It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / VMCore / Constants.cpp
blob161afe47e2ab5b6b57b422bed9a6fcc9a6f852ce
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constants.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/System/Mutex.h"
31 #include "llvm/System/RWMutex.h"
32 #include "llvm/System/Threading.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include <algorithm>
36 #include <map>
37 using namespace llvm;
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
43 // Constructor to create a '0' constant of arbitrary type...
44 static const uint64_t zero[2] = {0, 0};
45 Constant* Constant::getNullValue(const Type* Ty) {
46 switch (Ty->getTypeID()) {
47 case Type::IntegerTyID:
48 return ConstantInt::get(Ty, 0);
49 case Type::FloatTyID:
50 return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
51 case Type::DoubleTyID:
52 return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
53 case Type::X86_FP80TyID:
54 return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
55 case Type::FP128TyID:
56 return ConstantFP::get(Ty->getContext(),
57 APFloat(APInt(128, 2, zero), true));
58 case Type::PPC_FP128TyID:
59 return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
60 case Type::PointerTyID:
61 return ConstantPointerNull::get(cast<PointerType>(Ty));
62 case Type::StructTyID:
63 case Type::ArrayTyID:
64 case Type::VectorTyID:
65 return ConstantAggregateZero::get(Ty);
66 default:
67 // Function, Label, or Opaque type?
68 assert(!"Cannot create a null constant of that type!");
69 return 0;
73 Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
74 const Type *ScalarTy = Ty->getScalarType();
76 // Create the base integer constant.
77 Constant *C = ConstantInt::get(Ty->getContext(), V);
79 // Convert an integer to a pointer, if necessary.
80 if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
81 C = ConstantExpr::getIntToPtr(C, PTy);
83 // Broadcast a scalar to a vector, if necessary.
84 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
85 C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
87 return C;
90 Constant* Constant::getAllOnesValue(const Type* Ty) {
91 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
92 return ConstantInt::get(Ty->getContext(),
93 APInt::getAllOnesValue(ITy->getBitWidth()));
95 std::vector<Constant*> Elts;
96 const VectorType* VTy = cast<VectorType>(Ty);
97 Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
98 assert(Elts[0] && "Not a vector integer type!");
99 return cast<ConstantVector>(ConstantVector::get(Elts));
102 void Constant::destroyConstantImpl() {
103 // When a Constant is destroyed, there may be lingering
104 // references to the constant by other constants in the constant pool. These
105 // constants are implicitly dependent on the module that is being deleted,
106 // but they don't know that. Because we only find out when the CPV is
107 // deleted, we must now notify all of our users (that should only be
108 // Constants) that they are, in fact, invalid now and should be deleted.
110 while (!use_empty()) {
111 Value *V = use_back();
112 #ifndef NDEBUG // Only in -g mode...
113 if (!isa<Constant>(V))
114 DOUT << "While deleting: " << *this
115 << "\n\nUse still stuck around after Def is destroyed: "
116 << *V << "\n\n";
117 #endif
118 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
119 Constant *CV = cast<Constant>(V);
120 CV->destroyConstant();
122 // The constant should remove itself from our use list...
123 assert((use_empty() || use_back() != V) && "Constant not removed!");
126 // Value has no outstanding references it is safe to delete it now...
127 delete this;
130 /// canTrap - Return true if evaluation of this constant could trap. This is
131 /// true for things like constant expressions that could divide by zero.
132 bool Constant::canTrap() const {
133 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
134 // The only thing that could possibly trap are constant exprs.
135 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
136 if (!CE) return false;
138 // ConstantExpr traps if any operands can trap.
139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
140 if (getOperand(i)->canTrap())
141 return true;
143 // Otherwise, only specific operations can trap.
144 switch (CE->getOpcode()) {
145 default:
146 return false;
147 case Instruction::UDiv:
148 case Instruction::SDiv:
149 case Instruction::FDiv:
150 case Instruction::URem:
151 case Instruction::SRem:
152 case Instruction::FRem:
153 // Div and rem can trap if the RHS is not known to be non-zero.
154 if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
155 return true;
156 return false;
161 /// getRelocationInfo - This method classifies the entry according to
162 /// whether or not it may generate a relocation entry. This must be
163 /// conservative, so if it might codegen to a relocatable entry, it should say
164 /// so. The return values are:
165 ///
166 /// NoRelocation: This constant pool entry is guaranteed to never have a
167 /// relocation applied to it (because it holds a simple constant like
168 /// '4').
169 /// LocalRelocation: This entry has relocations, but the entries are
170 /// guaranteed to be resolvable by the static linker, so the dynamic
171 /// linker will never see them.
172 /// GlobalRelocations: This entry may have arbitrary relocations.
174 /// FIXME: This really should not be in VMCore.
175 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
176 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
177 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
178 return LocalRelocation; // Local to this file/library.
179 return GlobalRelocations; // Global reference.
182 PossibleRelocationsTy Result = NoRelocation;
183 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
184 Result = std::max(Result, getOperand(i)->getRelocationInfo());
186 return Result;
190 /// getVectorElements - This method, which is only valid on constant of vector
191 /// type, returns the elements of the vector in the specified smallvector.
192 /// This handles breaking down a vector undef into undef elements, etc. For
193 /// constant exprs and other cases we can't handle, we return an empty vector.
194 void Constant::getVectorElements(LLVMContext &Context,
195 SmallVectorImpl<Constant*> &Elts) const {
196 assert(isa<VectorType>(getType()) && "Not a vector constant!");
198 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
199 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
200 Elts.push_back(CV->getOperand(i));
201 return;
204 const VectorType *VT = cast<VectorType>(getType());
205 if (isa<ConstantAggregateZero>(this)) {
206 Elts.assign(VT->getNumElements(),
207 Constant::getNullValue(VT->getElementType()));
208 return;
211 if (isa<UndefValue>(this)) {
212 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
213 return;
216 // Unknown type, must be constant expr etc.
221 //===----------------------------------------------------------------------===//
222 // ConstantInt
223 //===----------------------------------------------------------------------===//
225 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
226 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
227 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
230 ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
231 LLVMContextImpl *pImpl = Context.pImpl;
232 sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
233 if (pImpl->TheTrueVal)
234 return pImpl->TheTrueVal;
235 else
236 return (pImpl->TheTrueVal = ConstantInt::get(IntegerType::get(1), 1));
239 ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
240 LLVMContextImpl *pImpl = Context.pImpl;
241 sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
242 if (pImpl->TheFalseVal)
243 return pImpl->TheFalseVal;
244 else
245 return (pImpl->TheFalseVal = ConstantInt::get(IntegerType::get(1), 0));
249 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
250 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
251 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
252 // compare APInt's of different widths, which would violate an APInt class
253 // invariant which generates an assertion.
254 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
255 // Get the corresponding integer type for the bit width of the value.
256 const IntegerType *ITy = IntegerType::get(V.getBitWidth());
257 // get an existing value or the insertion position
258 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
260 Context.pImpl->ConstantsLock.reader_acquire();
261 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
262 Context.pImpl->ConstantsLock.reader_release();
264 if (!Slot) {
265 sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
266 ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
267 if (!Slot) {
268 NewSlot = new ConstantInt(ITy, V);
271 return NewSlot;
272 } else {
273 return Slot;
277 Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
278 Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
279 V, isSigned);
281 // For vectors, broadcast the value.
