
865 DebugLoc dl = Op.getDebugLoc();
867 // Don't know anything.
868 KnownZero = KnownOne = APInt(BitWidth, 0);
870 // Other users may use these bits.
871 if (!Op.getNode()->hasOneUse()) {
872 if (Depth != 0) {
873 // If not at the root, Just compute the KnownZero/KnownOne bits to
874 // simplify things downstream.
875 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
876 return false;
878 // If this is the root being simplified, allow it to have multiple uses,
879 // just set the NewMask to all bits.
880 NewMask = APInt::getAllOnesValue(BitWidth);
881 } else if (DemandedMask == 0) {
882 // Not demanding any bits from Op.
883 if (Op.getOpcode() != ISD::UNDEF)
884 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
885 return false;
886 } else if (Depth == 6) { // Limit search depth.
887 return false;
890 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
891 switch (Op.getOpcode()) {
892 case ISD::Constant:
893 // We know all of the bits for a constant!
894 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
895 KnownZero = ~KnownOne & NewMask;
896 return false; // Don't fall through, will infinitely loop.
897 case ISD::AND:
898 // If the RHS is a constant, check to see if the LHS would be zero without
899 // using the bits from the RHS. Below, we use knowledge about the RHS to
900 // simplify the LHS, here we're using information from the LHS to simplify
901 // the RHS.
902 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
903 APInt LHSZero, LHSOne;
904 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
905 LHSZero, LHSOne, Depth+1);
906 // If the LHS already has zeros where RHSC does, this and is dead.
907 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
908 return TLO.CombineTo(Op, Op.getOperand(0));
909 // If any of the set bits in the RHS are known zero on the LHS, shrink
910 // the constant.
911 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
912 return true;
915 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
916 KnownOne, TLO, Depth+1))
917 return true;
918 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
919 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
920 KnownZero2, KnownOne2, TLO, Depth+1))
921 return true;
922 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
924 // If all of the demanded bits are known one on one side, return the other.
925 // These bits cannot contribute to the result of the 'and'.
926 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
927 return TLO.CombineTo(Op, Op.getOperand(0));
928 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
929 return TLO.CombineTo(Op, Op.getOperand(1));
930 // If all of the demanded bits in the inputs are known zeros, return zero.
931 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
932 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
933 // If the RHS is a constant, see if we can simplify it.
934 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
935 return true;
936 // If the operation can be done in a smaller type, do so.
937 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
938 return true;
940 // Output known-1 bits are only known if set in both the LHS & RHS.
941 KnownOne &= KnownOne2;
942 // Output known-0 are known to be clear if zero in either the LHS | RHS.
943 KnownZero |= KnownZero2;
944 break;
945 case ISD::OR:
946 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
947 KnownOne, TLO, Depth+1))
948 return true;
949 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
950 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
951 KnownZero2, KnownOne2, TLO, Depth+1))
952 return true;
953 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
955 // If all of the demanded bits are known zero on one side, return the other.
956 // These bits cannot contribute to the result of the 'or'.
957 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
958 return TLO.CombineTo(Op, Op.getOperand(0));
959 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
960 return TLO.CombineTo(Op, Op.getOperand(1));
961 // If all of the potentially set bits on one side are known to be set on
962 // the other side, just use the 'other' side.
963 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
964 return TLO.CombineTo(Op, Op.getOperand(0));
965 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
966 return TLO.CombineTo(Op, Op.getOperand(1));
967 // If the RHS is a constant, see if we can simplify it.
968 if (TLO.ShrinkDemandedConstant(Op, NewMask))
969 return true;
970 // If the operation can be done in a smaller type, do so.
971 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
972 return true;
974 // Output known-0 bits are only known if clear in both the LHS & RHS.
975 KnownZero &= KnownZero2;
976 // Output known-1 are known to be set if set in either the LHS | RHS.
977 KnownOne |= KnownOne2;
978 break;
979 case ISD::XOR:
980 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
981 KnownOne, TLO, Depth+1))
982 return true;
983 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
984 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
985 KnownOne2, TLO, Depth+1))
986 return true;
987 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
989 // If all of the demanded bits are known zero on one side, return the other.
990 // These bits cannot contribute to the result of the 'xor'.
991 if ((KnownZero & NewMask) == NewMask)
992 return TLO.CombineTo(Op, Op.getOperand(0));
993 if ((KnownZero2 & NewMask) == NewMask)
994 return TLO.CombineTo(Op, Op.getOperand(1));
995 // If the operation can be done in a smaller type, do so.
996 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
997 return true;
999 // If all of the unknown bits are known to be zero on one side or the other
1000 // (but not both) turn this into an *inclusive* or.
1001 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1002 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1004 Op.getOperand(0),
1005 Op.getOperand(1)));
1007 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1008 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1009 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1010 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1012 // If all of the demanded bits on one side are known, and all of the set
1013 // bits on that side are also known to be set on the other side, turn this
1014 // into an AND, as we know the bits will be cleared.
1015 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1016 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1017 if ((KnownOne & KnownOne2) == KnownOne) {
1018 MVT VT = Op.getValueType();
1019 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1020 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1021 Op.getOperand(0), ANDC));
1025 // If the RHS is a constant, see if we can simplify it.
1026 // for XOR, we prefer to force bits to 1 if they will make a -1.
1027 // if we can't force bits, try to shrink constant
1028 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1029 APInt Expanded = C->getAPIntValue() | (~NewMask);
1030 // if we can expand it to have all bits set, do it
1031 if (Expanded.isAllOnesValue()) {
1032 if (Expanded != C->getAPIntValue()) {
1033 MVT VT = Op.getValueType();
1034 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1035 TLO.DAG.getConstant(Expanded, VT));
1036 return TLO.CombineTo(Op, New);
1038 // if it already has all the bits set, nothing to change
1039 // but don't shrink either!
1040 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1041 return true;
1045 KnownZero = KnownZeroOut;
1046 KnownOne = KnownOneOut;
1047 break;
1048 case ISD::SELECT:
1049 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1050 KnownOne, TLO, Depth+1))
1051 return true;
1052 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1053 KnownOne2, TLO, Depth+1))
1054 return true;
1055 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1056 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1058 // If the operands are constants, see if we can simplify them.
1059 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1060 return true;
1062 // Only known if known in both the LHS and RHS.
1063 KnownOne &= KnownOne2;
1064 KnownZero &= KnownZero2;
1065 break;
1066 case ISD::SELECT_CC:
1067 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1068 KnownOne, TLO, Depth+1))
1069 return true;
1070 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1071 KnownOne2, TLO, Depth+1))
1072 return true;
1073 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1074 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1076 // If the operands are constants, see if we can simplify them.
