1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Metadata.h"
28 #include "llvm/Module.h"
29 #include "llvm/ValueSymbolTable.h"
30 #include "llvm/TypeSymbolTable.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
48 //===----------------------------------------------------------------------===//
50 static const Module
*getModuleFromVal(const Value
*V
) {
51 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
52 return MA
->getParent() ? MA
->getParent()->getParent() : 0;
54 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
55 return BB
->getParent() ? BB
->getParent()->getParent() : 0;
57 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
58 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : 0;
59 return M
? M
->getParent() : 0;
62 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
63 return GV
->getParent();
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(const StringRef
&Name
, raw_ostream
&Out
) {
70 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
71 unsigned char C
= Name
[i
];
72 if (isprint(C
) && C
!= '\\' && C
!= '"')
75 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
87 /// prefixed with % (if the string only contains simple characters) or is
88 /// surrounded with ""'s (if it has special chars in it). Print it out.
89 static void PrintLLVMName(raw_ostream
&OS
, const StringRef
&Name
,
91 assert(Name
.data() && "Cannot get empty name!");
93 default: llvm_unreachable("Bad prefix!");
95 case GlobalPrefix
: OS
<< '@'; break;
96 case LabelPrefix
: break;
97 case LocalPrefix
: OS
<< '%'; break;
100 // Scan the name to see if it needs quotes first.
101 bool NeedsQuotes
= isdigit(Name
[0]);
103 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
105 if (!isalnum(C
) && C
!= '-' && C
!= '.' && C
!= '_') {
112 // If we didn't need any quotes, just write out the name in one blast.
118 // Okay, we need quotes. Output the quotes and escape any scary characters as
121 PrintEscapedString(Name
, OS
);
125 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
126 /// prefixed with % (if the string only contains simple characters) or is
127 /// surrounded with ""'s (if it has special chars in it). Print it out.
128 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
129 PrintLLVMName(OS
, V
->getName(),
130 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
133 //===----------------------------------------------------------------------===//
134 // TypePrinting Class: Type printing machinery
135 //===----------------------------------------------------------------------===//
137 static DenseMap
<const Type
*, std::string
> &getTypeNamesMap(void *M
) {
138 return *static_cast<DenseMap
<const Type
*, std::string
>*>(M
);
141 void TypePrinting::clear() {
142 getTypeNamesMap(TypeNames
).clear();
145 bool TypePrinting::hasTypeName(const Type
*Ty
) const {
146 return getTypeNamesMap(TypeNames
).count(Ty
);
149 void TypePrinting::addTypeName(const Type
*Ty
, const std::string
&N
) {
150 getTypeNamesMap(TypeNames
).insert(std::make_pair(Ty
, N
));
154 TypePrinting::TypePrinting() {
155 TypeNames
= new DenseMap
<const Type
*, std::string
>();
158 TypePrinting::~TypePrinting() {
159 delete &getTypeNamesMap(TypeNames
);
162 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
163 /// use of type names or up references to shorten the type name where possible.
164 void TypePrinting::CalcTypeName(const Type
*Ty
,
165 SmallVectorImpl
<const Type
*> &TypeStack
,
166 raw_ostream
&OS
, bool IgnoreTopLevelName
) {
167 // Check to see if the type is named.
168 if (!IgnoreTopLevelName
) {
169 DenseMap
<const Type
*, std::string
> &TM
= getTypeNamesMap(TypeNames
);
170 DenseMap
<const Type
*, std::string
>::iterator I
= TM
.find(Ty
);
177 // Check to see if the Type is already on the stack...
178 unsigned Slot
= 0, CurSize
= TypeStack
.size();
179 while (Slot
< CurSize
&& TypeStack
[Slot
] != Ty
) ++Slot
; // Scan for type
181 // This is another base case for the recursion. In this case, we know
182 // that we have looped back to a type that we have previously visited.
183 // Generate the appropriate upreference to handle this.
184 if (Slot
< CurSize
) {
185 OS
<< '\\' << unsigned(CurSize
-Slot
); // Here's the upreference
189 TypeStack
.push_back(Ty
); // Recursive case: Add us to the stack..
191 switch (Ty
->getTypeID()) {
192 case Type::VoidTyID
: OS
<< "void"; break;
193 case Type::FloatTyID
: OS
<< "float"; break;
194 case Type::DoubleTyID
: OS
<< "double"; break;
195 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; break;
196 case Type::FP128TyID
: OS
<< "fp128"; break;
197 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; break;
198 case Type::LabelTyID
: OS
<< "label"; break;
199 case Type::MetadataTyID
: OS
<< "metadata"; break;
200 case Type::IntegerTyID
:
201 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
204 case Type::FunctionTyID
: {
205 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
206 CalcTypeName(FTy
->getReturnType(), TypeStack
, OS
);
208 for (FunctionType::param_iterator I
= FTy
->param_begin(),
209 E
= FTy
->param_end(); I
!= E
; ++I
) {
210 if (I
!= FTy
->param_begin())
212 CalcTypeName(*I
, TypeStack
, OS
);
214 if (FTy
->isVarArg()) {
215 if (FTy
->getNumParams()) OS
<< ", ";
221 case Type::StructTyID
: {
222 const StructType
*STy
= cast
<StructType
>(Ty
);
226 for (StructType::element_iterator I
= STy
->element_begin(),
227 E
= STy
->element_end(); I
!= E
; ++I
) {
228 CalcTypeName(*I
, TypeStack
, OS
);
229 if (next(I
) != STy
->element_end())
238 case Type::PointerTyID
: {
239 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
240 CalcTypeName(PTy
->getElementType(), TypeStack
, OS
);
241 if (unsigned AddressSpace
= PTy
->getAddressSpace())
242 OS
<< " addrspace(" << AddressSpace
<< ')';
246 case Type::ArrayTyID
: {
247 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
248 OS
<< '[' << ATy
->getNumElements() << " x ";
249 CalcTypeName(ATy
->getElementType(), TypeStack
, OS
);
253 case Type::VectorTyID
: {
254 const VectorType
*PTy
= cast
<VectorType
>(Ty
);
255 OS
<< "<" << PTy
->getNumElements() << " x ";
256 CalcTypeName(PTy
->getElementType(), TypeStack
, OS
);
260 case Type::OpaqueTyID
:
264 OS
<< "<unrecognized-type>";
268 TypeStack
.pop_back(); // Remove self from stack.
271 /// printTypeInt - The internal guts of printing out a type that has a
272 /// potentially named portion.
274 void TypePrinting::print(const Type
*Ty
, raw_ostream
&OS
,
275 bool IgnoreTopLevelName
) {
276 // Check to see if the type is named.
277 DenseMap
<const Type
*, std::string
> &TM
= getTypeNamesMap(TypeNames
);
278 if (!IgnoreTopLevelName
) {
279 DenseMap
<const Type
*, std::string
>::iterator I
= TM
.find(Ty
);
286 // Otherwise we have a type that has not been named but is a derived type.
287 // Carefully recurse the type hierarchy to print out any contained symbolic
289 SmallVector
<const Type
*, 16> TypeStack
;
290 std::string TypeName
;
292 raw_string_ostream
TypeOS(TypeName
);
293 CalcTypeName(Ty
, TypeStack
, TypeOS
, IgnoreTopLevelName
);
296 // Cache type name for later use.
297 if (!IgnoreTopLevelName
)
298 TM
.insert(std::make_pair(Ty
, TypeOS
.str()));
303 // To avoid walking constant expressions multiple times and other IR
304 // objects, we keep several helper maps.
305 DenseSet
<const Value
*> VisitedConstants
;
306 DenseSet
<const Type
*> VisitedTypes
;
309 std::vector
<const Type
*> &NumberedTypes
;
311 TypeFinder(TypePrinting
&tp
, std::vector
<const Type
*> &numberedTypes
)
312 : TP(tp
), NumberedTypes(numberedTypes
) {}
314 void Run(const Module
&M
) {
315 // Get types from the type symbol table. This gets opaque types referened
316 // only through derived named types.