282 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
283 return ConstantVector::get(
284 std::vector<Constant *>(VTy->getNumElements(), C));
286 return C;
289 ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
290 bool isSigned) {
291 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
294 ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
295 return get(Ty, V, true);
298 Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
299 return get(Ty, V, true);
302 Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
303 ConstantInt *C = get(Ty->getContext(), V);
304 assert(C->getType() == Ty->getScalarType() &&
305 "ConstantInt type doesn't match the type implied by its value!");
307 // For vectors, broadcast the value.
308 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
309 return ConstantVector::get(
310 std::vector<Constant *>(VTy->getNumElements(), C));
312 return C;
315 //===----------------------------------------------------------------------===//
316 // ConstantFP
317 //===----------------------------------------------------------------------===//
319 static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
320 if (Ty == Type::FloatTy)
321 return &APFloat::IEEEsingle;
322 if (Ty == Type::DoubleTy)
323 return &APFloat::IEEEdouble;
324 if (Ty == Type::X86_FP80Ty)
325 return &APFloat::x87DoubleExtended;
326 else if (Ty == Type::FP128Ty)
327 return &APFloat::IEEEquad;
329 assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
330 return &APFloat::PPCDoubleDouble;
333 /// get() - This returns a constant fp for the specified value in the
334 /// specified type. This should only be used for simple constant values like
335 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
336 Constant* ConstantFP::get(const Type* Ty, double V) {
337 LLVMContext &Context = Ty->getContext();
339 APFloat FV(V);
340 bool ignored;
341 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
342 APFloat::rmNearestTiesToEven, &ignored);
343 Constant *C = get(Context, FV);
345 // For vectors, broadcast the value.
346 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
347 return ConstantVector::get(
348 std::vector<Constant *>(VTy->getNumElements(), C));
350 return C;
353 ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
354 LLVMContext &Context = Ty->getContext();
355 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
356 apf.changeSign();
357 return get(Context, apf);
361 Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
362 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
363 if (PTy->getElementType()->isFloatingPoint()) {
364 std::vector<Constant*> zeros(PTy->getNumElements(),
365 getNegativeZero(PTy->getElementType()));
366 return ConstantVector::get(PTy, zeros);
369 if (Ty->isFloatingPoint())
370 return getNegativeZero(Ty);
372 return Constant::getNullValue(Ty);
376 // ConstantFP accessors.
377 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
378 DenseMapAPFloatKeyInfo::KeyTy Key(V);
380 LLVMContextImpl* pImpl = Context.pImpl;
382 pImpl->ConstantsLock.reader_acquire();
383 ConstantFP *&Slot = pImpl->FPConstants[Key];
384 pImpl->ConstantsLock.reader_release();
386 if (!Slot) {
387 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
388 ConstantFP *&NewSlot = pImpl->FPConstants[Key];
389 if (!NewSlot) {
390 const Type *Ty;
391 if (&V.getSemantics() == &APFloat::IEEEsingle)
392 Ty = Type::FloatTy;
393 else if (&V.getSemantics() == &APFloat::IEEEdouble)
394 Ty = Type::DoubleTy;
395 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
396 Ty = Type::X86_FP80Ty;
397 else if (&V.getSemantics() == &APFloat::IEEEquad)
398 Ty = Type::FP128Ty;
399 else {
400 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
401 "Unknown FP format");
402 Ty = Type::PPC_FP128Ty;
404 NewSlot = new ConstantFP(Ty, V);
407 return NewSlot;
410 return Slot;
413 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
414 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
415 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
416 "FP type Mismatch");
419 bool ConstantFP::isNullValue() const {
420 return Val.isZero() && !Val.isNegative();
423 bool ConstantFP::isExactlyValue(const APFloat& V) const {
424 return Val.bitwiseIsEqual(V);
427 //===----------------------------------------------------------------------===//
428 // ConstantXXX Classes
429 //===----------------------------------------------------------------------===//
432 ConstantArray::ConstantArray(const ArrayType *T,
433 const std::vector<Constant*> &V)
434 : Constant(T, ConstantArrayVal,
435 OperandTraits<ConstantArray>::op_end(this) - V.size(),
436 V.size()) {
437 assert(V.size() == T->getNumElements() &&
438 "Invalid initializer vector for constant array");
439 Use *OL = OperandList;
440 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
441 I != E; ++I, ++OL) {
442 Constant *C = *I;
443 assert((C->getType() == T->getElementType() ||
444 (T->isAbstract() &&
445 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
446 "Initializer for array element doesn't match array element type!");
447 *OL = C;
451 Constant *ConstantArray::get(const ArrayType *Ty,
452 const std::vector<Constant*> &V) {
453 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
454 // If this is an all-zero array, return a ConstantAggregateZero object
455 if (!V.empty()) {
456 Constant *C = V[0];
457 if (!C->isNullValue()) {
458 // Implicitly locked.
459 return pImpl->ArrayConstants.getOrCreate(Ty, V);
461 for (unsigned i = 1, e = V.size(); i != e; ++i)
462 if (V[i] != C) {
463 // Implicitly locked.
464 return pImpl->ArrayConstants.getOrCreate(Ty, V);
468 return ConstantAggregateZero::get(Ty);
472 Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
473 unsigned NumVals) {
474 // FIXME: make this the primary ctor method.
475 return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
478 /// ConstantArray::get(const string&) - Return an array that is initialized to
479 /// contain the specified string. If length is zero then a null terminator is
480 /// added to the specified string so that it may be used in a natural way.
481 /// Otherwise, the length parameter specifies how much of the string to use
482 /// and it won't be null terminated.
484 Constant* ConstantArray::get(const StringRef &Str, bool AddNull) {
485 std::vector<Constant*> ElementVals;
486 for (unsigned i = 0; i < Str.size(); ++i)
487 ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
489 // Add a null terminator to the string...
490 if (AddNull) {
491 ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
494 ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
495 return get(ATy, ElementVals);
500 ConstantStruct::ConstantStruct(const StructType *T,
501 const std::vector<Constant*> &V)
502 : Constant(T, ConstantStructVal,
503 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
504 V.size()) {
505 assert(V.size() == T->getNumElements() &&
506 "Invalid initializer vector for constant structure");
507 Use *OL = OperandList;
508 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
509 I != E; ++I, ++OL) {
510 Constant *C = *I;
511 assert((C->getType() == T->getElementType(I-V.begin()) ||
512 ((T->getElementType(I-V.begin())->isAbstract() ||
513 C->getType()->isAbstract()) &&
514 T->getElementType(I-V.begin())->getTypeID() ==
515 C->getType()->getTypeID())) &&
516 "Initializer for struct element doesn't match struct element type!");
517 *OL = C;
521 // ConstantStruct accessors.
522 Constant* ConstantStruct::get(const StructType* T,
523 const std::vector<Constant*>& V) {
524 LLVMContextImpl* pImpl = T->getContext().pImpl;
526 // Create a ConstantAggregateZero value if all elements are zeros...
527 for (unsigned i = 0, e = V.size(); i != e; ++i)
528 if (!V[i]->isNullValue())
529 // Implicitly locked.
