It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / VMCore / AsmWriter.cpp
blob8358c5d84c478e9bd75c97d87793aed8dfadd27c
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Metadata.h"
28 #include "llvm/Module.h"
29 #include "llvm/ValueSymbolTable.h"
30 #include "llvm/TypeSymbolTable.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cctype>
40 #include <map>
41 using namespace llvm;
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
47 // Helper Functions
48 //===----------------------------------------------------------------------===//
50 static const Module *getModuleFromVal(const Value *V) {
51 if (const Argument *MA = dyn_cast<Argument>(V))
52 return MA->getParent() ? MA->getParent()->getParent() : 0;
54 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55 return BB->getParent() ? BB->getParent()->getParent() : 0;
57 if (const Instruction *I = dyn_cast<Instruction>(V)) {
58 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59 return M ? M->getParent() : 0;
62 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63 return GV->getParent();
64 return 0;
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(const StringRef &Name, raw_ostream &Out) {
70 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
71 unsigned char C = Name[i];
72 if (isprint(C) && C != '\\' && C != '"')
73 Out << C;
74 else
75 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
79 enum PrefixType {
80 GlobalPrefix,
81 LabelPrefix,
82 LocalPrefix,
83 NoPrefix
86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
87 /// prefixed with % (if the string only contains simple characters) or is
88 /// surrounded with ""'s (if it has special chars in it). Print it out.
89 static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
90 PrefixType Prefix) {
91 assert(Name.data() && "Cannot get empty name!");
92 switch (Prefix) {
93 default: llvm_unreachable("Bad prefix!");
94 case NoPrefix: break;
95 case GlobalPrefix: OS << '@'; break;
96 case LabelPrefix: break;
97 case LocalPrefix: OS << '%'; break;
100 // Scan the name to see if it needs quotes first.
101 bool NeedsQuotes = isdigit(Name[0]);
102 if (!NeedsQuotes) {
103 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
104 char C = Name[i];
105 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
106 NeedsQuotes = true;
107 break;
112 // If we didn't need any quotes, just write out the name in one blast.
113 if (!NeedsQuotes) {
114 OS << Name;
115 return;
118 // Okay, we need quotes. Output the quotes and escape any scary characters as
119 // needed.
120 OS << '"';
121 PrintEscapedString(Name, OS);
122 OS << '"';
125 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
126 /// prefixed with % (if the string only contains simple characters) or is
127 /// surrounded with ""'s (if it has special chars in it). Print it out.
128 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
129 PrintLLVMName(OS, V->getName(),
130 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
133 //===----------------------------------------------------------------------===//
134 // TypePrinting Class: Type printing machinery
135 //===----------------------------------------------------------------------===//
137 static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
138 return *static_cast<DenseMap<const Type *, std::string>*>(M);
141 void TypePrinting::clear() {
142 getTypeNamesMap(TypeNames).clear();
145 bool TypePrinting::hasTypeName(const Type *Ty) const {
146 return getTypeNamesMap(TypeNames).count(Ty);
149 void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
150 getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
154 TypePrinting::TypePrinting() {
155 TypeNames = new DenseMap<const Type *, std::string>();
158 TypePrinting::~TypePrinting() {
159 delete &getTypeNamesMap(TypeNames);
162 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
163 /// use of type names or up references to shorten the type name where possible.
164 void TypePrinting::CalcTypeName(const Type *Ty,
165 SmallVectorImpl<const Type *> &TypeStack,
166 raw_ostream &OS, bool IgnoreTopLevelName) {
167 // Check to see if the type is named.
168 if (!IgnoreTopLevelName) {
169 DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
170 DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
171 if (I != TM.end()) {
172 OS << I->second;
173 return;
177 // Check to see if the Type is already on the stack...
178 unsigned Slot = 0, CurSize = TypeStack.size();
179 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
181 // This is another base case for the recursion. In this case, we know
182 // that we have looped back to a type that we have previously visited.
183 // Generate the appropriate upreference to handle this.
184 if (Slot < CurSize) {
185 OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
186 return;
189 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
191 switch (Ty->getTypeID()) {
192 case Type::VoidTyID: OS << "void"; break;
193 case Type::FloatTyID: OS << "float"; break;
194 case Type::DoubleTyID: OS << "double"; break;
195 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
196 case Type::FP128TyID: OS << "fp128"; break;
197 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
198 case Type::LabelTyID: OS << "label"; break;
199 case Type::MetadataTyID: OS << "metadata"; break;
200 case Type::IntegerTyID:
201 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
202 break;
204 case Type::FunctionTyID: {
205 const FunctionType *FTy = cast<FunctionType>(Ty);
206 CalcTypeName(FTy->getReturnType(), TypeStack, OS);
207 OS << " (";
208 for (FunctionType::param_iterator I = FTy->param_begin(),
209 E = FTy->param_end(); I != E; ++I) {
210 if (I != FTy->param_begin())
211 OS << ", ";
212 CalcTypeName(*I, TypeStack, OS);
214 if (FTy->isVarArg()) {
215 if (FTy->getNumParams()) OS << ", ";
216 OS << "...";
218 OS << ')';
219 break;
221 case Type::StructTyID: {
222 const StructType *STy = cast<StructType>(Ty);
223 if (STy->isPacked())
224 OS << '<';
225 OS << "{ ";
226 for (StructType::element_iterator I = STy->element_begin(),
227 E = STy->element_end(); I != E; ++I) {
228 CalcTypeName(*I, TypeStack, OS);
229 if (next(I) != STy->element_end())
230 OS << ',';
231 OS << ' ';
233 OS << '}';
234 if (STy->isPacked())
235 OS << '>';
236 break;
238 case Type::PointerTyID: {
239 const PointerType *PTy = cast<PointerType>(Ty);
240 CalcTypeName(PTy->getElementType(), TypeStack, OS);
241 if (unsigned AddressSpace = PTy->getAddressSpace())
242 OS << " addrspace(" << AddressSpace << ')';
243 OS << '*';
244 break;
246 case Type::ArrayTyID: {
247 const ArrayType *ATy = cast<ArrayType>(Ty);
248 OS << '[' << ATy->getNumElements() << " x ";
249 CalcTypeName(ATy->getElementType(), TypeStack, OS);
250 OS << ']';
251 break;
253 case Type::VectorTyID: {
254 const VectorType *PTy = cast<VectorType>(Ty);
255 OS << "<" << PTy->getNumElements() << " x ";
256 CalcTypeName(PTy->getElementType(), TypeStack, OS);
257 OS << '>';
258 break;
260 case Type::OpaqueTyID:
261 OS << "opaque";
262 break;
263 default:
264 OS << "<unrecognized-type>";
265 break;
268 TypeStack.pop_back(); // Remove self from stack.
271 /// printTypeInt - The internal guts of printing out a type that has a
272 /// potentially named portion.
274 void TypePrinting::print(const Type *Ty, raw_ostream &OS,
275 bool IgnoreTopLevelName) {
276 // Check to see if the type is named.
277 DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
278 if (!IgnoreTopLevelName) {
279 DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
280 if (I != TM.end()) {
281 OS << I->second;
282 return;
286 // Otherwise we have a type that has not been named but is a derived type.
287 // Carefully recurse the type hierarchy to print out any contained symbolic
288 // names.
289 SmallVector<const Type *, 16> TypeStack;
290 std::string TypeName;
292 raw_string_ostream TypeOS(TypeName);
293 CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
294 OS << TypeOS.str();
296 // Cache type name for later use.
297 if (!IgnoreTopLevelName)
298 TM.insert(std::make_pair(Ty, TypeOS.str()));
301 namespace {
302 class TypeFinder {
303 // To avoid walking constant expressions multiple times and other IR
304 // objects, we keep several helper maps.
