1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Type.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/CFG.h"
21 #include "llvm/Support/LeakDetector.h"
22 #include "llvm/Support/Compiler.h"
23 #include "SymbolTableListTraitsImpl.h"
27 ValueSymbolTable
*BasicBlock::getValueSymbolTable() {
28 if (Function
*F
= getParent())
29 return &F
->getValueSymbolTable();
33 LLVMContext
&BasicBlock::getContext() const {
34 return getType()->getContext();
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class SymbolTableListTraits
<Instruction
, BasicBlock
>;
42 BasicBlock::BasicBlock(const Twine
&Name
, Function
*NewParent
,
43 BasicBlock
*InsertBefore
)
44 : Value(Type::LabelTy
, Value::BasicBlockVal
), Parent(0) {
46 // Make sure that we get added to a function
47 LeakDetector::addGarbageObject(this);
51 "Cannot insert block before another block with no function!");
52 NewParent
->getBasicBlockList().insert(InsertBefore
, this);
53 } else if (NewParent
) {
54 NewParent
->getBasicBlockList().push_back(this);
61 BasicBlock::~BasicBlock() {
62 assert(getParent() == 0 && "BasicBlock still linked into the program!");
67 void BasicBlock::setParent(Function
*parent
) {
69 LeakDetector::addGarbageObject(this);
71 // Set Parent=parent, updating instruction symtab entries as appropriate.
72 InstList
.setSymTabObject(&Parent
, parent
);
75 LeakDetector::removeGarbageObject(this);
78 void BasicBlock::removeFromParent() {
79 getParent()->getBasicBlockList().remove(this);
82 void BasicBlock::eraseFromParent() {
83 getParent()->getBasicBlockList().erase(this);
86 /// moveBefore - Unlink this basic block from its current function and
87 /// insert it into the function that MovePos lives in, right before MovePos.
88 void BasicBlock::moveBefore(BasicBlock
*MovePos
) {
89 MovePos
->getParent()->getBasicBlockList().splice(MovePos
,
90 getParent()->getBasicBlockList(), this);
93 /// moveAfter - Unlink this basic block from its current function and
94 /// insert it into the function that MovePos lives in, right after MovePos.
95 void BasicBlock::moveAfter(BasicBlock
*MovePos
) {
96 Function::iterator I
= MovePos
;
97 MovePos
->getParent()->getBasicBlockList().splice(++I
,
98 getParent()->getBasicBlockList(), this);
102 TerminatorInst
*BasicBlock::getTerminator() {
103 if (InstList
.empty()) return 0;
104 return dyn_cast
<TerminatorInst
>(&InstList
.back());
107 const TerminatorInst
*BasicBlock::getTerminator() const {
108 if (InstList
.empty()) return 0;
109 return dyn_cast
<TerminatorInst
>(&InstList
.back());
112 Instruction
* BasicBlock::getFirstNonPHI() {
113 BasicBlock::iterator i
= begin();
114 // All valid basic blocks should have a terminator,
115 // which is not a PHINode. If we have an invalid basic
116 // block we'll get an assertion failure when dereferencing
117 // a past-the-end iterator.
118 while (isa
<PHINode
>(i
)) ++i
;
122 void BasicBlock::dropAllReferences() {
123 for(iterator I
= begin(), E
= end(); I
!= E
; ++I
)
124 I
->dropAllReferences();
127 /// getSinglePredecessor - If this basic block has a single predecessor block,
128 /// return the block, otherwise return a null pointer.
129 BasicBlock
*BasicBlock::getSinglePredecessor() {
130 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
131 if (PI
== E
) return 0; // No preds.
132 BasicBlock
*ThePred
= *PI
;
134 return (PI
== E
) ? ThePred
: 0 /*multiple preds*/;
137 /// getUniquePredecessor - If this basic block has a unique predecessor block,
138 /// return the block, otherwise return a null pointer.
139 /// Note that unique predecessor doesn't mean single edge, there can be
140 /// multiple edges from the unique predecessor to this block (for example
141 /// a switch statement with multiple cases having the same destination).
142 BasicBlock
*BasicBlock::getUniquePredecessor() {
143 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
144 if (PI
== E
) return 0; // No preds.
145 BasicBlock
*PredBB
= *PI
;
147 for (;PI
!= E
; ++PI
) {
150 // The same predecessor appears multiple times in the predecessor list.
156 /// removePredecessor - This method is used to notify a BasicBlock that the
157 /// specified Predecessor of the block is no longer able to reach it. This is
158 /// actually not used to update the Predecessor list, but is actually used to
159 /// update the PHI nodes that reside in the block. Note that this should be
160 /// called while the predecessor still refers to this block.
