It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / VMCore / ConstantFold.cpp
blobda9b6aa9784731844450de21ddda4c44f5245fd0
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include <limits>
35 using namespace llvm;
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
41 /// BitCastConstantVector - Convert the specified ConstantVector node to the
42 /// specified vector type. At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
44 static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
45 const VectorType *DstTy) {
46 // If this cast changes element count then we can't handle it here:
47 // doing so requires endianness information. This should be handled by
48 // Analysis/ConstantFolding.cpp
49 unsigned NumElts = DstTy->getNumElements();
50 if (NumElts != CV->getNumOperands())
51 return 0;
53 // Check to verify that all elements of the input are simple.
54 for (unsigned i = 0; i != NumElts; ++i) {
55 if (!isa<ConstantInt>(CV->getOperand(i)) &&
56 !isa<ConstantFP>(CV->getOperand(i)))
57 return 0;
60 // Bitcast each element now.
61 std::vector<Constant*> Result;
62 const Type *DstEltTy = DstTy->getElementType();
63 for (unsigned i = 0; i != NumElts; ++i)
64 Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
65 DstEltTy));
66 return ConstantVector::get(Result);
69 /// This function determines which opcode to use to fold two constant cast
70 /// expressions together. It uses CastInst::isEliminableCastPair to determine
71 /// the opcode. Consequently its just a wrapper around that function.
72 /// @brief Determine if it is valid to fold a cast of a cast
73 static unsigned
74 foldConstantCastPair(
75 unsigned opc, ///< opcode of the second cast constant expression
76 const ConstantExpr*Op, ///< the first cast constant expression
77 const Type *DstTy ///< desintation type of the first cast
78 ) {
79 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
80 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
81 assert(CastInst::isCast(opc) && "Invalid cast opcode");
83 // The the types and opcodes for the two Cast constant expressions
84 const Type *SrcTy = Op->getOperand(0)->getType();
85 const Type *MidTy = Op->getType();
86 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
87 Instruction::CastOps secondOp = Instruction::CastOps(opc);
89 // Let CastInst::isEliminableCastPair do the heavy lifting.
90 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
91 Type::Int64Ty);
94 static Constant *FoldBitCast(LLVMContext &Context,
95 Constant *V, const Type *DestTy) {
96 const Type *SrcTy = V->getType();
97 if (SrcTy == DestTy)
98 return V; // no-op cast
100 // Check to see if we are casting a pointer to an aggregate to a pointer to
101 // the first element. If so, return the appropriate GEP instruction.
102 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
103 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
104 if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
105 SmallVector<Value*, 8> IdxList;
106 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
107 const Type *ElTy = PTy->getElementType();
108 while (ElTy != DPTy->getElementType()) {
109 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
110 if (STy->getNumElements() == 0) break;
111 ElTy = STy->getElementType(0);
112 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
113 } else if (const SequentialType *STy =
114 dyn_cast<SequentialType>(ElTy)) {
115 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
116 ElTy = STy->getElementType();
117 IdxList.push_back(IdxList[0]);
118 } else {
119 break;
123 if (ElTy == DPTy->getElementType())
124 return ConstantExpr::getGetElementPtr(V, &IdxList[0],
125 IdxList.size());
128 // Handle casts from one vector constant to another. We know that the src
129 // and dest type have the same size (otherwise its an illegal cast).
130 if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
131 if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
132 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
133 "Not cast between same sized vectors!");
134 SrcTy = NULL;
135 // First, check for null. Undef is already handled.
136 if (isa<ConstantAggregateZero>(V))
137 return Constant::getNullValue(DestTy);
139 if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
140 return BitCastConstantVector(Context, CV, DestPTy);
143 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
144 // This allows for other simplifications (although some of them
145 // can only be handled by Analysis/ConstantFolding.cpp).
146 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
147 return ConstantExpr::getBitCast(
148 ConstantVector::get(&V, 1), DestPTy);
151 // Finally, implement bitcast folding now. The code below doesn't handle
152 // bitcast right.
153 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
154 return ConstantPointerNull::get(cast<PointerType>(DestTy));
156 // Handle integral constant input.
157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158 if (DestTy->isInteger())
159 // Integral -> Integral. This is a no-op because the bit widths must
160 // be the same. Consequently, we just fold to V.
161 return V;
163 if (DestTy->isFloatingPoint())
164 return ConstantFP::get(Context, APFloat(CI->getValue(),
165 DestTy != Type::PPC_FP128Ty));
167 // Otherwise, can't fold this (vector?)
168 return 0;
171 // Handle ConstantFP input.
172 if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
173 // FP -> Integral.
174 return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
176 return 0;
180 Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
181 unsigned opc, const Constant *V,
182 const Type *DestTy) {
183 if (isa<UndefValue>(V)) {
184 // zext(undef) = 0, because the top bits will be zero.
185 // sext(undef) = 0, because the top bits will all be the same.
186 // [us]itofp(undef) = 0, because the result value is bounded.
187 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
188 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
189 return Constant::getNullValue(DestTy);
190 return UndefValue::get(DestTy);
192 // No compile-time operations on this type yet.
193 if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
194 return 0;
196 // If the cast operand is a constant expression, there's a few things we can
197 // do to try to simplify it.
198 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
199 if (CE->isCast()) {
200 // Try hard to fold cast of cast because they are often eliminable.
201 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
202 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
203 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
204 // If all of the indexes in the GEP are null values, there is no pointer
205 // adjustment going on. We might as well cast the source pointer.
206 bool isAllNull = true;
207 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
208 if (!CE->getOperand(i)->isNullValue()) {
209 isAllNull = false;
210 break;
212 if (isAllNull)
213 // This is casting one pointer type to another, always BitCast
214 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
218 // If the cast operand is a constant vector, perform the cast by
219 // operating on each element. In the cast of bitcasts, the element
220 // count may be mismatched; don't attempt to handle that here.
221 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
222 if (isa<VectorType>(DestTy) &&
223 cast<VectorType>(DestTy)->getNumElements() ==
224 CV->getType()->getNumElements()) {
225 std::vector<Constant*> res;
226 const VectorType *DestVecTy = cast<VectorType>(DestTy);
227 const Type *DstEltTy = DestVecTy->getElementType();
228 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
229 res.push_back(ConstantExpr::getCast(opc,
230 CV->getOperand(i), DstEltTy));
231 return ConstantVector::get(DestVecTy, res);
234 // We actually have to do a cast now. Perform the cast according to the
235 // opcode specified.
236 switch (opc) {
237 case Instruction::FPTrunc:
238 case Instruction::FPExt:
239 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
240 bool ignored;
241 APFloat Val = FPC->getValueAPF();
242 Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
243 DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
244 DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
245 DestTy == Type::FP128Ty ? APFloat::IEEEquad :
246 APFloat::Bogus,
247 APFloat::rmNearestTiesToEven, &ignored);
248 return ConstantFP::get(Context, Val);
250 return 0; // Can't fold.
251 case Instruction::FPToUI:
252 case Instruction::FPToSI:
253 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
254 const APFloat &V = FPC->getValueAPF();
255 bool ignored;
256 uint64_t x[2];
257 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
258 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
259 APFloat::rmTowardZero, &ignored);
260 APInt Val(DestBitWidth, 2, x);
261 return ConstantInt::get(Context, Val);
263 return 0; // Can't fold.