305 DenseSet<const Value*> VisitedConstants;
306 DenseSet<const Type*> VisitedTypes;
308 TypePrinting &TP;
309 std::vector<const Type*> &NumberedTypes;
310 public:
311 TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
312 : TP(tp), NumberedTypes(numberedTypes) {}
314 void Run(const Module &M) {
315 // Get types from the type symbol table. This gets opaque types referened
316 // only through derived named types.
317 const TypeSymbolTable &ST = M.getTypeSymbolTable();
318 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
319 TI != E; ++TI)
320 IncorporateType(TI->second);
322 // Get types from global variables.
323 for (Module::const_global_iterator I = M.global_begin(),
324 E = M.global_end(); I != E; ++I) {
325 IncorporateType(I->getType());
326 if (I->hasInitializer())
327 IncorporateValue(I->getInitializer());
330 // Get types from aliases.
331 for (Module::const_alias_iterator I = M.alias_begin(),
332 E = M.alias_end(); I != E; ++I) {
333 IncorporateType(I->getType());
334 IncorporateValue(I->getAliasee());
337 // Get types from functions.
338 for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
339 IncorporateType(FI->getType());
341 for (Function::const_iterator BB = FI->begin(), E = FI->end();
342 BB != E;++BB)
343 for (BasicBlock::const_iterator II = BB->begin(),
344 E = BB->end(); II != E; ++II) {
345 const Instruction &I = *II;
346 // Incorporate the type of the instruction and all its operands.
347 IncorporateType(I.getType());
348 for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
349 OI != OE; ++OI)
350 IncorporateValue(*OI);
355 private:
356 void IncorporateType(const Type *Ty) {
357 // Check to see if we're already visited this type.
358 if (!VisitedTypes.insert(Ty).second)
359 return;
361 // If this is a structure or opaque type, add a name for the type.
362 if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
363 || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
364 TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
365 NumberedTypes.push_back(Ty);
368 // Recursively walk all contained types.
369 for (Type::subtype_iterator I = Ty->subtype_begin(),
370 E = Ty->subtype_end(); I != E; ++I)
371 IncorporateType(*I);
374 /// IncorporateValue - This method is used to walk operand lists finding
375 /// types hiding in constant expressions and other operands that won't be
376 /// walked in other ways. GlobalValues, basic blocks, instructions, and
377 /// inst operands are all explicitly enumerated.
378 void IncorporateValue(const Value *V) {
379 if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
381 // Already visited?
382 if (!VisitedConstants.insert(V).second)
383 return;
385 // Check this type.
386 IncorporateType(V->getType());
388 // Look in operands for types.
389 const Constant *C = cast<Constant>(V);
390 for (Constant::const_op_iterator I = C->op_begin(),
391 E = C->op_end(); I != E;++I)
392 IncorporateValue(*I);
395 } // end anonymous namespace
398 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
399 /// the specified module to the TypePrinter and all numbered types to it and the
400 /// NumberedTypes table.
401 static void AddModuleTypesToPrinter(TypePrinting &TP,
402 std::vector<const Type*> &NumberedTypes,
403 const Module *M) {
404 if (M == 0) return;
406 // If the module has a symbol table, take all global types and stuff their
407 // names into the TypeNames map.
408 const TypeSymbolTable &ST = M->getTypeSymbolTable();
409 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
410 TI != E; ++TI) {
411 const Type *Ty = cast<Type>(TI->second);
413 // As a heuristic, don't insert pointer to primitive types, because
414 // they are used too often to have a single useful name.
415 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
416 const Type *PETy = PTy->getElementType();
417 if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
418 !isa<OpaqueType>(PETy))
419 continue;
422 // Likewise don't insert primitives either.
423 if (Ty->isInteger() || Ty->isPrimitiveType())
424 continue;
426 // Get the name as a string and insert it into TypeNames.
427 std::string NameStr;
428 raw_string_ostream NameOS(NameStr);
429 PrintLLVMName(NameOS, TI->first, LocalPrefix);
430 TP.addTypeName(Ty, NameOS.str());
433 // Walk the entire module to find references to unnamed structure and opaque
434 // types. This is required for correctness by opaque types (because multiple
435 // uses of an unnamed opaque type needs to be referred to by the same ID) and
436 // it shrinks complex recursive structure types substantially in some cases.
437 TypeFinder(TP, NumberedTypes).Run(*M);
441 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
442 /// type, iff there is an entry in the modules symbol table for the specified
443 /// type or one of it's component types.
445 void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
446 TypePrinting Printer;
447 std::vector<const Type*> NumberedTypes;
448 AddModuleTypesToPrinter(Printer, NumberedTypes, M);
449 Printer.print(Ty, OS);
452 //===----------------------------------------------------------------------===//
453 // SlotTracker Class: Enumerate slot numbers for unnamed values
454 //===----------------------------------------------------------------------===//
456 namespace {
458 /// This class provides computation of slot numbers for LLVM Assembly writing.
460 class SlotTracker {
461 public:
462 /// ValueMap - A mapping of Values to slot numbers.
463 typedef DenseMap<const Value*, unsigned> ValueMap;
465 private:
466 /// TheModule - The module for which we are holding slot numbers.
467 const Module* TheModule;
469 /// TheFunction - The function for which we are holding slot numbers.
470 const Function* TheFunction;
471 bool FunctionProcessed;
473 /// TheMDNode - The MDNode for which we are holding slot numbers.
474 const MDNode *TheMDNode;
476 /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
477 const NamedMDNode *TheNamedMDNode;
479 /// mMap - The TypePlanes map for the module level data.
480 ValueMap mMap;
481 unsigned mNext;
483 /// fMap - The TypePlanes map for the function level data.
484 ValueMap fMap;
485 unsigned fNext;
487 /// mdnMap - Map for MDNodes.
488 ValueMap mdnMap;
489 unsigned mdnNext;
490 public:
491 /// Construct from a module
492 explicit SlotTracker(const Module *M);
493 /// Construct from a function, starting out in incorp state.
494 explicit SlotTracker(const Function *F);
495 /// Construct from a mdnode.
496 explicit SlotTracker(const MDNode *N);
497 /// Construct from a named mdnode.
498 explicit SlotTracker(const NamedMDNode *N);
500 /// Return the slot number of the specified value in it's type
501 /// plane. If something is not in the SlotTracker, return -1.
502 int getLocalSlot(const Value *V);
503 int getGlobalSlot(const GlobalValue *V);
504 int getMetadataSlot(const MDNode *N);
506 /// If you'd like to deal with a function instead of just a module, use
507 /// this method to get its data into the SlotTracker.
508 void incorporateFunction(const Function *F) {
509 TheFunction = F;
510 FunctionProcessed = false;
513 /// After calling incorporateFunction, use this method to remove the
514 /// most recently incorporated function from the SlotTracker. This
515 /// will reset the state of the machine back to just the module contents.
516 void purgeFunction();
518 /// MDNode map iterators.
519 ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
520 ValueMap::iterator mdnEnd() { return mdnMap.end(); }
521 unsigned mdnSize() { return mdnMap.size(); }
523 /// This function does the actual initialization.
524 inline void initialize();
526 // Implementation Details
527 private:
528 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
529 void CreateModuleSlot(const GlobalValue *V);
531 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
532 void CreateMetadataSlot(const MDNode *N);
534 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
535 void CreateFunctionSlot(const Value *V);
537 /// Add all of the module level global variables (and their initializers)
538 /// and function declarations, but not the contents of those functions.