162 void BasicBlock::removePredecessor(BasicBlock
*Pred
,
163 bool DontDeleteUselessPHIs
) {
164 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
165 find(pred_begin(this), pred_end(this), Pred
) != pred_end(this)) &&
166 "removePredecessor: BB is not a predecessor!");
168 if (InstList
.empty()) return;
169 PHINode
*APN
= dyn_cast
<PHINode
>(&front());
170 if (!APN
) return; // Quick exit.
172 // If there are exactly two predecessors, then we want to nuke the PHI nodes
173 // altogether. However, we cannot do this, if this in this case:
176 // %x = phi [X, Loop]
177 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
178 // br Loop ;; %x2 does not dominate all uses
180 // This is because the PHI node input is actually taken from the predecessor
181 // basic block. The only case this can happen is with a self loop, so we
182 // check for this case explicitly now.
184 unsigned max_idx
= APN
->getNumIncomingValues();
185 assert(max_idx
!= 0 && "PHI Node in block with 0 predecessors!?!?!");
187 BasicBlock
*Other
= APN
->getIncomingBlock(APN
->getIncomingBlock(0) == Pred
);
189 // Disable PHI elimination!
190 if (this == Other
) max_idx
= 3;
193 // <= Two predecessors BEFORE I remove one?
194 if (max_idx
<= 2 && !DontDeleteUselessPHIs
) {
195 // Yup, loop through and nuke the PHI nodes
196 while (PHINode
*PN
= dyn_cast
<PHINode
>(&front())) {
197 // Remove the predecessor first.
198 PN
->removeIncomingValue(Pred
, !DontDeleteUselessPHIs
);
200 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
202 if (PN
->getOperand(0) != PN
)
203 PN
->replaceAllUsesWith(PN
->getOperand(0));
205 // We are left with an infinite loop with no entries: kill the PHI.
206 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
207 getInstList().pop_front(); // Remove the PHI node
210 // If the PHI node already only had one entry, it got deleted by
211 // removeIncomingValue.
214 // Okay, now we know that we need to remove predecessor #pred_idx from all
215 // PHI nodes. Iterate over each PHI node fixing them up
217 for (iterator II
= begin(); (PN
= dyn_cast
<PHINode
>(II
)); ) {
219 PN
->removeIncomingValue(Pred
, false);
220 // If all incoming values to the Phi are the same, we can replace the Phi
223 if (!DontDeleteUselessPHIs
&& (PNV
= PN
->hasConstantValue())) {
224 PN
->replaceAllUsesWith(PNV
);
225 PN
->eraseFromParent();
232 /// splitBasicBlock - This splits a basic block into two at the specified
233 /// instruction. Note that all instructions BEFORE the specified iterator stay
234 /// as part of the original basic block, an unconditional branch is added to
235 /// the new BB, and the rest of the instructions in the BB are moved to the new
236 /// BB, including the old terminator. This invalidates the iterator.
238 /// Note that this only works on well formed basic blocks (must have a
239 /// terminator), and 'I' must not be the end of instruction list (which would
240 /// cause a degenerate basic block to be formed, having a terminator inside of
241 /// the basic block).
243 BasicBlock
*BasicBlock::splitBasicBlock(iterator I
, const Twine
&BBName
) {
244 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
245 assert(I
!= InstList
.end() &&
246 "Trying to get me to create degenerate basic block!");
248 BasicBlock
*InsertBefore
= next(Function::iterator(this))
249 .getNodePtrUnchecked();
250 BasicBlock
*New
= BasicBlock::Create(BBName
, getParent(), InsertBefore
);
252 // Move all of the specified instructions from the original basic block into
253 // the new basic block.
254 New
->getInstList().splice(New
->end(), this->getInstList(), I
, end());
256 // Add a branch instruction to the newly formed basic block.
257 BranchInst::Create(New
, this);
259 // Now we must loop through all of the successors of the New block (which
260 // _were_ the successors of the 'this' block), and update any PHI nodes in
261 // successors. If there were PHI nodes in the successors, then they need to
262 // know that incoming branches will be from New, not from Old.
264 for (succ_iterator I
= succ_begin(New
), E
= succ_end(New
); I
!= E
; ++I
) {
265 // Loop over any phi nodes in the basic block, updating the BB field of
266 // incoming values...
267 BasicBlock
*Successor
= *I
;
269 for (BasicBlock::iterator II
= Successor
->begin();
270 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
271 int IDX
= PN
->getBasicBlockIndex(this);
273 PN
->setIncomingBlock((unsigned)IDX
, New
);
274 IDX
= PN
->getBasicBlockIndex(this);