264 case Instruction::IntToPtr: //always treated as unsigned
265 if (V->isNullValue()) // Is it an integral null value?
266 return ConstantPointerNull::get(cast<PointerType>(DestTy));
267 return 0; // Other pointer types cannot be casted
268 case Instruction::PtrToInt: // always treated as unsigned
269 if (V->isNullValue()) // is it a null pointer value?
270 return ConstantInt::get(DestTy, 0);
271 return 0; // Other pointer types cannot be casted
272 case Instruction::UIToFP:
273 case Instruction::SIToFP:
274 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
275 APInt api = CI->getValue();
276 const uint64_t zero[] = {0, 0};
277 APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
278 2, zero));
279 (void)apf.convertFromAPInt(api,
280 opc==Instruction::SIToFP,
281 APFloat::rmNearestTiesToEven);
282 return ConstantFP::get(Context, apf);
284 return 0;
285 case Instruction::ZExt:
286 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
287 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
288 APInt Result(CI->getValue());
289 Result.zext(BitWidth);
290 return ConstantInt::get(Context, Result);
292 return 0;
293 case Instruction::SExt:
294 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
295 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
296 APInt Result(CI->getValue());
297 Result.sext(BitWidth);
298 return ConstantInt::get(Context, Result);
300 return 0;
301 case Instruction::Trunc:
302 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
303 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
304 APInt Result(CI->getValue());
305 Result.trunc(BitWidth);
306 return ConstantInt::get(Context, Result);
308 return 0;
309 case Instruction::BitCast:
310 return FoldBitCast(Context, const_cast<Constant*>(V), DestTy);
311 default:
312 assert(!"Invalid CE CastInst opcode");
313 break;
316 llvm_unreachable("Failed to cast constant expression");
317 return 0;
320 Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
321 const Constant *Cond,
322 const Constant *V1,
323 const Constant *V2) {
324 if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
325 return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
327 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
328 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
329 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
330 if (V1 == V2) return const_cast<Constant*>(V1);
331 return 0;
334 Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
335 const Constant *Val,
336 const Constant *Idx) {
337 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
338 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
339 if (Val->isNullValue()) // ee(zero, x) -> zero
340 return Constant::getNullValue(
341 cast<VectorType>(Val->getType())->getElementType());
343 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
344 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
345 return CVal->getOperand(CIdx->getZExtValue());
346 } else if (isa<UndefValue>(Idx)) {
347 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
348 return CVal->getOperand(0);
351 return 0;
354 Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
355 const Constant *Val,
356 const Constant *Elt,
357 const Constant *Idx) {
358 const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
359 if (!CIdx) return 0;
360 APInt idxVal = CIdx->getValue();
361 if (isa<UndefValue>(Val)) {
362 // Insertion of scalar constant into vector undef
363 // Optimize away insertion of undef
364 if (isa<UndefValue>(Elt))
365 return const_cast<Constant*>(Val);
366 // Otherwise break the aggregate undef into multiple undefs and do
367 // the insertion
368 unsigned numOps =
369 cast<VectorType>(Val->getType())->getNumElements();
370 std::vector<Constant*> Ops;
371 Ops.reserve(numOps);
372 for (unsigned i = 0; i < numOps; ++i) {
373 const Constant *Op =
374 (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
375 Ops.push_back(const_cast<Constant*>(Op));
377 return ConstantVector::get(Ops);
379 if (isa<ConstantAggregateZero>(Val)) {
380 // Insertion of scalar constant into vector aggregate zero
381 // Optimize away insertion of zero
382 if (Elt->isNullValue())
383 return const_cast<Constant*>(Val);
384 // Otherwise break the aggregate zero into multiple zeros and do
385 // the insertion
386 unsigned numOps =
387 cast<VectorType>(Val->getType())->getNumElements();
388 std::vector<Constant*> Ops;
389 Ops.reserve(numOps);
390 for (unsigned i = 0; i < numOps; ++i) {
391 const Constant *Op =
392 (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
393 Ops.push_back(const_cast<Constant*>(Op));
395 return ConstantVector::get(Ops);
397 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
398 // Insertion of scalar constant into vector constant
399 std::vector<Constant*> Ops;
400 Ops.reserve(CVal->getNumOperands());
401 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
402 const Constant *Op =
403 (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
404 Ops.push_back(const_cast<Constant*>(Op));
406 return ConstantVector::get(Ops);
409 return 0;
412 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
413 /// return the specified element value. Otherwise return null.
414 static Constant *GetVectorElement(LLVMContext &Context, const Constant *C,
415 unsigned EltNo) {
416 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
417 return CV->getOperand(EltNo);
419 const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
420 if (isa<ConstantAggregateZero>(C))
421 return Constant::getNullValue(EltTy);
422 if (isa<UndefValue>(C))
423 return UndefValue::get(EltTy);
424 return 0;
427 Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
428 const Constant *V1,
429 const Constant *V2,
430 const Constant *Mask) {
431 // Undefined shuffle mask -> undefined value.
432 if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
434 unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
435 unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
436 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
438 // Loop over the shuffle mask, evaluating each element.
439 SmallVector<Constant*, 32> Result;
440 for (unsigned i = 0; i != MaskNumElts; ++i) {
441 Constant *InElt = GetVectorElement(Context, Mask, i);
442 if (InElt == 0) return 0;
444 if (isa<UndefValue>(InElt))
445 InElt = UndefValue::get(EltTy);
446 else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
447 unsigned Elt = CI->getZExtValue();
448 if (Elt >= SrcNumElts*2)
449 InElt = UndefValue::get(EltTy);
450 else if (Elt >= SrcNumElts)
451 InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
452 else
453 InElt = GetVectorElement(Context, V1, Elt);
454 if (InElt == 0) return 0;
455 } else {
456 // Unknown value.
457 return 0;
459 Result.push_back(InElt);
462 return ConstantVector::get(&Result[0], Result.size());
465 Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
466 const Constant *Agg,
467 const unsigned *Idxs,
468 unsigned NumIdx) {
469 // Base case: no indices, so return the entire value.
470 if (NumIdx == 0)
471 return const_cast<Constant *>(Agg);
473 if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef
474 return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
475 Idxs,
476 Idxs + NumIdx));
478 if (isa<ConstantAggregateZero>(Agg)) // ev(0, x) -> 0
479 return
480 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
481 Idxs,
482 Idxs + NumIdx));
484 // Otherwise recurse.
485 return ConstantFoldExtractValueInstruction(Context, Agg->getOperand(*Idxs),
486 Idxs+1, NumIdx-1);
489 Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
490 const Constant *Agg,
491 const Constant *Val,
492 const unsigned *Idxs,
493 unsigned NumIdx) {
494 // Base case: no indices, so replace the entire value.