539 void processModule();
541 /// Add all of the functions arguments, basic blocks, and instructions.
542 void processFunction();
544 /// Add all MDNode operands.
545 void processMDNode();
547 /// Add all MDNode operands.
548 void processNamedMDNode();
550 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
551 void operator=(const SlotTracker &); // DO NOT IMPLEMENT
554 } // end anonymous namespace
557 static SlotTracker *createSlotTracker(const Value *V) {
558 if (const Argument *FA = dyn_cast<Argument>(V))
559 return new SlotTracker(FA->getParent());
561 if (const Instruction *I = dyn_cast<Instruction>(V))
562 return new SlotTracker(I->getParent()->getParent());
564 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
565 return new SlotTracker(BB->getParent());
567 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
568 return new SlotTracker(GV->getParent());
570 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
571 return new SlotTracker(GA->getParent());
573 if (const Function *Func = dyn_cast<Function>(V))
574 return new SlotTracker(Func);
576 return 0;
579 #if 0
580 #define ST_DEBUG(X) errs() << X
581 #else
582 #define ST_DEBUG(X)
583 #endif
585 // Module level constructor. Causes the contents of the Module (sans functions)
586 // to be added to the slot table.
587 SlotTracker::SlotTracker(const Module *M)
588 : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
589 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
592 // Function level constructor. Causes the contents of the Module and the one
593 // function provided to be added to the slot table.
594 SlotTracker::SlotTracker(const Function *F)
595 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
596 TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
599 // Constructor to handle single MDNode.
600 SlotTracker::SlotTracker(const MDNode *C)
601 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
602 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
605 // Constructor to handle single NamedMDNode.
606 SlotTracker::SlotTracker(const NamedMDNode *N)
607 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
608 TheNamedMDNode(N), mNext(0), fNext(0), mdnNext(0) {
611 inline void SlotTracker::initialize() {
612 if (TheModule) {
613 processModule();
614 TheModule = 0; ///< Prevent re-processing next time we're called.
617 if (TheFunction && !FunctionProcessed)
618 processFunction();
620 if (TheMDNode)
621 processMDNode();
623 if (TheNamedMDNode)
624 processNamedMDNode();
627 // Iterate through all the global variables, functions, and global
628 // variable initializers and create slots for them.
629 void SlotTracker::processModule() {
630 ST_DEBUG("begin processModule!\n");
632 // Add all of the unnamed global variables to the value table.
633 for (Module::const_global_iterator I = TheModule->global_begin(),
634 E = TheModule->global_end(); I != E; ++I) {
635 if (!I->hasName())
636 CreateModuleSlot(I);
637 if (I->hasInitializer()) {
638 if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
639 CreateMetadataSlot(N);
643 // Add metadata used by named metadata.
644 for (Module::const_named_metadata_iterator
645 I = TheModule->named_metadata_begin(),
646 E = TheModule->named_metadata_end(); I != E; ++I) {
647 const NamedMDNode *NMD = I;
648 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
649 MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
650 if (MD)
651 CreateMetadataSlot(MD);
655 // Add all the unnamed functions to the table.
656 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
657 I != E; ++I)
658 if (!I->hasName())
659 CreateModuleSlot(I);
661 ST_DEBUG("end processModule!\n");
664 // Process the arguments, basic blocks, and instructions of a function.
665 void SlotTracker::processFunction() {
666 ST_DEBUG("begin processFunction!\n");
667 fNext = 0;
669 // Add all the function arguments with no names.
670 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
671 AE = TheFunction->arg_end(); AI != AE; ++AI)
672 if (!AI->hasName())
673 CreateFunctionSlot(AI);
675 ST_DEBUG("Inserting Instructions:\n");
677 // Add all of the basic blocks and instructions with no names.
678 for (Function::const_iterator BB = TheFunction->begin(),
679 E = TheFunction->end(); BB != E; ++BB) {
680 if (!BB->hasName())
681 CreateFunctionSlot(BB);
682 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
683 ++I) {
684 if (I->getType() != Type::VoidTy && !I->hasName())
685 CreateFunctionSlot(I);
686 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
687 if (MDNode *N = dyn_cast<MDNode>(I->getOperand(i)))
688 CreateMetadataSlot(N);
692 FunctionProcessed = true;
694 ST_DEBUG("end processFunction!\n");
697 /// processMDNode - Process TheMDNode.
698 void SlotTracker::processMDNode() {
699 ST_DEBUG("begin processMDNode!\n");
700 mdnNext = 0;
701 CreateMetadataSlot(TheMDNode);
702 TheMDNode = 0;
703 ST_DEBUG("end processMDNode!\n");
706 /// processNamedMDNode - Process TheNamedMDNode.
707 void SlotTracker::processNamedMDNode() {
708 ST_DEBUG("begin processNamedMDNode!\n");
709 mdnNext = 0;
710 for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
711 MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
712 if (MD)
713 CreateMetadataSlot(MD);
715 TheNamedMDNode = 0;
716 ST_DEBUG("end processNamedMDNode!\n");
719 /// Clean up after incorporating a function. This is the only way to get out of
720 /// the function incorporation state that affects get*Slot/Create*Slot. Function
721 /// incorporation state is indicated by TheFunction != 0.
722 void SlotTracker::purgeFunction() {
723 ST_DEBUG("begin purgeFunction!\n");
724 fMap.clear(); // Simply discard the function level map
725 TheFunction = 0;
726 FunctionProcessed = false;
727 ST_DEBUG("end purgeFunction!\n");
730 /// getGlobalSlot - Get the slot number of a global value.
731 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
732 // Check for uninitialized state and do lazy initialization.
733 initialize();
735 // Find the type plane in the module map
736 ValueMap::iterator MI = mMap.find(V);
737 return MI == mMap.end() ? -1 : (int)MI->second;
740 /// getGlobalSlot - Get the slot number of a MDNode.
741 int SlotTracker::getMetadataSlot(const MDNode *N) {
742 // Check for uninitialized state and do lazy initialization.
743 initialize();
745 // Find the type plane in the module map
746 ValueMap::iterator MI = mdnMap.find(N);
747 return MI == mdnMap.end() ? -1 : (int)MI->second;
751 /// getLocalSlot - Get the slot number for a value that is local to a function.
752 int SlotTracker::getLocalSlot(const Value *V) {
753 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
755 // Check for uninitialized state and do lazy initialization.
756 initialize();
758 ValueMap::iterator FI = fMap.find(V);
759 return FI == fMap.end() ? -1 : (int)FI->second;
763 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
764 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
765 assert(V && "Can't insert a null Value into SlotTracker!");
766 assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
767 assert(!V->hasName() && "Doesn't need a slot!");
769 unsigned DestSlot = mNext++;
770 mMap[V] = DestSlot;
772 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
773 DestSlot << " [");
774 // G = Global, F = Function, A = Alias, o = other
775 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
776 (isa<Function>(V) ? 'F' :
777 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
780 /// CreateSlot - Create a new slot for the specified value if it has no name.