317 const TypeSymbolTable
&ST
= M
.getTypeSymbolTable();
318 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), E
= ST
.end();
320 IncorporateType(TI
->second
);
322 // Get types from global variables.
323 for (Module::const_global_iterator I
= M
.global_begin(),
324 E
= M
.global_end(); I
!= E
; ++I
) {
325 IncorporateType(I
->getType());
326 if (I
->hasInitializer())
327 IncorporateValue(I
->getInitializer());
330 // Get types from aliases.
331 for (Module::const_alias_iterator I
= M
.alias_begin(),
332 E
= M
.alias_end(); I
!= E
; ++I
) {
333 IncorporateType(I
->getType());
334 IncorporateValue(I
->getAliasee());
337 // Get types from functions.
338 for (Module::const_iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ++FI
) {
339 IncorporateType(FI
->getType());
341 for (Function::const_iterator BB
= FI
->begin(), E
= FI
->end();
343 for (BasicBlock::const_iterator II
= BB
->begin(),
344 E
= BB
->end(); II
!= E
; ++II
) {
345 const Instruction
&I
= *II
;
346 // Incorporate the type of the instruction and all its operands.
347 IncorporateType(I
.getType());
348 for (User::const_op_iterator OI
= I
.op_begin(), OE
= I
.op_end();
350 IncorporateValue(*OI
);
356 void IncorporateType(const Type
*Ty
) {
357 // Check to see if we're already visited this type.
358 if (!VisitedTypes
.insert(Ty
).second
)
361 // If this is a structure or opaque type, add a name for the type.
362 if (((isa
<StructType
>(Ty
) && cast
<StructType
>(Ty
)->getNumElements())
363 || isa
<OpaqueType
>(Ty
)) && !TP
.hasTypeName(Ty
)) {
364 TP
.addTypeName(Ty
, "%"+utostr(unsigned(NumberedTypes
.size())));
365 NumberedTypes
.push_back(Ty
);
368 // Recursively walk all contained types.
369 for (Type::subtype_iterator I
= Ty
->subtype_begin(),
370 E
= Ty
->subtype_end(); I
!= E
; ++I
)
374 /// IncorporateValue - This method is used to walk operand lists finding
375 /// types hiding in constant expressions and other operands that won't be
376 /// walked in other ways. GlobalValues, basic blocks, instructions, and
377 /// inst operands are all explicitly enumerated.
378 void IncorporateValue(const Value
*V
) {
379 if (V
== 0 || !isa
<Constant
>(V
) || isa
<GlobalValue
>(V
)) return;
382 if (!VisitedConstants
.insert(V
).second
)
386 IncorporateType(V
->getType());
388 // Look in operands for types.
389 const Constant
*C
= cast
<Constant
>(V
);
390 for (Constant::const_op_iterator I
= C
->op_begin(),
391 E
= C
->op_end(); I
!= E
;++I
)
392 IncorporateValue(*I
);
395 } // end anonymous namespace
398 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
399 /// the specified module to the TypePrinter and all numbered types to it and the
400 /// NumberedTypes table.
401 static void AddModuleTypesToPrinter(TypePrinting
&TP
,
402 std::vector
<const Type
*> &NumberedTypes
,
406 // If the module has a symbol table, take all global types and stuff their
407 // names into the TypeNames map.
408 const TypeSymbolTable
&ST
= M
->getTypeSymbolTable();
409 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), E
= ST
.end();
411 const Type
*Ty
= cast
<Type
>(TI
->second
);
413 // As a heuristic, don't insert pointer to primitive types, because
414 // they are used too often to have a single useful name.
415 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
416 const Type
*PETy
= PTy
->getElementType();
417 if ((PETy
->isPrimitiveType() || PETy
->isInteger()) &&
418 !isa
<OpaqueType
>(PETy
))
422 // Likewise don't insert primitives either.
423 if (Ty
->isInteger() || Ty
->isPrimitiveType())
426 // Get the name as a string and insert it into TypeNames.
428 raw_string_ostream
NameOS(NameStr
);
429 PrintLLVMName(NameOS
, TI
->first
, LocalPrefix
);
430 TP
.addTypeName(Ty
, NameOS
.str());
433 // Walk the entire module to find references to unnamed structure and opaque
434 // types. This is required for correctness by opaque types (because multiple
435 // uses of an unnamed opaque type needs to be referred to by the same ID) and
436 // it shrinks complex recursive structure types substantially in some cases.
437 TypeFinder(TP
, NumberedTypes
).Run(*M
);
441 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
442 /// type, iff there is an entry in the modules symbol table for the specified
443 /// type or one of it's component types.
445 void llvm::WriteTypeSymbolic(raw_ostream
&OS
, const Type
*Ty
, const Module
*M
) {
446 TypePrinting Printer
;
447 std::vector
<const Type
*> NumberedTypes
;
448 AddModuleTypesToPrinter(Printer
, NumberedTypes
, M
);
449 Printer
.print(Ty
, OS
);
452 //===----------------------------------------------------------------------===//
453 // SlotTracker Class: Enumerate slot numbers for unnamed values
454 //===----------------------------------------------------------------------===//
458 /// This class provides computation of slot numbers for LLVM Assembly writing.
462 /// ValueMap - A mapping of Values to slot numbers.
463 typedef DenseMap
<const Value
*, unsigned> ValueMap
;
466 /// TheModule - The module for which we are holding slot numbers.
467 const Module
* TheModule
;
469 /// TheFunction - The function for which we are holding slot numbers.
470 const Function
* TheFunction
;
471 bool FunctionProcessed
;
473 /// TheMDNode - The MDNode for which we are holding slot numbers.
474 const MDNode
*TheMDNode
;
476 /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
477 const NamedMDNode
*TheNamedMDNode
;
479 /// mMap - The TypePlanes map for the module level data.
483 /// fMap - The TypePlanes map for the function level data.
487 /// mdnMap - Map for MDNodes.
491 /// Construct from a module
492 explicit SlotTracker(const Module
*M
);
493 /// Construct from a function, starting out in incorp state.
494 explicit SlotTracker(const Function
*F
);
495 /// Construct from a mdnode.
496 explicit SlotTracker(const MDNode
*N
);
497 /// Construct from a named mdnode.
498 explicit SlotTracker(const NamedMDNode
*N
);
500 /// Return the slot number of the specified value in it's type
501 /// plane. If something is not in the SlotTracker, return -1.
502 int getLocalSlot(const Value
*V
);
503 int getGlobalSlot(const GlobalValue
*V
);
504 int getMetadataSlot(const MDNode
*N
);
506 /// If you'd like to deal with a function instead of just a module, use
507 /// this method to get its data into the SlotTracker.
508 void incorporateFunction(const Function
*F
) {
510 FunctionProcessed
= false;
513 /// After calling incorporateFunction, use this method to remove the
514 /// most recently incorporated function from the SlotTracker. This
515 /// will reset the state of the machine back to just the module contents.
516 void purgeFunction();
518 /// MDNode map iterators.
519 ValueMap::iterator
mdnBegin() { return mdnMap
.begin(); }
520 ValueMap::iterator
mdnEnd() { return mdnMap
.end(); }
521 unsigned mdnSize() { return mdnMap
.size(); }
523 /// This function does the actual initialization.
524 inline void initialize();
526 // Implementation Details
528 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
529 void CreateModuleSlot(const GlobalValue
*V
);
531 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
532 void CreateMetadataSlot(const MDNode
*N
);
534 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
535 void CreateFunctionSlot(const Value
*V
);
537 /// Add all of the module level global variables (and their initializers)
538 /// and function declarations, but not the contents of those functions.
539 void processModule();
541 /// Add all of the functions arguments, basic blocks, and instructions.
542 void processFunction();
544 /// Add all MDNode operands.
545 void processMDNode();
547 /// Add all MDNode operands.