495 if (NumIdx == 0)
496 return const_cast<Constant *>(Val);
498 if (isa<UndefValue>(Agg)) {
499 // Insertion of constant into aggregate undef
500 // Optimize away insertion of undef
501 if (isa<UndefValue>(Val))
502 return const_cast<Constant*>(Agg);
503 // Otherwise break the aggregate undef into multiple undefs and do
504 // the insertion
505 const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
506 unsigned numOps;
507 if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
508 numOps = AR->getNumElements();
509 else
510 numOps = cast<StructType>(AggTy)->getNumElements();
511 std::vector<Constant*> Ops(numOps);
512 for (unsigned i = 0; i < numOps; ++i) {
513 const Type *MemberTy = AggTy->getTypeAtIndex(i);
514 const Constant *Op =
515 (*Idxs == i) ?
516 ConstantFoldInsertValueInstruction(Context, UndefValue::get(MemberTy),
517 Val, Idxs+1, NumIdx-1) :
518 UndefValue::get(MemberTy);
519 Ops[i] = const_cast<Constant*>(Op);
521 if (isa<StructType>(AggTy))
522 return ConstantStruct::get(Context, Ops);
523 else
524 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
526 if (isa<ConstantAggregateZero>(Agg)) {
527 // Insertion of constant into aggregate zero
528 // Optimize away insertion of zero
529 if (Val->isNullValue())
530 return const_cast<Constant*>(Agg);
531 // Otherwise break the aggregate zero into multiple zeros and do
532 // the insertion
533 const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
534 unsigned numOps;
535 if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
536 numOps = AR->getNumElements();
537 else
538 numOps = cast<StructType>(AggTy)->getNumElements();
539 std::vector<Constant*> Ops(numOps);
540 for (unsigned i = 0; i < numOps; ++i) {
541 const Type *MemberTy = AggTy->getTypeAtIndex(i);
542 const Constant *Op =
543 (*Idxs == i) ?
544 ConstantFoldInsertValueInstruction(Context,
545 Constant::getNullValue(MemberTy),
546 Val, Idxs+1, NumIdx-1) :
547 Constant::getNullValue(MemberTy);
548 Ops[i] = const_cast<Constant*>(Op);
550 if (isa<StructType>(AggTy))
551 return ConstantStruct::get(Context, Ops);
552 else
553 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
555 if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
556 // Insertion of constant into aggregate constant
557 std::vector<Constant*> Ops(Agg->getNumOperands());
558 for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
559 const Constant *Op =
560 (*Idxs == i) ?
561 ConstantFoldInsertValueInstruction(Context, Agg->getOperand(i),
562 Val, Idxs+1, NumIdx-1) :
563 Agg->getOperand(i);
564 Ops[i] = const_cast<Constant*>(Op);
566 Constant *C;
567 if (isa<StructType>(Agg->getType()))
568 C = ConstantStruct::get(Context, Ops);
569 else
570 C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
571 return C;
574 return 0;
578 Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
579 unsigned Opcode,
580 const Constant *C1,
581 const Constant *C2) {
582 // No compile-time operations on this type yet.
583 if (C1->getType() == Type::PPC_FP128Ty)
584 return 0;
586 // Handle UndefValue up front
587 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
588 switch (Opcode) {
589 case Instruction::Xor:
590 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
591 // Handle undef ^ undef -> 0 special case. This is a common
592 // idiom (misuse).
593 return Constant::getNullValue(C1->getType());
594 // Fallthrough
595 case Instruction::Add:
596 case Instruction::Sub:
597 return UndefValue::get(C1->getType());
598 case Instruction::Mul:
599 case Instruction::And:
600 return Constant::getNullValue(C1->getType());
601 case Instruction::UDiv:
602 case Instruction::SDiv:
603 case Instruction::URem:
604 case Instruction::SRem:
605 if (!isa<UndefValue>(C2)) // undef / X -> 0
606 return Constant::getNullValue(C1->getType());
607 return const_cast<Constant*>(C2); // X / undef -> undef
608 case Instruction::Or: // X | undef -> -1
609 if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
610 return Constant::getAllOnesValue(PTy);
611 return Constant::getAllOnesValue(C1->getType());
612 case Instruction::LShr:
613 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
614 return const_cast<Constant*>(C1); // undef lshr undef -> undef
615 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
616 // undef lshr X -> 0
617 case Instruction::AShr:
618 if (!isa<UndefValue>(C2))
619 return const_cast<Constant*>(C1); // undef ashr X --> undef
620 else if (isa<UndefValue>(C1))
621 return const_cast<Constant*>(C1); // undef ashr undef -> undef
622 else
623 return const_cast<Constant*>(C1); // X ashr undef --> X
624 case Instruction::Shl:
625 // undef << X -> 0 or X << undef -> 0
626 return Constant::getNullValue(C1->getType());
630 // Handle simplifications when the RHS is a constant int.
631 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
632 switch (Opcode) {
633 case Instruction::Add:
634 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X
635 break;
636 case Instruction::Sub:
637 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X
638 break;
639 case Instruction::Mul:
640 if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0
641 if (CI2->equalsInt(1))
642 return const_cast<Constant*>(C1); // X * 1 == X
643 break;
644 case Instruction::UDiv:
645 case Instruction::SDiv:
646 if (CI2->equalsInt(1))
647 return const_cast<Constant*>(C1); // X / 1 == X
648 if (CI2->equalsInt(0))
649 return UndefValue::get(CI2->getType()); // X / 0 == undef
650 break;
651 case Instruction::URem:
652 case Instruction::SRem:
653 if (CI2->equalsInt(1))
654 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
655 if (CI2->equalsInt(0))
656 return UndefValue::get(CI2->getType()); // X % 0 == undef
657 break;
658 case Instruction::And:
659 if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
660 if (CI2->isAllOnesValue())
661 return const_cast<Constant*>(C1); // X & -1 == X
663 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
664 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
665 if (CE1->getOpcode() == Instruction::ZExt) {
666 unsigned DstWidth = CI2->getType()->getBitWidth();
667 unsigned SrcWidth =
668 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
669 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
670 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
671 return const_cast<Constant*>(C1);
674 // If and'ing the address of a global with a constant, fold it.
675 if (CE1->getOpcode() == Instruction::PtrToInt &&
676 isa<GlobalValue>(CE1->getOperand(0))) {
677 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
679 // Functions are at least 4-byte aligned.
680 unsigned GVAlign = GV->getAlignment();
681 if (isa<Function>(GV))
682 GVAlign = std::max(GVAlign, 4U);
684 if (GVAlign > 1) {
685 unsigned DstWidth = CI2->getType()->getBitWidth();
686 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
687 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
689 // If checking bits we know are clear, return zero.
690 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
691 return Constant::getNullValue(CI2->getType());
695 break;
696 case Instruction::Or:
697 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X
698 if (CI2->isAllOnesValue())
699 return const_cast<Constant*>(C2); // X | -1 == -1
700 break;
701 case Instruction::Xor:
702 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X
703 break;
704 case Instruction::AShr:
705 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
706 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
707 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
708 return ConstantExpr::getLShr(const_cast<Constant*>(C1),
709 const_cast<Constant*>(C2));
710 break;
714 // At this point we know neither constant is an UndefValue.