781 void SlotTracker::CreateFunctionSlot(const Value *V) {
782 assert(V->getType() != Type::VoidTy && !V->hasName() &&
783 "Doesn't need a slot!");
785 unsigned DestSlot = fNext++;
786 fMap[V] = DestSlot;
788 // G = Global, F = Function, o = other
789 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
790 DestSlot << " [o]\n");
793 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
794 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
795 assert(N && "Can't insert a null Value into SlotTracker!");
797 ValueMap::iterator I = mdnMap.find(N);
798 if (I != mdnMap.end())
799 return;
801 unsigned DestSlot = mdnNext++;
802 mdnMap[N] = DestSlot;
804 for (MDNode::const_elem_iterator MDI = N->elem_begin(),
805 MDE = N->elem_end(); MDI != MDE; ++MDI) {
806 const Value *TV = *MDI;
807 if (TV)
808 if (const MDNode *N2 = dyn_cast<MDNode>(TV))
809 CreateMetadataSlot(N2);
813 //===----------------------------------------------------------------------===//
814 // AsmWriter Implementation
815 //===----------------------------------------------------------------------===//
817 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
818 TypePrinting &TypePrinter,
819 SlotTracker *Machine);
823 static const char *getPredicateText(unsigned predicate) {
824 const char * pred = "unknown";
825 switch (predicate) {
826 case FCmpInst::FCMP_FALSE: pred = "false"; break;
827 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
828 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
829 case FCmpInst::FCMP_OGE: pred = "oge"; break;
830 case FCmpInst::FCMP_OLT: pred = "olt"; break;
831 case FCmpInst::FCMP_OLE: pred = "ole"; break;
832 case FCmpInst::FCMP_ONE: pred = "one"; break;
833 case FCmpInst::FCMP_ORD: pred = "ord"; break;
834 case FCmpInst::FCMP_UNO: pred = "uno"; break;
835 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
836 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
837 case FCmpInst::FCMP_UGE: pred = "uge"; break;
838 case FCmpInst::FCMP_ULT: pred = "ult"; break;
839 case FCmpInst::FCMP_ULE: pred = "ule"; break;
840 case FCmpInst::FCMP_UNE: pred = "une"; break;
841 case FCmpInst::FCMP_TRUE: pred = "true"; break;
842 case ICmpInst::ICMP_EQ: pred = "eq"; break;
843 case ICmpInst::ICMP_NE: pred = "ne"; break;
844 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
845 case ICmpInst::ICMP_SGE: pred = "sge"; break;
846 case ICmpInst::ICMP_SLT: pred = "slt"; break;
847 case ICmpInst::ICMP_SLE: pred = "sle"; break;
848 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
849 case ICmpInst::ICMP_UGE: pred = "uge"; break;
850 case ICmpInst::ICMP_ULT: pred = "ult"; break;
851 case ICmpInst::ICMP_ULE: pred = "ule"; break;
853 return pred;
856 static void WriteMDNodes(raw_ostream &Out, TypePrinting &TypePrinter,
857 SlotTracker &Machine) {
858 SmallVector<const MDNode *, 16> Nodes;
859 Nodes.resize(Machine.mdnSize());
860 for (SlotTracker::ValueMap::iterator I =
861 Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
862 Nodes[I->second] = cast<MDNode>(I->first);
864 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
865 Out << '!' << i << " = metadata ";
866 const MDNode *Node = Nodes[i];
867 Out << "!{";
868 for (MDNode::const_elem_iterator NI = Node->elem_begin(),
869 NE = Node->elem_end(); NI != NE;) {
870 const Value *V = *NI;
871 if (!V)
872 Out << "null";
873 else if (const MDNode *N = dyn_cast<MDNode>(V)) {
874 Out << "metadata ";
875 Out << '!' << Machine.getMetadataSlot(N);
877 else {
878 TypePrinter.print((*NI)->getType(), Out);
879 Out << ' ';
880 WriteAsOperandInternal(Out, *NI, TypePrinter, &Machine);
882 if (++NI != NE)
883 Out << ", ";
885 Out << "}\n";
889 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
890 if (const OverflowingBinaryOperator *OBO =
891 dyn_cast<OverflowingBinaryOperator>(U)) {
892 if (OBO->hasNoUnsignedOverflow())
893 Out << " nuw";
894 if (OBO->hasNoSignedOverflow())
895 Out << " nsw";
896 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
897 if (Div->isExact())
898 Out << " exact";
899 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
900 if (GEP->isInBounds())
901 Out << " inbounds";
905 static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
906 TypePrinting &TypePrinter, SlotTracker *Machine) {
907 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
908 if (CI->getType() == Type::Int1Ty) {
909 Out << (CI->getZExtValue() ? "true" : "false");
910 return;
912 Out << CI->getValue();
913 return;
916 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
917 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
918 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
919 // We would like to output the FP constant value in exponential notation,
920 // but we cannot do this if doing so will lose precision. Check here to
921 // make sure that we only output it in exponential format if we can parse
922 // the value back and get the same value.
924 bool ignored;
925 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
926 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
927 CFP->getValueAPF().convertToFloat();
928 std::string StrVal = ftostr(CFP->getValueAPF());
930 // Check to make sure that the stringized number is not some string like
931 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
932 // that the string matches the "[-+]?[0-9]" regex.
934 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
935 ((StrVal[0] == '-' || StrVal[0] == '+') &&
936 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
937 // Reparse stringized version!
938 if (atof(StrVal.c_str()) == Val) {
939 Out << StrVal;
940 return;
943 // Otherwise we could not reparse it to exactly the same value, so we must
944 // output the string in hexadecimal format! Note that loading and storing
945 // floating point types changes the bits of NaNs on some hosts, notably
946 // x86, so we must not use these types.
947 assert(sizeof(double) == sizeof(uint64_t) &&
948 "assuming that double is 64 bits!");
949 char Buffer[40];
950 APFloat apf = CFP->getValueAPF();
951 // Floats are represented in ASCII IR as double, convert.
952 if (!isDouble)
953 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
954 &ignored);
955 Out << "0x" <<
956 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
957 Buffer+40);
958 return;
961 // Some form of long double. These appear as a magic letter identifying
962 // the type, then a fixed number of hex digits.
963 Out << "0x";
964 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
965 Out << 'K';
966 // api needed to prevent premature destruction
967 APInt api = CFP->getValueAPF().bitcastToAPInt();
968 const uint64_t* p = api.getRawData();
969 uint64_t word = p[1];
970 int shiftcount=12;
971 int width = api.getBitWidth();
972 for (int j=0; j<width; j+=4, shiftcount-=4) {
973 unsigned int nibble = (word>>shiftcount) & 15;
974 if (nibble < 10)
975 Out << (unsigned char)(nibble + '0');
976 else
977 Out << (unsigned char)(nibble - 10 + 'A');
978 if (shiftcount == 0 && j+4 < width) {
979 word = *p;
980 shiftcount = 64;
981 if (width-j-4 < 64)
982 shiftcount = width-j-4;
985 return;
986 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
987 Out << 'L';
988 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
989 Out << 'M';
990 else
991 llvm_unreachable("Unsupported floating point type");
992 // api needed to prevent premature destruction
993 APInt api = CFP->getValueAPF().bitcastToAPInt();
994 const uint64_t* p = api.getRawData();
995 uint64_t word = *p;
996 int shiftcount=60;
997 int width = api.getBitWidth();
998 for (int j=0; j<width; j+=4, shiftcount-=4) {
999 unsigned int nibble = (word>>shiftcount) & 15;
1000 if (nibble < 10)
1001 Out << (unsigned char)(nibble + '0');
1002 else
1003 Out << (unsigned char)(nibble - 10 + 'A');
1004 if (shiftcount == 0 && j+4 < width) {
1005 word = *(++p);
1006 shiftcount = 64;
1007 if (width-j-4 < 64)
1008 shiftcount = width-j-4;
1011 return;
1014 if (isa<ConstantAggregateZero>(CV)) {
1015 Out << "zeroinitializer";
1016 return;
1019 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1020 // As a special case, print the array as a string if it is an array of
1021 // i8 with ConstantInt values.
1023 const Type *ETy = CA->getType()->getElementType();
1024 if (CA->isString()) {
1025 Out << "c\"";
1026 PrintEscapedString(CA->getAsString(), Out);
1027 Out << '"';
1028 } else { // Cannot output in string format...