1077 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1078 return true;
1080 // Only known if known in both the LHS and RHS.
1081 KnownOne &= KnownOne2;
1082 KnownZero &= KnownZero2;
1083 break;
1084 case ISD::SHL:
1085 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1086 unsigned ShAmt = SA->getZExtValue();
1087 SDValue InOp = Op.getOperand(0);
1089 // If the shift count is an invalid immediate, don't do anything.
1090 if (ShAmt >= BitWidth)
1091 break;
1093 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1094 // single shift. We can do this if the bottom bits (which are shifted
1095 // out) are never demanded.
1096 if (InOp.getOpcode() == ISD::SRL &&
1097 isa<ConstantSDNode>(InOp.getOperand(1))) {
1098 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1099 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1100 unsigned Opc = ISD::SHL;
1101 int Diff = ShAmt-C1;
1102 if (Diff < 0) {
1103 Diff = -Diff;
1104 Opc = ISD::SRL;
1107 SDValue NewSA =
1108 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1109 MVT VT = Op.getValueType();
1110 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1111 InOp.getOperand(0), NewSA));
1115 if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1116 KnownZero, KnownOne, TLO, Depth+1))
1117 return true;
1118 KnownZero <<= SA->getZExtValue();
1119 KnownOne <<= SA->getZExtValue();
1120 // low bits known zero.
1121 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1123 break;
1124 case ISD::SRL:
1125 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1126 MVT VT = Op.getValueType();
1127 unsigned ShAmt = SA->getZExtValue();
1128 unsigned VTSize = VT.getSizeInBits();
1129 SDValue InOp = Op.getOperand(0);
1131 // If the shift count is an invalid immediate, don't do anything.
1132 if (ShAmt >= BitWidth)
1133 break;
1135 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1136 // single shift. We can do this if the top bits (which are shifted out)
1137 // are never demanded.
1138 if (InOp.getOpcode() == ISD::SHL &&
1139 isa<ConstantSDNode>(InOp.getOperand(1))) {
1140 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1141 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1142 unsigned Opc = ISD::SRL;
1143 int Diff = ShAmt-C1;
1144 if (Diff < 0) {
1145 Diff = -Diff;
1146 Opc = ISD::SHL;
1149 SDValue NewSA =
1150 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1151 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1152 InOp.getOperand(0), NewSA));
1156 // Compute the new bits that are at the top now.
1157 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1158 KnownZero, KnownOne, TLO, Depth+1))
1159 return true;
1160 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1161 KnownZero = KnownZero.lshr(ShAmt);
1162 KnownOne = KnownOne.lshr(ShAmt);
1164 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1165 KnownZero |= HighBits; // High bits known zero.
1167 break;
1168 case ISD::SRA:
1169 // If this is an arithmetic shift right and only the low-bit is set, we can
1170 // always convert this into a logical shr, even if the shift amount is
1171 // variable. The low bit of the shift cannot be an input sign bit unless
1172 // the shift amount is >= the size of the datatype, which is undefined.
1173 if (DemandedMask == 1)
1174 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1175 Op.getOperand(0), Op.getOperand(1)));
1177 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1178 MVT VT = Op.getValueType();
1179 unsigned ShAmt = SA->getZExtValue();
1181 // If the shift count is an invalid immediate, don't do anything.
1182 if (ShAmt >= BitWidth)
1183 break;
1185 APInt InDemandedMask = (NewMask << ShAmt);
1187 // If any of the demanded bits are produced by the sign extension, we also
1188 // demand the input sign bit.
1189 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1190 if (HighBits.intersects(NewMask))
1191 InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1193 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1194 KnownZero, KnownOne, TLO, Depth+1))
1195 return true;
1196 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1197 KnownZero = KnownZero.lshr(ShAmt);
1198 KnownOne = KnownOne.lshr(ShAmt);
1200 // Handle the sign bit, adjusted to where it is now in the mask.
1201 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1203 // If the input sign bit is known to be zero, or if none of the top bits
1204 // are demanded, turn this into an unsigned shift right.
1205 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1206 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1207 Op.getOperand(0),
1208 Op.getOperand(1)));
1209 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1210 KnownOne |= HighBits;
1213 break;
1214 case ISD::SIGN_EXTEND_INREG: {
1215 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1217 // Sign extension. Compute the demanded bits in the result that are not
1218 // present in the input.
1219 APInt NewBits = APInt::getHighBitsSet(BitWidth,
1220 BitWidth - EVT.getSizeInBits()) &
1221 NewMask;
1223 // If none of the extended bits are demanded, eliminate the sextinreg.
1224 if (NewBits == 0)
1225 return TLO.CombineTo(Op, Op.getOperand(0));
1227 APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1228 InSignBit.zext(BitWidth);
1229 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1230 EVT.getSizeInBits()) &
1231 NewMask;
1233 // Since the sign extended bits are demanded, we know that the sign
1234 // bit is demanded.
1235 InputDemandedBits |= InSignBit;
1237 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1238 KnownZero, KnownOne, TLO, Depth+1))
1239 return true;
1240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1242 // If the sign bit of the input is known set or clear, then we know the
1243 // top bits of the result.
1245 // If the input sign bit is known zero, convert this into a zero extension.
1246 if (KnownZero.intersects(InSignBit))
1247 return TLO.CombineTo(Op,
1248 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1250 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1251 KnownOne |= NewBits;
1252 KnownZero &= ~NewBits;
1253 } else { // Input sign bit unknown
1254 KnownZero &= ~NewBits;
1255 KnownOne &= ~NewBits;
1257 break;
1259 case ISD::ZERO_EXTEND: {
1260 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1261 APInt InMask = NewMask;
1262 InMask.trunc(OperandBitWidth);
1264 // If none of the top bits are demanded, convert this into an any_extend.
1265 APInt NewBits =
1266 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1267 if (!NewBits.intersects(NewMask))
1268 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1269 Op.getValueType(),
1270 Op.getOperand(0)));
1272 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1273 KnownZero, KnownOne, TLO, Depth+1))
1274 return true;
1275 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1276 KnownZero.zext(BitWidth);
1277 KnownOne.zext(BitWidth);
1278 KnownZero |= NewBits;
1279 break;
1281 case ISD::SIGN_EXTEND: {
1282 MVT InVT = Op.getOperand(0).getValueType();
1283 unsigned InBits = InVT.getSizeInBits();
1284 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1285 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1286 APInt NewBits = ~InMask & NewMask;
1288 // If none of the top bits are demanded, convert this into an any_extend.
1289 if (NewBits == 0)
1290 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1291 Op.getValueType(),
1292 Op.getOperand(0)));
1294 // Since some of the sign extended bits are demanded, we know that the sign
1295 // bit is demanded.
