1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
41 /// BitCastConstantVector - Convert the specified ConstantVector node to the
42 /// specified vector type. At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
44 static Constant
*BitCastConstantVector(LLVMContext
&Context
, ConstantVector
*CV
,
45 const VectorType
*DstTy
) {
46 // If this cast changes element count then we can't handle it here:
47 // doing so requires endianness information. This should be handled by
48 // Analysis/ConstantFolding.cpp
49 unsigned NumElts
= DstTy
->getNumElements();
50 if (NumElts
!= CV
->getNumOperands())
53 // Check to verify that all elements of the input are simple.
54 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
55 if (!isa
<ConstantInt
>(CV
->getOperand(i
)) &&
56 !isa
<ConstantFP
>(CV
->getOperand(i
)))
60 // Bitcast each element now.
61 std::vector
<Constant
*> Result
;
62 const Type
*DstEltTy
= DstTy
->getElementType();
63 for (unsigned i
= 0; i
!= NumElts
; ++i
)
64 Result
.push_back(ConstantExpr::getBitCast(CV
->getOperand(i
),
66 return ConstantVector::get(Result
);
69 /// This function determines which opcode to use to fold two constant cast
70 /// expressions together. It uses CastInst::isEliminableCastPair to determine
71 /// the opcode. Consequently its just a wrapper around that function.
72 /// @brief Determine if it is valid to fold a cast of a cast
75 unsigned opc
, ///< opcode of the second cast constant expression
76 const ConstantExpr
*Op
, ///< the first cast constant expression
77 const Type
*DstTy
///< desintation type of the first cast
79 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
80 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
81 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
83 // The the types and opcodes for the two Cast constant expressions
84 const Type
*SrcTy
= Op
->getOperand(0)->getType();
85 const Type
*MidTy
= Op
->getType();
86 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
87 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
89 // Let CastInst::isEliminableCastPair do the heavy lifting.
90 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
94 static Constant
*FoldBitCast(LLVMContext
&Context
,
95 Constant
*V
, const Type
*DestTy
) {
96 const Type
*SrcTy
= V
->getType();
98 return V
; // no-op cast
100 // Check to see if we are casting a pointer to an aggregate to a pointer to
101 // the first element. If so, return the appropriate GEP instruction.
102 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
103 if (const PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
104 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()) {
105 SmallVector
<Value
*, 8> IdxList
;
106 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
107 const Type
*ElTy
= PTy
->getElementType();
108 while (ElTy
!= DPTy
->getElementType()) {
109 if (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
110 if (STy
->getNumElements() == 0) break;
111 ElTy
= STy
->getElementType(0);
112 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
113 } else if (const SequentialType
*STy
=
114 dyn_cast
<SequentialType
>(ElTy
)) {
115 if (isa
<PointerType
>(ElTy
)) break; // Can't index into pointers!
116 ElTy
= STy
->getElementType();
117 IdxList
.push_back(IdxList
[0]);
123 if (ElTy
== DPTy
->getElementType())
124 return ConstantExpr::getGetElementPtr(V
, &IdxList
[0],
128 // Handle casts from one vector constant to another. We know that the src
129 // and dest type have the same size (otherwise its an illegal cast).
130 if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
131 if (const VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
132 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
133 "Not cast between same sized vectors!");
135 // First, check for null. Undef is already handled.
136 if (isa
<ConstantAggregateZero
>(V
))
137 return Constant::getNullValue(DestTy
);
139 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
140 return BitCastConstantVector(Context
, CV
, DestPTy
);
143 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
144 // This allows for other simplifications (although some of them
145 // can only be handled by Analysis/ConstantFolding.cpp).
146 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
147 return ConstantExpr::getBitCast(
148 ConstantVector::get(&V
, 1), DestPTy
);
151 // Finally, implement bitcast folding now. The code below doesn't handle
153 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
154 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
156 // Handle integral constant input.
157 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
158 if (DestTy
->isInteger())
159 // Integral -> Integral. This is a no-op because the bit widths must
160 // be the same. Consequently, we just fold to V.
163 if (DestTy
->isFloatingPoint())
164 return ConstantFP::get(Context
, APFloat(CI
->getValue(),
165 DestTy
!= Type::PPC_FP128Ty
));
167 // Otherwise, can't fold this (vector?)
171 // Handle ConstantFP input.
172 if (const ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
))
174 return ConstantInt::get(Context
, FP
->getValueAPF().bitcastToAPInt());
180 Constant
*llvm::ConstantFoldCastInstruction(LLVMContext
&Context
,
181 unsigned opc
, const Constant
*V
,
182 const Type
*DestTy
) {
183 if (isa
<UndefValue
>(V
)) {
184 // zext(undef) = 0, because the top bits will be zero.
185 // sext(undef) = 0, because the top bits will all be the same.
186 // [us]itofp(undef) = 0, because the result value is bounded.
187 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
188 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
189 return Constant::getNullValue(DestTy
);
190 return UndefValue::get(DestTy
);
192 // No compile-time operations on this type yet.
193 if (V
->getType() == Type::PPC_FP128Ty
|| DestTy
== Type::PPC_FP128Ty
)
196 // If the cast operand is a constant expression, there's a few things we can
197 // do to try to simplify it.
198 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
200 // Try hard to fold cast of cast because they are often eliminable.
201 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
202 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
203 } else if (CE
->getOpcode() == Instruction::GetElementPtr
) {
204 // If all of the indexes in the GEP are null values, there is no pointer
205 // adjustment going on. We might as well cast the source pointer.
206 bool isAllNull
= true;
207 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
208 if (!CE
->getOperand(i
)->isNullValue()) {
213 // This is casting one pointer type to another, always BitCast
214 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
218 // If the cast operand is a constant vector, perform the cast by
219 // operating on each element. In the cast of bitcasts, the element
220 // count may be mismatched; don't attempt to handle that here.
221 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
222 if (isa
<VectorType
>(DestTy
) &&
223 cast
<VectorType
>(DestTy
)->getNumElements() ==
224 CV
->getType()->getNumElements()) {
225 std::vector
<Constant
*> res
;
226 const VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
227 const Type
*DstEltTy
= DestVecTy
->getElementType();
228 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
229 res
.push_back(ConstantExpr::getCast(opc
,
230 CV
->getOperand(i
), DstEltTy
));
231 return ConstantVector::get(DestVecTy
, res
);
234 // We actually have to do a cast now. Perform the cast according to the
237 case Instruction::FPTrunc
:
238 case Instruction::FPExt
:
239 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
241 APFloat Val
= FPC
->getValueAPF();
242 Val
.convert(DestTy
== Type::FloatTy
? APFloat::IEEEsingle
:
243 DestTy
== Type::DoubleTy
? APFloat::IEEEdouble
:
244 DestTy
== Type::X86_FP80Ty
? APFloat::x87DoubleExtended
:
245 DestTy
== Type::FP128Ty
? APFloat::IEEEquad
:
247 APFloat::rmNearestTiesToEven
, &ignored
);
248 return ConstantFP::get(Context
, Val
);
250 return 0; // Can't fold.
251 case Instruction::FPToUI
:
252 case Instruction::FPToSI
:
253 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
254 const APFloat
&V
= FPC
->getValueAPF();
257 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
258 (void) V
.convertToInteger(x
, DestBitWidth
, opc
==Instruction::FPToSI
,
259 APFloat::rmTowardZero
, &ignored
);
260 APInt
Val(DestBitWidth
, 2, x
);
261 return ConstantInt::get(Context
, Val
);
263 return 0; // Can't fold.
264 case Instruction::IntToPtr
: //always treated as unsigned
265 if (V
->isNullValue()) // Is it an integral null value?
266 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
267 return 0; // Other pointer types cannot be casted
268 case Instruction::PtrToInt
: // always treated as unsigned
269 if (V
->isNullValue()) // is it a null pointer value?