715 if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
716 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
717 using namespace APIntOps;
718 const APInt &C1V = CI1->getValue();
719 const APInt &C2V = CI2->getValue();
720 switch (Opcode) {
721 default:
722 break;
723 case Instruction::Add:
724 return ConstantInt::get(Context, C1V + C2V);
725 case Instruction::Sub:
726 return ConstantInt::get(Context, C1V - C2V);
727 case Instruction::Mul:
728 return ConstantInt::get(Context, C1V * C2V);
729 case Instruction::UDiv:
730 assert(!CI2->isNullValue() && "Div by zero handled above");
731 return ConstantInt::get(Context, C1V.udiv(C2V));
732 case Instruction::SDiv:
733 assert(!CI2->isNullValue() && "Div by zero handled above");
734 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
735 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
736 return ConstantInt::get(Context, C1V.sdiv(C2V));
737 case Instruction::URem:
738 assert(!CI2->isNullValue() && "Div by zero handled above");
739 return ConstantInt::get(Context, C1V.urem(C2V));
740 case Instruction::SRem:
741 assert(!CI2->isNullValue() && "Div by zero handled above");
742 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
743 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
744 return ConstantInt::get(Context, C1V.srem(C2V));
745 case Instruction::And:
746 return ConstantInt::get(Context, C1V & C2V);
747 case Instruction::Or:
748 return ConstantInt::get(Context, C1V | C2V);
749 case Instruction::Xor:
750 return ConstantInt::get(Context, C1V ^ C2V);
751 case Instruction::Shl: {
752 uint32_t shiftAmt = C2V.getZExtValue();
753 if (shiftAmt < C1V.getBitWidth())
754 return ConstantInt::get(Context, C1V.shl(shiftAmt));
755 else
756 return UndefValue::get(C1->getType()); // too big shift is undef
758 case Instruction::LShr: {
759 uint32_t shiftAmt = C2V.getZExtValue();
760 if (shiftAmt < C1V.getBitWidth())
761 return ConstantInt::get(Context, C1V.lshr(shiftAmt));
762 else
763 return UndefValue::get(C1->getType()); // too big shift is undef
765 case Instruction::AShr: {
766 uint32_t shiftAmt = C2V.getZExtValue();
767 if (shiftAmt < C1V.getBitWidth())
768 return ConstantInt::get(Context, C1V.ashr(shiftAmt));
769 else
770 return UndefValue::get(C1->getType()); // too big shift is undef
775 switch (Opcode) {
776 case Instruction::SDiv:
777 case Instruction::UDiv:
778 case Instruction::URem:
779 case Instruction::SRem:
780 case Instruction::LShr:
781 case Instruction::AShr:
782 case Instruction::Shl:
783 if (CI1->equalsInt(0)) return const_cast<Constant*>(C1);
784 break;
785 default:
786 break;
788 } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
789 if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
790 APFloat C1V = CFP1->getValueAPF();
791 APFloat C2V = CFP2->getValueAPF();
792 APFloat C3V = C1V; // copy for modification
793 switch (Opcode) {
794 default:
795 break;
796 case Instruction::FAdd:
797 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
798 return ConstantFP::get(Context, C3V);
799 case Instruction::FSub:
800 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
801 return ConstantFP::get(Context, C3V);
802 case Instruction::FMul:
803 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
804 return ConstantFP::get(Context, C3V);
805 case Instruction::FDiv:
806 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
807 return ConstantFP::get(Context, C3V);
808 case Instruction::FRem:
809 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
810 return ConstantFP::get(Context, C3V);
813 } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
814 const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
815 const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
816 if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
817 (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
818 std::vector<Constant*> Res;
819 const Type* EltTy = VTy->getElementType();
820 const Constant *C1 = 0;
821 const Constant *C2 = 0;
822 switch (Opcode) {
823 default:
824 break;
825 case Instruction::Add:
826 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
827 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
828 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
829 Res.push_back(ConstantExpr::getAdd(const_cast<Constant*>(C1),
830 const_cast<Constant*>(C2)));
832 return ConstantVector::get(Res);
833 case Instruction::FAdd:
834 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
835 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
836 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
837 Res.push_back(ConstantExpr::getFAdd(const_cast<Constant*>(C1),
838 const_cast<Constant*>(C2)));
840 return ConstantVector::get(Res);
841 case Instruction::Sub:
842 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
843 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
844 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
845 Res.push_back(ConstantExpr::getSub(const_cast<Constant*>(C1),
846 const_cast<Constant*>(C2)));
848 return ConstantVector::get(Res);
849 case Instruction::FSub:
850 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
851 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
852 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
853 Res.push_back(ConstantExpr::getFSub(const_cast<Constant*>(C1),
854 const_cast<Constant*>(C2)));
856 return ConstantVector::get(Res);
857 case Instruction::Mul:
858 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
859 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
860 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
861 Res.push_back(ConstantExpr::getMul(const_cast<Constant*>(C1),
862 const_cast<Constant*>(C2)));
864 return ConstantVector::get(Res);
865 case Instruction::FMul:
866 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
867 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
868 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
869 Res.push_back(ConstantExpr::getFMul(const_cast<Constant*>(C1),
870 const_cast<Constant*>(C2)));
872 return ConstantVector::get(Res);
873 case Instruction::UDiv:
874 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
875 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
876 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
877 Res.push_back(ConstantExpr::getUDiv(const_cast<Constant*>(C1),
878 const_cast<Constant*>(C2)));
880 return ConstantVector::get(Res);
881 case Instruction::SDiv:
882 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
883 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
884 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
885 Res.push_back(ConstantExpr::getSDiv(const_cast<Constant*>(C1),
886 const_cast<Constant*>(C2)));
888 return ConstantVector::get(Res);
889 case Instruction::FDiv:
890 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
891 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
892 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
893 Res.push_back(ConstantExpr::getFDiv(const_cast<Constant*>(C1),
894 const_cast<Constant*>(C2)));
896 return ConstantVector::get(Res);
897 case Instruction::URem:
898 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
899 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
900 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
901 Res.push_back(ConstantExpr::getURem(const_cast<Constant*>(C1),
902 const_cast<Constant*>(C2)));
904 return ConstantVector::get(Res);
905 case Instruction::SRem:
906 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
907 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
908 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
909 Res.push_back(ConstantExpr::getSRem(const_cast<Constant*>(C1),
910 const_cast<Constant*>(C2)));
912 return ConstantVector::get(Res);
913 case Instruction::FRem:
914 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
915 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
916 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
917 Res.push_back(ConstantExpr::getFRem(const_cast<Constant*>(C1),
918 const_cast<Constant*>(C2)));
920 return ConstantVector::get(Res);
921 case Instruction::And:
922 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
923 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
924 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
925 Res.push_back(ConstantExpr::getAnd(const_cast<Constant*>(C1),
926 const_cast<Constant*>(C2)));
928 return ConstantVector::get(Res);
929 case Instruction::Or:
930 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
931 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
932 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
933 Res.push_back(ConstantExpr::getOr(const_cast<Constant*>(C1),
934 const_cast<Constant*>(C2)));
936 return ConstantVector::get(Res);
937 case Instruction::Xor:
938 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
939 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
940 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
941 Res.push_back(ConstantExpr::getXor(const_cast<Constant*>(C1),
942 const_cast<Constant*>(C2)));
944 return ConstantVector::get(Res);
945 case Instruction::LShr:
946 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
947 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
948 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
949 Res.push_back(ConstantExpr::getLShr(const_cast<Constant*>(C1),
950 const_cast<Constant*>(C2)));
952 return ConstantVector::get(Res);
953 case Instruction::AShr:
954 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
955 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
956 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
957 Res.push_back(ConstantExpr::getAShr(const_cast<Constant*>(C1),
958 const_cast<Constant*>(C2)));
960 return ConstantVector::get(Res);
961 case Instruction::Shl:
962 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
963 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
964 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
965 Res.push_back(ConstantExpr::getShl(const_cast<Constant*>(C1),
966 const_cast<Constant*>(C2)));
968 return ConstantVector::get(Res);
973 if (isa<ConstantExpr>(C1)) {
974 // There are many possible foldings we could do here. We should probably
975 // at least fold add of a pointer with an integer into the appropriate
976 // getelementptr. This will improve alias analysis a bit.