530 return pImpl->StructConstants.getOrCreate(T, V);
532 return ConstantAggregateZero::get(T);
535 Constant* ConstantStruct::get(LLVMContext &Context,
536 const std::vector<Constant*>& V, bool packed) {
537 std::vector<const Type*> StructEls;
538 StructEls.reserve(V.size());
539 for (unsigned i = 0, e = V.size(); i != e; ++i)
540 StructEls.push_back(V[i]->getType());
541 return get(StructType::get(Context, StructEls, packed), V);
544 Constant* ConstantStruct::get(LLVMContext &Context,
545 Constant* const *Vals, unsigned NumVals,
546 bool Packed) {
547 // FIXME: make this the primary ctor method.
548 return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
551 ConstantVector::ConstantVector(const VectorType *T,
552 const std::vector<Constant*> &V)
553 : Constant(T, ConstantVectorVal,
554 OperandTraits<ConstantVector>::op_end(this) - V.size(),
555 V.size()) {
556 Use *OL = OperandList;
557 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
558 I != E; ++I, ++OL) {
559 Constant *C = *I;
560 assert((C->getType() == T->getElementType() ||
561 (T->isAbstract() &&
562 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
563 "Initializer for vector element doesn't match vector element type!");
564 *OL = C;
568 // ConstantVector accessors.
569 Constant* ConstantVector::get(const VectorType* T,
570 const std::vector<Constant*>& V) {
571 assert(!V.empty() && "Vectors can't be empty");
572 LLVMContext &Context = T->getContext();
573 LLVMContextImpl *pImpl = Context.pImpl;
575 // If this is an all-undef or alll-zero vector, return a
576 // ConstantAggregateZero or UndefValue.
577 Constant *C = V[0];
578 bool isZero = C->isNullValue();
579 bool isUndef = isa<UndefValue>(C);
581 if (isZero || isUndef) {
582 for (unsigned i = 1, e = V.size(); i != e; ++i)
583 if (V[i] != C) {
584 isZero = isUndef = false;
585 break;
589 if (isZero)
590 return ConstantAggregateZero::get(T);
591 if (isUndef)
592 return UndefValue::get(T);
594 // Implicitly locked.
595 return pImpl->VectorConstants.getOrCreate(T, V);
598 Constant* ConstantVector::get(const std::vector<Constant*>& V) {
599 assert(!V.empty() && "Cannot infer type if V is empty");
600 return get(VectorType::get(V.front()->getType(),V.size()), V);
603 Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
604 // FIXME: make this the primary ctor method.
605 return get(std::vector<Constant*>(Vals, Vals+NumVals));
608 // Utility function for determining if a ConstantExpr is a CastOp or not. This
609 // can't be inline because we don't want to #include Instruction.h into
610 // Constant.h
611 bool ConstantExpr::isCast() const {
612 return Instruction::isCast(getOpcode());
615 bool ConstantExpr::isCompare() const {
616 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
619 bool ConstantExpr::hasIndices() const {
620 return getOpcode() == Instruction::ExtractValue ||
621 getOpcode() == Instruction::InsertValue;
624 const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
625 if (const ExtractValueConstantExpr *EVCE =
626 dyn_cast<ExtractValueConstantExpr>(this))
627 return EVCE->Indices;
629 return cast<InsertValueConstantExpr>(this)->Indices;
632 unsigned ConstantExpr::getPredicate() const {
633 assert(getOpcode() == Instruction::FCmp ||
634 getOpcode() == Instruction::ICmp);
635 return ((const CompareConstantExpr*)this)->predicate;
638 /// getWithOperandReplaced - Return a constant expression identical to this
639 /// one, but with the specified operand set to the specified value.
640 Constant *
641 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
642 assert(OpNo < getNumOperands() && "Operand num is out of range!");
643 assert(Op->getType() == getOperand(OpNo)->getType() &&
644 "Replacing operand with value of different type!");
645 if (getOperand(OpNo) == Op)
646 return const_cast<ConstantExpr*>(this);
648 Constant *Op0, *Op1, *Op2;
649 switch (getOpcode()) {
650 case Instruction::Trunc:
651 case Instruction::ZExt:
652 case Instruction::SExt:
653 case Instruction::FPTrunc:
654 case Instruction::FPExt:
655 case Instruction::UIToFP:
656 case Instruction::SIToFP:
657 case Instruction::FPToUI:
658 case Instruction::FPToSI:
659 case Instruction::PtrToInt:
660 case Instruction::IntToPtr:
661 case Instruction::BitCast:
662 return ConstantExpr::getCast(getOpcode(), Op, getType());
663 case Instruction::Select:
664 Op0 = (OpNo == 0) ? Op : getOperand(0);
665 Op1 = (OpNo == 1) ? Op : getOperand(1);
666 Op2 = (OpNo == 2) ? Op : getOperand(2);
667 return ConstantExpr::getSelect(Op0, Op1, Op2);
668 case Instruction::InsertElement:
669 Op0 = (OpNo == 0) ? Op : getOperand(0);
670 Op1 = (OpNo == 1) ? Op : getOperand(1);
671 Op2 = (OpNo == 2) ? Op : getOperand(2);
672 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
673 case Instruction::ExtractElement:
674 Op0 = (OpNo == 0) ? Op : getOperand(0);
675 Op1 = (OpNo == 1) ? Op : getOperand(1);
676 return ConstantExpr::getExtractElement(Op0, Op1);
677 case Instruction::ShuffleVector:
678 Op0 = (OpNo == 0) ? Op : getOperand(0);
679 Op1 = (OpNo == 1) ? Op : getOperand(1);
680 Op2 = (OpNo == 2) ? Op : getOperand(2);
681 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
682 case Instruction::GetElementPtr: {
683 SmallVector<Constant*, 8> Ops;
684 Ops.resize(getNumOperands()-1);
685 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
686 Ops[i-1] = getOperand(i);
687 if (OpNo == 0)
688 return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
689 Ops[OpNo-1] = Op;
690 return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
692 default:
693 assert(getNumOperands() == 2 && "Must be binary operator?");
694 Op0 = (OpNo == 0) ? Op : getOperand(0);
695 Op1 = (OpNo == 1) ? Op : getOperand(1);
696 return ConstantExpr::get(getOpcode(), Op0, Op1);
700 /// getWithOperands - This returns the current constant expression with the
701 /// operands replaced with the specified values. The specified operands must
702 /// match count and type with the existing ones.
703 Constant *ConstantExpr::
704 getWithOperands(Constant* const *Ops, unsigned NumOps) const {
705 assert(NumOps == getNumOperands() && "Operand count mismatch!");
706 bool AnyChange = false;
707 for (unsigned i = 0; i != NumOps; ++i) {
708 assert(Ops[i]->getType() == getOperand(i)->getType() &&
709 "Operand type mismatch!");
710 AnyChange |= Ops[i] != getOperand(i);
712 if (!AnyChange) // No operands changed, return self.