548 void processNamedMDNode();
550 SlotTracker(const SlotTracker
&); // DO NOT IMPLEMENT
551 void operator=(const SlotTracker
&); // DO NOT IMPLEMENT
554 } // end anonymous namespace
557 static SlotTracker
*createSlotTracker(const Value
*V
) {
558 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
559 return new SlotTracker(FA
->getParent());
561 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
562 return new SlotTracker(I
->getParent()->getParent());
564 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
565 return new SlotTracker(BB
->getParent());
567 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
568 return new SlotTracker(GV
->getParent());
570 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
571 return new SlotTracker(GA
->getParent());
573 if (const Function
*Func
= dyn_cast
<Function
>(V
))
574 return new SlotTracker(Func
);
580 #define ST_DEBUG(X) errs() << X
585 // Module level constructor. Causes the contents of the Module (sans functions)
586 // to be added to the slot table.
587 SlotTracker::SlotTracker(const Module
*M
)
588 : TheModule(M
), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
589 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
592 // Function level constructor. Causes the contents of the Module and the one
593 // function provided to be added to the slot table.
594 SlotTracker::SlotTracker(const Function
*F
)
595 : TheModule(F
? F
->getParent() : 0), TheFunction(F
), FunctionProcessed(false),
596 TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
599 // Constructor to handle single MDNode.
600 SlotTracker::SlotTracker(const MDNode
*C
)
601 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C
),
602 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
605 // Constructor to handle single NamedMDNode.
606 SlotTracker::SlotTracker(const NamedMDNode
*N
)
607 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
608 TheNamedMDNode(N
), mNext(0), fNext(0), mdnNext(0) {
611 inline void SlotTracker::initialize() {
614 TheModule
= 0; ///< Prevent re-processing next time we're called.
617 if (TheFunction
&& !FunctionProcessed
)
624 processNamedMDNode();
627 // Iterate through all the global variables, functions, and global
628 // variable initializers and create slots for them.
629 void SlotTracker::processModule() {
630 ST_DEBUG("begin processModule!\n");
632 // Add all of the unnamed global variables to the value table.
633 for (Module::const_global_iterator I
= TheModule
->global_begin(),
634 E
= TheModule
->global_end(); I
!= E
; ++I
) {
637 if (I
->hasInitializer()) {
638 if (MDNode
*N
= dyn_cast
<MDNode
>(I
->getInitializer()))
639 CreateMetadataSlot(N
);
643 // Add metadata used by named metadata.
644 for (Module::const_named_metadata_iterator
645 I
= TheModule
->named_metadata_begin(),
646 E
= TheModule
->named_metadata_end(); I
!= E
; ++I
) {
647 const NamedMDNode
*NMD
= I
;
648 for (unsigned i
= 0, e
= NMD
->getNumElements(); i
!= e
; ++i
) {
649 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(NMD
->getElement(i
));
651 CreateMetadataSlot(MD
);
655 // Add all the unnamed functions to the table.
656 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
661 ST_DEBUG("end processModule!\n");
664 // Process the arguments, basic blocks, and instructions of a function.
665 void SlotTracker::processFunction() {
666 ST_DEBUG("begin processFunction!\n");
669 // Add all the function arguments with no names.
670 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
671 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
673 CreateFunctionSlot(AI
);
675 ST_DEBUG("Inserting Instructions:\n");
677 // Add all of the basic blocks and instructions with no names.
678 for (Function::const_iterator BB
= TheFunction
->begin(),
679 E
= TheFunction
->end(); BB
!= E
; ++BB
) {
681 CreateFunctionSlot(BB
);
682 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
684 if (I
->getType() != Type::VoidTy
&& !I
->hasName())
685 CreateFunctionSlot(I
);
686 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
687 if (MDNode
*N
= dyn_cast
<MDNode
>(I
->getOperand(i
)))
688 CreateMetadataSlot(N
);
692 FunctionProcessed
= true;
694 ST_DEBUG("end processFunction!\n");
697 /// processMDNode - Process TheMDNode.
698 void SlotTracker::processMDNode() {
699 ST_DEBUG("begin processMDNode!\n");
701 CreateMetadataSlot(TheMDNode
);
703 ST_DEBUG("end processMDNode!\n");
706 /// processNamedMDNode - Process TheNamedMDNode.
707 void SlotTracker::processNamedMDNode() {
708 ST_DEBUG("begin processNamedMDNode!\n");
710 for (unsigned i
= 0, e
= TheNamedMDNode
->getNumElements(); i
!= e
; ++i
) {
711 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(TheNamedMDNode
->getElement(i
));
713 CreateMetadataSlot(MD
);
716 ST_DEBUG("end processNamedMDNode!\n");
719 /// Clean up after incorporating a function. This is the only way to get out of
720 /// the function incorporation state that affects get*Slot/Create*Slot. Function
721 /// incorporation state is indicated by TheFunction != 0.
722 void SlotTracker::purgeFunction() {
723 ST_DEBUG("begin purgeFunction!\n");
724 fMap
.clear(); // Simply discard the function level map
726 FunctionProcessed
= false;
727 ST_DEBUG("end purgeFunction!\n");
730 /// getGlobalSlot - Get the slot number of a global value.
731 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
732 // Check for uninitialized state and do lazy initialization.
735 // Find the type plane in the module map
736 ValueMap::iterator MI
= mMap
.find(V
);
737 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
740 /// getGlobalSlot - Get the slot number of a MDNode.
741 int SlotTracker::getMetadataSlot(const MDNode
*N
) {
742 // Check for uninitialized state and do lazy initialization.
745 // Find the type plane in the module map
746 ValueMap::iterator MI
= mdnMap
.find(N
);
747 return MI
== mdnMap
.end() ? -1 : (int)MI
->second
;
751 /// getLocalSlot - Get the slot number for a value that is local to a function.
752 int SlotTracker::getLocalSlot(const Value
*V
) {
753 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
755 // Check for uninitialized state and do lazy initialization.
758 ValueMap::iterator FI
= fMap
.find(V
);
759 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
763 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
764 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
765 assert(V
&& "Can't insert a null Value into SlotTracker!");
766 assert(V
->getType() != Type::VoidTy
&& "Doesn't need a slot!");
767 assert(!V
->hasName() && "Doesn't need a slot!");
769 unsigned DestSlot
= mNext
++;
772 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
774 // G = Global, F = Function, A = Alias, o = other
775 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
776 (isa
<Function
>(V
) ? 'F' :
777 (isa
<GlobalAlias
>(V
) ? 'A' : 'o'))) << "]\n");
780 /// CreateSlot - Create a new slot for the specified value if it has no name.