270 return ConstantInt::get(DestTy
, 0);
271 return 0; // Other pointer types cannot be casted
272 case Instruction::UIToFP
:
273 case Instruction::SIToFP
:
274 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
275 APInt api
= CI
->getValue();
276 const uint64_t zero
[] = {0, 0};
277 APFloat apf
= APFloat(APInt(DestTy
->getPrimitiveSizeInBits(),
279 (void)apf
.convertFromAPInt(api
,
280 opc
==Instruction::SIToFP
,
281 APFloat::rmNearestTiesToEven
);
282 return ConstantFP::get(Context
, apf
);
285 case Instruction::ZExt
:
286 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
287 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
288 APInt
Result(CI
->getValue());
289 Result
.zext(BitWidth
);
290 return ConstantInt::get(Context
, Result
);
293 case Instruction::SExt
:
294 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
295 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
296 APInt
Result(CI
->getValue());
297 Result
.sext(BitWidth
);
298 return ConstantInt::get(Context
, Result
);
301 case Instruction::Trunc
:
302 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
303 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
304 APInt
Result(CI
->getValue());
305 Result
.trunc(BitWidth
);
306 return ConstantInt::get(Context
, Result
);
309 case Instruction::BitCast
:
310 return FoldBitCast(Context
, const_cast<Constant
*>(V
), DestTy
);
312 assert(!"Invalid CE CastInst opcode");
316 llvm_unreachable("Failed to cast constant expression");
320 Constant
*llvm::ConstantFoldSelectInstruction(LLVMContext
&,
321 const Constant
*Cond
,
323 const Constant
*V2
) {
324 if (const ConstantInt
*CB
= dyn_cast
<ConstantInt
>(Cond
))
325 return const_cast<Constant
*>(CB
->getZExtValue() ? V1
: V2
);
327 if (isa
<UndefValue
>(V1
)) return const_cast<Constant
*>(V2
);
328 if (isa
<UndefValue
>(V2
)) return const_cast<Constant
*>(V1
);
329 if (isa
<UndefValue
>(Cond
)) return const_cast<Constant
*>(V1
);
330 if (V1
== V2
) return const_cast<Constant
*>(V1
);
334 Constant
*llvm::ConstantFoldExtractElementInstruction(LLVMContext
&Context
,
336 const Constant
*Idx
) {
337 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
338 return UndefValue::get(cast
<VectorType
>(Val
->getType())->getElementType());
339 if (Val
->isNullValue()) // ee(zero, x) -> zero
340 return Constant::getNullValue(
341 cast
<VectorType
>(Val
->getType())->getElementType());
343 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
344 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
345 return CVal
->getOperand(CIdx
->getZExtValue());
346 } else if (isa
<UndefValue
>(Idx
)) {
347 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
348 return CVal
->getOperand(0);
354 Constant
*llvm::ConstantFoldInsertElementInstruction(LLVMContext
&Context
,
357 const Constant
*Idx
) {
358 const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
360 APInt idxVal
= CIdx
->getValue();
361 if (isa
<UndefValue
>(Val
)) {
362 // Insertion of scalar constant into vector undef
363 // Optimize away insertion of undef
364 if (isa
<UndefValue
>(Elt
))
365 return const_cast<Constant
*>(Val
);
366 // Otherwise break the aggregate undef into multiple undefs and do
369 cast
<VectorType
>(Val
->getType())->getNumElements();
370 std::vector
<Constant
*> Ops
;
372 for (unsigned i
= 0; i
< numOps
; ++i
) {
374 (idxVal
== i
) ? Elt
: UndefValue::get(Elt
->getType());
375 Ops
.push_back(const_cast<Constant
*>(Op
));
377 return ConstantVector::get(Ops
);
379 if (isa
<ConstantAggregateZero
>(Val
)) {
380 // Insertion of scalar constant into vector aggregate zero
381 // Optimize away insertion of zero
382 if (Elt
->isNullValue())
383 return const_cast<Constant
*>(Val
);
384 // Otherwise break the aggregate zero into multiple zeros and do
387 cast
<VectorType
>(Val
->getType())->getNumElements();
388 std::vector
<Constant
*> Ops
;
390 for (unsigned i
= 0; i
< numOps
; ++i
) {
392 (idxVal
== i
) ? Elt
: Constant::getNullValue(Elt
->getType());
393 Ops
.push_back(const_cast<Constant
*>(Op
));
395 return ConstantVector::get(Ops
);
397 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
398 // Insertion of scalar constant into vector constant
399 std::vector
<Constant
*> Ops
;
400 Ops
.reserve(CVal
->getNumOperands());
401 for (unsigned i
= 0; i
< CVal
->getNumOperands(); ++i
) {
403 (idxVal
== i
) ? Elt
: cast
<Constant
>(CVal
->getOperand(i
));
404 Ops
.push_back(const_cast<Constant
*>(Op
));
406 return ConstantVector::get(Ops
);
412 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
413 /// return the specified element value. Otherwise return null.
414 static Constant
*GetVectorElement(LLVMContext
&Context
, const Constant
*C
,
416 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
))
417 return CV
->getOperand(EltNo
);
419 const Type
*EltTy
= cast
<VectorType
>(C
->getType())->getElementType();
420 if (isa
<ConstantAggregateZero
>(C
))
421 return Constant::getNullValue(EltTy
);
422 if (isa
<UndefValue
>(C
))
423 return UndefValue::get(EltTy
);
427 Constant
*llvm::ConstantFoldShuffleVectorInstruction(LLVMContext
&Context
,
430 const Constant
*Mask
) {
431 // Undefined shuffle mask -> undefined value.
432 if (isa
<UndefValue
>(Mask
)) return UndefValue::get(V1
->getType());
434 unsigned MaskNumElts
= cast
<VectorType
>(Mask
->getType())->getNumElements();
435 unsigned SrcNumElts
= cast
<VectorType
>(V1
->getType())->getNumElements();
436 const Type
*EltTy
= cast
<VectorType
>(V1
->getType())->getElementType();
438 // Loop over the shuffle mask, evaluating each element.
439 SmallVector
<Constant
*, 32> Result
;
440 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
441 Constant
*InElt
= GetVectorElement(Context
, Mask
, i
);
442 if (InElt
== 0) return 0;
444 if (isa
<UndefValue
>(InElt
))
445 InElt
= UndefValue::get(EltTy
);
446 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(InElt
)) {
447 unsigned Elt
= CI
->getZExtValue();
448 if (Elt
>= SrcNumElts
*2)
449 InElt
= UndefValue::get(EltTy
);
450 else if (Elt
>= SrcNumElts
)
451 InElt
= GetVectorElement(Context
, V2
, Elt
- SrcNumElts
);
453 InElt
= GetVectorElement(Context
, V1
, Elt
);
454 if (InElt
== 0) return 0;
459 Result
.push_back(InElt
);
462 return ConstantVector::get(&Result
[0], Result
.size());
465 Constant
*llvm::ConstantFoldExtractValueInstruction(LLVMContext
&Context
,
467 const unsigned *Idxs
,
469 // Base case: no indices, so return the entire value.
471 return const_cast<Constant
*>(Agg
);
473 if (isa
<UndefValue
>(Agg
)) // ev(undef, x) -> undef
474 return UndefValue::get(ExtractValueInst::getIndexedType(Agg
->getType(),
478 if (isa
<ConstantAggregateZero
>(Agg
)) // ev(0, x) -> 0
480 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg
->getType(),
484 // Otherwise recurse.
485 return ConstantFoldExtractValueInstruction(Context
, Agg
->getOperand(*Idxs
),
489 Constant
*llvm::ConstantFoldInsertValueInstruction(LLVMContext
&Context
,
492 const unsigned *Idxs
,
494 // Base case: no indices, so replace the entire value.