713 return const_cast<ConstantExpr*>(this);
715 switch (getOpcode()) {
716 case Instruction::Trunc:
717 case Instruction::ZExt:
718 case Instruction::SExt:
719 case Instruction::FPTrunc:
720 case Instruction::FPExt:
721 case Instruction::UIToFP:
722 case Instruction::SIToFP:
723 case Instruction::FPToUI:
724 case Instruction::FPToSI:
725 case Instruction::PtrToInt:
726 case Instruction::IntToPtr:
727 case Instruction::BitCast:
728 return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
729 case Instruction::Select:
730 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
731 case Instruction::InsertElement:
732 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
733 case Instruction::ExtractElement:
734 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
735 case Instruction::ShuffleVector:
736 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
737 case Instruction::GetElementPtr:
738 return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
739 case Instruction::ICmp:
740 case Instruction::FCmp:
741 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
742 default:
743 assert(getNumOperands() == 2 && "Must be binary operator?");
744 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
749 //===----------------------------------------------------------------------===//
750 // isValueValidForType implementations
752 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
753 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
754 if (Ty == Type::Int1Ty)
755 return Val == 0 || Val == 1;
756 if (NumBits >= 64)
757 return true; // always true, has to fit in largest type
758 uint64_t Max = (1ll << NumBits) - 1;
759 return Val <= Max;
762 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
763 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
764 if (Ty == Type::Int1Ty)
765 return Val == 0 || Val == 1 || Val == -1;
766 if (NumBits >= 64)
767 return true; // always true, has to fit in largest type
768 int64_t Min = -(1ll << (NumBits-1));
769 int64_t Max = (1ll << (NumBits-1)) - 1;
770 return (Val >= Min && Val <= Max);
773 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
774 // convert modifies in place, so make a copy.
775 APFloat Val2 = APFloat(Val);
776 bool losesInfo;
777 switch (Ty->getTypeID()) {
778 default:
779 return false; // These can't be represented as floating point!
781 // FIXME rounding mode needs to be more flexible
782 case Type::FloatTyID: {
783 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
784 return true;
785 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
786 return !losesInfo;
788 case Type::DoubleTyID: {
789 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
790 &Val2.getSemantics() == &APFloat::IEEEdouble)
791 return true;
792 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
793 return !losesInfo;
795 case Type::X86_FP80TyID:
796 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
797 &Val2.getSemantics() == &APFloat::IEEEdouble ||
798 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
799 case Type::FP128TyID:
800 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
801 &Val2.getSemantics() == &APFloat::IEEEdouble ||
802 &Val2.getSemantics() == &APFloat::IEEEquad;
803 case Type::PPC_FP128TyID:
804 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
805 &Val2.getSemantics() == &APFloat::IEEEdouble ||
806 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
810 //===----------------------------------------------------------------------===//
811 // Factory Function Implementation
813 static char getValType(ConstantAggregateZero *CPZ) { return 0; }
815 ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
816 assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
817 "Cannot create an aggregate zero of non-aggregate type!");
819 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
820 // Implicitly locked.
821 return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
824 /// destroyConstant - Remove the constant from the constant table...
826 void ConstantAggregateZero::destroyConstant() {
827 // Implicitly locked.
828 getType()->getContext().pImpl->AggZeroConstants.remove(this);
829 destroyConstantImpl();
832 /// destroyConstant - Remove the constant from the constant table...
834 void ConstantArray::destroyConstant() {
835 // Implicitly locked.
836 getType()->getContext().pImpl->ArrayConstants.remove(this);
837 destroyConstantImpl();
840 /// isString - This method returns true if the array is an array of i8, and
841 /// if the elements of the array are all ConstantInt's.
842 bool ConstantArray::isString() const {
843 // Check the element type for i8...
844 if (getType()->getElementType() != Type::Int8Ty)
845 return false;
846 // Check the elements to make sure they are all integers, not constant
847 // expressions.
848 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
849 if (!isa<ConstantInt>(getOperand(i)))
850 return false;
851 return true;
854 /// isCString - This method returns true if the array is a string (see
855 /// isString) and it ends in a null byte \\0 and does not contains any other
856 /// null bytes except its terminator.
857 bool ConstantArray::isCString() const {
858 // Check the element type for i8...
859 if (getType()->getElementType() != Type::Int8Ty)
860 return false;
862 // Last element must be a null.
863 if (!getOperand(getNumOperands()-1)->isNullValue())
864 return false;
865 // Other elements must be non-null integers.
866 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
867 if (!isa<ConstantInt>(getOperand(i)))
868 return false;
869 if (getOperand(i)->isNullValue())
870 return false;
872 return true;
876 /// getAsString - If the sub-element type of this array is i8
877 /// then this method converts the array to an std::string and returns it.
878 /// Otherwise, it asserts out.
880 std::string ConstantArray::getAsString() const {
881 assert(isString() && "Not a string!");
882 std::string Result;
883 Result.reserve(getNumOperands());
884 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
885 Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
886 return Result;
890 //---- ConstantStruct::get() implementation...
893 namespace llvm {
897 // destroyConstant - Remove the constant from the constant table...
899 void ConstantStruct::destroyConstant() {
900 // Implicitly locked.
901 getType()->getContext().pImpl->StructConstants.remove(this);
902 destroyConstantImpl();
905 // destroyConstant - Remove the constant from the constant table...
907 void ConstantVector::destroyConstant() {
908 // Implicitly locked.
909 getType()->getContext().pImpl->VectorConstants.remove(this);
910 destroyConstantImpl();
913 /// This function will return true iff every element in this vector constant
914 /// is set to all ones.
915 /// @returns true iff this constant's emements are all set to all ones.
916 /// @brief Determine if the value is all ones.
917 bool ConstantVector::isAllOnesValue() const {
918 // Check out first element.
919 const Constant *Elt = getOperand(0);
920 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
921 if (!CI || !CI->isAllOnesValue()) return false;
922 // Then make sure all remaining elements point to the same value.
923 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
924 if (getOperand(I) != Elt) return false;
926 return true;
929 /// getSplatValue - If this is a splat constant, where all of the
930 /// elements have the same value, return that value. Otherwise return null.
931 Constant *ConstantVector::getSplatValue() {
932 // Check out first element.
933 Constant *Elt = getOperand(0);
934 // Then make sure all remaining elements point to the same value.
935 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
936 if (getOperand(I) != Elt) return 0;
937 return Elt;
940 //---- ConstantPointerNull::get() implementation...
943 static char getValType(ConstantPointerNull *) {
944 return 0;
948 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
949 // Implicitly locked.
950 return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
953 // destroyConstant - Remove the constant from the constant table...
955 void ConstantPointerNull::destroyConstant() {
956 // Implicitly locked.
957 getType()->getContext().pImpl->NullPtrConstants.remove(this);
958 destroyConstantImpl();
962 //---- UndefValue::get() implementation...
965 static char getValType(UndefValue *) {
966 return 0;
969 UndefValue *UndefValue::get(const Type *Ty) {
970 // Implicitly locked.
971 return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
974 // destroyConstant - Remove the constant from the constant table.
976 void UndefValue::destroyConstant() {
977 // Implicitly locked.
978 getType()->getContext().pImpl->UndefValueConstants.remove(this);
979 destroyConstantImpl();
982 //---- ConstantExpr::get() implementations...
985 static ExprMapKeyType getValType(ConstantExpr *CE) {
986 std::vector<Constant*> Operands;
987 Operands.reserve(CE->getNumOperands());
988 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
989 Operands.push_back(cast<Constant>(CE->getOperand(i)));
990 return ExprMapKeyType(CE->getOpcode(), Operands,
991 CE->isCompare() ? CE->getPredicate() : 0,
992 CE->hasIndices() ?
993 CE->getIndices() : SmallVector<unsigned, 4>());
996 /// This is a utility function to handle folding of casts and lookup of the
997 /// cast in the ExprConstants map. It is used by the various get* methods below.