977 } else if (isa<ConstantExpr>(C2)) {
978 // If C2 is a constant expr and C1 isn't, flop them around and fold the
979 // other way if possible.
980 switch (Opcode) {
981 case Instruction::Add:
982 case Instruction::FAdd:
983 case Instruction::Mul:
984 case Instruction::FMul:
985 case Instruction::And:
986 case Instruction::Or:
987 case Instruction::Xor:
988 // No change of opcode required.
989 return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
991 case Instruction::Shl:
992 case Instruction::LShr:
993 case Instruction::AShr:
994 case Instruction::Sub:
995 case Instruction::FSub:
996 case Instruction::SDiv:
997 case Instruction::UDiv:
998 case Instruction::FDiv:
999 case Instruction::URem:
1000 case Instruction::SRem:
1001 case Instruction::FRem:
1002 default: // These instructions cannot be flopped around.
1003 break;
1007 // We don't know how to fold this.
1008 return 0;
1011 /// isZeroSizedType - This type is zero sized if its an array or structure of
1012 /// zero sized types. The only leaf zero sized type is an empty structure.
1013 static bool isMaybeZeroSizedType(const Type *Ty) {
1014 if (isa<OpaqueType>(Ty)) return true; // Can't say.
1015 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1017 // If all of elements have zero size, this does too.
1018 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1019 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1020 return true;
1022 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1023 return isMaybeZeroSizedType(ATy->getElementType());
1025 return false;
1028 /// IdxCompare - Compare the two constants as though they were getelementptr
1029 /// indices. This allows coersion of the types to be the same thing.
1031 /// If the two constants are the "same" (after coersion), return 0. If the
1032 /// first is less than the second, return -1, if the second is less than the
1033 /// first, return 1. If the constants are not integral, return -2.
1035 static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
1036 const Type *ElTy) {
1037 if (C1 == C2) return 0;
1039 // Ok, we found a different index. If they are not ConstantInt, we can't do
1040 // anything with them.
1041 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1042 return -2; // don't know!
1044 // Ok, we have two differing integer indices. Sign extend them to be the same
1045 // type. Long is always big enough, so we use it.
1046 if (C1->getType() != Type::Int64Ty)
1047 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
1049 if (C2->getType() != Type::Int64Ty)
1050 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
1052 if (C1 == C2) return 0; // They are equal
1054 // If the type being indexed over is really just a zero sized type, there is
1055 // no pointer difference being made here.
1056 if (isMaybeZeroSizedType(ElTy))
1057 return -2; // dunno.
1059 // If they are really different, now that they are the same type, then we
1060 // found a difference!
1061 if (cast<ConstantInt>(C1)->getSExtValue() <
1062 cast<ConstantInt>(C2)->getSExtValue())
1063 return -1;
1064 else
1065 return 1;
1068 /// evaluateFCmpRelation - This function determines if there is anything we can
1069 /// decide about the two constants provided. This doesn't need to handle simple
1070 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1071 /// If we can determine that the two constants have a particular relation to
1072 /// each other, we should return the corresponding FCmpInst predicate,
1073 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1074 /// ConstantFoldCompareInstruction.
1076 /// To simplify this code we canonicalize the relation so that the first
1077 /// operand is always the most "complex" of the two. We consider ConstantFP
1078 /// to be the simplest, and ConstantExprs to be the most complex.
1079 static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
1080 const Constant *V1,
1081 const Constant *V2) {
1082 assert(V1->getType() == V2->getType() &&
1083 "Cannot compare values of different types!");
1085 // No compile-time operations on this type yet.
1086 if (V1->getType() == Type::PPC_FP128Ty)
1087 return FCmpInst::BAD_FCMP_PREDICATE;
1089 // Handle degenerate case quickly
1090 if (V1 == V2) return FCmpInst::FCMP_OEQ;
1092 if (!isa<ConstantExpr>(V1)) {
1093 if (!isa<ConstantExpr>(V2)) {
1094 // We distilled thisUse the standard constant folder for a few cases
1095 ConstantInt *R = 0;
1096 Constant *C1 = const_cast<Constant*>(V1);
1097 Constant *C2 = const_cast<Constant*>(V2);
1098 R = dyn_cast<ConstantInt>(
1099 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
1100 if (R && !R->isZero())
1101 return FCmpInst::FCMP_OEQ;
1102 R = dyn_cast<ConstantInt>(
1103 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
1104 if (R && !R->isZero())
1105 return FCmpInst::FCMP_OLT;
1106 R = dyn_cast<ConstantInt>(
1107 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
1108 if (R && !R->isZero())
1109 return FCmpInst::FCMP_OGT;
1111 // Nothing more we can do
1112 return FCmpInst::BAD_FCMP_PREDICATE;
1115 // If the first operand is simple and second is ConstantExpr, swap operands.
1116 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
1117 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1118 return FCmpInst::getSwappedPredicate(SwappedRelation);
1119 } else {
1120 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1121 // constantexpr or a simple constant.
1122 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1123 switch (CE1->getOpcode()) {
1124 case Instruction::FPTrunc:
1125 case Instruction::FPExt:
1126 case Instruction::UIToFP:
1127 case Instruction::SIToFP:
1128 // We might be able to do something with these but we don't right now.
1129 break;
1130 default:
1131 break;
1134 // There are MANY other foldings that we could perform here. They will
1135 // probably be added on demand, as they seem needed.
1136 return FCmpInst::BAD_FCMP_PREDICATE;
1139 /// evaluateICmpRelation - This function determines if there is anything we can
1140 /// decide about the two constants provided. This doesn't need to handle simple
1141 /// things like integer comparisons, but should instead handle ConstantExprs
1142 /// and GlobalValues. If we can determine that the two constants have a
1143 /// particular relation to each other, we should return the corresponding ICmp
1144 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1146 /// To simplify this code we canonicalize the relation so that the first
1147 /// operand is always the most "complex" of the two. We consider simple
1148 /// constants (like ConstantInt) to be the simplest, followed by
1149 /// GlobalValues, followed by ConstantExpr's (the most complex).