781 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
782 assert(V
->getType() != Type::VoidTy
&& !V
->hasName() &&
783 "Doesn't need a slot!");
785 unsigned DestSlot
= fNext
++;
788 // G = Global, F = Function, o = other
789 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
790 DestSlot
<< " [o]\n");
793 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
794 void SlotTracker::CreateMetadataSlot(const MDNode
*N
) {
795 assert(N
&& "Can't insert a null Value into SlotTracker!");
797 ValueMap::iterator I
= mdnMap
.find(N
);
798 if (I
!= mdnMap
.end())
801 unsigned DestSlot
= mdnNext
++;
802 mdnMap
[N
] = DestSlot
;
804 for (MDNode::const_elem_iterator MDI
= N
->elem_begin(),
805 MDE
= N
->elem_end(); MDI
!= MDE
; ++MDI
) {
806 const Value
*TV
= *MDI
;
808 if (const MDNode
*N2
= dyn_cast
<MDNode
>(TV
))
809 CreateMetadataSlot(N2
);
813 //===----------------------------------------------------------------------===//
814 // AsmWriter Implementation
815 //===----------------------------------------------------------------------===//
817 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
818 TypePrinting
&TypePrinter
,
819 SlotTracker
*Machine
);
823 static const char *getPredicateText(unsigned predicate
) {
824 const char * pred
= "unknown";
826 case FCmpInst::FCMP_FALSE
: pred
= "false"; break;
827 case FCmpInst::FCMP_OEQ
: pred
= "oeq"; break;
828 case FCmpInst::FCMP_OGT
: pred
= "ogt"; break;
829 case FCmpInst::FCMP_OGE
: pred
= "oge"; break;
830 case FCmpInst::FCMP_OLT
: pred
= "olt"; break;
831 case FCmpInst::FCMP_OLE
: pred
= "ole"; break;
832 case FCmpInst::FCMP_ONE
: pred
= "one"; break;
833 case FCmpInst::FCMP_ORD
: pred
= "ord"; break;
834 case FCmpInst::FCMP_UNO
: pred
= "uno"; break;
835 case FCmpInst::FCMP_UEQ
: pred
= "ueq"; break;
836 case FCmpInst::FCMP_UGT
: pred
= "ugt"; break;
837 case FCmpInst::FCMP_UGE
: pred
= "uge"; break;
838 case FCmpInst::FCMP_ULT
: pred
= "ult"; break;
839 case FCmpInst::FCMP_ULE
: pred
= "ule"; break;
840 case FCmpInst::FCMP_UNE
: pred
= "une"; break;
841 case FCmpInst::FCMP_TRUE
: pred
= "true"; break;
842 case ICmpInst::ICMP_EQ
: pred
= "eq"; break;
843 case ICmpInst::ICMP_NE
: pred
= "ne"; break;
844 case ICmpInst::ICMP_SGT
: pred
= "sgt"; break;
845 case ICmpInst::ICMP_SGE
: pred
= "sge"; break;
846 case ICmpInst::ICMP_SLT
: pred
= "slt"; break;
847 case ICmpInst::ICMP_SLE
: pred
= "sle"; break;
848 case ICmpInst::ICMP_UGT
: pred
= "ugt"; break;
849 case ICmpInst::ICMP_UGE
: pred
= "uge"; break;
850 case ICmpInst::ICMP_ULT
: pred
= "ult"; break;
851 case ICmpInst::ICMP_ULE
: pred
= "ule"; break;
856 static void WriteMDNodes(raw_ostream
&Out
, TypePrinting
&TypePrinter
,
857 SlotTracker
&Machine
) {
858 SmallVector
<const MDNode
*, 16> Nodes
;
859 Nodes
.resize(Machine
.mdnSize());
860 for (SlotTracker::ValueMap::iterator I
=
861 Machine
.mdnBegin(), E
= Machine
.mdnEnd(); I
!= E
; ++I
)
862 Nodes
[I
->second
] = cast
<MDNode
>(I
->first
);
864 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
865 Out
<< '!' << i
<< " = metadata ";
866 const MDNode
*Node
= Nodes
[i
];
868 for (MDNode::const_elem_iterator NI
= Node
->elem_begin(),
869 NE
= Node
->elem_end(); NI
!= NE
;) {
870 const Value
*V
= *NI
;
873 else if (const MDNode
*N
= dyn_cast
<MDNode
>(V
)) {
875 Out
<< '!' << Machine
.getMetadataSlot(N
);
878 TypePrinter
.print((*NI
)->getType(), Out
);
880 WriteAsOperandInternal(Out
, *NI
, TypePrinter
, &Machine
);
889 static void WriteOptimizationInfo(raw_ostream
&Out
, const User
*U
) {
890 if (const OverflowingBinaryOperator
*OBO
=
891 dyn_cast
<OverflowingBinaryOperator
>(U
)) {
892 if (OBO
->hasNoUnsignedOverflow())
894 if (OBO
->hasNoSignedOverflow())
896 } else if (const SDivOperator
*Div
= dyn_cast
<SDivOperator
>(U
)) {
899 } else if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(U
)) {
900 if (GEP
->isInBounds())
905 static void WriteConstantInt(raw_ostream
&Out
, const Constant
*CV
,
906 TypePrinting
&TypePrinter
, SlotTracker
*Machine
) {
907 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
908 if (CI
->getType() == Type::Int1Ty
) {
909 Out
<< (CI
->getZExtValue() ? "true" : "false");
912 Out
<< CI
->getValue();
916 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
917 if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEdouble
||
918 &CFP
->getValueAPF().getSemantics() == &APFloat::IEEEsingle
) {
919 // We would like to output the FP constant value in exponential notation,
920 // but we cannot do this if doing so will lose precision. Check here to
921 // make sure that we only output it in exponential format if we can parse
922 // the value back and get the same value.
925 bool isDouble
= &CFP
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
;
926 double Val
= isDouble
? CFP
->getValueAPF().convertToDouble() :
927 CFP
->getValueAPF().convertToFloat();
928 std::string StrVal
= ftostr(CFP
->getValueAPF());
930 // Check to make sure that the stringized number is not some string like
931 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
932 // that the string matches the "[-+]?[0-9]" regex.
934 if ((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
935 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
936 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) {
937 // Reparse stringized version!
938 if (atof(StrVal
.c_str()) == Val
) {
943 // Otherwise we could not reparse it to exactly the same value, so we must
944 // output the string in hexadecimal format! Note that loading and storing
945 // floating point types changes the bits of NaNs on some hosts, notably
946 // x86, so we must not use these types.
947 assert(sizeof(double) == sizeof(uint64_t) &&
948 "assuming that double is 64 bits!");
950 APFloat apf
= CFP
->getValueAPF();
951 // Floats are represented in ASCII IR as double, convert.
953 apf
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
956 utohex_buffer(uint64_t(apf
.bitcastToAPInt().getZExtValue()),
961 // Some form of long double. These appear as a magic letter identifying
962 // the type, then a fixed number of hex digits.
964 if (&CFP
->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended
) {
966 // api needed to prevent premature destruction
967 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
968 const uint64_t* p
= api
.getRawData();
969 uint64_t word
= p
[1];
971 int width
= api
.getBitWidth();
972 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
973 unsigned int nibble
= (word
>>shiftcount
) & 15;
975 Out
<< (unsigned char)(nibble
+ '0');
977 Out
<< (unsigned char)(nibble
- 10 + 'A');
978 if (shiftcount
== 0 && j
+4 < width
) {
982 shiftcount
= width
-j
-4;
986 } else if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEquad
)
988 else if (&CFP
->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble
)
991 llvm_unreachable("Unsupported floating point type");
992 // api needed to prevent premature destruction
993 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
994 const uint64_t* p
= api
.getRawData();
997 int width
= api
.getBitWidth();
998 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
999 unsigned int nibble
= (word
>>shiftcount
) & 15;
1001 Out
<< (unsigned char)(nibble
+ '0');
1003 Out
<< (unsigned char)(nibble
- 10 + 'A');
1004 if (shiftcount
== 0 && j
+4 < width
) {
1008 shiftcount
= width
-j
-4;
1014 if (isa
<ConstantAggregateZero
>(CV
)) {
1015 Out
<< "zeroinitializer";
1019 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
1020 // As a special case, print the array as a string if it is an array of
1021 // i8 with ConstantInt values.
1023 const Type
*ETy
= CA
->getType()->getElementType();
1024 if (CA
->isString()) {
1026 PrintEscapedString(CA
->getAsString(), Out
);
1028 } else { // Cannot output in string format...