496 return const_cast<Constant
*>(Val
);
498 if (isa
<UndefValue
>(Agg
)) {
499 // Insertion of constant into aggregate undef
500 // Optimize away insertion of undef
501 if (isa
<UndefValue
>(Val
))
502 return const_cast<Constant
*>(Agg
);
503 // Otherwise break the aggregate undef into multiple undefs and do
505 const CompositeType
*AggTy
= cast
<CompositeType
>(Agg
->getType());
507 if (const ArrayType
*AR
= dyn_cast
<ArrayType
>(AggTy
))
508 numOps
= AR
->getNumElements();
510 numOps
= cast
<StructType
>(AggTy
)->getNumElements();
511 std::vector
<Constant
*> Ops(numOps
);
512 for (unsigned i
= 0; i
< numOps
; ++i
) {
513 const Type
*MemberTy
= AggTy
->getTypeAtIndex(i
);
516 ConstantFoldInsertValueInstruction(Context
, UndefValue::get(MemberTy
),
517 Val
, Idxs
+1, NumIdx
-1) :
518 UndefValue::get(MemberTy
);
519 Ops
[i
] = const_cast<Constant
*>(Op
);
521 if (isa
<StructType
>(AggTy
))
522 return ConstantStruct::get(Context
, Ops
);
524 return ConstantArray::get(cast
<ArrayType
>(AggTy
), Ops
);
526 if (isa
<ConstantAggregateZero
>(Agg
)) {
527 // Insertion of constant into aggregate zero
528 // Optimize away insertion of zero
529 if (Val
->isNullValue())
530 return const_cast<Constant
*>(Agg
);
531 // Otherwise break the aggregate zero into multiple zeros and do
533 const CompositeType
*AggTy
= cast
<CompositeType
>(Agg
->getType());
535 if (const ArrayType
*AR
= dyn_cast
<ArrayType
>(AggTy
))
536 numOps
= AR
->getNumElements();
538 numOps
= cast
<StructType
>(AggTy
)->getNumElements();
539 std::vector
<Constant
*> Ops(numOps
);
540 for (unsigned i
= 0; i
< numOps
; ++i
) {
541 const Type
*MemberTy
= AggTy
->getTypeAtIndex(i
);
544 ConstantFoldInsertValueInstruction(Context
,
545 Constant::getNullValue(MemberTy
),
546 Val
, Idxs
+1, NumIdx
-1) :
547 Constant::getNullValue(MemberTy
);
548 Ops
[i
] = const_cast<Constant
*>(Op
);
550 if (isa
<StructType
>(AggTy
))
551 return ConstantStruct::get(Context
, Ops
);
553 return ConstantArray::get(cast
<ArrayType
>(AggTy
), Ops
);
555 if (isa
<ConstantStruct
>(Agg
) || isa
<ConstantArray
>(Agg
)) {
556 // Insertion of constant into aggregate constant
557 std::vector
<Constant
*> Ops(Agg
->getNumOperands());
558 for (unsigned i
= 0; i
< Agg
->getNumOperands(); ++i
) {
561 ConstantFoldInsertValueInstruction(Context
, Agg
->getOperand(i
),
562 Val
, Idxs
+1, NumIdx
-1) :
564 Ops
[i
] = const_cast<Constant
*>(Op
);
567 if (isa
<StructType
>(Agg
->getType()))
568 C
= ConstantStruct::get(Context
, Ops
);
570 C
= ConstantArray::get(cast
<ArrayType
>(Agg
->getType()), Ops
);
578 Constant
*llvm::ConstantFoldBinaryInstruction(LLVMContext
&Context
,
581 const Constant
*C2
) {
582 // No compile-time operations on this type yet.
583 if (C1
->getType() == Type::PPC_FP128Ty
)
586 // Handle UndefValue up front
587 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
589 case Instruction::Xor
:
590 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
591 // Handle undef ^ undef -> 0 special case. This is a common
593 return Constant::getNullValue(C1
->getType());
595 case Instruction::Add
:
596 case Instruction::Sub
:
597 return UndefValue::get(C1
->getType());
598 case Instruction::Mul
:
599 case Instruction::And
:
600 return Constant::getNullValue(C1
->getType());
601 case Instruction::UDiv
:
602 case Instruction::SDiv
:
603 case Instruction::URem
:
604 case Instruction::SRem
:
605 if (!isa
<UndefValue
>(C2
)) // undef / X -> 0
606 return Constant::getNullValue(C1
->getType());
607 return const_cast<Constant
*>(C2
); // X / undef -> undef
608 case Instruction::Or
: // X | undef -> -1
609 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(C1
->getType()))
610 return Constant::getAllOnesValue(PTy
);
611 return Constant::getAllOnesValue(C1
->getType());
612 case Instruction::LShr
:
613 if (isa
<UndefValue
>(C2
) && isa
<UndefValue
>(C1
))
614 return const_cast<Constant
*>(C1
); // undef lshr undef -> undef
615 return Constant::getNullValue(C1
->getType()); // X lshr undef -> 0
617 case Instruction::AShr
:
618 if (!isa
<UndefValue
>(C2
))
619 return const_cast<Constant
*>(C1
); // undef ashr X --> undef
620 else if (isa
<UndefValue
>(C1
))
621 return const_cast<Constant
*>(C1
); // undef ashr undef -> undef
623 return const_cast<Constant
*>(C1
); // X ashr undef --> X
624 case Instruction::Shl
:
625 // undef << X -> 0 or X << undef -> 0
626 return Constant::getNullValue(C1
->getType());
630 // Handle simplifications when the RHS is a constant int.
631 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
633 case Instruction::Add
:
634 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X + 0 == X
636 case Instruction::Sub
:
637 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X - 0 == X
639 case Instruction::Mul
:
640 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C2
); // X * 0 == 0
641 if (CI2
->equalsInt(1))
642 return const_cast<Constant
*>(C1
); // X * 1 == X
644 case Instruction::UDiv
:
645 case Instruction::SDiv
:
646 if (CI2
->equalsInt(1))
647 return const_cast<Constant
*>(C1
); // X / 1 == X
648 if (CI2
->equalsInt(0))
649 return UndefValue::get(CI2
->getType()); // X / 0 == undef
651 case Instruction::URem
:
652 case Instruction::SRem
:
653 if (CI2
->equalsInt(1))
654 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
655 if (CI2
->equalsInt(0))
656 return UndefValue::get(CI2
->getType()); // X % 0 == undef
658 case Instruction::And
:
659 if (CI2
->isZero()) return const_cast<Constant
*>(C2
); // X & 0 == 0
660 if (CI2
->isAllOnesValue())
661 return const_cast<Constant
*>(C1
); // X & -1 == X
663 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
664 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
665 if (CE1
->getOpcode() == Instruction::ZExt
) {
666 unsigned DstWidth
= CI2
->getType()->getBitWidth();
668 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
669 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
670 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
671 return const_cast<Constant
*>(C1
);
674 // If and'ing the address of a global with a constant, fold it.
675 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
676 isa
<GlobalValue
>(CE1
->getOperand(0))) {
677 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
679 // Functions are at least 4-byte aligned.
680 unsigned GVAlign
= GV
->getAlignment();
681 if (isa
<Function
>(GV
))
682 GVAlign
= std::max(GVAlign
, 4U);
685 unsigned DstWidth
= CI2
->getType()->getBitWidth();
686 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
687 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
689 // If checking bits we know are clear, return zero.