1029 Out << '[';
1030 if (CA->getNumOperands()) {
1031 TypePrinter.print(ETy, Out);
1032 Out << ' ';
1033 WriteAsOperandInternal(Out, CA->getOperand(0),
1034 TypePrinter, Machine);
1035 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1036 Out << ", ";
1037 TypePrinter.print(ETy, Out);
1038 Out << ' ';
1039 WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
1042 Out << ']';
1044 return;
1047 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1048 if (CS->getType()->isPacked())
1049 Out << '<';
1050 Out << '{';
1051 unsigned N = CS->getNumOperands();
1052 if (N) {
1053 Out << ' ';
1054 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1055 Out << ' ';
1057 WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
1059 for (unsigned i = 1; i < N; i++) {
1060 Out << ", ";
1061 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1062 Out << ' ';
1064 WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
1066 Out << ' ';
1069 Out << '}';
1070 if (CS->getType()->isPacked())
1071 Out << '>';
1072 return;
1075 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1076 const Type *ETy = CP->getType()->getElementType();
1077 assert(CP->getNumOperands() > 0 &&
1078 "Number of operands for a PackedConst must be > 0");
1079 Out << '<';
1080 TypePrinter.print(ETy, Out);
1081 Out << ' ';
1082 WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
1083 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1084 Out << ", ";
1085 TypePrinter.print(ETy, Out);
1086 Out << ' ';
1087 WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
1089 Out << '>';
1090 return;
1093 if (isa<ConstantPointerNull>(CV)) {
1094 Out << "null";
1095 return;
1098 if (isa<UndefValue>(CV)) {
1099 Out << "undef";
1100 return;
1103 if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1104 Out << "!" << Machine->getMetadataSlot(Node);
1105 return;
1108 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1109 Out << CE->getOpcodeName();
1110 WriteOptimizationInfo(Out, CE);
1111 if (CE->isCompare())
1112 Out << ' ' << getPredicateText(CE->getPredicate());
1113 Out << " (";
1115 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1116 TypePrinter.print((*OI)->getType(), Out);
1117 Out << ' ';
1118 WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
1119 if (OI+1 != CE->op_end())
1120 Out << ", ";
1123 if (CE->hasIndices()) {
1124 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1125 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1126 Out << ", " << Indices[i];
1129 if (CE->isCast()) {
1130 Out << " to ";
1131 TypePrinter.print(CE->getType(), Out);
1134 Out << ')';
1135 return;
1138 Out << "<placeholder or erroneous Constant>";
1142 /// WriteAsOperand - Write the name of the specified value out to the specified
1143 /// ostream. This can be useful when you just want to print int %reg126, not
1144 /// the whole instruction that generated it.
1146 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1147 TypePrinting &TypePrinter,
1148 SlotTracker *Machine) {
1149 if (V->hasName()) {
1150 PrintLLVMName(Out, V);
1151 return;
1154 const Constant *CV = dyn_cast<Constant>(V);
1155 if (CV && !isa<GlobalValue>(CV)) {
1156 WriteConstantInt(Out, CV, TypePrinter, Machine);
1157 return;
1160 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1161 Out << "asm ";
1162 if (IA->hasSideEffects())
1163 Out << "sideeffect ";
1164 Out << '"';
1165 PrintEscapedString(IA->getAsmString(), Out);
1166 Out << "\", \"";
1167 PrintEscapedString(IA->getConstraintString(), Out);
1168 Out << '"';
1169 return;
1172 if (const MDNode *N = dyn_cast<MDNode>(V)) {
1173 Out << '!' << Machine->getMetadataSlot(N);
1174 return;
1177 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1178 Out << "!\"";
1179 PrintEscapedString(MDS->getString(), Out);
1180 Out << '"';
1181 return;
1184 char Prefix = '%';
1185 int Slot;
1186 if (Machine) {
1187 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1188 Slot = Machine->getGlobalSlot(GV);
1189 Prefix = '@';
1190 } else {
1191 Slot = Machine->getLocalSlot(V);
1193 } else {
1194 Machine = createSlotTracker(V);
1195 if (Machine) {
1196 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1197 Slot = Machine->getGlobalSlot(GV);
1198 Prefix = '@';
1199 } else {
1200 Slot = Machine->getLocalSlot(V);
1202 } else {
1203 Slot = -1;
1205 delete Machine;
1208 if (Slot != -1)
1209 Out << Prefix << Slot;
1210 else
1211 Out << "<badref>";
1214 /// WriteAsOperand - Write the name of the specified value out to the specified
1215 /// ostream. This can be useful when you just want to print int %reg126, not
1216 /// the whole instruction that generated it.
1218 void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
1219 const Module *Context) {
1220 raw_os_ostream OS(Out);
1221 WriteAsOperand(OS, V, PrintType, Context);
1224 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
1225 const Module *Context) {
1226 if (Context == 0) Context = getModuleFromVal(V);
1228 TypePrinting TypePrinter;
1229 std::vector<const Type*> NumberedTypes;
1230 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1231 if (PrintType) {
1232 TypePrinter.print(V->getType(), Out);
1233 Out << ' ';
1236 WriteAsOperandInternal(Out, V, TypePrinter, 0);
1240 namespace {
1242 class AssemblyWriter {
1243 raw_ostream &Out;
1244 SlotTracker &Machine;
1245 const Module *TheModule;
1246 TypePrinting TypePrinter;
1247 AssemblyAnnotationWriter *AnnotationWriter;
1248 std::vector<const Type*> NumberedTypes;
1250 // Each MDNode is assigned unique MetadataIDNo.
1251 std::map<const MDNode *, unsigned> MDNodes;
1252 unsigned MetadataIDNo;
1253 public:
1254 inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
1255 AssemblyAnnotationWriter *AAW)
1256 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
1257 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1260 void write(const Module *M) { printModule(M); }
1262 void write(const GlobalValue *G) {
1263 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1264 printGlobal(GV);
1265 else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1266 printAlias(GA);
1267 else if (const Function *F = dyn_cast<Function>(G))
1268 printFunction(F);
1269 else
1270 llvm_unreachable("Unknown global");
1273 void write(const BasicBlock *BB) { printBasicBlock(BB); }
1274 void write(const Instruction *I) { printInstruction(*I); }
1276 void writeOperand(const Value *Op, bool PrintType);
1277 void writeParamOperand(const Value *Operand, Attributes Attrs);
1279 const Module* getModule() { return TheModule; }
1281 private:
1282 void printModule(const Module *M);
1283 void printTypeSymbolTable(const TypeSymbolTable &ST);
1284 void printGlobal(const GlobalVariable *GV);
1285 void printAlias(const GlobalAlias *GV);
1286 void printFunction(const Function *F);
1287 void printArgument(const Argument *FA, Attributes Attrs);
1288 void printBasicBlock(const BasicBlock *BB);
1289 void printInstruction(const Instruction &I);
1291 // printInfoComment - Print a little comment after the instruction indicating
1292 // which slot it occupies.
1293 void printInfoComment(const Value &V);
1295 } // end of anonymous namespace
1298 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1299 if (Operand == 0) {
1300 Out << "<null operand!>";
1301 } else {
1302 if (PrintType) {
1303 TypePrinter.print(Operand->getType(), Out);
1304 Out << ' ';
1306 WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1310 void AssemblyWriter::writeParamOperand(const Value *Operand,
1311 Attributes Attrs) {
1312 if (Operand == 0) {
1313 Out << "<null operand!>";
1314 } else {
1315 // Print the type
1316 TypePrinter.print(Operand->getType(), Out);
1317 // Print parameter attributes list
1318 if (Attrs != Attribute::None)
1319 Out << ' ' << Attribute::getAsString(Attrs);
1320 Out << ' ';
1321 // Print the operand
1322 WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1326 void AssemblyWriter::printModule(const Module *M) {
1327 if (!M->getModuleIdentifier().empty() &&
1328 // Don't print the ID if it will start a new line (which would
1329 // require a comment char before it).
