It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / VMCore / BasicBlock.cpp
blobd7ff3bc8cf5fcbd9bf28caae156b7ac226adfe42
1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Type.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/CFG.h"
21 #include "llvm/Support/LeakDetector.h"
22 #include "llvm/Support/Compiler.h"
23 #include "SymbolTableListTraitsImpl.h"
24 #include <algorithm>
25 using namespace llvm;
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28 if (Function *F = getParent())
29 return &F->getValueSymbolTable();
30 return 0;
33 LLVMContext &BasicBlock::getContext() const {
34 return getType()->getContext();
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class SymbolTableListTraits<Instruction, BasicBlock>;
42 BasicBlock::BasicBlock(const Twine &Name, Function *NewParent,
43 BasicBlock *InsertBefore)
44 : Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {
46 // Make sure that we get added to a function
47 LeakDetector::addGarbageObject(this);
49 if (InsertBefore) {
50 assert(NewParent &&
51 "Cannot insert block before another block with no function!");
52 NewParent->getBasicBlockList().insert(InsertBefore, this);
53 } else if (NewParent) {
54 NewParent->getBasicBlockList().push_back(this);
57 setName(Name);
61 BasicBlock::~BasicBlock() {
62 assert(getParent() == 0 && "BasicBlock still linked into the program!");
63 dropAllReferences();
64 InstList.clear();
67 void BasicBlock::setParent(Function *parent) {
68 if (getParent())
69 LeakDetector::addGarbageObject(this);
71 // Set Parent=parent, updating instruction symtab entries as appropriate.
72 InstList.setSymTabObject(&Parent, parent);
74 if (getParent())
75 LeakDetector::removeGarbageObject(this);
78 void BasicBlock::removeFromParent() {
79 getParent()->getBasicBlockList().remove(this);
82 void BasicBlock::eraseFromParent() {
83 getParent()->getBasicBlockList().erase(this);
86 /// moveBefore - Unlink this basic block from its current function and
87 /// insert it into the function that MovePos lives in, right before MovePos.
88 void BasicBlock::moveBefore(BasicBlock *MovePos) {
89 MovePos->getParent()->getBasicBlockList().splice(MovePos,
90 getParent()->getBasicBlockList(), this);
93 /// moveAfter - Unlink this basic block from its current function and
94 /// insert it into the function that MovePos lives in, right after MovePos.
95 void BasicBlock::moveAfter(BasicBlock *MovePos) {
96 Function::iterator I = MovePos;
97 MovePos->getParent()->getBasicBlockList().splice(++I,
98 getParent()->getBasicBlockList(), this);
102 TerminatorInst *BasicBlock::getTerminator() {
103 if (InstList.empty()) return 0;
104 return dyn_cast<TerminatorInst>(&InstList.back());
107 const TerminatorInst *BasicBlock::getTerminator() const {
108 if (InstList.empty()) return 0;
109 return dyn_cast<TerminatorInst>(&InstList.back());
112 Instruction* BasicBlock::getFirstNonPHI() {
113 BasicBlock::iterator i = begin();
114 // All valid basic blocks should have a terminator,
115 // which is not a PHINode. If we have an invalid basic
116 // block we'll get an assertion failure when dereferencing
117 // a past-the-end iterator.
118 while (isa<PHINode>(i)) ++i;
119 return &*i;
122 void BasicBlock::dropAllReferences() {
123 for(iterator I = begin(), E = end(); I != E; ++I)
124 I->dropAllReferences();
127 /// getSinglePredecessor - If this basic block has a single predecessor block,
128 /// return the block, otherwise return a null pointer.
129 BasicBlock *BasicBlock::getSinglePredecessor() {
130 pred_iterator PI = pred_begin(this), E = pred_end(this);
131 if (PI == E) return 0; // No preds.
132 BasicBlock *ThePred = *PI;
133 ++PI;
134 return (PI == E) ? ThePred : 0 /*multiple preds*/;
137 /// getUniquePredecessor - If this basic block has a unique predecessor block,
138 /// return the block, otherwise return a null pointer.
139 /// Note that unique predecessor doesn't mean single edge, there can be
140 /// multiple edges from the unique predecessor to this block (for example
141 /// a switch statement with multiple cases having the same destination).
142 BasicBlock *BasicBlock::getUniquePredecessor() {
143 pred_iterator PI = pred_begin(this), E = pred_end(this);
144 if (PI == E) return 0; // No preds.