1296 APInt InDemandedBits = InMask & NewMask;
1297 InDemandedBits |= InSignBit;
1298 InDemandedBits.trunc(InBits);
1300 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1301 KnownOne, TLO, Depth+1))
1302 return true;
1303 KnownZero.zext(BitWidth);
1304 KnownOne.zext(BitWidth);
1306 // If the sign bit is known zero, convert this to a zero extend.
1307 if (KnownZero.intersects(InSignBit))
1308 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1309 Op.getValueType(),
1310 Op.getOperand(0)));
1312 // If the sign bit is known one, the top bits match.
1313 if (KnownOne.intersects(InSignBit)) {
1314 KnownOne |= NewBits;
1315 KnownZero &= ~NewBits;
1316 } else { // Otherwise, top bits aren't known.
1317 KnownOne &= ~NewBits;
1318 KnownZero &= ~NewBits;
1320 break;
1322 case ISD::ANY_EXTEND: {
1323 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1324 APInt InMask = NewMask;
1325 InMask.trunc(OperandBitWidth);
1326 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1327 KnownZero, KnownOne, TLO, Depth+1))
1328 return true;
1329 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1330 KnownZero.zext(BitWidth);
1331 KnownOne.zext(BitWidth);
1332 break;
1334 case ISD::TRUNCATE: {
1335 // Simplify the input, using demanded bit information, and compute the known
1336 // zero/one bits live out.
1337 APInt TruncMask = NewMask;
1338 TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1339 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1340 KnownZero, KnownOne, TLO, Depth+1))
1341 return true;
1342 KnownZero.trunc(BitWidth);
1343 KnownOne.trunc(BitWidth);
1345 // If the input is only used by this truncate, see if we can shrink it based
1346 // on the known demanded bits.
1347 if (Op.getOperand(0).getNode()->hasOneUse()) {
1348 SDValue In = Op.getOperand(0);
1349 unsigned InBitWidth = In.getValueSizeInBits();
1350 switch (In.getOpcode()) {
1351 default: break;
1352 case ISD::SRL:
1353 // Shrink SRL by a constant if none of the high bits shifted in are
1354 // demanded.
1355 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1356 APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1357 InBitWidth - BitWidth);
1358 HighBits = HighBits.lshr(ShAmt->getZExtValue());
1359 HighBits.trunc(BitWidth);
1361 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1362 // None of the shifted in bits are needed. Add a truncate of the
1363 // shift input, then shift it.
1364 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1365 Op.getValueType(),
1366 In.getOperand(0));
1367 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1368 Op.getValueType(),
1369 NewTrunc,
1370 In.getOperand(1)));
1373 break;
1377 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1378 break;
1380 case ISD::AssertZext: {
1381 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1382 APInt InMask = APInt::getLowBitsSet(BitWidth,
1383 VT.getSizeInBits());
1384 if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1385 KnownZero, KnownOne, TLO, Depth+1))
1386 return true;
1387 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1388 KnownZero |= ~InMask & NewMask;
1389 break;
1391 case ISD::BIT_CONVERT:
1392 #if 0
1393 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1394 // is demanded, turn this into a FGETSIGN.
1395 if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1396 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1397 !MVT::isVector(Op.getOperand(0).getValueType())) {
1398 // Only do this xform if FGETSIGN is valid or if before legalize.
1399 if (!TLO.AfterLegalize ||
1400 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1401 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1402 // place. We expect the SHL to be eliminated by other optimizations.
1403 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1404 Op.getOperand(0));
1405 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1406 SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1407 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1408 Sign, ShAmt));
1411 #endif
1412 break;
1413 case ISD::ADD:
1414 case ISD::MUL:
1415 case ISD::SUB: {
1416 // Add, Sub, and Mul don't demand any bits in positions beyond that
1417 // of the highest bit demanded of them.
1418 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1419 BitWidth - NewMask.countLeadingZeros());
1420 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1421 KnownOne2, TLO, Depth+1))
1422 return true;
1423 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1424 KnownOne2, TLO, Depth+1))
1425 return true;
1426 // See if the operation should be performed at a smaller bit width.
1427 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1428 return true;
1430 // FALL THROUGH
1431 default:
1432 // Just use ComputeMaskedBits to compute output bits.
1433 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1434 break;
1437 // If we know the value of all of the demanded bits, return this as a
1438 // constant.
1439 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1440 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1442 return false;
1445 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1446 /// in Mask are known to be either zero or one and return them in the
1447 /// KnownZero/KnownOne bitsets.
1448 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1449 const APInt &Mask,
1450 APInt &KnownZero,
1451 APInt &KnownOne,
1452 const SelectionDAG &DAG,
1453 unsigned Depth) const {
1454 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1455 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1456 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1457 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1458 "Should use MaskedValueIsZero if you don't know whether Op"
1459 " is a target node!");
1460 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1463 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1464 /// targets that want to expose additional information about sign bits to the
1465 /// DAG Combiner.
1466 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1467 unsigned Depth) const {
1468 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1469 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1470 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1471 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1472 "Should use ComputeNumSignBits if you don't know whether Op"
1473 " is a target node!");
1474 return 1;
1477 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1478 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1479 /// determine which bit is set.
1481 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1482 // A left-shift of a constant one will have exactly one bit set, because
1483 // shifting the bit off the end is undefined.
1484 if (Val.getOpcode() == ISD::SHL)
1485 if (ConstantSDNode *C =
1486 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1487 if (C->getAPIntValue() == 1)
1488 return true;
1490 // Similarly, a right-shift of a constant sign-bit will have exactly
1491 // one bit set.
1492 if (Val.getOpcode() == ISD::SRL)
1493 if (ConstantSDNode *C =
1494 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1495 if (C->getAPIntValue().isSignBit())
1496 return true;
1498 // More could be done here, though the above checks are enough
1499 // to handle some common cases.
1501 // Fall back to ComputeMaskedBits to catch other known cases.
1502 MVT OpVT = Val.getValueType();
1503 unsigned BitWidth = OpVT.getSizeInBits();
1504 APInt Mask = APInt::getAllOnesValue(BitWidth);
1505 APInt KnownZero, KnownOne;
1506 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1507 return (KnownZero.countPopulation() == BitWidth - 1) &&
1508 (KnownOne.countPopulation() == 1);
1511 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1512 /// and cc. If it is unable to simplify it, return a null SDValue.
1513 SDValue
1514 TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1515 ISD::CondCode Cond, bool foldBooleans,
1516 DAGCombinerInfo &DCI, DebugLoc dl) const {
1517 SelectionDAG &DAG = DCI.DAG;
1519 // These setcc operations always fold.