1030 if (CA
->getNumOperands()) {
1031 TypePrinter
.print(ETy
, Out
);
1033 WriteAsOperandInternal(Out
, CA
->getOperand(0),
1034 TypePrinter
, Machine
);
1035 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
1037 TypePrinter
.print(ETy
, Out
);
1039 WriteAsOperandInternal(Out
, CA
->getOperand(i
), TypePrinter
, Machine
);
1047 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
1048 if (CS
->getType()->isPacked())
1051 unsigned N
= CS
->getNumOperands();
1054 TypePrinter
.print(CS
->getOperand(0)->getType(), Out
);
1057 WriteAsOperandInternal(Out
, CS
->getOperand(0), TypePrinter
, Machine
);
1059 for (unsigned i
= 1; i
< N
; i
++) {
1061 TypePrinter
.print(CS
->getOperand(i
)->getType(), Out
);
1064 WriteAsOperandInternal(Out
, CS
->getOperand(i
), TypePrinter
, Machine
);
1070 if (CS
->getType()->isPacked())
1075 if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
1076 const Type
*ETy
= CP
->getType()->getElementType();
1077 assert(CP
->getNumOperands() > 0 &&
1078 "Number of operands for a PackedConst must be > 0");
1080 TypePrinter
.print(ETy
, Out
);
1082 WriteAsOperandInternal(Out
, CP
->getOperand(0), TypePrinter
, Machine
);
1083 for (unsigned i
= 1, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
1085 TypePrinter
.print(ETy
, Out
);
1087 WriteAsOperandInternal(Out
, CP
->getOperand(i
), TypePrinter
, Machine
);
1093 if (isa
<ConstantPointerNull
>(CV
)) {
1098 if (isa
<UndefValue
>(CV
)) {
1103 if (const MDNode
*Node
= dyn_cast
<MDNode
>(CV
)) {
1104 Out
<< "!" << Machine
->getMetadataSlot(Node
);
1108 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
1109 Out
<< CE
->getOpcodeName();
1110 WriteOptimizationInfo(Out
, CE
);
1111 if (CE
->isCompare())
1112 Out
<< ' ' << getPredicateText(CE
->getPredicate());
1115 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
1116 TypePrinter
.print((*OI
)->getType(), Out
);
1118 WriteAsOperandInternal(Out
, *OI
, TypePrinter
, Machine
);
1119 if (OI
+1 != CE
->op_end())
1123 if (CE
->hasIndices()) {
1124 const SmallVector
<unsigned, 4> &Indices
= CE
->getIndices();
1125 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
1126 Out
<< ", " << Indices
[i
];
1131 TypePrinter
.print(CE
->getType(), Out
);
1138 Out
<< "<placeholder or erroneous Constant>";
1142 /// WriteAsOperand - Write the name of the specified value out to the specified
1143 /// ostream. This can be useful when you just want to print int %reg126, not
1144 /// the whole instruction that generated it.
1146 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
1147 TypePrinting
&TypePrinter
,
1148 SlotTracker
*Machine
) {
1150 PrintLLVMName(Out
, V
);
1154 const Constant
*CV
= dyn_cast
<Constant
>(V
);
1155 if (CV
&& !isa
<GlobalValue
>(CV
)) {
1156 WriteConstantInt(Out
, CV
, TypePrinter
, Machine
);
1160 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
1162 if (IA
->hasSideEffects())
1163 Out
<< "sideeffect ";
1165 PrintEscapedString(IA
->getAsmString(), Out
);
1167 PrintEscapedString(IA
->getConstraintString(), Out
);
1172 if (const MDNode
*N
= dyn_cast
<MDNode
>(V
)) {
1173 Out
<< '!' << Machine
->getMetadataSlot(N
);
1177 if (const MDString
*MDS
= dyn_cast
<MDString
>(V
)) {
1179 PrintEscapedString(MDS
->getString(), Out
);
1187 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1188 Slot
= Machine
->getGlobalSlot(GV
);
1191 Slot
= Machine
->getLocalSlot(V
);
1194 Machine
= createSlotTracker(V
);
1196 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1197 Slot
= Machine
->getGlobalSlot(GV
);
1200 Slot
= Machine
->getLocalSlot(V
);
1209 Out
<< Prefix
<< Slot
;
1214 /// WriteAsOperand - Write the name of the specified value out to the specified
1215 /// ostream. This can be useful when you just want to print int %reg126, not
1216 /// the whole instruction that generated it.
1218 void llvm::WriteAsOperand(std::ostream
&Out
, const Value
*V
, bool PrintType
,
1219 const Module
*Context
) {
1220 raw_os_ostream
OS(Out
);
1221 WriteAsOperand(OS
, V
, PrintType
, Context
);
1224 void llvm::WriteAsOperand(raw_ostream
&Out
, const Value
*V
, bool PrintType
,
1225 const Module
*Context
) {
1226 if (Context
== 0) Context
= getModuleFromVal(V
);
1228 TypePrinting TypePrinter
;
1229 std::vector
<const Type
*> NumberedTypes
;
1230 AddModuleTypesToPrinter(TypePrinter
, NumberedTypes
, Context
);
1232 TypePrinter
.print(V
->getType(), Out
);
1236 WriteAsOperandInternal(Out
, V
, TypePrinter
, 0);
1242 class AssemblyWriter
{
1244 SlotTracker
&Machine
;
1245 const Module
*TheModule
;
1246 TypePrinting TypePrinter
;
1247 AssemblyAnnotationWriter
*AnnotationWriter
;
1248 std::vector
<const Type
*> NumberedTypes
;
1250 // Each MDNode is assigned unique MetadataIDNo.
1251 std::map
<const MDNode
*, unsigned> MDNodes
;
1252 unsigned MetadataIDNo
;
1254 inline AssemblyWriter(raw_ostream
&o
, SlotTracker
&Mac
, const Module
*M
,
1255 AssemblyAnnotationWriter
*AAW
)
1256 : Out(o
), Machine(Mac
), TheModule(M
), AnnotationWriter(AAW
), MetadataIDNo(0) {
1257 AddModuleTypesToPrinter(TypePrinter
, NumberedTypes
, M
);
1260 void write(const Module
*M
) { printModule(M
); }
1262 void write(const GlobalValue
*G
) {
1263 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
))
1265 else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(G
))
1267 else if (const Function
*F
= dyn_cast
<Function
>(G
))
1270 llvm_unreachable("Unknown global");
1273 void write(const BasicBlock
*BB
) { printBasicBlock(BB
); }
1274 void write(const Instruction
*I
) { printInstruction(*I
); }
1276 void writeOperand(const Value
*Op
, bool PrintType
);
1277 void writeParamOperand(const Value
*Operand
, Attributes Attrs
);
1279 const Module
* getModule() { return TheModule
; }
1282 void printModule(const Module
*M
);
1283 void printTypeSymbolTable(const TypeSymbolTable
&ST
);
1284 void printGlobal(const GlobalVariable
*GV
);
1285 void printAlias(const GlobalAlias
*GV
);
1286 void printFunction(const Function
*F
);
1287 void printArgument(const Argument
*FA
, Attributes Attrs
);
1288 void printBasicBlock(const BasicBlock
*BB
);
1289 void printInstruction(const Instruction
&I
);
1291 // printInfoComment - Print a little comment after the instruction indicating
1292 // which slot it occupies.
1293 void printInfoComment(const Value
&V
);
1295 } // end of anonymous namespace
1298 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
1300 Out
<< "<null operand!>";
1303 TypePrinter
.print(Operand
->getType(), Out
);
1306 WriteAsOperandInternal(Out
, Operand
, TypePrinter
, &Machine
);
1310 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
1313 Out
<< "<null operand!>";
1316 TypePrinter
.print(Operand
->getType(), Out
);
1317 // Print parameter attributes list
1318 if (Attrs
!= Attribute::None
)
1319 Out
<< ' ' << Attribute::getAsString(Attrs
);
1321 // Print the operand
1322 WriteAsOperandInternal(Out
, Operand
, TypePrinter
, &Machine
);
1326 void AssemblyWriter::printModule(const Module
*M
) {
1327 if (!M
->getModuleIdentifier().empty() &&
1328 // Don't print the ID if it will start a new line (which would
1329 // require a comment char before it).
1330 M
->getModuleIdentifier().find('\n') == std::string::npos
)
1331 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
1333 if (!M
->getDataLayout().empty())
1334 Out
<< "target datalayout = \"" << M
->getDataLayout() << "\"\n";
1335 if (!M
->getTargetTriple().empty())
1336 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
1338 if (!M
->getModuleInlineAsm().empty()) {
1339 // Split the string into lines, to make it easier to read the .ll file.
1340 std::string Asm
= M
->getModuleInlineAsm();
1342 size_t NewLine
= Asm
.find_first_of('\n', CurPos
);
1343 while (NewLine
!= std::string::npos
) {
1344 // We found a newline, print the portion of the asm string from the
1345 // last newline up to this newline.
1346 Out
<< "module asm \"";
1347 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.begin()+NewLine
),
1351 NewLine
= Asm
.find_first_of('\n', CurPos
);
1353 Out
<< "module asm \"";
1354 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.end()), Out
);
1358 // Loop over the dependent libraries and emit them.