998 static inline Constant *getFoldedCast(
999 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1000 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1001 // Fold a few common cases
1002 if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
1003 return FC;
1005 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1007 // Look up the constant in the table first to ensure uniqueness
1008 std::vector<Constant*> argVec(1, C);
1009 ExprMapKeyType Key(opc, argVec);
1011 // Implicitly locked.
1012 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1015 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1016 Instruction::CastOps opc = Instruction::CastOps(oc);
1017 assert(Instruction::isCast(opc) && "opcode out of range");
1018 assert(C && Ty && "Null arguments to getCast");
1019 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1021 switch (opc) {
1022 default:
1023 llvm_unreachable("Invalid cast opcode");
1024 break;
1025 case Instruction::Trunc: return getTrunc(C, Ty);
1026 case Instruction::ZExt: return getZExt(C, Ty);
1027 case Instruction::SExt: return getSExt(C, Ty);
1028 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1029 case Instruction::FPExt: return getFPExtend(C, Ty);
1030 case Instruction::UIToFP: return getUIToFP(C, Ty);
1031 case Instruction::SIToFP: return getSIToFP(C, Ty);
1032 case Instruction::FPToUI: return getFPToUI(C, Ty);
1033 case Instruction::FPToSI: return getFPToSI(C, Ty);
1034 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1035 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1036 case Instruction::BitCast: return getBitCast(C, Ty);
1038 return 0;
1041 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1042 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1043 return getCast(Instruction::BitCast, C, Ty);
1044 return getCast(Instruction::ZExt, C, Ty);
1047 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1048 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1049 return getCast(Instruction::BitCast, C, Ty);
1050 return getCast(Instruction::SExt, C, Ty);
1053 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1054 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1055 return getCast(Instruction::BitCast, C, Ty);
1056 return getCast(Instruction::Trunc, C, Ty);
1059 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1060 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1061 assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
1063 if (Ty->isInteger())
1064 return getCast(Instruction::PtrToInt, S, Ty);
1065 return getCast(Instruction::BitCast, S, Ty);
1068 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1069 bool isSigned) {
1070 assert(C->getType()->isIntOrIntVector() &&
1071 Ty->isIntOrIntVector() && "Invalid cast");
1072 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1073 unsigned DstBits = Ty->getScalarSizeInBits();
1074 Instruction::CastOps opcode =
1075 (SrcBits == DstBits ? Instruction::BitCast :
1076 (SrcBits > DstBits ? Instruction::Trunc :
1077 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1078 return getCast(opcode, C, Ty);
1081 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1082 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1083 "Invalid cast");
1084 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1085 unsigned DstBits = Ty->getScalarSizeInBits();
1086 if (SrcBits == DstBits)
1087 return C; // Avoid a useless cast
1088 Instruction::CastOps opcode =
1089 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1090 return getCast(opcode, C, Ty);
1093 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1094 #ifndef NDEBUG
1095 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1096 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1097 #endif
1098 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1099 assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
1100 assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
1101 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1102 "SrcTy must be larger than DestTy for Trunc!");
1104 return getFoldedCast(Instruction::Trunc, C, Ty);
1107 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1108 #ifndef NDEBUG
1109 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1110 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1111 #endif
1112 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1113 assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
1114 assert(Ty->isIntOrIntVector() && "SExt produces only integer");
1115 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1116 "SrcTy must be smaller than DestTy for SExt!");
1118 return getFoldedCast(Instruction::SExt, C, Ty);
1121 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1122 #ifndef NDEBUG
1123 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1124 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1125 #endif
1126 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1127 assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
1128 assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
1129 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1130 "SrcTy must be smaller than DestTy for ZExt!");
1132 return getFoldedCast(Instruction::ZExt, C, Ty);
1135 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1136 #ifndef NDEBUG
1137 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1138 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1139 #endif
1140 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1141 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1142 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1143 "This is an illegal floating point truncation!");
1144 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1147 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1148 #ifndef NDEBUG
1149 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1150 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1151 #endif
1152 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1153 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1154 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1155 "This is an illegal floating point extension!");
1156 return getFoldedCast(Instruction::FPExt, C, Ty);
1159 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
1160 #ifndef NDEBUG
1161 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1162 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1163 #endif
1164 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1165 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
1166 "This is an illegal uint to floating point cast!");
1167 return getFoldedCast(Instruction::UIToFP, C, Ty);
1170 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
1171 #ifndef NDEBUG
1172 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1173 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1174 #endif
1175 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1176 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
1177 "This is an illegal sint to floating point cast!");
1178 return getFoldedCast(Instruction::SIToFP, C, Ty);
1181 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
1182 #ifndef NDEBUG
1183 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1184 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1185 #endif
1186 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1187 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
1188 "This is an illegal floating point to uint cast!");
1189 return getFoldedCast(Instruction::FPToUI, C, Ty);
1192 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
1193 #ifndef NDEBUG
1194 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1195 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1196 #endif
1197 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1198 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
1199 "This is an illegal floating point to sint cast!");
1200 return getFoldedCast(Instruction::FPToSI, C, Ty);
1203 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
1204 assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
1205 assert(DstTy->isInteger() && "PtrToInt destination must be integral");
1206 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1209 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
1210 assert(C->getType()->isInteger() && "IntToPtr source must be integral");
1211 assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
1212 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1215 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
1216 // BitCast implies a no-op cast of type only. No bits change. However, you
1217 // can't cast pointers to anything but pointers.
1218 #ifndef NDEBUG
1219 const Type *SrcTy = C->getType();
1220 assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
1221 "BitCast cannot cast pointer to non-pointer and vice versa");
1223 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1224 // or nonptr->ptr). For all the other types, the cast is okay if source and
1225 // destination bit widths are identical.
1226 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1227 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
1228 #endif
1229 assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
1231 // It is common to ask for a bitcast of a value to its own type, handle this
1232 // speedily.
1233 if (C->getType() == DstTy) return C;
1235 return getFoldedCast(Instruction::BitCast, C, DstTy);
1238 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
1239 Constant *C1, Constant *C2) {
1240 // Check the operands for consistency first
1241 assert(Opcode >= Instruction::BinaryOpsBegin &&
1242 Opcode < Instruction::BinaryOpsEnd &&
1243 "Invalid opcode in binary constant expression");
1244 assert(C1->getType() == C2->getType() &&
1245 "Operand types in binary constant expression should match");
1247 if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
1248 if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
1249 Opcode, C1, C2))
1250 return FC; // Fold a few common cases...
1252 std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
1253 ExprMapKeyType Key(Opcode, argVec);
1255 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1257 // Implicitly locked.