690 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
691 return Constant::getNullValue(CI2
->getType());
696 case Instruction::Or
:
697 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X | 0 == X
698 if (CI2
->isAllOnesValue())
699 return const_cast<Constant
*>(C2
); // X | -1 == -1
701 case Instruction::Xor
:
702 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X ^ 0 == X
704 case Instruction::AShr
:
705 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
706 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
707 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
708 return ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
709 const_cast<Constant
*>(C2
));
714 // At this point we know neither constant is an UndefValue.
715 if (const ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
716 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
717 using namespace APIntOps
;
718 const APInt
&C1V
= CI1
->getValue();
719 const APInt
&C2V
= CI2
->getValue();
723 case Instruction::Add
:
724 return ConstantInt::get(Context
, C1V
+ C2V
);
725 case Instruction::Sub
:
726 return ConstantInt::get(Context
, C1V
- C2V
);
727 case Instruction::Mul
:
728 return ConstantInt::get(Context
, C1V
* C2V
);
729 case Instruction::UDiv
:
730 assert(!CI2
->isNullValue() && "Div by zero handled above");
731 return ConstantInt::get(Context
, C1V
.udiv(C2V
));
732 case Instruction::SDiv
:
733 assert(!CI2
->isNullValue() && "Div by zero handled above");
734 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
735 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
736 return ConstantInt::get(Context
, C1V
.sdiv(C2V
));
737 case Instruction::URem
:
738 assert(!CI2
->isNullValue() && "Div by zero handled above");
739 return ConstantInt::get(Context
, C1V
.urem(C2V
));
740 case Instruction::SRem
:
741 assert(!CI2
->isNullValue() && "Div by zero handled above");
742 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
743 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
744 return ConstantInt::get(Context
, C1V
.srem(C2V
));
745 case Instruction::And
:
746 return ConstantInt::get(Context
, C1V
& C2V
);
747 case Instruction::Or
:
748 return ConstantInt::get(Context
, C1V
| C2V
);
749 case Instruction::Xor
:
750 return ConstantInt::get(Context
, C1V
^ C2V
);
751 case Instruction::Shl
: {
752 uint32_t shiftAmt
= C2V
.getZExtValue();
753 if (shiftAmt
< C1V
.getBitWidth())
754 return ConstantInt::get(Context
, C1V
.shl(shiftAmt
));
756 return UndefValue::get(C1
->getType()); // too big shift is undef
758 case Instruction::LShr
: {
759 uint32_t shiftAmt
= C2V
.getZExtValue();
760 if (shiftAmt
< C1V
.getBitWidth())
761 return ConstantInt::get(Context
, C1V
.lshr(shiftAmt
));
763 return UndefValue::get(C1
->getType()); // too big shift is undef
765 case Instruction::AShr
: {
766 uint32_t shiftAmt
= C2V
.getZExtValue();
767 if (shiftAmt
< C1V
.getBitWidth())
768 return ConstantInt::get(Context
, C1V
.ashr(shiftAmt
));
770 return UndefValue::get(C1
->getType()); // too big shift is undef
776 case Instruction::SDiv
:
777 case Instruction::UDiv
:
778 case Instruction::URem
:
779 case Instruction::SRem
:
780 case Instruction::LShr
:
781 case Instruction::AShr
:
782 case Instruction::Shl
:
783 if (CI1
->equalsInt(0)) return const_cast<Constant
*>(C1
);
788 } else if (const ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
789 if (const ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
790 APFloat C1V
= CFP1
->getValueAPF();
791 APFloat C2V
= CFP2
->getValueAPF();
792 APFloat C3V
= C1V
; // copy for modification
796 case Instruction::FAdd
:
797 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
798 return ConstantFP::get(Context
, C3V
);
799 case Instruction::FSub
:
800 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
801 return ConstantFP::get(Context
, C3V
);
802 case Instruction::FMul
:
803 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
804 return ConstantFP::get(Context
, C3V
);
805 case Instruction::FDiv
:
806 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
807 return ConstantFP::get(Context
, C3V
);
808 case Instruction::FRem
:
809 (void)C3V
.mod(C2V
, APFloat::rmNearestTiesToEven
);
810 return ConstantFP::get(Context
, C3V
);
813 } else if (const VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
814 const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
);
815 const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
);
816 if ((CP1
!= NULL
|| isa
<ConstantAggregateZero
>(C1
)) &&
817 (CP2
!= NULL
|| isa
<ConstantAggregateZero
>(C2
))) {
818 std::vector
<Constant
*> Res
;
819 const Type
* EltTy
= VTy
->getElementType();
820 const Constant
*C1
= 0;
821 const Constant
*C2
= 0;
825 case Instruction::Add
:
826 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
827 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
828 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
829 Res
.push_back(ConstantExpr::getAdd(const_cast<Constant
*>(C1
),
830 const_cast<Constant
*>(C2
)));
832 return ConstantVector::get(Res
);
833 case Instruction::FAdd
:
834 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
835 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
836 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
837 Res
.push_back(ConstantExpr::getFAdd(const_cast<Constant
*>(C1
),
838 const_cast<Constant
*>(C2
)));
840 return ConstantVector::get(Res
);
841 case Instruction::Sub
:
842 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
843 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
844 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
845 Res
.push_back(ConstantExpr::getSub(const_cast<Constant
*>(C1
),
846 const_cast<Constant
*>(C2
)));
848 return ConstantVector::get(Res
);
849 case Instruction::FSub
:
850 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
851 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
852 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
853 Res
.push_back(ConstantExpr::getFSub(const_cast<Constant
*>(C1
),
854 const_cast<Constant
*>(C2
)));
856 return ConstantVector::get(Res
);
857 case Instruction::Mul
:
858 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
859 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
860 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
861 Res
.push_back(ConstantExpr::getMul(const_cast<Constant
*>(C1
),
862 const_cast<Constant
*>(C2
)));
864 return ConstantVector::get(Res
);
865 case Instruction::FMul
:
866 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
867 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
868 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
869 Res
.push_back(ConstantExpr::getFMul(const_cast<Constant
*>(C1
),
870 const_cast<Constant
*>(C2
)));
872 return ConstantVector::get(Res
);
873 case Instruction::UDiv
:
874 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
875 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
876 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
877 Res
.push_back(ConstantExpr::getUDiv(const_cast<Constant
*>(C1
),
878 const_cast<Constant
*>(C2
)));
880 return ConstantVector::get(Res
);
881 case Instruction::SDiv
:
882 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
883 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
884 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
885 Res
.push_back(ConstantExpr::getSDiv(const_cast<Constant
*>(C1
),
886 const_cast<Constant
*>(C2
)));
888 return ConstantVector::get(Res
);
889 case Instruction::FDiv
:
890 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
891 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
892 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
893 Res
.push_back(ConstantExpr::getFDiv(const_cast<Constant
*>(C1
),
894 const_cast<Constant
*>(C2
)));
896 return ConstantVector::get(Res
);
897 case Instruction::URem
:
898 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
899 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
900 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
901 Res
.push_back(ConstantExpr::getURem(const_cast<Constant
*>(C1
),
902 const_cast<Constant
*>(C2
)));
904 return ConstantVector::get(Res
);
905 case Instruction::SRem
:
906 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
907 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
908 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
909 Res
.push_back(ConstantExpr::getSRem(const_cast<Constant
*>(C1
),
910 const_cast<Constant
*>(C2
)));
912 return ConstantVector::get(Res
);
913 case Instruction::FRem
:
914 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
915 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
916 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
917 Res
.push_back(ConstantExpr::getFRem(const_cast<Constant
*>(C1
),
918 const_cast<Constant
*>(C2
)));
920 return ConstantVector::get(Res
);
921 case Instruction::And
:
922 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
923 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
924 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
925 Res
.push_back(ConstantExpr::getAnd(const_cast<Constant
*>(C1
),
926 const_cast<Constant
*>(C2
)));
928 return ConstantVector::get(Res
);
929 case Instruction::Or
:
930 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
931 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
932 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
933 Res
.push_back(ConstantExpr::getOr(const_cast<Constant
*>(C1
),
934 const_cast<Constant
*>(C2
)));
936 return ConstantVector::get(Res
);
937 case Instruction::Xor
:
938 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
939 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
940 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
941 Res
.push_back(ConstantExpr::getXor(const_cast<Constant
*>(C1
),
942 const_cast<Constant
*>(C2
)));
944 return ConstantVector::get(Res
);
945 case Instruction::LShr
:
946 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
947 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
948 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
949 Res
.push_back(ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
950 const_cast<Constant
*>(C2
)));
952 return ConstantVector::get(Res
);
953 case Instruction::AShr
:
954 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
955 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
956 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
957 Res
.push_back(ConstantExpr::getAShr(const_cast<Constant
*>(C1
),
958 const_cast<Constant
*>(C2
)));
960 return ConstantVector::get(Res
);
961 case Instruction::Shl
:
962 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
963 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
964 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
965 Res
.push_back(ConstantExpr::getShl(const_cast<Constant
*>(C1
),
966 const_cast<Constant
*>(C2
)));
968 return ConstantVector::get(Res
);
973 if (isa
<ConstantExpr
>(C1
)) {
974 // There are many possible foldings we could do here. We should probably
975 // at least fold add of a pointer with an integer into the appropriate
976 // getelementptr. This will improve alias analysis a bit.