1520 switch (Cond) {
1521 default: break;
1522 case ISD::SETFALSE:
1523 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1524 case ISD::SETTRUE:
1525 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1528 if (isa<ConstantSDNode>(N0.getNode())) {
1529 // Ensure that the constant occurs on the RHS, and fold constant
1530 // comparisons.
1531 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1534 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1535 const APInt &C1 = N1C->getAPIntValue();
1537 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1538 // equality comparison, then we're just comparing whether X itself is
1539 // zero.
1540 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1541 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1542 N0.getOperand(1).getOpcode() == ISD::Constant) {
1543 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1544 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1545 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1546 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1547 // (srl (ctlz x), 5) == 0 -> X != 0
1548 // (srl (ctlz x), 5) != 1 -> X != 0
1549 Cond = ISD::SETNE;
1550 } else {
1551 // (srl (ctlz x), 5) != 0 -> X == 0
1552 // (srl (ctlz x), 5) == 1 -> X == 0
1553 Cond = ISD::SETEQ;
1555 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1556 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1557 Zero, Cond);
1561 // If the LHS is '(and load, const)', the RHS is 0,
1562 // the test is for equality or unsigned, and all 1 bits of the const are
1563 // in the same partial word, see if we can shorten the load.
1564 if (DCI.isBeforeLegalize() &&
1565 N0.getOpcode() == ISD::AND && C1 == 0 &&
1566 N0.getNode()->hasOneUse() &&
1567 isa<LoadSDNode>(N0.getOperand(0)) &&
1568 N0.getOperand(0).getNode()->hasOneUse() &&
1569 isa<ConstantSDNode>(N0.getOperand(1))) {
1570 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1571 uint64_t bestMask = 0;
1572 unsigned bestWidth = 0, bestOffset = 0;
1573 if (!Lod->isVolatile() && Lod->isUnindexed() &&
1574 // FIXME: This uses getZExtValue() below so it only works on i64 and
1575 // below.
1576 N0.getValueType().getSizeInBits() <= 64) {
1577 unsigned origWidth = N0.getValueType().getSizeInBits();
1578 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1579 // 8 bits, but have to be careful...
1580 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1581 origWidth = Lod->getMemoryVT().getSizeInBits();
1582 uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1583 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1584 uint64_t newMask = (1ULL << width) - 1;
1585 for (unsigned offset=0; offset<origWidth/width; offset++) {
1586 if ((newMask & Mask) == Mask) {
1587 if (!TD->isLittleEndian())
1588 bestOffset = (origWidth/width - offset - 1) * (width/8);
1589 else
1590 bestOffset = (uint64_t)offset * (width/8);
1591 bestMask = Mask >> (offset * (width/8) * 8);
1592 bestWidth = width;
1593 break;
1595 newMask = newMask << width;
1599 if (bestWidth) {
1600 MVT newVT = MVT::getIntegerVT(bestWidth);
1601 if (newVT.isRound()) {
1602 MVT PtrType = Lod->getOperand(1).getValueType();
1603 SDValue Ptr = Lod->getBasePtr();
1604 if (bestOffset != 0)
1605 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1606 DAG.getConstant(bestOffset, PtrType));
1607 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1608 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1609 Lod->getSrcValue(),
1610 Lod->getSrcValueOffset() + bestOffset,
1611 false, NewAlign);
1612 return DAG.getSetCC(dl, VT,
1613 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1614 DAG.getConstant(bestMask, newVT)),
1615 DAG.getConstant(0LL, newVT), Cond);
1620 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1621 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1622 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1624 // If the comparison constant has bits in the upper part, the
1625 // zero-extended value could never match.
1626 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1627 C1.getBitWidth() - InSize))) {
1628 switch (Cond) {
1629 case ISD::SETUGT:
1630 case ISD::SETUGE:
1631 case ISD::SETEQ: return DAG.getConstant(0, VT);
1632 case ISD::SETULT:
1633 case ISD::SETULE:
1634 case ISD::SETNE: return DAG.getConstant(1, VT);
1635 case ISD::SETGT:
1636 case ISD::SETGE:
1637 // True if the sign bit of C1 is set.
1638 return DAG.getConstant(C1.isNegative(), VT);
1639 case ISD::SETLT:
1640 case ISD::SETLE:
1641 // True if the sign bit of C1 isn't set.
1642 return DAG.getConstant(C1.isNonNegative(), VT);
1643 default:
1644 break;
1648 // Otherwise, we can perform the comparison with the low bits.
1649 switch (Cond) {
1650 case ISD::SETEQ:
1651 case ISD::SETNE:
1652 case ISD::SETUGT:
1653 case ISD::SETUGE:
1654 case ISD::SETULT:
1655 case ISD::SETULE: {
1656 MVT newVT = N0.getOperand(0).getValueType();
1657 if (DCI.isBeforeLegalizeOps() ||
1658 (isOperationLegal(ISD::SETCC, newVT) &&
1659 getCondCodeAction(Cond, newVT)==Legal))
1660 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1661 DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1662 Cond);
1663 break;
1665 default:
1666 break; // todo, be more careful with signed comparisons
1668 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1669 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1670 MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1671 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1672 MVT ExtDstTy = N0.getValueType();
1673 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1675 // If the extended part has any inconsistent bits, it cannot ever
1676 // compare equal. In other words, they have to be all ones or all
1677 // zeros.
1678 APInt ExtBits =
1679 APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1680 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1681 return DAG.getConstant(Cond == ISD::SETNE, VT);
1683 SDValue ZextOp;
1684 MVT Op0Ty = N0.getOperand(0).getValueType();
1685 if (Op0Ty == ExtSrcTy) {
1686 ZextOp = N0.getOperand(0);
1687 } else {
1688 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1689 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1690 DAG.getConstant(Imm, Op0Ty));
1692 if (!DCI.isCalledByLegalizer())
1693 DCI.AddToWorklist(ZextOp.getNode());
1694 // Otherwise, make this a use of a zext.
1695 return DAG.getSetCC(dl, VT, ZextOp,
1696 DAG.getConstant(C1 & APInt::getLowBitsSet(
1697 ExtDstTyBits,
1698 ExtSrcTyBits),
1699 ExtDstTy),
1700 Cond);
1701 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1702 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1704 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1705 if (N0.getOpcode() == ISD::SETCC) {
1706 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1707 if (TrueWhenTrue)
1708 return N0;
1710 // Invert the condition.