1151 static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
1152 const Constant *V1,
1153 const Constant *V2,
1154 bool isSigned) {
1155 assert(V1->getType() == V2->getType() &&
1156 "Cannot compare different types of values!");
1157 if (V1 == V2) return ICmpInst::ICMP_EQ;
1159 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1160 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1161 // We distilled this down to a simple case, use the standard constant
1162 // folder.
1163 ConstantInt *R = 0;
1164 Constant *C1 = const_cast<Constant*>(V1);
1165 Constant *C2 = const_cast<Constant*>(V2);
1166 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1167 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1168 if (R && !R->isZero())
1169 return pred;
1170 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1171 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1172 if (R && !R->isZero())
1173 return pred;
1174 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1175 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1176 if (R && !R->isZero())
1177 return pred;
1179 // If we couldn't figure it out, bail.
1180 return ICmpInst::BAD_ICMP_PREDICATE;
1183 // If the first operand is simple, swap operands.
1184 ICmpInst::Predicate SwappedRelation =
1185 evaluateICmpRelation(Context, V2, V1, isSigned);
1186 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1187 return ICmpInst::getSwappedPredicate(SwappedRelation);
1189 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1190 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1191 ICmpInst::Predicate SwappedRelation =
1192 evaluateICmpRelation(Context, V2, V1, isSigned);
1193 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1194 return ICmpInst::getSwappedPredicate(SwappedRelation);
1195 else
1196 return ICmpInst::BAD_ICMP_PREDICATE;
1199 // Now we know that the RHS is a GlobalValue or simple constant,
1200 // which (since the types must match) means that it's a ConstantPointerNull.
1201 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1202 // Don't try to decide equality of aliases.
1203 if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1204 if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1205 return ICmpInst::ICMP_NE;
1206 } else {
1207 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1208 // GlobalVals can never be null. Don't try to evaluate aliases.
1209 if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1210 return ICmpInst::ICMP_NE;
1212 } else {
1213 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1214 // constantexpr, a CPR, or a simple constant.
1215 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1216 const Constant *CE1Op0 = CE1->getOperand(0);
1218 switch (CE1->getOpcode()) {
1219 case Instruction::Trunc:
1220 case Instruction::FPTrunc:
1221 case Instruction::FPExt:
1222 case Instruction::FPToUI:
1223 case Instruction::FPToSI:
1224 break; // We can't evaluate floating point casts or truncations.
1226 case Instruction::UIToFP:
1227 case Instruction::SIToFP:
1228 case Instruction::BitCast:
1229 case Instruction::ZExt:
1230 case Instruction::SExt:
1231 // If the cast is not actually changing bits, and the second operand is a
1232 // null pointer, do the comparison with the pre-casted value.
1233 if (V2->isNullValue() &&
1234 (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1235 bool sgnd = isSigned;
1236 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1237 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1238 return evaluateICmpRelation(Context, CE1Op0,
1239 Constant::getNullValue(CE1Op0->getType()),
1240 sgnd);
1243 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1244 // from the same type as the src of the LHS, evaluate the inputs. This is
1245 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1246 // which happens a lot in compilers with tagged integers.
1247 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1248 if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1249 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1250 CE1->getOperand(0)->getType()->isInteger()) {
1251 bool sgnd = isSigned;
1252 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1253 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1254 return evaluateICmpRelation(Context, CE1->getOperand(0),
1255 CE2->getOperand(0), sgnd);
1257 break;
1259 case Instruction::GetElementPtr:
1260 // Ok, since this is a getelementptr, we know that the constant has a
1261 // pointer type. Check the various cases.
1262 if (isa<ConstantPointerNull>(V2)) {
1263 // If we are comparing a GEP to a null pointer, check to see if the base
1264 // of the GEP equals the null pointer.
1265 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1266 if (GV->hasExternalWeakLinkage())
1267 // Weak linkage GVals could be zero or not. We're comparing that
1268 // to null pointer so its greater-or-equal
1269 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1270 else
1271 // If its not weak linkage, the GVal must have a non-zero address
1272 // so the result is greater-than
1273 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1274 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1275 // If we are indexing from a null pointer, check to see if we have any
1276 // non-zero indices.
1277 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1278 if (!CE1->getOperand(i)->isNullValue())
1279 // Offsetting from null, must not be equal.
1280 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1281 // Only zero indexes from null, must still be zero.
1282 return ICmpInst::ICMP_EQ;
1284 // Otherwise, we can't really say if the first operand is null or not.
1285 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1286 if (isa<ConstantPointerNull>(CE1Op0)) {
1287 if (CPR2->hasExternalWeakLinkage())
1288 // Weak linkage GVals could be zero or not. We're comparing it to
1289 // a null pointer, so its less-or-equal
1290 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1291 else
1292 // If its not weak linkage, the GVal must have a non-zero address
1293 // so the result is less-than
1294 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1295 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1296 if (CPR1 == CPR2) {
1297 // If this is a getelementptr of the same global, then it must be
1298 // different. Because the types must match, the getelementptr could
1299 // only have at most one index, and because we fold getelementptr's
1300 // with a single zero index, it must be nonzero.
1301 assert(CE1->getNumOperands() == 2 &&
1302 !CE1->getOperand(1)->isNullValue() &&
1303 "Suprising getelementptr!");
1304 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1305 } else {
1306 // If they are different globals, we don't know what the value is,
1307 // but they can't be equal.
1308 return ICmpInst::ICMP_NE;
1311 } else {
1312 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1313 const Constant *CE2Op0 = CE2->getOperand(0);
1315 // There are MANY other foldings that we could perform here. They will
1316 // probably be added on demand, as they seem needed.
1317 switch (CE2->getOpcode()) {
1318 default: break;
1319 case Instruction::GetElementPtr:
1320 // By far the most common case to handle is when the base pointers are
1321 // obviously to the same or different globals.
1322 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1323 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1324 return ICmpInst::ICMP_NE;
1325 // Ok, we know that both getelementptr instructions are based on the
1326 // same global. From this, we can precisely determine the relative
1327 // ordering of the resultant pointers.
1328 unsigned i = 1;
1330 // Compare all of the operands the GEP's have in common.
1331 gep_type_iterator GTI = gep_type_begin(CE1);
1332 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1333 ++i, ++GTI)
1334 switch (IdxCompare(Context, CE1->getOperand(i),
1335 CE2->getOperand(i), GTI.getIndexedType())) {
1336 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1337 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1338 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1341 // Ok, we ran out of things they have in common. If any leftovers
1342 // are non-zero then we have a difference, otherwise we are equal.
1343 for (; i < CE1->getNumOperands(); ++i)
1344 if (!CE1->getOperand(i)->isNullValue()) {
1345 if (isa<ConstantInt>(CE1->getOperand(i)))
1346 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1347 else
1348 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1351 for (; i < CE2->getNumOperands(); ++i)
1352 if (!CE2->getOperand(i)->isNullValue()) {
1353 if (isa<ConstantInt>(CE2->getOperand(i)))
1354 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1355 else
1356 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1358 return ICmpInst::ICMP_EQ;
1362 default:
1363 break;
1367 return ICmpInst::BAD_ICMP_PREDICATE;
1370 Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
1371 unsigned short pred,
1372 const Constant *C1,
1373 const Constant *C2) {
1374 const Type *ResultTy;
1375 if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1376 ResultTy = VectorType::get(Type::Int1Ty, VT->getNumElements());
1377 else
1378 ResultTy = Type::Int1Ty;
1380 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1381 if (pred == FCmpInst::FCMP_FALSE)
1382 return Constant::getNullValue(ResultTy);
1384 if (pred == FCmpInst::FCMP_TRUE)
1385 return Constant::getAllOnesValue(ResultTy);
1387 // Handle some degenerate cases first
1388 if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1389 return UndefValue::get(ResultTy);
1391 // No compile-time operations on this type yet.