1258 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1261 Constant *ConstantExpr::getCompareTy(unsigned short predicate,
1262 Constant *C1, Constant *C2) {
1263 switch (predicate) {
1264 default: llvm_unreachable("Invalid CmpInst predicate");
1265 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1266 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1267 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1268 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1269 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1270 case CmpInst::FCMP_TRUE:
1271 return getFCmp(predicate, C1, C2);
1273 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1274 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1275 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1276 case CmpInst::ICMP_SLE:
1277 return getICmp(predicate, C1, C2);
1281 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
1282 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1283 if (C1->getType()->isFPOrFPVector()) {
1284 if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
1285 else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
1286 else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
1288 #ifndef NDEBUG
1289 switch (Opcode) {
1290 case Instruction::Add:
1291 case Instruction::Sub:
1292 case Instruction::Mul:
1293 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1294 assert(C1->getType()->isIntOrIntVector() &&
1295 "Tried to create an integer operation on a non-integer type!");
1296 break;
1297 case Instruction::FAdd:
1298 case Instruction::FSub:
1299 case Instruction::FMul:
1300 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1301 assert(C1->getType()->isFPOrFPVector() &&
1302 "Tried to create a floating-point operation on a "
1303 "non-floating-point type!");
1304 break;
1305 case Instruction::UDiv:
1306 case Instruction::SDiv:
1307 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1308 assert(C1->getType()->isIntOrIntVector() &&
1309 "Tried to create an arithmetic operation on a non-arithmetic type!");
1310 break;
1311 case Instruction::FDiv:
1312 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1313 assert(C1->getType()->isFPOrFPVector() &&
1314 "Tried to create an arithmetic operation on a non-arithmetic type!");
1315 break;
1316 case Instruction::URem:
1317 case Instruction::SRem:
1318 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1319 assert(C1->getType()->isIntOrIntVector() &&
1320 "Tried to create an arithmetic operation on a non-arithmetic type!");
1321 break;
1322 case Instruction::FRem:
1323 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1324 assert(C1->getType()->isFPOrFPVector() &&
1325 "Tried to create an arithmetic operation on a non-arithmetic type!");
1326 break;
1327 case Instruction::And:
1328 case Instruction::Or:
1329 case Instruction::Xor:
1330 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1331 assert(C1->getType()->isIntOrIntVector() &&
1332 "Tried to create a logical operation on a non-integral type!");
1333 break;
1334 case Instruction::Shl:
1335 case Instruction::LShr:
1336 case Instruction::AShr:
1337 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1338 assert(C1->getType()->isIntOrIntVector() &&
1339 "Tried to create a shift operation on a non-integer type!");
1340 break;
1341 default:
1342 break;
1344 #endif
1346 return getTy(C1->getType(), Opcode, C1, C2);
1349 Constant* ConstantExpr::getSizeOf(const Type* Ty) {
1350 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1351 // Note that a non-inbounds gep is used, as null isn't within any object.
1352 Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
1353 Constant *GEP = getGetElementPtr(
1354 Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
1355 return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
1358 Constant* ConstantExpr::getAlignOf(const Type* Ty) {
1359 // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
1360 const Type *AligningTy = StructType::get(Ty->getContext(),
1361 Type::Int8Ty, Ty, NULL);
1362 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1363 Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
1364 Constant *One = ConstantInt::get(Type::Int32Ty, 1);
1365 Constant *Indices[2] = { Zero, One };
1366 Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
1367 return getCast(Instruction::PtrToInt, GEP, Type::Int32Ty);
1371 Constant *ConstantExpr::getCompare(unsigned short pred,
1372 Constant *C1, Constant *C2) {
1373 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1374 return getCompareTy(pred, C1, C2);
1377 Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
1378 Constant *V1, Constant *V2) {
1379 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1381 if (ReqTy == V1->getType())
1382 if (Constant *SC = ConstantFoldSelectInstruction(
1383 ReqTy->getContext(), C, V1, V2))
1384 return SC; // Fold common cases
1386 std::vector<Constant*> argVec(3, C);
1387 argVec[1] = V1;
1388 argVec[2] = V2;
1389 ExprMapKeyType Key(Instruction::Select, argVec);
1391 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1393 // Implicitly locked.
1394 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1397 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
1398 Value* const *Idxs,
1399 unsigned NumIdx) {
1400 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
1401 Idxs+NumIdx) ==
1402 cast<PointerType>(ReqTy)->getElementType() &&
1403 "GEP indices invalid!");
1405 if (Constant *FC = ConstantFoldGetElementPtr(
1406 ReqTy->getContext(), C, (Constant**)Idxs, NumIdx))
1407 return FC; // Fold a few common cases...
1409 assert(isa<PointerType>(C->getType()) &&
1410 "Non-pointer type for constant GetElementPtr expression");
1411 // Look up the constant in the table first to ensure uniqueness
1412 std::vector<Constant*> ArgVec;
1413 ArgVec.reserve(NumIdx+1);
1414 ArgVec.push_back(C);
1415 for (unsigned i = 0; i != NumIdx; ++i)
1416 ArgVec.push_back(cast<Constant>(Idxs[i]));
1417 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
1419 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1421 // Implicitly locked.
1422 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1425 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1426 unsigned NumIdx) {
1427 // Get the result type of the getelementptr!
1428 const Type *Ty =
1429 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1430 assert(Ty && "GEP indices invalid!");
1431 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
1432 return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
1435 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
1436 unsigned NumIdx) {
1437 return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
1441 Constant *
1442 ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1443 assert(LHS->getType() == RHS->getType());
1444 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1445 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1447 if (Constant *FC = ConstantFoldCompareInstruction(
1448 LHS->getContext(), pred, LHS, RHS))
1449 return FC; // Fold a few common cases...
1451 // Look up the constant in the table first to ensure uniqueness
1452 std::vector<Constant*> ArgVec;
1453 ArgVec.push_back(LHS);
1454 ArgVec.push_back(RHS);
1455 // Get the key type with both the opcode and predicate
1456 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1458 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1460 // Implicitly locked.
1461 return pImpl->ExprConstants.getOrCreate(Type::Int1Ty, Key);
1464 Constant *
1465 ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1466 assert(LHS->getType() == RHS->getType());
1467 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1469 if (Constant *FC = ConstantFoldCompareInstruction(
1470 LHS->getContext(), pred, LHS, RHS))
1471 return FC; // Fold a few common cases...
1473 // Look up the constant in the table first to ensure uniqueness
1474 std::vector<Constant*> ArgVec;
1475 ArgVec.push_back(LHS);
1476 ArgVec.push_back(RHS);
1477 // Get the key type with both the opcode and predicate
1478 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1480 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1482 // Implicitly locked.
1483 return pImpl->ExprConstants.getOrCreate(Type::Int1Ty, Key);
1486 Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
1487 Constant *Idx) {
1488 if (Constant *FC = ConstantFoldExtractElementInstruction(
1489 ReqTy->getContext(), Val, Idx))
1490 return FC; // Fold a few common cases...
1491 // Look up the constant in the table first to ensure uniqueness
1492 std::vector<Constant*> ArgVec(1, Val);
1493 ArgVec.push_back(Idx);
1494 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1496 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1498 // Implicitly locked.
1499 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1502 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1503 assert(isa<VectorType>(Val->getType()) &&
1504 "Tried to create extractelement operation on non-vector type!");
1505 assert(Idx->getType() == Type::Int32Ty &&
1506 "Extractelement index must be i32 type!");
1507 return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
1508 Val, Idx);
1511 Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
1512 Constant *Elt, Constant *Idx) {
1513 if (Constant *FC = ConstantFoldInsertElementInstruction(
1514 ReqTy->getContext(), Val, Elt, Idx))
1515 return FC; // Fold a few common cases...
1516 // Look up the constant in the table first to ensure uniqueness
1517 std::vector<Constant*> ArgVec(1, Val);
1518 ArgVec.push_back(Elt);
1519 ArgVec.push_back(Idx);
1520 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1522 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1524 // Implicitly locked.