1711 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1712 CC = ISD::getSetCCInverse(CC,
1713 N0.getOperand(0).getValueType().isInteger());
1714 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1717 if ((N0.getOpcode() == ISD::XOR ||
1718 (N0.getOpcode() == ISD::AND &&
1719 N0.getOperand(0).getOpcode() == ISD::XOR &&
1720 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1721 isa<ConstantSDNode>(N0.getOperand(1)) &&
1722 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1723 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1724 // can only do this if the top bits are known zero.
1725 unsigned BitWidth = N0.getValueSizeInBits();
1726 if (DAG.MaskedValueIsZero(N0,
1727 APInt::getHighBitsSet(BitWidth,
1728 BitWidth-1))) {
1729 // Okay, get the un-inverted input value.
1730 SDValue Val;
1731 if (N0.getOpcode() == ISD::XOR)
1732 Val = N0.getOperand(0);
1733 else {
1734 assert(N0.getOpcode() == ISD::AND &&
1735 N0.getOperand(0).getOpcode() == ISD::XOR);
1736 // ((X^1)&1)^1 -> X & 1
1737 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1738 N0.getOperand(0).getOperand(0),
1739 N0.getOperand(1));
1741 return DAG.getSetCC(dl, VT, Val, N1,
1742 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1747 APInt MinVal, MaxVal;
1748 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1749 if (ISD::isSignedIntSetCC(Cond)) {
1750 MinVal = APInt::getSignedMinValue(OperandBitSize);
1751 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1752 } else {
1753 MinVal = APInt::getMinValue(OperandBitSize);
1754 MaxVal = APInt::getMaxValue(OperandBitSize);
1757 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1758 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1759 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1760 // X >= C0 --> X > (C0-1)
1761 return DAG.getSetCC(dl, VT, N0,
1762 DAG.getConstant(C1-1, N1.getValueType()),
1763 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1766 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1767 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1768 // X <= C0 --> X < (C0+1)
1769 return DAG.getSetCC(dl, VT, N0,
1770 DAG.getConstant(C1+1, N1.getValueType()),
1771 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1774 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1775 return DAG.getConstant(0, VT); // X < MIN --> false
1776 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1777 return DAG.getConstant(1, VT); // X >= MIN --> true
1778 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1779 return DAG.getConstant(0, VT); // X > MAX --> false
1780 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1781 return DAG.getConstant(1, VT); // X <= MAX --> true
1783 // Canonicalize setgt X, Min --> setne X, Min
1784 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1785 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1786 // Canonicalize setlt X, Max --> setne X, Max
1787 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1788 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1790 // If we have setult X, 1, turn it into seteq X, 0
1791 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1792 return DAG.getSetCC(dl, VT, N0,
1793 DAG.getConstant(MinVal, N0.getValueType()),
1794 ISD::SETEQ);
1795 // If we have setugt X, Max-1, turn it into seteq X, Max
1796 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1797 return DAG.getSetCC(dl, VT, N0,
1798 DAG.getConstant(MaxVal, N0.getValueType()),
1799 ISD::SETEQ);
1801 // If we have "setcc X, C0", check to see if we can shrink the immediate
1802 // by changing cc.
1804 // SETUGT X, SINTMAX -> SETLT X, 0
1805 if (Cond == ISD::SETUGT &&
1806 C1 == APInt::getSignedMaxValue(OperandBitSize))
1807 return DAG.getSetCC(dl, VT, N0,
1808 DAG.getConstant(0, N1.getValueType()),
1809 ISD::SETLT);
1811 // SETULT X, SINTMIN -> SETGT X, -1
1812 if (Cond == ISD::SETULT &&
1813 C1 == APInt::getSignedMinValue(OperandBitSize)) {
1814 SDValue ConstMinusOne =
1815 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1816 N1.getValueType());
1817 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1820 // Fold bit comparisons when we can.
1821 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1822 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1823 if (ConstantSDNode *AndRHS =
1824 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1825 MVT ShiftTy = DCI.isBeforeLegalize() ?
1826 getPointerTy() : getShiftAmountTy();
1827 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1828 // Perform the xform if the AND RHS is a single bit.
1829 if (isPowerOf2_64(AndRHS->getZExtValue())) {
1830 return DAG.getNode(ISD::SRL, dl, VT, N0,
1831 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1832 ShiftTy));
1834 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1835 // (X & 8) == 8 --> (X & 8) >> 3
1836 // Perform the xform if C1 is a single bit.
1837 if (C1.isPowerOf2()) {
1838 return DAG.getNode(ISD::SRL, dl, VT, N0,
1839 DAG.getConstant(C1.logBase2(), ShiftTy));
1845 if (isa<ConstantFPSDNode>(N0.getNode())) {
1846 // Constant fold or commute setcc.
1847 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1848 if (O.getNode()) return O;
1849 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1850 // If the RHS of an FP comparison is a constant, simplify it away in
1851 // some cases.
1852 if (CFP->getValueAPF().isNaN()) {
1853 // If an operand is known to be a nan, we can fold it.
1854 switch (ISD::getUnorderedFlavor(Cond)) {
1855 default: llvm_unreachable("Unknown flavor!");
1856 case 0: // Known false.
1857 return DAG.getConstant(0, VT);
1858 case 1: // Known true.
1859 return DAG.getConstant(1, VT);
1860 case 2: // Undefined.
1861 return DAG.getUNDEF(VT);
1865 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1866 // constant if knowing that the operand is non-nan is enough. We prefer to
1867 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1868 // materialize 0.0.
1869 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1870 return DAG.getSetCC(dl, VT, N0, N0, Cond);
1873 if (N0 == N1) {
1874 // We can always fold X == X for integer setcc's.
1875 if (N0.getValueType().isInteger())
1876 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1877 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1878 if (UOF == 2) // FP operators that are undefined on NaNs.
1879 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1880 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1881 return DAG.getConstant(UOF, VT);
1882 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1883 // if it is not already.
1884 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1885 if (NewCond != Cond)
1886 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1889 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1890 N0.getValueType().isInteger()) {
1891 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1892 N0.getOpcode() == ISD::XOR) {
1893 // Simplify (X+Y) == (X+Z) --> Y == Z
1894 if (N0.getOpcode() == N1.getOpcode()) {
1895 if (N0.getOperand(0) == N1.getOperand(0))
1896 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1897 if (N0.getOperand(1) == N1.getOperand(1))
1898 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1899 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1900 // If X op Y == Y op X, try other combinations.
1901 if (N0.getOperand(0) == N1.getOperand(1))
1902 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1903 Cond);
1904 if (N0.getOperand(1) == N1.getOperand(0))
1905 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1906 Cond);
1910 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1911 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1912 // Turn (X+C1) == C2 --> X == C2-C1
1913 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1914 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1915 DAG.getConstant(RHSC->getAPIntValue()-
1916 LHSR->getAPIntValue(),
1917 N0.getValueType()), Cond);
1920 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1921 if (N0.getOpcode() == ISD::XOR)
1922 // If we know that all of the inverted bits are zero, don't bother
1923 // performing the inversion.