1392 if (C1->getType() == Type::PPC_FP128Ty)
1393 return 0;
1395 // icmp eq/ne(null,GV) -> false/true
1396 if (C1->isNullValue()) {
1397 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1398 // Don't try to evaluate aliases. External weak GV can be null.
1399 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1400 if (pred == ICmpInst::ICMP_EQ)
1401 return ConstantInt::getFalse(Context);
1402 else if (pred == ICmpInst::ICMP_NE)
1403 return ConstantInt::getTrue(Context);
1405 // icmp eq/ne(GV,null) -> false/true
1406 } else if (C2->isNullValue()) {
1407 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1408 // Don't try to evaluate aliases. External weak GV can be null.
1409 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1410 if (pred == ICmpInst::ICMP_EQ)
1411 return ConstantInt::getFalse(Context);
1412 else if (pred == ICmpInst::ICMP_NE)
1413 return ConstantInt::getTrue(Context);
1417 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1418 APInt V1 = cast<ConstantInt>(C1)->getValue();
1419 APInt V2 = cast<ConstantInt>(C2)->getValue();
1420 switch (pred) {
1421 default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1422 case ICmpInst::ICMP_EQ:
1423 return ConstantInt::get(Type::Int1Ty, V1 == V2);
1424 case ICmpInst::ICMP_NE:
1425 return ConstantInt::get(Type::Int1Ty, V1 != V2);
1426 case ICmpInst::ICMP_SLT:
1427 return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1428 case ICmpInst::ICMP_SGT:
1429 return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1430 case ICmpInst::ICMP_SLE:
1431 return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1432 case ICmpInst::ICMP_SGE:
1433 return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1434 case ICmpInst::ICMP_ULT:
1435 return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1436 case ICmpInst::ICMP_UGT:
1437 return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1438 case ICmpInst::ICMP_ULE:
1439 return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1440 case ICmpInst::ICMP_UGE:
1441 return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1443 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1444 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1445 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1446 APFloat::cmpResult R = C1V.compare(C2V);
1447 switch (pred) {
1448 default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1449 case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(Context);
1450 case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue(Context);
1451 case FCmpInst::FCMP_UNO:
1452 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1453 case FCmpInst::FCMP_ORD:
1454 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1455 case FCmpInst::FCMP_UEQ:
1456 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1457 R==APFloat::cmpEqual);
1458 case FCmpInst::FCMP_OEQ:
1459 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1460 case FCmpInst::FCMP_UNE:
1461 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1462 case FCmpInst::FCMP_ONE:
1463 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1464 R==APFloat::cmpGreaterThan);
1465 case FCmpInst::FCMP_ULT:
1466 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1467 R==APFloat::cmpLessThan);
1468 case FCmpInst::FCMP_OLT:
1469 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1470 case FCmpInst::FCMP_UGT:
1471 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1472 R==APFloat::cmpGreaterThan);
1473 case FCmpInst::FCMP_OGT:
1474 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1475 case FCmpInst::FCMP_ULE:
1476 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1477 case FCmpInst::FCMP_OLE:
1478 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1479 R==APFloat::cmpEqual);
1480 case FCmpInst::FCMP_UGE:
1481 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1482 case FCmpInst::FCMP_OGE:
1483 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1484 R==APFloat::cmpEqual);
1486 } else if (isa<VectorType>(C1->getType())) {
1487 SmallVector<Constant*, 16> C1Elts, C2Elts;
1488 C1->getVectorElements(Context, C1Elts);
1489 C2->getVectorElements(Context, C2Elts);
1491 // If we can constant fold the comparison of each element, constant fold
1492 // the whole vector comparison.
1493 SmallVector<Constant*, 4> ResElts;
1494 for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1495 // Compare the elements, producing an i1 result or constant expr.
1496 ResElts.push_back(
1497 ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1499 return ConstantVector::get(&ResElts[0], ResElts.size());
1502 if (C1->getType()->isFloatingPoint()) {
1503 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1504 switch (evaluateFCmpRelation(Context, C1, C2)) {
1505 default: llvm_unreachable("Unknown relation!");
1506 case FCmpInst::FCMP_UNO:
1507 case FCmpInst::FCMP_ORD:
1508 case FCmpInst::FCMP_UEQ:
1509 case FCmpInst::FCMP_UNE:
1510 case FCmpInst::FCMP_ULT:
1511 case FCmpInst::FCMP_UGT:
1512 case FCmpInst::FCMP_ULE:
1513 case FCmpInst::FCMP_UGE:
1514 case FCmpInst::FCMP_TRUE:
1515 case FCmpInst::FCMP_FALSE:
1516 case FCmpInst::BAD_FCMP_PREDICATE:
1517 break; // Couldn't determine anything about these constants.
1518 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1519 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1520 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1521 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1522 break;
1523 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1524 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1525 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1526 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1527 break;
1528 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1529 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1530 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1531 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1532 break;
1533 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1534 // We can only partially decide this relation.
1535 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1536 Result = 0;
1537 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1538 Result = 1;
1539 break;
1540 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1541 // We can only partially decide this relation.
1542 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1543 Result = 0;
1544 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1545 Result = 1;
1546 break;
1547 case ICmpInst::ICMP_NE: // We know that C1 != C2
1548 // We can only partially decide this relation.
1549 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1550 Result = 0;
1551 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1552 Result = 1;
1553 break;
1556 // If we evaluated the result, return it now.
1557 if (Result != -1)
1558 return ConstantInt::get(Type::Int1Ty, Result);
1560 } else {
1561 // Evaluate the relation between the two constants, per the predicate.
1562 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1563 switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
1564 default: llvm_unreachable("Unknown relational!");
1565 case ICmpInst::BAD_ICMP_PREDICATE:
1566 break; // Couldn't determine anything about these constants.
1567 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1568 // If we know the constants are equal, we can decide the result of this
1569 // computation precisely.
1570 Result = (pred == ICmpInst::ICMP_EQ ||
1571 pred == ICmpInst::ICMP_ULE ||
1572 pred == ICmpInst::ICMP_SLE ||
1573 pred == ICmpInst::ICMP_UGE ||
1574 pred == ICmpInst::ICMP_SGE);
1575 break;
1576 case ICmpInst::ICMP_ULT:
1577 // If we know that C1 < C2, we can decide the result of this computation
1578 // precisely.
1579 Result = (pred == ICmpInst::ICMP_ULT ||
1580 pred == ICmpInst::ICMP_NE ||
1581 pred == ICmpInst::ICMP_ULE);
1582 break;
1583 case ICmpInst::ICMP_SLT:
1584 // If we know that C1 < C2, we can decide the result of this computation
1585 // precisely.