1330 M->getModuleIdentifier().find('\n') == std::string::npos)
1331 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1333 if (!M->getDataLayout().empty())
1334 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1335 if (!M->getTargetTriple().empty())
1336 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1338 if (!M->getModuleInlineAsm().empty()) {
1339 // Split the string into lines, to make it easier to read the .ll file.
1340 std::string Asm = M->getModuleInlineAsm();
1341 size_t CurPos = 0;
1342 size_t NewLine = Asm.find_first_of('\n', CurPos);
1343 while (NewLine != std::string::npos) {
1344 // We found a newline, print the portion of the asm string from the
1345 // last newline up to this newline.
1346 Out << "module asm \"";
1347 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1348 Out);
1349 Out << "\"\n";
1350 CurPos = NewLine+1;
1351 NewLine = Asm.find_first_of('\n', CurPos);
1353 Out << "module asm \"";
1354 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1355 Out << "\"\n";
1358 // Loop over the dependent libraries and emit them.
1359 Module::lib_iterator LI = M->lib_begin();
1360 Module::lib_iterator LE = M->lib_end();
1361 if (LI != LE) {
1362 Out << "deplibs = [ ";
1363 while (LI != LE) {
1364 Out << '"' << *LI << '"';
1365 ++LI;
1366 if (LI != LE)
1367 Out << ", ";
1369 Out << " ]\n";
1372 // Loop over the symbol table, emitting all id'd types.
1373 printTypeSymbolTable(M->getTypeSymbolTable());
1375 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1376 I != E; ++I)
1377 printGlobal(I);
1379 // Output all aliases.
1380 if (!M->alias_empty()) Out << "\n";
1381 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1382 I != E; ++I)
1383 printAlias(I);
1385 // Output all of the functions.
1386 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1387 printFunction(I);
1389 // Output named metadata.
1390 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1391 E = M->named_metadata_end(); I != E; ++I) {
1392 const NamedMDNode *NMD = I;
1393 Out << "!" << NMD->getName() << " = !{";
1394 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
1395 if (i) Out << ", ";
1396 MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
1397 Out << '!' << Machine.getMetadataSlot(MD);
1399 Out << "}\n";
1402 // Output metadata.
1403 WriteMDNodes(Out, TypePrinter, Machine);
1406 static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1407 switch (LT) {
1408 case GlobalValue::ExternalLinkage: break;
1409 case GlobalValue::PrivateLinkage: Out << "private "; break;
1410 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1411 case GlobalValue::InternalLinkage: Out << "internal "; break;
1412 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1413 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1414 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1415 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1416 case GlobalValue::CommonLinkage: Out << "common "; break;
1417 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1418 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1419 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1420 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1421 case GlobalValue::AvailableExternallyLinkage:
1422 Out << "available_externally ";
1423 break;
1424 case GlobalValue::GhostLinkage:
1425 llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1430 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1431 raw_ostream &Out) {
1432 switch (Vis) {
1433 default: llvm_unreachable("Invalid visibility style!");
1434 case GlobalValue::DefaultVisibility: break;
1435 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1436 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1440 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1441 if (GV->hasName()) {
1442 PrintLLVMName(Out, GV);
1443 Out << " = ";
1446 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1447 Out << "external ";
1449 PrintLinkage(GV->getLinkage(), Out);
1450 PrintVisibility(GV->getVisibility(), Out);
1452 if (GV->isThreadLocal()) Out << "thread_local ";
1453 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1454 Out << "addrspace(" << AddressSpace << ") ";
1455 Out << (GV->isConstant() ? "constant " : "global ");
1456 TypePrinter.print(GV->getType()->getElementType(), Out);
1458 if (GV->hasInitializer()) {
1459 Out << ' ';
1460 writeOperand(GV->getInitializer(), false);
1463 if (GV->hasSection())
1464 Out << ", section \"" << GV->getSection() << '"';
1465 if (GV->getAlignment())
1466 Out << ", align " << GV->getAlignment();
1468 printInfoComment(*GV);
1469 Out << '\n';
1472 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1473 // Don't crash when dumping partially built GA
1474 if (!GA->hasName())
1475 Out << "<<nameless>> = ";
1476 else {
1477 PrintLLVMName(Out, GA);
1478 Out << " = ";
1480 PrintVisibility(GA->getVisibility(), Out);
1482 Out << "alias ";
1484 PrintLinkage(GA->getLinkage(), Out);
1486 const Constant *Aliasee = GA->getAliasee();
1488 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1489 TypePrinter.print(GV->getType(), Out);
1490 Out << ' ';
1491 PrintLLVMName(Out, GV);
1492 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1493 TypePrinter.print(F->getFunctionType(), Out);
1494 Out << "* ";
1496 WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1497 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1498 TypePrinter.print(GA->getType(), Out);
1499 Out << ' ';
1500 PrintLLVMName(Out, GA);
1501 } else {
1502 const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1503 // The only valid GEP is an all zero GEP.
1504 assert((CE->getOpcode() == Instruction::BitCast ||
1505 CE->getOpcode() == Instruction::GetElementPtr) &&
1506 "Unsupported aliasee");
1507 writeOperand(CE, false);
1510 printInfoComment(*GA);
1511 Out << '\n';
1514 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1515 // Emit all numbered types.
1516 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1517 Out << "\ttype ";
1519 // Make sure we print out at least one level of the type structure, so
1520 // that we do not get %2 = type %2
1521 TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1522 Out << "\t\t; type %" << i << '\n';
1525 // Print the named types.
1526 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1527 TI != TE; ++TI) {
1528 Out << '\t';
1529 PrintLLVMName(Out, TI->first, LocalPrefix);
1530 Out << " = type ";
1532 // Make sure we print out at least one level of the type structure, so
1533 // that we do not get %FILE = type %FILE
1534 TypePrinter.printAtLeastOneLevel(TI->second, Out);
1535 Out << '\n';
1539 /// printFunction - Print all aspects of a function.
1541 void AssemblyWriter::printFunction(const Function *F) {
1542 // Print out the return type and name.
1543 Out << '\n';
1545 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1547 if (F->isDeclaration())
1548 Out << "declare ";
1549 else
1550 Out << "define ";
1552 PrintLinkage(F->getLinkage(), Out);
1553 PrintVisibility(F->getVisibility(), Out);
1555 // Print the calling convention.
1556 switch (F->getCallingConv()) {
1557 case CallingConv::C: break; // default
1558 case CallingConv::Fast: Out << "fastcc "; break;
1559 case CallingConv::Cold: Out << "coldcc "; break;
1560 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1561 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1562 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break;
1563 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break;
1564 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1565 default: Out << "cc" << F->getCallingConv() << " "; break;
1568 const FunctionType *FT = F->getFunctionType();
1569 const AttrListPtr &Attrs = F->getAttributes();
1570 Attributes RetAttrs = Attrs.getRetAttributes();
1571 if (RetAttrs != Attribute::None)
1572 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1573 TypePrinter.print(F->getReturnType(), Out);
1574 Out << ' ';
1575 WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1576 Out << '(';
1577 Machine.incorporateFunction(F);
1579 // Loop over the arguments, printing them...