1924 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1925 return
1926 DAG.getSetCC(dl, VT, N0.getOperand(0),
1927 DAG.getConstant(LHSR->getAPIntValue() ^
1928 RHSC->getAPIntValue(),
1929 N0.getValueType()),
1930 Cond);
1933 // Turn (C1-X) == C2 --> X == C1-C2
1934 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1935 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1936 return
1937 DAG.getSetCC(dl, VT, N0.getOperand(1),
1938 DAG.getConstant(SUBC->getAPIntValue() -
1939 RHSC->getAPIntValue(),
1940 N0.getValueType()),
1941 Cond);
1946 // Simplify (X+Z) == X --> Z == 0
1947 if (N0.getOperand(0) == N1)
1948 return DAG.getSetCC(dl, VT, N0.getOperand(1),
1949 DAG.getConstant(0, N0.getValueType()), Cond);
1950 if (N0.getOperand(1) == N1) {
1951 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1952 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1953 DAG.getConstant(0, N0.getValueType()), Cond);
1954 else if (N0.getNode()->hasOneUse()) {
1955 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1956 // (Z-X) == X --> Z == X<<1
1957 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1958 N1,
1959 DAG.getConstant(1, getShiftAmountTy()));
1960 if (!DCI.isCalledByLegalizer())
1961 DCI.AddToWorklist(SH.getNode());
1962 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1967 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1968 N1.getOpcode() == ISD::XOR) {
1969 // Simplify X == (X+Z) --> Z == 0
1970 if (N1.getOperand(0) == N0) {
1971 return DAG.getSetCC(dl, VT, N1.getOperand(1),
1972 DAG.getConstant(0, N1.getValueType()), Cond);
1973 } else if (N1.getOperand(1) == N0) {
1974 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1975 return DAG.getSetCC(dl, VT, N1.getOperand(0),
1976 DAG.getConstant(0, N1.getValueType()), Cond);
1977 } else if (N1.getNode()->hasOneUse()) {
1978 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1979 // X == (Z-X) --> X<<1 == Z
1980 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1981 DAG.getConstant(1, getShiftAmountTy()));
1982 if (!DCI.isCalledByLegalizer())
1983 DCI.AddToWorklist(SH.getNode());
1984 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1989 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1990 // Note that where y is variable and is known to have at most
1991 // one bit set (for example, if it is z&1) we cannot do this;
1992 // the expressions are not equivalent when y==0.
1993 if (N0.getOpcode() == ISD::AND)
1994 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1995 if (ValueHasExactlyOneBitSet(N1, DAG)) {
1996 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1997 SDValue Zero = DAG.getConstant(0, N1.getValueType());
1998 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2001 if (N1.getOpcode() == ISD::AND)
2002 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2003 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2004 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2005 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2006 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2011 // Fold away ALL boolean setcc's.
2012 SDValue Temp;
2013 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2014 switch (Cond) {
2015 default: llvm_unreachable("Unknown integer setcc!");
2016 case ISD::SETEQ: // X == Y -> ~(X^Y)
2017 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2018 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2019 if (!DCI.isCalledByLegalizer())
2020 DCI.AddToWorklist(Temp.getNode());
2021 break;
2022 case ISD::SETNE: // X != Y --> (X^Y)
2023 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2024 break;
2025 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2026 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2027 Temp = DAG.getNOT(dl, N0, MVT::i1);
2028 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2029 if (!DCI.isCalledByLegalizer())
2030 DCI.AddToWorklist(Temp.getNode());
2031 break;
2032 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2033 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2034 Temp = DAG.getNOT(dl, N1, MVT::i1);
2035 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2036 if (!DCI.isCalledByLegalizer())
2037 DCI.AddToWorklist(Temp.getNode());
2038 break;
2039 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2040 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2041 Temp = DAG.getNOT(dl, N0, MVT::i1);
2042 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2043 if (!DCI.isCalledByLegalizer())
2044 DCI.AddToWorklist(Temp.getNode());
2045 break;
2046 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2047 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2048 Temp = DAG.getNOT(dl, N1, MVT::i1);
2049 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2050 break;
2052 if (VT != MVT::i1) {
2053 if (!DCI.isCalledByLegalizer())
2054 DCI.AddToWorklist(N0.getNode());
2055 // FIXME: If running after legalize, we probably can't do this.
2056 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2058 return N0;
2061 // Could not fold it.
2062 return SDValue();
2065 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2066 /// node is a GlobalAddress + offset.
2067 bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2068 int64_t &Offset) const {
2069 if (isa<GlobalAddressSDNode>(N)) {
2070 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2071 GA = GASD->getGlobal();
2072 Offset += GASD->getOffset();
2073 return true;
2076 if (N->getOpcode() == ISD::ADD) {
2077 SDValue N1 = N->getOperand(0);
2078 SDValue N2 = N->getOperand(1);
2079 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2080 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2081 if (V) {
2082 Offset += V->getSExtValue();
2083 return true;
2085 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2086 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2087 if (V) {
2088 Offset += V->getSExtValue();
2089 return true;
2093 return false;
2097 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2098 /// location that is 'Dist' units away from the location that the 'Base' load
2099 /// is loading from.
2100 bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2101 unsigned Bytes, int Dist,
2102 const MachineFrameInfo *MFI) const {
2103 if (LD->getChain() != Base->getChain())
2104 return false;
2105 MVT VT = LD->getValueType(0);
2106 if (VT.getSizeInBits() / 8 != Bytes)
2107 return false;
2109 SDValue Loc = LD->getOperand(1);
2110 SDValue BaseLoc = Base->getOperand(1);
2111 if (Loc.getOpcode() == ISD::FrameIndex) {
2112 if (BaseLoc.getOpcode() != ISD::FrameIndex)
2113 return false;
2114 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
2115 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2116 int FS = MFI->getObjectSize(FI);
2117 int BFS = MFI->getObjectSize(BFI);
2118 if (FS != BFS || FS != (int)Bytes) return false;
2119 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2121 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2122 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2123 if (V && (V->getSExtValue() == Dist*Bytes))
2124 return true;
2127 GlobalValue *GV1 = NULL;
2128 GlobalValue *GV2 = NULL;
2129 int64_t Offset1 = 0;
2130 int64_t Offset2 = 0;
2131 bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2132 bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2133 if (isGA1 && isGA2 && GV1 == GV2)
2134 return Offset1 == (Offset2 + Dist*Bytes);
2135 return false;
2139 SDValue TargetLowering::
2140 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2141 // Default implementation: no optimization.