1359 Module::lib_iterator LI
= M
->lib_begin();
1360 Module::lib_iterator LE
= M
->lib_end();
1362 Out
<< "deplibs = [ ";
1364 Out
<< '"' << *LI
<< '"';
1372 // Loop over the symbol table, emitting all id'd types.
1373 printTypeSymbolTable(M
->getTypeSymbolTable());
1375 for (Module::const_global_iterator I
= M
->global_begin(), E
= M
->global_end();
1379 // Output all aliases.
1380 if (!M
->alias_empty()) Out
<< "\n";
1381 for (Module::const_alias_iterator I
= M
->alias_begin(), E
= M
->alias_end();
1385 // Output all of the functions.
1386 for (Module::const_iterator I
= M
->begin(), E
= M
->end(); I
!= E
; ++I
)
1389 // Output named metadata.
1390 for (Module::const_named_metadata_iterator I
= M
->named_metadata_begin(),
1391 E
= M
->named_metadata_end(); I
!= E
; ++I
) {
1392 const NamedMDNode
*NMD
= I
;
1393 Out
<< "!" << NMD
->getName() << " = !{";
1394 for (unsigned i
= 0, e
= NMD
->getNumElements(); i
!= e
; ++i
) {
1396 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(NMD
->getElement(i
));
1397 Out
<< '!' << Machine
.getMetadataSlot(MD
);
1403 WriteMDNodes(Out
, TypePrinter
, Machine
);
1406 static void PrintLinkage(GlobalValue::LinkageTypes LT
, raw_ostream
&Out
) {
1408 case GlobalValue::ExternalLinkage
: break;
1409 case GlobalValue::PrivateLinkage
: Out
<< "private "; break;
1410 case GlobalValue::LinkerPrivateLinkage
: Out
<< "linker_private "; break;
1411 case GlobalValue::InternalLinkage
: Out
<< "internal "; break;
1412 case GlobalValue::LinkOnceAnyLinkage
: Out
<< "linkonce "; break;
1413 case GlobalValue::LinkOnceODRLinkage
: Out
<< "linkonce_odr "; break;
1414 case GlobalValue::WeakAnyLinkage
: Out
<< "weak "; break;
1415 case GlobalValue::WeakODRLinkage
: Out
<< "weak_odr "; break;
1416 case GlobalValue::CommonLinkage
: Out
<< "common "; break;
1417 case GlobalValue::AppendingLinkage
: Out
<< "appending "; break;
1418 case GlobalValue::DLLImportLinkage
: Out
<< "dllimport "; break;
1419 case GlobalValue::DLLExportLinkage
: Out
<< "dllexport "; break;
1420 case GlobalValue::ExternalWeakLinkage
: Out
<< "extern_weak "; break;
1421 case GlobalValue::AvailableExternallyLinkage
:
1422 Out
<< "available_externally ";
1424 case GlobalValue::GhostLinkage
:
1425 llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1430 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
1433 default: llvm_unreachable("Invalid visibility style!");
1434 case GlobalValue::DefaultVisibility
: break;
1435 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
1436 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
1440 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
1441 if (GV
->hasName()) {
1442 PrintLLVMName(Out
, GV
);
1446 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
1449 PrintLinkage(GV
->getLinkage(), Out
);
1450 PrintVisibility(GV
->getVisibility(), Out
);
1452 if (GV
->isThreadLocal()) Out
<< "thread_local ";
1453 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
1454 Out
<< "addrspace(" << AddressSpace
<< ") ";
1455 Out
<< (GV
->isConstant() ? "constant " : "global ");
1456 TypePrinter
.print(GV
->getType()->getElementType(), Out
);
1458 if (GV
->hasInitializer()) {
1460 writeOperand(GV
->getInitializer(), false);
1463 if (GV
->hasSection())
1464 Out
<< ", section \"" << GV
->getSection() << '"';
1465 if (GV
->getAlignment())
1466 Out
<< ", align " << GV
->getAlignment();
1468 printInfoComment(*GV
);
1472 void AssemblyWriter::printAlias(const GlobalAlias
*GA
) {
1473 // Don't crash when dumping partially built GA
1475 Out
<< "<<nameless>> = ";
1477 PrintLLVMName(Out
, GA
);
1480 PrintVisibility(GA
->getVisibility(), Out
);
1484 PrintLinkage(GA
->getLinkage(), Out
);
1486 const Constant
*Aliasee
= GA
->getAliasee();
1488 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Aliasee
)) {
1489 TypePrinter
.print(GV
->getType(), Out
);
1491 PrintLLVMName(Out
, GV
);
1492 } else if (const Function
*F
= dyn_cast
<Function
>(Aliasee
)) {
1493 TypePrinter
.print(F
->getFunctionType(), Out
);
1496 WriteAsOperandInternal(Out
, F
, TypePrinter
, &Machine
);
1497 } else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(Aliasee
)) {
1498 TypePrinter
.print(GA
->getType(), Out
);
1500 PrintLLVMName(Out
, GA
);
1502 const ConstantExpr
*CE
= cast
<ConstantExpr
>(Aliasee
);
1503 // The only valid GEP is an all zero GEP.
1504 assert((CE
->getOpcode() == Instruction::BitCast
||
1505 CE
->getOpcode() == Instruction::GetElementPtr
) &&
1506 "Unsupported aliasee");
1507 writeOperand(CE
, false);
1510 printInfoComment(*GA
);
1514 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable
&ST
) {
1515 // Emit all numbered types.
1516 for (unsigned i
= 0, e
= NumberedTypes
.size(); i
!= e
; ++i
) {
1519 // Make sure we print out at least one level of the type structure, so
1520 // that we do not get %2 = type %2
1521 TypePrinter
.printAtLeastOneLevel(NumberedTypes
[i
], Out
);
1522 Out
<< "\t\t; type %" << i
<< '\n';
1525 // Print the named types.
1526 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), TE
= ST
.end();
1529 PrintLLVMName(Out
, TI
->first
, LocalPrefix
);
1532 // Make sure we print out at least one level of the type structure, so
1533 // that we do not get %FILE = type %FILE
1534 TypePrinter
.printAtLeastOneLevel(TI
->second
, Out
);
1539 /// printFunction - Print all aspects of a function.
1541 void AssemblyWriter::printFunction(const Function
*F
) {
1542 // Print out the return type and name.
1545 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
1547 if (F
->isDeclaration())
1552 PrintLinkage(F
->getLinkage(), Out
);
1553 PrintVisibility(F
->getVisibility(), Out
);
1555 // Print the calling convention.
1556 switch (F
->getCallingConv()) {
1557 case CallingConv::C
: break; // default
1558 case CallingConv::Fast
: Out
<< "fastcc "; break;
1559 case CallingConv::Cold
: Out
<< "coldcc "; break;
1560 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc "; break;
1561 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc "; break;
1562 case CallingConv::ARM_APCS
: Out
<< "arm_apcscc "; break;
1563 case CallingConv::ARM_AAPCS
: Out
<< "arm_aapcscc "; break;
1564 case CallingConv::ARM_AAPCS_VFP
:Out
<< "arm_aapcs_vfpcc "; break;
1565 default: Out
<< "cc" << F
->getCallingConv() << " "; break;
1568 const FunctionType
*FT
= F
->getFunctionType();
1569 const AttrListPtr
&Attrs
= F
->getAttributes();
1570 Attributes RetAttrs
= Attrs
.getRetAttributes();
1571 if (RetAttrs
!= Attribute::None
)
1572 Out
<< Attribute::getAsString(Attrs
.getRetAttributes()) << ' ';
1573 TypePrinter
.print(F
->getReturnType(), Out
);
1575 WriteAsOperandInternal(Out
, F
, TypePrinter
, &Machine
);
1577 Machine
.incorporateFunction(F
);
1579 // Loop over the arguments, printing them...
1582 if (!F
->isDeclaration()) {
1583 // If this isn't a declaration, print the argument names as well.