977 } else if (isa
<ConstantExpr
>(C2
)) {
978 // If C2 is a constant expr and C1 isn't, flop them around and fold the
979 // other way if possible.
981 case Instruction::Add
:
982 case Instruction::FAdd
:
983 case Instruction::Mul
:
984 case Instruction::FMul
:
985 case Instruction::And
:
986 case Instruction::Or
:
987 case Instruction::Xor
:
988 // No change of opcode required.
989 return ConstantFoldBinaryInstruction(Context
, Opcode
, C2
, C1
);
991 case Instruction::Shl
:
992 case Instruction::LShr
:
993 case Instruction::AShr
:
994 case Instruction::Sub
:
995 case Instruction::FSub
:
996 case Instruction::SDiv
:
997 case Instruction::UDiv
:
998 case Instruction::FDiv
:
999 case Instruction::URem
:
1000 case Instruction::SRem
:
1001 case Instruction::FRem
:
1002 default: // These instructions cannot be flopped around.
1007 // We don't know how to fold this.
1011 /// isZeroSizedType - This type is zero sized if its an array or structure of
1012 /// zero sized types. The only leaf zero sized type is an empty structure.
1013 static bool isMaybeZeroSizedType(const Type
*Ty
) {
1014 if (isa
<OpaqueType
>(Ty
)) return true; // Can't say.
1015 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1017 // If all of elements have zero size, this does too.
1018 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1019 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1022 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1023 return isMaybeZeroSizedType(ATy
->getElementType());
1028 /// IdxCompare - Compare the two constants as though they were getelementptr
1029 /// indices. This allows coersion of the types to be the same thing.
1031 /// If the two constants are the "same" (after coersion), return 0. If the
1032 /// first is less than the second, return -1, if the second is less than the
1033 /// first, return 1. If the constants are not integral, return -2.
1035 static int IdxCompare(LLVMContext
&Context
, Constant
*C1
, Constant
*C2
,
1037 if (C1
== C2
) return 0;
1039 // Ok, we found a different index. If they are not ConstantInt, we can't do
1040 // anything with them.
1041 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1042 return -2; // don't know!
1044 // Ok, we have two differing integer indices. Sign extend them to be the same
1045 // type. Long is always big enough, so we use it.
1046 if (C1
->getType() != Type::Int64Ty
)
1047 C1
= ConstantExpr::getSExt(C1
, Type::Int64Ty
);
1049 if (C2
->getType() != Type::Int64Ty
)
1050 C2
= ConstantExpr::getSExt(C2
, Type::Int64Ty
);
1052 if (C1
== C2
) return 0; // They are equal
1054 // If the type being indexed over is really just a zero sized type, there is
1055 // no pointer difference being made here.
1056 if (isMaybeZeroSizedType(ElTy
))
1057 return -2; // dunno.
1059 // If they are really different, now that they are the same type, then we
1060 // found a difference!
1061 if (cast
<ConstantInt
>(C1
)->getSExtValue() <
1062 cast
<ConstantInt
>(C2
)->getSExtValue())
1068 /// evaluateFCmpRelation - This function determines if there is anything we can
1069 /// decide about the two constants provided. This doesn't need to handle simple
1070 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1071 /// If we can determine that the two constants have a particular relation to
1072 /// each other, we should return the corresponding FCmpInst predicate,
1073 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1074 /// ConstantFoldCompareInstruction.
1076 /// To simplify this code we canonicalize the relation so that the first
1077 /// operand is always the most "complex" of the two. We consider ConstantFP
1078 /// to be the simplest, and ConstantExprs to be the most complex.
1079 static FCmpInst::Predicate
evaluateFCmpRelation(LLVMContext
&Context
,
1081 const Constant
*V2
) {
1082 assert(V1
->getType() == V2
->getType() &&
1083 "Cannot compare values of different types!");
1085 // No compile-time operations on this type yet.
1086 if (V1
->getType() == Type::PPC_FP128Ty
)
1087 return FCmpInst::BAD_FCMP_PREDICATE
;
1089 // Handle degenerate case quickly
1090 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
1092 if (!isa
<ConstantExpr
>(V1
)) {
1093 if (!isa
<ConstantExpr
>(V2
)) {
1094 // We distilled thisUse the standard constant folder for a few cases
1096 Constant
*C1
= const_cast<Constant
*>(V1
);
1097 Constant
*C2
= const_cast<Constant
*>(V2
);
1098 R
= dyn_cast
<ConstantInt
>(
1099 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, C1
, C2
));
1100 if (R
&& !R
->isZero())
1101 return FCmpInst::FCMP_OEQ
;
1102 R
= dyn_cast
<ConstantInt
>(
1103 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, C1
, C2
));
1104 if (R
&& !R
->isZero())
1105 return FCmpInst::FCMP_OLT
;
1106 R
= dyn_cast
<ConstantInt
>(
1107 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, C1
, C2
));
1108 if (R
&& !R
->isZero())
1109 return FCmpInst::FCMP_OGT
;
1111 // Nothing more we can do
1112 return FCmpInst::BAD_FCMP_PREDICATE
;
1115 // If the first operand is simple and second is ConstantExpr, swap operands.
1116 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(Context
, V2
, V1
);
1117 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1118 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1120 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1121 // constantexpr or a simple constant.
1122 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1123 switch (CE1
->getOpcode()) {
1124 case Instruction::FPTrunc
:
1125 case Instruction::FPExt
:
1126 case Instruction::UIToFP
:
1127 case Instruction::SIToFP
:
1128 // We might be able to do something with these but we don't right now.
1134 // There are MANY other foldings that we could perform here. They will
1135 // probably be added on demand, as they seem needed.
1136 return FCmpInst::BAD_FCMP_PREDICATE
;
1139 /// evaluateICmpRelation - This function determines if there is anything we can
1140 /// decide about the two constants provided. This doesn't need to handle simple
1141 /// things like integer comparisons, but should instead handle ConstantExprs
1142 /// and GlobalValues. If we can determine that the two constants have a
1143 /// particular relation to each other, we should return the corresponding ICmp
1144 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1146 /// To simplify this code we canonicalize the relation so that the first
1147 /// operand is always the most "complex" of the two. We consider simple
1148 /// constants (like ConstantInt) to be the simplest, followed by
1149 /// GlobalValues, followed by ConstantExpr's (the most complex).