1525 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1528 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1529 Constant *Idx) {
1530 assert(isa<VectorType>(Val->getType()) &&
1531 "Tried to create insertelement operation on non-vector type!");
1532 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1533 && "Insertelement types must match!");
1534 assert(Idx->getType() == Type::Int32Ty &&
1535 "Insertelement index must be i32 type!");
1536 return getInsertElementTy(Val->getType(), Val, Elt, Idx);
1539 Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
1540 Constant *V2, Constant *Mask) {
1541 if (Constant *FC = ConstantFoldShuffleVectorInstruction(
1542 ReqTy->getContext(), V1, V2, Mask))
1543 return FC; // Fold a few common cases...
1544 // Look up the constant in the table first to ensure uniqueness
1545 std::vector<Constant*> ArgVec(1, V1);
1546 ArgVec.push_back(V2);
1547 ArgVec.push_back(Mask);
1548 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1550 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1552 // Implicitly locked.
1553 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1556 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1557 Constant *Mask) {
1558 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1559 "Invalid shuffle vector constant expr operands!");
1561 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1562 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1563 const Type *ShufTy = VectorType::get(EltTy, NElts);
1564 return getShuffleVectorTy(ShufTy, V1, V2, Mask);
1567 Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
1568 Constant *Val,
1569 const unsigned *Idxs, unsigned NumIdx) {
1570 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1571 Idxs+NumIdx) == Val->getType() &&
1572 "insertvalue indices invalid!");
1573 assert(Agg->getType() == ReqTy &&
1574 "insertvalue type invalid!");
1575 assert(Agg->getType()->isFirstClassType() &&
1576 "Non-first-class type for constant InsertValue expression");
1577 Constant *FC = ConstantFoldInsertValueInstruction(
1578 ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
1579 assert(FC && "InsertValue constant expr couldn't be folded!");
1580 return FC;
1583 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1584 const unsigned *IdxList, unsigned NumIdx) {
1585 assert(Agg->getType()->isFirstClassType() &&
1586 "Tried to create insertelement operation on non-first-class type!");
1588 const Type *ReqTy = Agg->getType();
1589 #ifndef NDEBUG
1590 const Type *ValTy =
1591 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1592 #endif
1593 assert(ValTy == Val->getType() && "insertvalue indices invalid!");
1594 return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
1597 Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
1598 const unsigned *Idxs, unsigned NumIdx) {
1599 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1600 Idxs+NumIdx) == ReqTy &&
1601 "extractvalue indices invalid!");
1602 assert(Agg->getType()->isFirstClassType() &&
1603 "Non-first-class type for constant extractvalue expression");
1604 Constant *FC = ConstantFoldExtractValueInstruction(
1605 ReqTy->getContext(), Agg, Idxs, NumIdx);
1606 assert(FC && "ExtractValue constant expr couldn't be folded!");
1607 return FC;
1610 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1611 const unsigned *IdxList, unsigned NumIdx) {
1612 assert(Agg->getType()->isFirstClassType() &&
1613 "Tried to create extractelement operation on non-first-class type!");
1615 const Type *ReqTy =
1616 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1617 assert(ReqTy && "extractvalue indices invalid!");
1618 return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
1621 Constant* ConstantExpr::getNeg(Constant* C) {
1622 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1623 if (C->getType()->isFPOrFPVector())
1624 return getFNeg(C);
1625 assert(C->getType()->isIntOrIntVector() &&
1626 "Cannot NEG a nonintegral value!");
1627 return get(Instruction::Sub,
1628 ConstantFP::getZeroValueForNegation(C->getType()),
1632 Constant* ConstantExpr::getFNeg(Constant* C) {
1633 assert(C->getType()->isFPOrFPVector() &&
1634 "Cannot FNEG a non-floating-point value!");
1635 return get(Instruction::FSub,
1636 ConstantFP::getZeroValueForNegation(C->getType()),
1640 Constant* ConstantExpr::getNot(Constant* C) {
1641 assert(C->getType()->isIntOrIntVector() &&
1642 "Cannot NOT a nonintegral value!");
1643 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1646 Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
1647 return get(Instruction::Add, C1, C2);
1650 Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
1651 return get(Instruction::FAdd, C1, C2);
1654 Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
1655 return get(Instruction::Sub, C1, C2);
1658 Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
1659 return get(Instruction::FSub, C1, C2);
1662 Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
1663 return get(Instruction::Mul, C1, C2);
1666 Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
1667 return get(Instruction::FMul, C1, C2);
1670 Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
1671 return get(Instruction::UDiv, C1, C2);
1674 Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
1675 return get(Instruction::SDiv, C1, C2);
1678 Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
1679 return get(Instruction::FDiv, C1, C2);
1682 Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
1683 return get(Instruction::URem, C1, C2);
1686 Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
1687 return get(Instruction::SRem, C1, C2);
1690 Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
1691 return get(Instruction::FRem, C1, C2);
1694 Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
1695 return get(Instruction::And, C1, C2);
1698 Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
1699 return get(Instruction::Or, C1, C2);
1702 Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
1703 return get(Instruction::Xor, C1, C2);
1706 Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
1707 return get(Instruction::Shl, C1, C2);
1710 Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
1711 return get(Instruction::LShr, C1, C2);
1714 Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
1715 return get(Instruction::AShr, C1, C2);
1718 // destroyConstant - Remove the constant from the constant table...
1720 void ConstantExpr::destroyConstant() {
1721 // Implicitly locked.
1722 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1723 pImpl->ExprConstants.remove(this);
1724 destroyConstantImpl();
1727 const char *ConstantExpr::getOpcodeName() const {
1728 return Instruction::getOpcodeName(getOpcode());
1731 //===----------------------------------------------------------------------===//
1732 // replaceUsesOfWithOnConstant implementations
1734 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1735 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1736 /// etc.
1738 /// Note that we intentionally replace all uses of From with To here. Consider
1739 /// a large array that uses 'From' 1000 times. By handling this case all here,
1740 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1741 /// single invocation handles all 1000 uses. Handling them one at a time would
1742 /// work, but would be really slow because it would have to unique each updated
1743 /// array instance.
1745 static std::vector<Constant*> getValType(ConstantArray *CA) {
1746 std::vector<Constant*> Elements;
1747 Elements.reserve(CA->getNumOperands());
1748 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1749 Elements.push_back(cast<Constant>(CA->getOperand(i)));
1750 return Elements;
1754 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1755 Use *U) {
1756 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1757 Constant *ToC = cast<Constant>(To);
1759 LLVMContext &Context = getType()->getContext();
1760 LLVMContextImpl *pImpl = Context.pImpl;
1762 std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, Constant*> Lookup;
1763 Lookup.first.first = getType();
1764 Lookup.second = this;
1766 std::vector<Constant*> &Values = Lookup.first.second;
1767 Values.reserve(getNumOperands()); // Build replacement array.
1769 // Fill values with the modified operands of the constant array. Also,
1770 // compute whether this turns into an all-zeros array.
1771 bool isAllZeros = false;
1772 unsigned NumUpdated = 0;
1773 if (!ToC->isNullValue()) {
1774 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1775 Constant *Val = cast<Constant>(O->get());
1776 if (Val == From) {
1777 Val = ToC;
1778 ++NumUpdated;
1780 Values.push_back(Val);
1782 } else {
1783 isAllZeros = true;
1784 for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1785 Constant *Val = cast<Constant>(O->get());
1786 if (Val == From) {
1787 Val = ToC;
1788 ++NumUpdated;
1790 Values.push_back(Val);
1791 if (isAllZeros) isAllZeros = Val->isNullValue();
1795 Constant *Replacement = 0;
1796 if (isAllZeros) {
1797 Replacement = ConstantAggregateZero::get(getType());
1798 } else {
1799 // Check to see if we have this array type already.