1584 for (Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
1586 // Insert commas as we go... the first arg doesn't get a comma
1587 if (I
!= F
->arg_begin()) Out
<< ", ";
1588 printArgument(I
, Attrs
.getParamAttributes(Idx
));
1592 // Otherwise, print the types from the function type.
1593 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1594 // Insert commas as we go... the first arg doesn't get a comma
1598 TypePrinter
.print(FT
->getParamType(i
), Out
);
1600 Attributes ArgAttrs
= Attrs
.getParamAttributes(i
+1);
1601 if (ArgAttrs
!= Attribute::None
)
1602 Out
<< ' ' << Attribute::getAsString(ArgAttrs
);
1606 // Finish printing arguments...
1607 if (FT
->isVarArg()) {
1608 if (FT
->getNumParams()) Out
<< ", ";
1609 Out
<< "..."; // Output varargs portion of signature!
1612 Attributes FnAttrs
= Attrs
.getFnAttributes();
1613 if (FnAttrs
!= Attribute::None
)
1614 Out
<< ' ' << Attribute::getAsString(Attrs
.getFnAttributes());
1615 if (F
->hasSection())
1616 Out
<< " section \"" << F
->getSection() << '"';
1617 if (F
->getAlignment())
1618 Out
<< " align " << F
->getAlignment();
1620 Out
<< " gc \"" << F
->getGC() << '"';
1621 if (F
->isDeclaration()) {
1626 // Output all of its basic blocks... for the function
1627 for (Function::const_iterator I
= F
->begin(), E
= F
->end(); I
!= E
; ++I
)
1633 Machine
.purgeFunction();
1636 /// printArgument - This member is called for every argument that is passed into
1637 /// the function. Simply print it out
1639 void AssemblyWriter::printArgument(const Argument
*Arg
,
1642 TypePrinter
.print(Arg
->getType(), Out
);
1644 // Output parameter attributes list
1645 if (Attrs
!= Attribute::None
)
1646 Out
<< ' ' << Attribute::getAsString(Attrs
);
1648 // Output name, if available...
1649 if (Arg
->hasName()) {
1651 PrintLLVMName(Out
, Arg
);
1655 /// printBasicBlock - This member is called for each basic block in a method.
1657 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
1658 if (BB
->hasName()) { // Print out the label if it exists...
1660 PrintLLVMName(Out
, BB
->getName(), LabelPrefix
);
1662 } else if (!BB
->use_empty()) { // Don't print block # of no uses...
1663 Out
<< "\n; <label>:";
1664 int Slot
= Machine
.getLocalSlot(BB
);
1671 if (BB
->getParent() == 0)
1672 Out
<< "\t\t; Error: Block without parent!";
1673 else if (BB
!= &BB
->getParent()->getEntryBlock()) { // Not the entry block?
1674 // Output predecessors for the block...
1676 pred_const_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1679 Out
<< " No predecessors!";
1682 writeOperand(*PI
, false);
1683 for (++PI
; PI
!= PE
; ++PI
) {
1685 writeOperand(*PI
, false);
1692 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
1694 // Output all of the instructions in the basic block...
1695 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
1696 printInstruction(*I
);
1700 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
1704 /// printInfoComment - Print a little comment after the instruction indicating
1705 /// which slot it occupies.
1707 void AssemblyWriter::printInfoComment(const Value
&V
) {
1708 if (V
.getType() != Type::VoidTy
) {
1710 TypePrinter
.print(V
.getType(), Out
);
1713 if (!V
.hasName() && !isa
<Instruction
>(V
)) {
1715 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(&V
))
1716 SlotNum
= Machine
.getGlobalSlot(GV
);
1718 SlotNum
= Machine
.getLocalSlot(&V
);
1722 Out
<< ':' << SlotNum
; // Print out the def slot taken.
1724 Out
<< " [#uses=" << V
.getNumUses() << ']'; // Output # uses
1728 // This member is called for each Instruction in a function..
1729 void AssemblyWriter::printInstruction(const Instruction
&I
) {
1730 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
1734 // Print out name if it exists...
1736 PrintLLVMName(Out
, &I
);
1738 } else if (I
.getType() != Type::VoidTy
) {
1739 // Print out the def slot taken.
1740 int SlotNum
= Machine
.getLocalSlot(&I
);
1742 Out
<< "<badref> = ";
1744 Out
<< '%' << SlotNum
<< " = ";
1747 // If this is a volatile load or store, print out the volatile marker.
1748 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
1749 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile())) {
1751 } else if (isa
<CallInst
>(I
) && cast
<CallInst
>(I
).isTailCall()) {
1752 // If this is a call, check if it's a tail call.
1756 // Print out the opcode...
1757 Out
<< I
.getOpcodeName();
1759 // Print out optimization information.
1760 WriteOptimizationInfo(Out
, &I
);
1762 // Print out the compare instruction predicates
1763 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1764 Out
<< ' ' << getPredicateText(CI
->getPredicate());
1766 // Print out the type of the operands...
1767 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : 0;
1769 // Special case conditional branches to swizzle the condition out to the front
1770 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
1771 BranchInst
&BI(cast
<BranchInst
>(I
));
1773 writeOperand(BI
.getCondition(), true);
1775 writeOperand(BI
.getSuccessor(0), true);
1777 writeOperand(BI
.getSuccessor(1), true);
1779 } else if (isa
<SwitchInst
>(I
)) {
1780 // Special case switch statement to get formatting nice and correct...
1782 writeOperand(Operand
, true);
1784 writeOperand(I
.getOperand(1), true);
1787 for (unsigned op
= 2, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1789 writeOperand(I
.getOperand(op
), true);
1791 writeOperand(I
.getOperand(op
+1), true);
1794 } else if (isa
<PHINode
>(I
)) {
1796 TypePrinter
.print(I
.getType(), Out
);
1799 for (unsigned op
= 0, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1800 if (op
) Out
<< ", ";
1802 writeOperand(I
.getOperand(op
), false); Out
<< ", ";
1803 writeOperand(I
.getOperand(op
+1), false); Out
<< " ]";
1805 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
1807 writeOperand(I
.getOperand(0), true);
1808 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
1810 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
1812 writeOperand(I
.getOperand(0), true); Out
<< ", ";
1813 writeOperand(I
.getOperand(1), true);
1814 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
1816 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
1818 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1819 // Print the calling convention being used.
1820 switch (CI
->getCallingConv()) {
1821 case CallingConv::C
: break; // default
1822 case CallingConv::Fast
: Out
<< " fastcc"; break;
1823 case CallingConv::Cold
: Out
<< " coldcc"; break;
1824 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1825 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1826 case CallingConv::ARM_APCS
: Out
<< " arm_apcscc "; break;
1827 case CallingConv::ARM_AAPCS
: Out
<< " arm_aapcscc "; break;
1828 case CallingConv::ARM_AAPCS_VFP
:Out
<< " arm_aapcs_vfpcc "; break;
1829 default: Out
<< " cc" << CI
->getCallingConv(); break;
1832 const PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1833 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1834 const Type
*RetTy
= FTy
->getReturnType();
1835 const AttrListPtr
&PAL
= CI
->getAttributes();
1837 if (PAL
.getRetAttributes() != Attribute::None
)
1838 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1840 // If possible, print out the short form of the call instruction. We can
1841 // only do this if the first argument is a pointer to a nonvararg function,
1842 // and if the return type is not a pointer to a function.
1845 if (!FTy
->isVarArg() &&
1846 (!isa
<PointerType
>(RetTy
) ||
1847 !isa
<FunctionType
>(cast
<PointerType
>(RetTy
)->getElementType()))) {
1848 TypePrinter
.print(RetTy
, Out
);
1850 writeOperand(Operand
, false);
1852 writeOperand(Operand
, true);
1855 for (unsigned op
= 1, Eop
= I
.getNumOperands(); op
< Eop
; ++op
) {
1858 writeParamOperand(I
.getOperand(op
), PAL
.getParamAttributes(op
));
1861 if (PAL
.getFnAttributes() != Attribute::None
)
1862 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1863 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
1864 const PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1865 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1866 const Type
*RetTy
= FTy
->getReturnType();
1867 const AttrListPtr
&PAL
= II
->getAttributes();
1869 // Print the calling convention being used.