2142 return SDValue();
2145 //===----------------------------------------------------------------------===//
2146 // Inline Assembler Implementation Methods
2147 //===----------------------------------------------------------------------===//
2150 TargetLowering::ConstraintType
2151 TargetLowering::getConstraintType(const std::string &Constraint) const {
2152 // FIXME: lots more standard ones to handle.
2153 if (Constraint.size() == 1) {
2154 switch (Constraint[0]) {
2155 default: break;
2156 case 'r': return C_RegisterClass;
2157 case 'm': // memory
2158 case 'o': // offsetable
2159 case 'V': // not offsetable
2160 return C_Memory;
2161 case 'i': // Simple Integer or Relocatable Constant
2162 case 'n': // Simple Integer
2163 case 's': // Relocatable Constant
2164 case 'X': // Allow ANY value.
2165 case 'I': // Target registers.
2166 case 'J':
2167 case 'K':
2168 case 'L':
2169 case 'M':
2170 case 'N':
2171 case 'O':
2172 case 'P':
2173 return C_Other;
2177 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2178 Constraint[Constraint.size()-1] == '}')
2179 return C_Register;
2180 return C_Unknown;
2183 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2184 /// with another that has more specific requirements based on the type of the
2185 /// corresponding operand.
2186 const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2187 if (ConstraintVT.isInteger())
2188 return "r";
2189 if (ConstraintVT.isFloatingPoint())
2190 return "f"; // works for many targets
2191 return 0;
2194 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2195 /// vector. If it is invalid, don't add anything to Ops.
2196 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2197 char ConstraintLetter,
2198 bool hasMemory,
2199 std::vector<SDValue> &Ops,
2200 SelectionDAG &DAG) const {
2201 switch (ConstraintLetter) {
2202 default: break;
2203 case 'X': // Allows any operand; labels (basic block) use this.
2204 if (Op.getOpcode() == ISD::BasicBlock) {
2205 Ops.push_back(Op);
2206 return;
2208 // fall through
2209 case 'i': // Simple Integer or Relocatable Constant
2210 case 'n': // Simple Integer
2211 case 's': { // Relocatable Constant
2212 // These operands are interested in values of the form (GV+C), where C may
2213 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2214 // is possible and fine if either GV or C are missing.
2215 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2216 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2218 // If we have "(add GV, C)", pull out GV/C
2219 if (Op.getOpcode() == ISD::ADD) {
2220 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2221 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2222 if (C == 0 || GA == 0) {
2223 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2224 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2226 if (C == 0 || GA == 0)
2227 C = 0, GA = 0;
2230 // If we find a valid operand, map to the TargetXXX version so that the
2231 // value itself doesn't get selected.
2232 if (GA) { // Either &GV or &GV+C
2233 if (ConstraintLetter != 'n') {
2234 int64_t Offs = GA->getOffset();
2235 if (C) Offs += C->getZExtValue();
2236 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2237 Op.getValueType(), Offs));
2238 return;
2241 if (C) { // just C, no GV.
2242 // Simple constants are not allowed for 's'.
2243 if (ConstraintLetter != 's') {
2244 // gcc prints these as sign extended. Sign extend value to 64 bits
2245 // now; without this it would get ZExt'd later in
2246 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2247 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2248 MVT::i64));
2249 return;
2252 break;
2257 std::vector<unsigned> TargetLowering::
2258 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2259 MVT VT) const {
2260 return std::vector<unsigned>();
2264 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2265 getRegForInlineAsmConstraint(const std::string &Constraint,
2266 MVT VT) const {
2267 if (Constraint[0] != '{')
2268 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2269 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2271 // Remove the braces from around the name.
2272 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2274 // Figure out which register class contains this reg.
2275 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2276 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2277 E = RI->regclass_end(); RCI != E; ++RCI) {
2278 const TargetRegisterClass *RC = *RCI;
2280 // If none of the the value types for this register class are valid, we
2281 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2282 bool isLegal = false;
2283 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2284 I != E; ++I) {
2285 if (isTypeLegal(*I)) {
2286 isLegal = true;
2287 break;
2291 if (!isLegal) continue;
2293 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2294 I != E; ++I) {
2295 if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2296 return std::make_pair(*I, RC);
2300 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2303 //===----------------------------------------------------------------------===//
2304 // Constraint Selection.
2306 /// isMatchingInputConstraint - Return true of this is an input operand that is
2307 /// a matching constraint like "4".
2308 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2309 assert(!ConstraintCode.empty() && "No known constraint!");
2310 return isdigit(ConstraintCode[0]);
2313 /// getMatchedOperand - If this is an input matching constraint, this method
2314 /// returns the output operand it matches.
2315 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2316 assert(!ConstraintCode.empty() && "No known constraint!");
2317 return atoi(ConstraintCode.c_str());
2321 /// getConstraintGenerality - Return an integer indicating how general CT
2322 /// is.
2323 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2324 switch (CT) {
2325 default: llvm_unreachable("Unknown constraint type!");
2326 case TargetLowering::C_Other:
2327 case TargetLowering::C_Unknown:
2328 return 0;
2329 case TargetLowering::C_Register:
2330 return 1;
2331 case TargetLowering::C_RegisterClass:
2332 return 2;
2333 case TargetLowering::C_Memory:
2334 return 3;
2338 /// ChooseConstraint - If there are multiple different constraints that we
2339 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2340 /// This is somewhat tricky: constraints fall into four classes:
2341 /// Other -> immediates and magic values
2342 /// Register -> one specific register
2343 /// RegisterClass -> a group of regs
2344 /// Memory -> memory
2345 /// Ideally, we would pick the most specific constraint possible: if we have
2346 /// something that fits into a register, we would pick it. The problem here
2347 /// is that if we have something that could either be in a register or in
2348 /// memory that use of the register could cause selection of *other*
2349 /// operands to fail: they might only succeed if we pick memory. Because of
2350 /// this the heuristic we use is:
2352 /// 1) If there is an 'other' constraint, and if the operand is valid for
2353 /// that constraint, use it. This makes us take advantage of 'i'
2354 /// constraints when available.
2355 /// 2) Otherwise, pick the most general constraint present. This prefers
2356 /// 'm' over 'r', for example.
2358 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2359 bool hasMemory, const TargetLowering &TLI,
2360 SDValue Op, SelectionDAG *DAG) {
2361 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2362 unsigned BestIdx = 0;
2363 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2364 int BestGenerality = -1;
2366 // Loop over the options, keeping track of the most general one.
2367 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2368 TargetLowering::ConstraintType CType =
2369 TLI.getConstraintType(OpInfo.Codes[i]);
2371 // If this is an 'other' constraint, see if the operand is valid for it.