1586 Result = (pred == ICmpInst::ICMP_SLT ||
1587 pred == ICmpInst::ICMP_NE ||
1588 pred == ICmpInst::ICMP_SLE);
1589 break;
1590 case ICmpInst::ICMP_UGT:
1591 // If we know that C1 > C2, we can decide the result of this computation
1592 // precisely.
1593 Result = (pred == ICmpInst::ICMP_UGT ||
1594 pred == ICmpInst::ICMP_NE ||
1595 pred == ICmpInst::ICMP_UGE);
1596 break;
1597 case ICmpInst::ICMP_SGT:
1598 // If we know that C1 > C2, we can decide the result of this computation
1599 // precisely.
1600 Result = (pred == ICmpInst::ICMP_SGT ||
1601 pred == ICmpInst::ICMP_NE ||
1602 pred == ICmpInst::ICMP_SGE);
1603 break;
1604 case ICmpInst::ICMP_ULE:
1605 // If we know that C1 <= C2, we can only partially decide this relation.
1606 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1607 if (pred == ICmpInst::ICMP_ULT) Result = 1;
1608 break;
1609 case ICmpInst::ICMP_SLE:
1610 // If we know that C1 <= C2, we can only partially decide this relation.
1611 if (pred == ICmpInst::ICMP_SGT) Result = 0;
1612 if (pred == ICmpInst::ICMP_SLT) Result = 1;
1613 break;
1615 case ICmpInst::ICMP_UGE:
1616 // If we know that C1 >= C2, we can only partially decide this relation.
1617 if (pred == ICmpInst::ICMP_ULT) Result = 0;
1618 if (pred == ICmpInst::ICMP_UGT) Result = 1;
1619 break;
1620 case ICmpInst::ICMP_SGE:
1621 // If we know that C1 >= C2, we can only partially decide this relation.
1622 if (pred == ICmpInst::ICMP_SLT) Result = 0;
1623 if (pred == ICmpInst::ICMP_SGT) Result = 1;
1624 break;
1626 case ICmpInst::ICMP_NE:
1627 // If we know that C1 != C2, we can only partially decide this relation.
1628 if (pred == ICmpInst::ICMP_EQ) Result = 0;
1629 if (pred == ICmpInst::ICMP_NE) Result = 1;
1630 break;
1633 // If we evaluated the result, return it now.
1634 if (Result != -1)
1635 return ConstantInt::get(Type::Int1Ty, Result);
1637 if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1638 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1639 // other way if possible.
1640 switch (pred) {
1641 case ICmpInst::ICMP_EQ:
1642 case ICmpInst::ICMP_NE:
1643 // No change of predicate required.
1644 return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1646 case ICmpInst::ICMP_ULT:
1647 case ICmpInst::ICMP_SLT:
1648 case ICmpInst::ICMP_UGT:
1649 case ICmpInst::ICMP_SGT:
1650 case ICmpInst::ICMP_ULE:
1651 case ICmpInst::ICMP_SLE:
1652 case ICmpInst::ICMP_UGE:
1653 case ICmpInst::ICMP_SGE:
1654 // Change the predicate as necessary to swap the operands.
1655 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1656 return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1658 default: // These predicates cannot be flopped around.
1659 break;
1663 return 0;
1666 Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
1667 const Constant *C,
1668 Constant* const *Idxs,
1669 unsigned NumIdx) {
1670 if (NumIdx == 0 ||
1671 (NumIdx == 1 && Idxs[0]->isNullValue()))
1672 return const_cast<Constant*>(C);
1674 if (isa<UndefValue>(C)) {
1675 const PointerType *Ptr = cast<PointerType>(C->getType());
1676 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1677 (Value **)Idxs,
1678 (Value **)Idxs+NumIdx);
1679 assert(Ty != 0 && "Invalid indices for GEP!");
1680 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1683 Constant *Idx0 = Idxs[0];
1684 if (C->isNullValue()) {
1685 bool isNull = true;
1686 for (unsigned i = 0, e = NumIdx; i != e; ++i)
1687 if (!Idxs[i]->isNullValue()) {
1688 isNull = false;
1689 break;
1691 if (isNull) {
1692 const PointerType *Ptr = cast<PointerType>(C->getType());
1693 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1694 (Value**)Idxs,
1695 (Value**)Idxs+NumIdx);
1696 assert(Ty != 0 && "Invalid indices for GEP!");
1697 return ConstantPointerNull::get(
1698 PointerType::get(Ty,Ptr->getAddressSpace()));
1702 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1703 // Combine Indices - If the source pointer to this getelementptr instruction
1704 // is a getelementptr instruction, combine the indices of the two
1705 // getelementptr instructions into a single instruction.
1707 if (CE->getOpcode() == Instruction::GetElementPtr) {
1708 const Type *LastTy = 0;
1709 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1710 I != E; ++I)
1711 LastTy = *I;
1713 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1714 SmallVector<Value*, 16> NewIndices;
1715 NewIndices.reserve(NumIdx + CE->getNumOperands());
1716 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1717 NewIndices.push_back(CE->getOperand(i));
1719 // Add the last index of the source with the first index of the new GEP.
1720 // Make sure to handle the case when they are actually different types.
1721 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1722 // Otherwise it must be an array.
1723 if (!Idx0->isNullValue()) {
1724 const Type *IdxTy = Combined->getType();
1725 if (IdxTy != Idx0->getType()) {
1726 Constant *C1 =
1727 ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1728 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1729 Type::Int64Ty);
1730 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1731 } else {
1732 Combined =
1733 ConstantExpr::get(Instruction::Add, Idx0, Combined);
1737 NewIndices.push_back(Combined);
1738 NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1739 return ConstantExpr::getGetElementPtr(CE->getOperand(0),
1740 &NewIndices[0],
1741 NewIndices.size());
1745 // Implement folding of:
1746 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1747 // long 0, long 0)
1748 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1750 if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1751 if (const PointerType *SPT =
1752 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1753 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1754 if (const ArrayType *CAT =
1755 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1756 if (CAT->getElementType() == SAT->getElementType())
1757 return ConstantExpr::getGetElementPtr(
1758 (Constant*)CE->getOperand(0), Idxs, NumIdx);
1761 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1762 // Into: inttoptr (i64 0 to i8*)
1763 // This happens with pointers to member functions in C++.
1764 if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1765 isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1766 cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1767 Constant *Base = CE->getOperand(0);
1768 Constant *Offset = Idxs[0];
1770 // Convert the smaller integer to the larger type.
1771 if (Offset->getType()->getPrimitiveSizeInBits() <
1772 Base->getType()->getPrimitiveSizeInBits())
1773 Offset = ConstantExpr::getSExt(Offset, Base->getType());
1774 else if (Base->getType()->getPrimitiveSizeInBits() <
1775 Offset->getType()->getPrimitiveSizeInBits())
1776 Base = ConstantExpr::getZExt(Base, Offset->getType());
1778 Base = ConstantExpr::getAdd(Base, Offset);
1779 return ConstantExpr::getIntToPtr(Base, CE->getType());
1782 return 0;