1581 unsigned Idx = 1;
1582 if (!F->isDeclaration()) {
1583 // If this isn't a declaration, print the argument names as well.
1584 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1585 I != E; ++I) {
1586 // Insert commas as we go... the first arg doesn't get a comma
1587 if (I != F->arg_begin()) Out << ", ";
1588 printArgument(I, Attrs.getParamAttributes(Idx));
1589 Idx++;
1591 } else {
1592 // Otherwise, print the types from the function type.
1593 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1594 // Insert commas as we go... the first arg doesn't get a comma
1595 if (i) Out << ", ";
1597 // Output type...
1598 TypePrinter.print(FT->getParamType(i), Out);
1600 Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1601 if (ArgAttrs != Attribute::None)
1602 Out << ' ' << Attribute::getAsString(ArgAttrs);
1606 // Finish printing arguments...
1607 if (FT->isVarArg()) {
1608 if (FT->getNumParams()) Out << ", ";
1609 Out << "..."; // Output varargs portion of signature!
1611 Out << ')';
1612 Attributes FnAttrs = Attrs.getFnAttributes();
1613 if (FnAttrs != Attribute::None)
1614 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1615 if (F->hasSection())
1616 Out << " section \"" << F->getSection() << '"';
1617 if (F->getAlignment())
1618 Out << " align " << F->getAlignment();
1619 if (F->hasGC())
1620 Out << " gc \"" << F->getGC() << '"';
1621 if (F->isDeclaration()) {
1622 Out << "\n";
1623 } else {
1624 Out << " {";
1626 // Output all of its basic blocks... for the function
1627 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1628 printBasicBlock(I);
1630 Out << "}\n";
1633 Machine.purgeFunction();
1636 /// printArgument - This member is called for every argument that is passed into
1637 /// the function. Simply print it out
1639 void AssemblyWriter::printArgument(const Argument *Arg,
1640 Attributes Attrs) {
1641 // Output type...
1642 TypePrinter.print(Arg->getType(), Out);
1644 // Output parameter attributes list
1645 if (Attrs != Attribute::None)
1646 Out << ' ' << Attribute::getAsString(Attrs);
1648 // Output name, if available...
1649 if (Arg->hasName()) {
1650 Out << ' ';
1651 PrintLLVMName(Out, Arg);
1655 /// printBasicBlock - This member is called for each basic block in a method.
1657 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1658 if (BB->hasName()) { // Print out the label if it exists...
1659 Out << "\n";
1660 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1661 Out << ':';
1662 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1663 Out << "\n; <label>:";
1664 int Slot = Machine.getLocalSlot(BB);
1665 if (Slot != -1)
1666 Out << Slot;
1667 else
1668 Out << "<badref>";
1671 if (BB->getParent() == 0)
1672 Out << "\t\t; Error: Block without parent!";
1673 else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1674 // Output predecessors for the block...
1675 Out << "\t\t;";
1676 pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1678 if (PI == PE) {
1679 Out << " No predecessors!";
1680 } else {
1681 Out << " preds = ";
1682 writeOperand(*PI, false);
1683 for (++PI; PI != PE; ++PI) {
1684 Out << ", ";
1685 writeOperand(*PI, false);
1690 Out << "\n";
1692 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1694 // Output all of the instructions in the basic block...
1695 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1696 printInstruction(*I);
1697 Out << '\n';
1700 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1704 /// printInfoComment - Print a little comment after the instruction indicating
1705 /// which slot it occupies.
1707 void AssemblyWriter::printInfoComment(const Value &V) {
1708 if (V.getType() != Type::VoidTy) {
1709 Out << "\t\t; <";
1710 TypePrinter.print(V.getType(), Out);
1711 Out << '>';
1713 if (!V.hasName() && !isa<Instruction>(V)) {
1714 int SlotNum;
1715 if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1716 SlotNum = Machine.getGlobalSlot(GV);
1717 else
1718 SlotNum = Machine.getLocalSlot(&V);
1719 if (SlotNum == -1)
1720 Out << ":<badref>";
1721 else
1722 Out << ':' << SlotNum; // Print out the def slot taken.
1724 Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
1728 // This member is called for each Instruction in a function..
1729 void AssemblyWriter::printInstruction(const Instruction &I) {
1730 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1732 Out << '\t';
1734 // Print out name if it exists...
1735 if (I.hasName()) {
1736 PrintLLVMName(Out, &I);
1737 Out << " = ";
1738 } else if (I.getType() != Type::VoidTy) {
1739 // Print out the def slot taken.
1740 int SlotNum = Machine.getLocalSlot(&I);
1741 if (SlotNum == -1)
1742 Out << "<badref> = ";
1743 else
1744 Out << '%' << SlotNum << " = ";
1747 // If this is a volatile load or store, print out the volatile marker.
1748 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1749 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1750 Out << "volatile ";
1751 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1752 // If this is a call, check if it's a tail call.
1753 Out << "tail ";
1756 // Print out the opcode...
1757 Out << I.getOpcodeName();
1759 // Print out optimization information.
1760 WriteOptimizationInfo(Out, &I);
1762 // Print out the compare instruction predicates
1763 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1764 Out << ' ' << getPredicateText(CI->getPredicate());
1766 // Print out the type of the operands...
1767 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1769 // Special case conditional branches to swizzle the condition out to the front
1770 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1771 BranchInst &BI(cast<BranchInst>(I));
1772 Out << ' ';
1773 writeOperand(BI.getCondition(), true);
1774 Out << ", ";
1775 writeOperand(BI.getSuccessor(0), true);
1776 Out << ", ";
1777 writeOperand(BI.getSuccessor(1), true);
1779 } else if (isa<SwitchInst>(I)) {
1780 // Special case switch statement to get formatting nice and correct...
1781 Out << ' ';
1782 writeOperand(Operand , true);
1783 Out << ", ";
1784 writeOperand(I.getOperand(1), true);
1785 Out << " [";
1787 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1788 Out << "\n\t\t";
1789 writeOperand(I.getOperand(op ), true);
1790 Out << ", ";
1791 writeOperand(I.getOperand(op+1), true);
1793 Out << "\n\t]";
1794 } else if (isa<PHINode>(I)) {
1795 Out << ' ';
1796 TypePrinter.print(I.getType(), Out);
1797 Out << ' ';
1799 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1800 if (op) Out << ", ";
1801 Out << "[ ";
1802 writeOperand(I.getOperand(op ), false); Out << ", ";
1803 writeOperand(I.getOperand(op+1), false); Out << " ]";
1805 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1806 Out << ' ';
1807 writeOperand(I.getOperand(0), true);
1808 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1809 Out << ", " << *i;
1810 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1811 Out << ' ';
1812 writeOperand(I.getOperand(0), true); Out << ", ";
1813 writeOperand(I.getOperand(1), true);
1814 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1815 Out << ", " << *i;
1816 } else if (isa<ReturnInst>(I) && !Operand) {
1817 Out << " void";
1818 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1819 // Print the calling convention being used.
1820 switch (CI->getCallingConv()) {
1821 case CallingConv::C: break; // default
1822 case CallingConv::Fast: Out << " fastcc"; break;
1823 case CallingConv::Cold: Out << " coldcc"; break;
1824 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1825 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1826 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1827 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1828 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1829 default: Out << " cc" << CI->getCallingConv(); break;
1832 const PointerType *PTy = cast<PointerType>(Operand->getType());
1833 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1834 const Type *RetTy = FTy->getReturnType();
1835 const AttrListPtr &PAL = CI->getAttributes();
1837 if (PAL.getRetAttributes() != Attribute::None)
1838 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1840 // If possible, print out the short form of the call instruction. We can
1841 // only do this if the first argument is a pointer to a nonvararg function,
1842 // and if the return type is not a pointer to a function.