1151 static ICmpInst::Predicate
evaluateICmpRelation(LLVMContext
&Context
,
1155 assert(V1
->getType() == V2
->getType() &&
1156 "Cannot compare different types of values!");
1157 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1159 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
)) {
1160 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
)) {
1161 // We distilled this down to a simple case, use the standard constant
1164 Constant
*C1
= const_cast<Constant
*>(V1
);
1165 Constant
*C2
= const_cast<Constant
*>(V2
);
1166 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1167 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1168 if (R
&& !R
->isZero())
1170 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1171 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1172 if (R
&& !R
->isZero())
1174 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1175 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1176 if (R
&& !R
->isZero())
1179 // If we couldn't figure it out, bail.
1180 return ICmpInst::BAD_ICMP_PREDICATE
;
1183 // If the first operand is simple, swap operands.
1184 ICmpInst::Predicate SwappedRelation
=
1185 evaluateICmpRelation(Context
, V2
, V1
, isSigned
);
1186 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1187 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1189 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(V1
)) {
1190 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1191 ICmpInst::Predicate SwappedRelation
=
1192 evaluateICmpRelation(Context
, V2
, V1
, isSigned
);
1193 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1194 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1196 return ICmpInst::BAD_ICMP_PREDICATE
;
1199 // Now we know that the RHS is a GlobalValue or simple constant,
1200 // which (since the types must match) means that it's a ConstantPointerNull.
1201 if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1202 // Don't try to decide equality of aliases.
1203 if (!isa
<GlobalAlias
>(CPR1
) && !isa
<GlobalAlias
>(CPR2
))
1204 if (!CPR1
->hasExternalWeakLinkage() || !CPR2
->hasExternalWeakLinkage())
1205 return ICmpInst::ICMP_NE
;
1207 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1208 // GlobalVals can never be null. Don't try to evaluate aliases.
1209 if (!CPR1
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(CPR1
))
1210 return ICmpInst::ICMP_NE
;
1213 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1214 // constantexpr, a CPR, or a simple constant.
1215 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1216 const Constant
*CE1Op0
= CE1
->getOperand(0);
1218 switch (CE1
->getOpcode()) {
1219 case Instruction::Trunc
:
1220 case Instruction::FPTrunc
:
1221 case Instruction::FPExt
:
1222 case Instruction::FPToUI
:
1223 case Instruction::FPToSI
:
1224 break; // We can't evaluate floating point casts or truncations.
1226 case Instruction::UIToFP
:
1227 case Instruction::SIToFP
:
1228 case Instruction::BitCast
:
1229 case Instruction::ZExt
:
1230 case Instruction::SExt
:
1231 // If the cast is not actually changing bits, and the second operand is a
1232 // null pointer, do the comparison with the pre-casted value.
1233 if (V2
->isNullValue() &&
1234 (isa
<PointerType
>(CE1
->getType()) || CE1
->getType()->isInteger())) {
1235 bool sgnd
= isSigned
;
1236 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1237 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1238 return evaluateICmpRelation(Context
, CE1Op0
,
1239 Constant::getNullValue(CE1Op0
->getType()),
1243 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1244 // from the same type as the src of the LHS, evaluate the inputs. This is
1245 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1246 // which happens a lot in compilers with tagged integers.
1247 if (const ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(V2
))
1248 if (CE2
->isCast() && isa
<PointerType
>(CE1
->getType()) &&
1249 CE1
->getOperand(0)->getType() == CE2
->getOperand(0)->getType() &&
1250 CE1
->getOperand(0)->getType()->isInteger()) {
1251 bool sgnd
= isSigned
;
1252 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1253 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1254 return evaluateICmpRelation(Context
, CE1
->getOperand(0),
1255 CE2
->getOperand(0), sgnd
);
1259 case Instruction::GetElementPtr
:
1260 // Ok, since this is a getelementptr, we know that the constant has a
1261 // pointer type. Check the various cases.
1262 if (isa
<ConstantPointerNull
>(V2
)) {
1263 // If we are comparing a GEP to a null pointer, check to see if the base
1264 // of the GEP equals the null pointer.
1265 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1266 if (GV
->hasExternalWeakLinkage())
1267 // Weak linkage GVals could be zero or not. We're comparing that
1268 // to null pointer so its greater-or-equal
1269 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1271 // If its not weak linkage, the GVal must have a non-zero address
1272 // so the result is greater-than
1273 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1274 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1275 // If we are indexing from a null pointer, check to see if we have any
1276 // non-zero indices.
1277 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1278 if (!CE1
->getOperand(i
)->isNullValue())
1279 // Offsetting from null, must not be equal.
1280 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1281 // Only zero indexes from null, must still be zero.
1282 return ICmpInst::ICMP_EQ
;
1284 // Otherwise, we can't really say if the first operand is null or not.
1285 } else if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1286 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1287 if (CPR2
->hasExternalWeakLinkage())
1288 // Weak linkage GVals could be zero or not. We're comparing it to
1289 // a null pointer, so its less-or-equal
1290 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1292 // If its not weak linkage, the GVal must have a non-zero address
1293 // so the result is less-than
1294 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1295 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1297 // If this is a getelementptr of the same global, then it must be
1298 // different. Because the types must match, the getelementptr could
1299 // only have at most one index, and because we fold getelementptr's
1300 // with a single zero index, it must be nonzero.
1301 assert(CE1
->getNumOperands() == 2 &&
1302 !CE1
->getOperand(1)->isNullValue() &&
1303 "Suprising getelementptr!");
1304 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1306 // If they are different globals, we don't know what the value is,
1307 // but they can't be equal.
1308 return ICmpInst::ICMP_NE
;
1312 const ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1313 const Constant
*CE2Op0
= CE2
->getOperand(0);
1315 // There are MANY other foldings that we could perform here. They will
1316 // probably be added on demand, as they seem needed.
1317 switch (CE2
->getOpcode()) {
1319 case Instruction::GetElementPtr
:
1320 // By far the most common case to handle is when the base pointers are
1321 // obviously to the same or different globals.
1322 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1323 if (CE1Op0
!= CE2Op0
) // Don't know relative ordering, but not equal
1324 return ICmpInst::ICMP_NE
;
1325 // Ok, we know that both getelementptr instructions are based on the
1326 // same global. From this, we can precisely determine the relative
1327 // ordering of the resultant pointers.
1330 // Compare all of the operands the GEP's have in common.
1331 gep_type_iterator GTI
= gep_type_begin(CE1
);
1332 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1334 switch (IdxCompare(Context
, CE1
->getOperand(i
),
1335 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1336 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1337 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1338 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1341 // Ok, we ran out of things they have in common. If any leftovers
1342 // are non-zero then we have a difference, otherwise we are equal.
1343 for (; i
< CE1
->getNumOperands(); ++i
)
1344 if (!CE1
->getOperand(i
)->isNullValue()) {
1345 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1346 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1348 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1351 for (; i
< CE2
->getNumOperands(); ++i
)
1352 if (!CE2
->getOperand(i
)->isNullValue()) {
1353 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1354 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1356 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1358 return ICmpInst::ICMP_EQ
;
1367 return ICmpInst::BAD_ICMP_PREDICATE
;
1370 Constant
*llvm::ConstantFoldCompareInstruction(LLVMContext
&Context
,
1371 unsigned short pred
,
1373 const Constant
*C2
) {
1374 const Type
*ResultTy
;
1375 if (const VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1376 ResultTy
= VectorType::get(Type::Int1Ty
, VT
->getNumElements());
1378 ResultTy
= Type::Int1Ty
;
1380 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1381 if (pred
== FCmpInst::FCMP_FALSE
)
1382 return Constant::getNullValue(ResultTy
);
1384 if (pred
== FCmpInst::FCMP_TRUE
)
1385 return Constant::getAllOnesValue(ResultTy
);
1387 // Handle some degenerate cases first
1388 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
))
1389 return UndefValue::get(ResultTy
);
1391 // No compile-time operations on this type yet.