2372 // For example, on X86 we might have an 'rI' constraint. If the operand
2373 // is an integer in the range [0..31] we want to use I (saving a load
2374 // of a register), otherwise we must use 'r'.
2375 if (CType == TargetLowering::C_Other && Op.getNode()) {
2376 assert(OpInfo.Codes[i].size() == 1 &&
2377 "Unhandled multi-letter 'other' constraint");
2378 std::vector<SDValue> ResultOps;
2379 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2380 ResultOps, *DAG);
2381 if (!ResultOps.empty()) {
2382 BestType = CType;
2383 BestIdx = i;
2384 break;
2388 // This constraint letter is more general than the previous one, use it.
2389 int Generality = getConstraintGenerality(CType);
2390 if (Generality > BestGenerality) {
2391 BestType = CType;
2392 BestIdx = i;
2393 BestGenerality = Generality;
2397 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2398 OpInfo.ConstraintType = BestType;
2401 /// ComputeConstraintToUse - Determines the constraint code and constraint
2402 /// type to use for the specific AsmOperandInfo, setting
2403 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2404 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2405 SDValue Op,
2406 bool hasMemory,
2407 SelectionDAG *DAG) const {
2408 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2410 // Single-letter constraints ('r') are very common.
2411 if (OpInfo.Codes.size() == 1) {
2412 OpInfo.ConstraintCode = OpInfo.Codes[0];
2413 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2414 } else {
2415 ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2418 // 'X' matches anything.
2419 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2420 // Labels and constants are handled elsewhere ('X' is the only thing
2421 // that matches labels). For Functions, the type here is the type of
2422 // the result, which is not what we want to look at; leave them alone.
2423 Value *v = OpInfo.CallOperandVal;
2424 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2425 OpInfo.CallOperandVal = v;
2426 return;
2429 // Otherwise, try to resolve it to something we know about by looking at
2430 // the actual operand type.
2431 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2432 OpInfo.ConstraintCode = Repl;
2433 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2438 //===----------------------------------------------------------------------===//
2439 // Loop Strength Reduction hooks
2440 //===----------------------------------------------------------------------===//
2442 /// isLegalAddressingMode - Return true if the addressing mode represented
2443 /// by AM is legal for this target, for a load/store of the specified type.
2444 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2445 const Type *Ty) const {
2446 // The default implementation of this implements a conservative RISCy, r+r and
2447 // r+i addr mode.
2449 // Allows a sign-extended 16-bit immediate field.
2450 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2451 return false;
2453 // No global is ever allowed as a base.
2454 if (AM.BaseGV)
2455 return false;
2457 // Only support r+r,
2458 switch (AM.Scale) {
2459 case 0: // "r+i" or just "i", depending on HasBaseReg.
2460 break;
2461 case 1:
2462 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2463 return false;
2464 // Otherwise we have r+r or r+i.
2465 break;
2466 case 2:
2467 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2468 return false;
2469 // Allow 2*r as r+r.
2470 break;
2473 return true;
2476 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2477 /// return a DAG expression to select that will generate the same value by
2478 /// multiplying by a magic number. See:
2479 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2480 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2481 std::vector<SDNode*>* Created) const {
2482 MVT VT = N->getValueType(0);
2483 DebugLoc dl= N->getDebugLoc();
2485 // Check to see if we can do this.
2486 // FIXME: We should be more aggressive here.
2487 if (!isTypeLegal(VT))
2488 return SDValue();
2490 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2491 APInt::ms magics = d.magic();
2493 // Multiply the numerator (operand 0) by the magic value
2494 // FIXME: We should support doing a MUL in a wider type
2495 SDValue Q;
2496 if (isOperationLegalOrCustom(ISD::MULHS, VT))
2497 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2498 DAG.getConstant(magics.m, VT));
2499 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2500 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2501 N->getOperand(0),
2502 DAG.getConstant(magics.m, VT)).getNode(), 1);
2503 else
2504 return SDValue(); // No mulhs or equvialent
2505 // If d > 0 and m < 0, add the numerator
2506 if (d.isStrictlyPositive() && magics.m.isNegative()) {
2507 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2508 if (Created)
2509 Created->push_back(Q.getNode());
2511 // If d < 0 and m > 0, subtract the numerator.
2512 if (d.isNegative() && magics.m.isStrictlyPositive()) {
2513 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2514 if (Created)
2515 Created->push_back(Q.getNode());
2517 // Shift right algebraic if shift value is nonzero
2518 if (magics.s > 0) {
2519 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2520 DAG.getConstant(magics.s, getShiftAmountTy()));
2521 if (Created)
2522 Created->push_back(Q.getNode());
2524 // Extract the sign bit and add it to the quotient
2525 SDValue T =
2526 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2527 getShiftAmountTy()));
2528 if (Created)
2529 Created->push_back(T.getNode());
2530 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2533 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2534 /// return a DAG expression to select that will generate the same value by
2535 /// multiplying by a magic number. See:
2536 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2537 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2538 std::vector<SDNode*>* Created) const {
2539 MVT VT = N->getValueType(0);
2540 DebugLoc dl = N->getDebugLoc();
2542 // Check to see if we can do this.
2543 // FIXME: We should be more aggressive here.
2544 if (!isTypeLegal(VT))
2545 return SDValue();
2547 // FIXME: We should use a narrower constant when the upper
2548 // bits are known to be zero.
2549 ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2550 APInt::mu magics = N1C->getAPIntValue().magicu();
2552 // Multiply the numerator (operand 0) by the magic value
2553 // FIXME: We should support doing a MUL in a wider type
2554 SDValue Q;
2555 if (isOperationLegalOrCustom(ISD::MULHU, VT))
2556 Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2557 DAG.getConstant(magics.m, VT));
2558 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2559 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2560 N->getOperand(0),
2561 DAG.getConstant(magics.m, VT)).getNode(), 1);
2562 else
2563 return SDValue(); // No mulhu or equvialent
2564 if (Created)
2565 Created->push_back(Q.getNode());
2567 if (magics.a == 0) {
2568 assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2569 "We shouldn't generate an undefined shift!");
2570 return DAG.getNode(ISD::SRL, dl, VT, Q,
2571 DAG.getConstant(magics.s, getShiftAmountTy()));
2572 } else {
2573 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2574 if (Created)
2575 Created->push_back(NPQ.getNode());
2576 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2577 DAG.getConstant(1, getShiftAmountTy()));
2578 if (Created)
2579 Created->push_back(NPQ.getNode());
2580 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2581 if (Created)
2582 Created->push_back(NPQ.getNode());
2583 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2584 DAG.getConstant(magics.s-1, getShiftAmountTy()));