1844 Out << ' ';
1845 if (!FTy->isVarArg() &&
1846 (!isa<PointerType>(RetTy) ||
1847 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1848 TypePrinter.print(RetTy, Out);
1849 Out << ' ';
1850 writeOperand(Operand, false);
1851 } else {
1852 writeOperand(Operand, true);
1854 Out << '(';
1855 for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1856 if (op > 1)
1857 Out << ", ";
1858 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1860 Out << ')';
1861 if (PAL.getFnAttributes() != Attribute::None)
1862 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1863 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1864 const PointerType *PTy = cast<PointerType>(Operand->getType());
1865 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1866 const Type *RetTy = FTy->getReturnType();
1867 const AttrListPtr &PAL = II->getAttributes();
1869 // Print the calling convention being used.
1870 switch (II->getCallingConv()) {
1871 case CallingConv::C: break; // default
1872 case CallingConv::Fast: Out << " fastcc"; break;
1873 case CallingConv::Cold: Out << " coldcc"; break;
1874 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1875 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1876 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1877 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1878 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1879 default: Out << " cc" << II->getCallingConv(); break;
1882 if (PAL.getRetAttributes() != Attribute::None)
1883 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1885 // If possible, print out the short form of the invoke instruction. We can
1886 // only do this if the first argument is a pointer to a nonvararg function,
1887 // and if the return type is not a pointer to a function.
1889 Out << ' ';
1890 if (!FTy->isVarArg() &&
1891 (!isa<PointerType>(RetTy) ||
1892 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1893 TypePrinter.print(RetTy, Out);
1894 Out << ' ';
1895 writeOperand(Operand, false);
1896 } else {
1897 writeOperand(Operand, true);
1899 Out << '(';
1900 for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1901 if (op > 3)
1902 Out << ", ";
1903 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1906 Out << ')';
1907 if (PAL.getFnAttributes() != Attribute::None)
1908 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1910 Out << "\n\t\t\tto ";
1911 writeOperand(II->getNormalDest(), true);
1912 Out << " unwind ";
1913 writeOperand(II->getUnwindDest(), true);
1915 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1916 Out << ' ';
1917 TypePrinter.print(AI->getType()->getElementType(), Out);
1918 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1919 Out << ", ";
1920 writeOperand(AI->getArraySize(), true);
1922 if (AI->getAlignment()) {
1923 Out << ", align " << AI->getAlignment();
1925 } else if (isa<CastInst>(I)) {
1926 if (Operand) {
1927 Out << ' ';
1928 writeOperand(Operand, true); // Work with broken code
1930 Out << " to ";
1931 TypePrinter.print(I.getType(), Out);
1932 } else if (isa<VAArgInst>(I)) {
1933 if (Operand) {
1934 Out << ' ';
1935 writeOperand(Operand, true); // Work with broken code
1937 Out << ", ";
1938 TypePrinter.print(I.getType(), Out);
1939 } else if (Operand) { // Print the normal way.
1941 // PrintAllTypes - Instructions who have operands of all the same type
1942 // omit the type from all but the first operand. If the instruction has
1943 // different type operands (for example br), then they are all printed.
1944 bool PrintAllTypes = false;
1945 const Type *TheType = Operand->getType();
1947 // Select, Store and ShuffleVector always print all types.
1948 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1949 || isa<ReturnInst>(I)) {
1950 PrintAllTypes = true;
1951 } else {
1952 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1953 Operand = I.getOperand(i);
1954 // note that Operand shouldn't be null, but the test helps make dump()
1955 // more tolerant of malformed IR
1956 if (Operand && Operand->getType() != TheType) {
1957 PrintAllTypes = true; // We have differing types! Print them all!
1958 break;
1963 if (!PrintAllTypes) {
1964 Out << ' ';
1965 TypePrinter.print(TheType, Out);
1968 Out << ' ';
1969 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1970 if (i) Out << ", ";
1971 writeOperand(I.getOperand(i), PrintAllTypes);
1975 // Print post operand alignment for load/store
1976 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1977 Out << ", align " << cast<LoadInst>(I).getAlignment();
1978 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1979 Out << ", align " << cast<StoreInst>(I).getAlignment();
1982 printInfoComment(I);
1986 //===----------------------------------------------------------------------===//
1987 // External Interface declarations
1988 //===----------------------------------------------------------------------===//
1990 void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1991 raw_os_ostream OS(o);
1992 print(OS, AAW);
1994 void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1995 SlotTracker SlotTable(this);
1996 AssemblyWriter W(OS, SlotTable, this, AAW);
1997 W.write(this);
2000 void Type::print(std::ostream &o) const {
2001 raw_os_ostream OS(o);
2002 print(OS);
2005 void Type::print(raw_ostream &OS) const {
2006 if (this == 0) {
2007 OS << "<null Type>";
2008 return;
2010 TypePrinting().print(this, OS);
2013 void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
2014 if (this == 0) {
2015 OS << "printing a <null> value\n";
2016 return;
2018 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2019 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2020 SlotTracker SlotTable(F);
2021 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2022 W.write(I);
2023 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2024 SlotTracker SlotTable(BB->getParent());
2025 AssemblyWriter W(OS, SlotTable,
2026 BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
2027 W.write(BB);
2028 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2029 SlotTracker SlotTable(GV->getParent());
2030 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2031 W.write(GV);
2032 } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
2033 TypePrinting TypePrinter;
2034 TypePrinter.print(MDS->getType(), OS);
2035 OS << ' ';
2036 OS << "!\"";
2037 PrintEscapedString(MDS->getString(), OS);
2038 OS << '"';
2039 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2040 SlotTracker SlotTable(N);
2041 TypePrinting TypePrinter;
2042 SlotTable.initialize();
2043 WriteMDNodes(OS, TypePrinter, SlotTable);
2044 } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2045 SlotTracker SlotTable(N);
2046 TypePrinting TypePrinter;
2047 SlotTable.initialize();
2048 OS << "!" << N->getName() << " = !{";
2049 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
2050 if (i) OS << ", ";
2051 MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
2052 if (MD)
2053 OS << '!' << SlotTable.getMetadataSlot(MD);
2054 else
2055 OS << "null";
2057 OS << "}\n";
2058 WriteMDNodes(OS, TypePrinter, SlotTable);
2059 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2060 TypePrinting TypePrinter;
2061 TypePrinter.print(C->getType(), OS);
2062 OS << ' ';
2063 WriteConstantInt(OS, C, TypePrinter, 0);
2064 } else if (const Argument *A = dyn_cast<Argument>(this)) {
2065 WriteAsOperand(OS, this, true,
2066 A->getParent() ? A->getParent()->getParent() : 0);
2067 } else if (isa<InlineAsm>(this)) {
2068 WriteAsOperand(OS, this, true, 0);
2069 } else {
2070 llvm_unreachable("Unknown value to print out!");
2074 void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
2075 raw_os_ostream OS(O);
2076 print(OS, AAW);
2079 // Value::dump - allow easy printing of Values from the debugger.
2080 void Value::dump() const { print(errs()); errs() << '\n'; }
2082 // Type::dump - allow easy printing of Types from the debugger.
2083 // This one uses type names from the given context module
2084 void Type::dump(const Module *Context) const {
2085 WriteTypeSymbolic(errs(), this, Context);
2086 errs() << '\n';
2089 // Type::dump - allow easy printing of Types from the debugger.
2090 void Type::dump() const { dump(0); }
2092 // Module::dump() - Allow printing of Modules from the debugger.
2093 void Module::dump() const { print(errs(), 0); }