1392 if (C1
->getType() == Type::PPC_FP128Ty
)
1395 // icmp eq/ne(null,GV) -> false/true
1396 if (C1
->isNullValue()) {
1397 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1398 // Don't try to evaluate aliases. External weak GV can be null.
1399 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1400 if (pred
== ICmpInst::ICMP_EQ
)
1401 return ConstantInt::getFalse(Context
);
1402 else if (pred
== ICmpInst::ICMP_NE
)
1403 return ConstantInt::getTrue(Context
);
1405 // icmp eq/ne(GV,null) -> false/true
1406 } else if (C2
->isNullValue()) {
1407 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1408 // Don't try to evaluate aliases. External weak GV can be null.
1409 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1410 if (pred
== ICmpInst::ICMP_EQ
)
1411 return ConstantInt::getFalse(Context
);
1412 else if (pred
== ICmpInst::ICMP_NE
)
1413 return ConstantInt::getTrue(Context
);
1417 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1418 APInt V1
= cast
<ConstantInt
>(C1
)->getValue();
1419 APInt V2
= cast
<ConstantInt
>(C2
)->getValue();
1421 default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1422 case ICmpInst::ICMP_EQ
:
1423 return ConstantInt::get(Type::Int1Ty
, V1
== V2
);
1424 case ICmpInst::ICMP_NE
:
1425 return ConstantInt::get(Type::Int1Ty
, V1
!= V2
);
1426 case ICmpInst::ICMP_SLT
:
1427 return ConstantInt::get(Type::Int1Ty
, V1
.slt(V2
));
1428 case ICmpInst::ICMP_SGT
:
1429 return ConstantInt::get(Type::Int1Ty
, V1
.sgt(V2
));
1430 case ICmpInst::ICMP_SLE
:
1431 return ConstantInt::get(Type::Int1Ty
, V1
.sle(V2
));
1432 case ICmpInst::ICMP_SGE
:
1433 return ConstantInt::get(Type::Int1Ty
, V1
.sge(V2
));
1434 case ICmpInst::ICMP_ULT
:
1435 return ConstantInt::get(Type::Int1Ty
, V1
.ult(V2
));
1436 case ICmpInst::ICMP_UGT
:
1437 return ConstantInt::get(Type::Int1Ty
, V1
.ugt(V2
));
1438 case ICmpInst::ICMP_ULE
:
1439 return ConstantInt::get(Type::Int1Ty
, V1
.ule(V2
));
1440 case ICmpInst::ICMP_UGE
:
1441 return ConstantInt::get(Type::Int1Ty
, V1
.uge(V2
));
1443 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1444 APFloat C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1445 APFloat C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1446 APFloat::cmpResult R
= C1V
.compare(C2V
);
1448 default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1449 case FCmpInst::FCMP_FALSE
: return ConstantInt::getFalse(Context
);
1450 case FCmpInst::FCMP_TRUE
: return ConstantInt::getTrue(Context
);
1451 case FCmpInst::FCMP_UNO
:
1452 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
);
1453 case FCmpInst::FCMP_ORD
:
1454 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpUnordered
);
1455 case FCmpInst::FCMP_UEQ
:
1456 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1457 R
==APFloat::cmpEqual
);
1458 case FCmpInst::FCMP_OEQ
:
1459 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpEqual
);
1460 case FCmpInst::FCMP_UNE
:
1461 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpEqual
);
1462 case FCmpInst::FCMP_ONE
:
1463 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1464 R
==APFloat::cmpGreaterThan
);
1465 case FCmpInst::FCMP_ULT
:
1466 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1467 R
==APFloat::cmpLessThan
);
1468 case FCmpInst::FCMP_OLT
:
1469 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
);
1470 case FCmpInst::FCMP_UGT
:
1471 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1472 R
==APFloat::cmpGreaterThan
);
1473 case FCmpInst::FCMP_OGT
:
1474 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
);
1475 case FCmpInst::FCMP_ULE
:
1476 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpGreaterThan
);
1477 case FCmpInst::FCMP_OLE
:
1478 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1479 R
==APFloat::cmpEqual
);
1480 case FCmpInst::FCMP_UGE
:
1481 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpLessThan
);
1482 case FCmpInst::FCMP_OGE
:
1483 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
||
1484 R
==APFloat::cmpEqual
);
1486 } else if (isa
<VectorType
>(C1
->getType())) {
1487 SmallVector
<Constant
*, 16> C1Elts
, C2Elts
;
1488 C1
->getVectorElements(Context
, C1Elts
);
1489 C2
->getVectorElements(Context
, C2Elts
);
1491 // If we can constant fold the comparison of each element, constant fold
1492 // the whole vector comparison.
1493 SmallVector
<Constant
*, 4> ResElts
;
1494 for (unsigned i
= 0, e
= C1Elts
.size(); i
!= e
; ++i
) {
1495 // Compare the elements, producing an i1 result or constant expr.
1497 ConstantExpr::getCompare(pred
, C1Elts
[i
], C2Elts
[i
]));
1499 return ConstantVector::get(&ResElts
[0], ResElts
.size());
1502 if (C1
->getType()->isFloatingPoint()) {
1503 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1504 switch (evaluateFCmpRelation(Context
, C1
, C2
)) {
1505 default: llvm_unreachable("Unknown relation!");
1506 case FCmpInst::FCMP_UNO
:
1507 case FCmpInst::FCMP_ORD
:
1508 case FCmpInst::FCMP_UEQ
:
1509 case FCmpInst::FCMP_UNE
:
1510 case FCmpInst::FCMP_ULT
:
1511 case FCmpInst::FCMP_UGT
:
1512 case FCmpInst::FCMP_ULE
:
1513 case FCmpInst::FCMP_UGE
:
1514 case FCmpInst::FCMP_TRUE
:
1515 case FCmpInst::FCMP_FALSE
:
1516 case FCmpInst::BAD_FCMP_PREDICATE
:
1517 break; // Couldn't determine anything about these constants.
1518 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1519 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1520 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1521 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1523 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1524 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1525 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1526 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1528 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1529 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1530 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1531 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1533 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1534 // We can only partially decide this relation.
1535 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1537 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1540 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1541 // We can only partially decide this relation.
1542 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1544 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1547 case ICmpInst::ICMP_NE
: // We know that C1 != C2
1548 // We can only partially decide this relation.
1549 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1551 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1556 // If we evaluated the result, return it now.
1558 return ConstantInt::get(Type::Int1Ty
, Result
);
1561 // Evaluate the relation between the two constants, per the predicate.
1562 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1563 switch (evaluateICmpRelation(Context
, C1
, C2
, CmpInst::isSigned(pred
))) {
1564 default: llvm_unreachable("Unknown relational!");
1565 case ICmpInst::BAD_ICMP_PREDICATE
:
1566 break; // Couldn't determine anything about these constants.
1567 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1568 // If we know the constants are equal, we can decide the result of this
1569 // computation precisely.