145 BasicBlock *PredBB = *PI;
146 ++PI;
147 for (;PI != E; ++PI) {
148 if (*PI != PredBB)
149 return 0;
150 // The same predecessor appears multiple times in the predecessor list.
151 // This is OK.
153 return PredBB;
156 /// removePredecessor - This method is used to notify a BasicBlock that the
157 /// specified Predecessor of the block is no longer able to reach it. This is
158 /// actually not used to update the Predecessor list, but is actually used to
159 /// update the PHI nodes that reside in the block. Note that this should be
160 /// called while the predecessor still refers to this block.
162 void BasicBlock::removePredecessor(BasicBlock *Pred,
163 bool DontDeleteUselessPHIs) {
164 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
165 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
166 "removePredecessor: BB is not a predecessor!");
168 if (InstList.empty()) return;
169 PHINode *APN = dyn_cast<PHINode>(&front());
170 if (!APN) return; // Quick exit.
172 // If there are exactly two predecessors, then we want to nuke the PHI nodes
173 // altogether. However, we cannot do this, if this in this case:
175 // Loop:
176 // %x = phi [X, Loop]
177 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
178 // br Loop ;; %x2 does not dominate all uses
180 // This is because the PHI node input is actually taken from the predecessor
181 // basic block. The only case this can happen is with a self loop, so we
182 // check for this case explicitly now.
184 unsigned max_idx = APN->getNumIncomingValues();
185 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
186 if (max_idx == 2) {
187 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
189 // Disable PHI elimination!
190 if (this == Other) max_idx = 3;
193 // <= Two predecessors BEFORE I remove one?
194 if (max_idx <= 2 && !DontDeleteUselessPHIs) {
195 // Yup, loop through and nuke the PHI nodes
196 while (PHINode *PN = dyn_cast<PHINode>(&front())) {
197 // Remove the predecessor first.
198 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
200 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
201 if (max_idx == 2) {
202 if (PN->getOperand(0) != PN)
203 PN->replaceAllUsesWith(PN->getOperand(0));
204 else
205 // We are left with an infinite loop with no entries: kill the PHI.
206 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
207 getInstList().pop_front(); // Remove the PHI node
210 // If the PHI node already only had one entry, it got deleted by
211 // removeIncomingValue.
213 } else {
214 // Okay, now we know that we need to remove predecessor #pred_idx from all
215 // PHI nodes. Iterate over each PHI node fixing them up
216 PHINode *PN;
217 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
218 ++II;
219 PN->removeIncomingValue(Pred, false);
220 // If all incoming values to the Phi are the same, we can replace the Phi
221 // with that value.
222 Value* PNV = 0;
223 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
224 PN->replaceAllUsesWith(PNV);
225 PN->eraseFromParent();
232 /// splitBasicBlock - This splits a basic block into two at the specified
233 /// instruction. Note that all instructions BEFORE the specified iterator stay
234 /// as part of the original basic block, an unconditional branch is added to
235 /// the new BB, and the rest of the instructions in the BB are moved to the new
236 /// BB, including the old terminator. This invalidates the iterator.
238 /// Note that this only works on well formed basic blocks (must have a
239 /// terminator), and 'I' must not be the end of instruction list (which would
240 /// cause a degenerate basic block to be formed, having a terminator inside of
241 /// the basic block).
243 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
244 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
245 assert(I != InstList.end() &&
246 "Trying to get me to create degenerate basic block!");
248 BasicBlock *InsertBefore = next(Function::iterator(this))
249 .getNodePtrUnchecked();
250 BasicBlock *New = BasicBlock::Create(BBName, getParent(), InsertBefore);
252 // Move all of the specified instructions from the original basic block into
253 // the new basic block.
254 New->getInstList().splice(New->end(), this->getInstList(), I, end());
256 // Add a branch instruction to the newly formed basic block.
257 BranchInst::Create(New, this);
259 // Now we must loop through all of the successors of the New block (which
260 // _were_ the successors of the 'this' block), and update any PHI nodes in
261 // successors. If there were PHI nodes in the successors, then they need to
262 // know that incoming branches will be from New, not from Old.
264 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
265 // Loop over any phi nodes in the basic block, updating the BB field of
266 // incoming values...
267 BasicBlock *Successor = *I;
268 PHINode *PN;
269 for (BasicBlock::iterator II = Successor->begin();
270 (PN = dyn_cast<PHINode>(II)); ++II) {
271 int IDX = PN->getBasicBlockIndex(this);
272 while (IDX != -1) {
273 PN->setIncomingBlock((unsigned)IDX, New);
274 IDX = PN->getBasicBlockIndex(this);
278 return New;