1870 switch (II
->getCallingConv()) {
1871 case CallingConv::C
: break; // default
1872 case CallingConv::Fast
: Out
<< " fastcc"; break;
1873 case CallingConv::Cold
: Out
<< " coldcc"; break;
1874 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1875 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1876 case CallingConv::ARM_APCS
: Out
<< " arm_apcscc "; break;
1877 case CallingConv::ARM_AAPCS
: Out
<< " arm_aapcscc "; break;
1878 case CallingConv::ARM_AAPCS_VFP
:Out
<< " arm_aapcs_vfpcc "; break;
1879 default: Out
<< " cc" << II
->getCallingConv(); break;
1882 if (PAL
.getRetAttributes() != Attribute::None
)
1883 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1885 // If possible, print out the short form of the invoke instruction. We can
1886 // only do this if the first argument is a pointer to a nonvararg function,
1887 // and if the return type is not a pointer to a function.
1890 if (!FTy
->isVarArg() &&
1891 (!isa
<PointerType
>(RetTy
) ||
1892 !isa
<FunctionType
>(cast
<PointerType
>(RetTy
)->getElementType()))) {
1893 TypePrinter
.print(RetTy
, Out
);
1895 writeOperand(Operand
, false);
1897 writeOperand(Operand
, true);
1900 for (unsigned op
= 3, Eop
= I
.getNumOperands(); op
< Eop
; ++op
) {
1903 writeParamOperand(I
.getOperand(op
), PAL
.getParamAttributes(op
-2));
1907 if (PAL
.getFnAttributes() != Attribute::None
)
1908 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1910 Out
<< "\n\t\t\tto ";
1911 writeOperand(II
->getNormalDest(), true);
1913 writeOperand(II
->getUnwindDest(), true);
1915 } else if (const AllocationInst
*AI
= dyn_cast
<AllocationInst
>(&I
)) {
1917 TypePrinter
.print(AI
->getType()->getElementType(), Out
);
1918 if (!AI
->getArraySize() || AI
->isArrayAllocation()) {
1920 writeOperand(AI
->getArraySize(), true);
1922 if (AI
->getAlignment()) {
1923 Out
<< ", align " << AI
->getAlignment();
1925 } else if (isa
<CastInst
>(I
)) {
1928 writeOperand(Operand
, true); // Work with broken code
1931 TypePrinter
.print(I
.getType(), Out
);
1932 } else if (isa
<VAArgInst
>(I
)) {
1935 writeOperand(Operand
, true); // Work with broken code
1938 TypePrinter
.print(I
.getType(), Out
);
1939 } else if (Operand
) { // Print the normal way.
1941 // PrintAllTypes - Instructions who have operands of all the same type
1942 // omit the type from all but the first operand. If the instruction has
1943 // different type operands (for example br), then they are all printed.
1944 bool PrintAllTypes
= false;
1945 const Type
*TheType
= Operand
->getType();
1947 // Select, Store and ShuffleVector always print all types.
1948 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
)
1949 || isa
<ReturnInst
>(I
)) {
1950 PrintAllTypes
= true;
1952 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1953 Operand
= I
.getOperand(i
);
1954 // note that Operand shouldn't be null, but the test helps make dump()
1955 // more tolerant of malformed IR
1956 if (Operand
&& Operand
->getType() != TheType
) {
1957 PrintAllTypes
= true; // We have differing types! Print them all!
1963 if (!PrintAllTypes
) {
1965 TypePrinter
.print(TheType
, Out
);
1969 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1971 writeOperand(I
.getOperand(i
), PrintAllTypes
);
1975 // Print post operand alignment for load/store
1976 if (isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).getAlignment()) {
1977 Out
<< ", align " << cast
<LoadInst
>(I
).getAlignment();
1978 } else if (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).getAlignment()) {
1979 Out
<< ", align " << cast
<StoreInst
>(I
).getAlignment();
1982 printInfoComment(I
);
1986 //===----------------------------------------------------------------------===//
1987 // External Interface declarations
1988 //===----------------------------------------------------------------------===//
1990 void Module::print(std::ostream
&o
, AssemblyAnnotationWriter
*AAW
) const {
1991 raw_os_ostream
OS(o
);
1994 void Module::print(raw_ostream
&OS
, AssemblyAnnotationWriter
*AAW
) const {
1995 SlotTracker
SlotTable(this);
1996 AssemblyWriter
W(OS
, SlotTable
, this, AAW
);
2000 void Type::print(std::ostream
&o
) const {
2001 raw_os_ostream
OS(o
);
2005 void Type::print(raw_ostream
&OS
) const {
2007 OS
<< "<null Type>";
2010 TypePrinting().print(this, OS
);
2013 void Value::print(raw_ostream
&OS
, AssemblyAnnotationWriter
*AAW
) const {
2015 OS
<< "printing a <null> value\n";
2018 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
2019 const Function
*F
= I
->getParent() ? I
->getParent()->getParent() : 0;
2020 SlotTracker
SlotTable(F
);
2021 AssemblyWriter
W(OS
, SlotTable
, F
? F
->getParent() : 0, AAW
);
2023 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
2024 SlotTracker
SlotTable(BB
->getParent());
2025 AssemblyWriter
W(OS
, SlotTable
,
2026 BB
->getParent() ? BB
->getParent()->getParent() : 0, AAW
);
2028 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
2029 SlotTracker
SlotTable(GV
->getParent());
2030 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), AAW
);
2032 } else if (const MDString
*MDS
= dyn_cast
<MDString
>(this)) {
2033 TypePrinting TypePrinter
;
2034 TypePrinter
.print(MDS
->getType(), OS
);
2037 PrintEscapedString(MDS
->getString(), OS
);
2039 } else if (const MDNode
*N
= dyn_cast
<MDNode
>(this)) {
2040 SlotTracker
SlotTable(N
);
2041 TypePrinting TypePrinter
;
2042 SlotTable
.initialize();
2043 WriteMDNodes(OS
, TypePrinter
, SlotTable
);
2044 } else if (const NamedMDNode
*N
= dyn_cast
<NamedMDNode
>(this)) {
2045 SlotTracker
SlotTable(N
);
2046 TypePrinting TypePrinter
;
2047 SlotTable
.initialize();
2048 OS
<< "!" << N
->getName() << " = !{";
2049 for (unsigned i
= 0, e
= N
->getNumElements(); i
!= e
; ++i
) {
2051 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(N
->getElement(i
));
2053 OS
<< '!' << SlotTable
.getMetadataSlot(MD
);
2058 WriteMDNodes(OS
, TypePrinter
, SlotTable
);
2059 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
2060 TypePrinting TypePrinter
;
2061 TypePrinter
.print(C
->getType(), OS
);
2063 WriteConstantInt(OS
, C
, TypePrinter
, 0);
2064 } else if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
2065 WriteAsOperand(OS
, this, true,
2066 A
->getParent() ? A
->getParent()->getParent() : 0);
2067 } else if (isa
<InlineAsm
>(this)) {
2068 WriteAsOperand(OS
, this, true, 0);
2070 llvm_unreachable("Unknown value to print out!");
2074 void Value::print(std::ostream
&O
, AssemblyAnnotationWriter
*AAW
) const {
2075 raw_os_ostream
OS(O
);
2079 // Value::dump - allow easy printing of Values from the debugger.
2080 void Value::dump() const { print(errs()); errs() << '\n'; }
2082 // Type::dump - allow easy printing of Types from the debugger.
2083 // This one uses type names from the given context module
2084 void Type::dump(const Module
*Context
) const {
2085 WriteTypeSymbolic(errs(), this, Context
);
2089 // Type::dump - allow easy printing of Types from the debugger.
2090 void Type::dump() const { dump(0); }
2092 // Module::dump() - Allow printing of Modules from the debugger.
2093 void Module::dump() const { print(errs(), 0); }