1570 Result
= (pred
== ICmpInst::ICMP_EQ
||
1571 pred
== ICmpInst::ICMP_ULE
||
1572 pred
== ICmpInst::ICMP_SLE
||
1573 pred
== ICmpInst::ICMP_UGE
||
1574 pred
== ICmpInst::ICMP_SGE
);
1576 case ICmpInst::ICMP_ULT
:
1577 // If we know that C1 < C2, we can decide the result of this computation
1579 Result
= (pred
== ICmpInst::ICMP_ULT
||
1580 pred
== ICmpInst::ICMP_NE
||
1581 pred
== ICmpInst::ICMP_ULE
);
1583 case ICmpInst::ICMP_SLT
:
1584 // If we know that C1 < C2, we can decide the result of this computation
1586 Result
= (pred
== ICmpInst::ICMP_SLT
||
1587 pred
== ICmpInst::ICMP_NE
||
1588 pred
== ICmpInst::ICMP_SLE
);
1590 case ICmpInst::ICMP_UGT
:
1591 // If we know that C1 > C2, we can decide the result of this computation
1593 Result
= (pred
== ICmpInst::ICMP_UGT
||
1594 pred
== ICmpInst::ICMP_NE
||
1595 pred
== ICmpInst::ICMP_UGE
);
1597 case ICmpInst::ICMP_SGT
:
1598 // If we know that C1 > C2, we can decide the result of this computation
1600 Result
= (pred
== ICmpInst::ICMP_SGT
||
1601 pred
== ICmpInst::ICMP_NE
||
1602 pred
== ICmpInst::ICMP_SGE
);
1604 case ICmpInst::ICMP_ULE
:
1605 // If we know that C1 <= C2, we can only partially decide this relation.
1606 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
1607 if (pred
== ICmpInst::ICMP_ULT
) Result
= 1;
1609 case ICmpInst::ICMP_SLE
:
1610 // If we know that C1 <= C2, we can only partially decide this relation.
1611 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
1612 if (pred
== ICmpInst::ICMP_SLT
) Result
= 1;
1615 case ICmpInst::ICMP_UGE
:
1616 // If we know that C1 >= C2, we can only partially decide this relation.
1617 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
1618 if (pred
== ICmpInst::ICMP_UGT
) Result
= 1;
1620 case ICmpInst::ICMP_SGE
:
1621 // If we know that C1 >= C2, we can only partially decide this relation.
1622 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
1623 if (pred
== ICmpInst::ICMP_SGT
) Result
= 1;
1626 case ICmpInst::ICMP_NE
:
1627 // If we know that C1 != C2, we can only partially decide this relation.
1628 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
1629 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
1633 // If we evaluated the result, return it now.
1635 return ConstantInt::get(Type::Int1Ty
, Result
);
1637 if (!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) {
1638 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1639 // other way if possible.
1641 case ICmpInst::ICMP_EQ
:
1642 case ICmpInst::ICMP_NE
:
1643 // No change of predicate required.
1644 return ConstantFoldCompareInstruction(Context
, pred
, C2
, C1
);
1646 case ICmpInst::ICMP_ULT
:
1647 case ICmpInst::ICMP_SLT
:
1648 case ICmpInst::ICMP_UGT
:
1649 case ICmpInst::ICMP_SGT
:
1650 case ICmpInst::ICMP_ULE
:
1651 case ICmpInst::ICMP_SLE
:
1652 case ICmpInst::ICMP_UGE
:
1653 case ICmpInst::ICMP_SGE
:
1654 // Change the predicate as necessary to swap the operands.
1655 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
1656 return ConstantFoldCompareInstruction(Context
, pred
, C2
, C1
);
1658 default: // These predicates cannot be flopped around.
1666 Constant
*llvm::ConstantFoldGetElementPtr(LLVMContext
&Context
,
1668 Constant
* const *Idxs
,
1671 (NumIdx
== 1 && Idxs
[0]->isNullValue()))
1672 return const_cast<Constant
*>(C
);
1674 if (isa
<UndefValue
>(C
)) {
1675 const PointerType
*Ptr
= cast
<PointerType
>(C
->getType());
1676 const Type
*Ty
= GetElementPtrInst::getIndexedType(Ptr
,
1678 (Value
**)Idxs
+NumIdx
);
1679 assert(Ty
!= 0 && "Invalid indices for GEP!");
1680 return UndefValue::get(PointerType::get(Ty
, Ptr
->getAddressSpace()));
1683 Constant
*Idx0
= Idxs
[0];
1684 if (C
->isNullValue()) {
1686 for (unsigned i
= 0, e
= NumIdx
; i
!= e
; ++i
)
1687 if (!Idxs
[i
]->isNullValue()) {
1692 const PointerType
*Ptr
= cast
<PointerType
>(C
->getType());
1693 const Type
*Ty
= GetElementPtrInst::getIndexedType(Ptr
,
1695 (Value
**)Idxs
+NumIdx
);
1696 assert(Ty
!= 0 && "Invalid indices for GEP!");
1697 return ConstantPointerNull::get(
1698 PointerType::get(Ty
,Ptr
->getAddressSpace()));
1702 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(const_cast<Constant
*>(C
))) {
1703 // Combine Indices - If the source pointer to this getelementptr instruction
1704 // is a getelementptr instruction, combine the indices of the two
1705 // getelementptr instructions into a single instruction.
1707 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
1708 const Type
*LastTy
= 0;
1709 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
1713 if ((LastTy
&& isa
<ArrayType
>(LastTy
)) || Idx0
->isNullValue()) {
1714 SmallVector
<Value
*, 16> NewIndices
;
1715 NewIndices
.reserve(NumIdx
+ CE
->getNumOperands());
1716 for (unsigned i
= 1, e
= CE
->getNumOperands()-1; i
!= e
; ++i
)
1717 NewIndices
.push_back(CE
->getOperand(i
));
1719 // Add the last index of the source with the first index of the new GEP.
1720 // Make sure to handle the case when they are actually different types.
1721 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
1722 // Otherwise it must be an array.
1723 if (!Idx0
->isNullValue()) {
1724 const Type
*IdxTy
= Combined
->getType();
1725 if (IdxTy
!= Idx0
->getType()) {
1727 ConstantExpr::getSExtOrBitCast(Idx0
, Type::Int64Ty
);
1728 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
,
1730 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
1733 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
1737 NewIndices
.push_back(Combined
);
1738 NewIndices
.insert(NewIndices
.end(), Idxs
+1, Idxs
+NumIdx
);
1739 return ConstantExpr::getGetElementPtr(CE
->getOperand(0),
1745 // Implement folding of:
1746 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1748 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1750 if (CE
->isCast() && NumIdx
> 1 && Idx0
->isNullValue()) {
1751 if (const PointerType
*SPT
=
1752 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType()))
1753 if (const ArrayType
*SAT
= dyn_cast
<ArrayType
>(SPT
->getElementType()))
1754 if (const ArrayType
*CAT
=
1755 dyn_cast
<ArrayType
>(cast
<PointerType
>(C
->getType())->getElementType()))
1756 if (CAT
->getElementType() == SAT
->getElementType())
1757 return ConstantExpr::getGetElementPtr(
1758 (Constant
*)CE
->getOperand(0), Idxs
, NumIdx
);
1761 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1762 // Into: inttoptr (i64 0 to i8*)
1763 // This happens with pointers to member functions in C++.
1764 if (CE
->getOpcode() == Instruction::IntToPtr
&& NumIdx
== 1 &&
1765 isa
<ConstantInt
>(CE
->getOperand(0)) && isa
<ConstantInt
>(Idxs
[0]) &&
1766 cast
<PointerType
>(CE
->getType())->getElementType() == Type::Int8Ty
) {
1767 Constant
*Base
= CE
->getOperand(0);
1768 Constant
*Offset
= Idxs
[0];
1770 // Convert the smaller integer to the larger type.
1771 if (Offset
->getType()->getPrimitiveSizeInBits() <
1772 Base
->getType()->getPrimitiveSizeInBits())
1773 Offset
= ConstantExpr::getSExt(Offset
, Base
->getType());
1774 else if (Base
->getType()->getPrimitiveSizeInBits() <
1775 Offset
->getType()->getPrimitiveSizeInBits())
1776 Base
= ConstantExpr::getZExt(Base
, Offset
->getType());
1778 Base
= ConstantExpr::getAdd(Base
, Offset
);
1779 return ConstantExpr::getIntToPtr(Base
, CE
->getType());