1800 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
1801 bool Exists;
1802 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1803 pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1805 if (Exists) {
1806 Replacement = I->second;
1807 } else {
1808 // Okay, the new shape doesn't exist in the system yet. Instead of
1809 // creating a new constant array, inserting it, replaceallusesof'ing the
1810 // old with the new, then deleting the old... just update the current one
1811 // in place!
1812 pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1814 // Update to the new value. Optimize for the case when we have a single
1815 // operand that we're changing, but handle bulk updates efficiently.
1816 if (NumUpdated == 1) {
1817 unsigned OperandToUpdate = U - OperandList;
1818 assert(getOperand(OperandToUpdate) == From &&
1819 "ReplaceAllUsesWith broken!");
1820 setOperand(OperandToUpdate, ToC);
1821 } else {
1822 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1823 if (getOperand(i) == From)
1824 setOperand(i, ToC);
1826 return;
1830 // Otherwise, I do need to replace this with an existing value.
1831 assert(Replacement != this && "I didn't contain From!");
1833 // Everyone using this now uses the replacement.
1834 uncheckedReplaceAllUsesWith(Replacement);
1836 // Delete the old constant!
1837 destroyConstant();
1840 static std::vector<Constant*> getValType(ConstantStruct *CS) {
1841 std::vector<Constant*> Elements;
1842 Elements.reserve(CS->getNumOperands());
1843 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1844 Elements.push_back(cast<Constant>(CS->getOperand(i)));
1845 return Elements;
1848 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1849 Use *U) {
1850 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1851 Constant *ToC = cast<Constant>(To);
1853 unsigned OperandToUpdate = U-OperandList;
1854 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1856 std::pair<LLVMContextImpl::StructConstantsTy::MapKey, Constant*> Lookup;
1857 Lookup.first.first = getType();
1858 Lookup.second = this;
1859 std::vector<Constant*> &Values = Lookup.first.second;
1860 Values.reserve(getNumOperands()); // Build replacement struct.
1863 // Fill values with the modified operands of the constant struct. Also,
1864 // compute whether this turns into an all-zeros struct.
1865 bool isAllZeros = false;
1866 if (!ToC->isNullValue()) {
1867 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
1868 Values.push_back(cast<Constant>(O->get()));
1869 } else {
1870 isAllZeros = true;
1871 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1872 Constant *Val = cast<Constant>(O->get());
1873 Values.push_back(Val);
1874 if (isAllZeros) isAllZeros = Val->isNullValue();
1877 Values[OperandToUpdate] = ToC;
1879 LLVMContext &Context = getType()->getContext();
1880 LLVMContextImpl *pImpl = Context.pImpl;
1882 Constant *Replacement = 0;
1883 if (isAllZeros) {
1884 Replacement = ConstantAggregateZero::get(getType());
1885 } else {
1886 // Check to see if we have this array type already.
1887 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
1888 bool Exists;
1889 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
1890 pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
1892 if (Exists) {
1893 Replacement = I->second;
1894 } else {
1895 // Okay, the new shape doesn't exist in the system yet. Instead of
1896 // creating a new constant struct, inserting it, replaceallusesof'ing the
1897 // old with the new, then deleting the old... just update the current one
1898 // in place!
1899 pImpl->StructConstants.MoveConstantToNewSlot(this, I);
1901 // Update to the new value.
1902 setOperand(OperandToUpdate, ToC);
1903 return;
1907 assert(Replacement != this && "I didn't contain From!");
1909 // Everyone using this now uses the replacement.
1910 uncheckedReplaceAllUsesWith(Replacement);
1912 // Delete the old constant!
1913 destroyConstant();
1916 static std::vector<Constant*> getValType(ConstantVector *CP) {
1917 std::vector<Constant*> Elements;
1918 Elements.reserve(CP->getNumOperands());
1919 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1920 Elements.push_back(CP->getOperand(i));
1921 return Elements;
1924 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
1925 Use *U) {
1926 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1928 std::vector<Constant*> Values;
1929 Values.reserve(getNumOperands()); // Build replacement array...
1930 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1931 Constant *Val = getOperand(i);
1932 if (Val == From) Val = cast<Constant>(To);
1933 Values.push_back(Val);
1936 Constant *Replacement = get(getType(), Values);
1937 assert(Replacement != this && "I didn't contain From!");
1939 // Everyone using this now uses the replacement.
1940 uncheckedReplaceAllUsesWith(Replacement);
1942 // Delete the old constant!
1943 destroyConstant();
1946 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
1947 Use *U) {
1948 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
1949 Constant *To = cast<Constant>(ToV);
1951 Constant *Replacement = 0;
1952 if (getOpcode() == Instruction::GetElementPtr) {
1953 SmallVector<Constant*, 8> Indices;
1954 Constant *Pointer = getOperand(0);
1955 Indices.reserve(getNumOperands()-1);
1956 if (Pointer == From) Pointer = To;
1958 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1959 Constant *Val = getOperand(i);
1960 if (Val == From) Val = To;
1961 Indices.push_back(Val);
1963 Replacement = ConstantExpr::getGetElementPtr(Pointer,
1964 &Indices[0], Indices.size());
1965 } else if (getOpcode() == Instruction::ExtractValue) {
1966 Constant *Agg = getOperand(0);
1967 if (Agg == From) Agg = To;
1969 const SmallVector<unsigned, 4> &Indices = getIndices();
1970 Replacement = ConstantExpr::getExtractValue(Agg,
1971 &Indices[0], Indices.size());
1972 } else if (getOpcode() == Instruction::InsertValue) {
1973 Constant *Agg = getOperand(0);
1974 Constant *Val = getOperand(1);
1975 if (Agg == From) Agg = To;
1976 if (Val == From) Val = To;
1978 const SmallVector<unsigned, 4> &Indices = getIndices();
1979 Replacement = ConstantExpr::getInsertValue(Agg, Val,
1980 &Indices[0], Indices.size());
1981 } else if (isCast()) {
1982 assert(getOperand(0) == From && "Cast only has one use!");
1983 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
1984 } else if (getOpcode() == Instruction::Select) {
1985 Constant *C1 = getOperand(0);
1986 Constant *C2 = getOperand(1);
1987 Constant *C3 = getOperand(2);
1988 if (C1 == From) C1 = To;
1989 if (C2 == From) C2 = To;
1990 if (C3 == From) C3 = To;
1991 Replacement = ConstantExpr::getSelect(C1, C2, C3);
1992 } else if (getOpcode() == Instruction::ExtractElement) {
1993 Constant *C1 = getOperand(0);
1994 Constant *C2 = getOperand(1);
1995 if (C1 == From) C1 = To;
1996 if (C2 == From) C2 = To;
1997 Replacement = ConstantExpr::getExtractElement(C1, C2);
1998 } else if (getOpcode() == Instruction::InsertElement) {
1999 Constant *C1 = getOperand(0);
2000 Constant *C2 = getOperand(1);
2001 Constant *C3 = getOperand(1);
2002 if (C1 == From) C1 = To;
2003 if (C2 == From) C2 = To;
2004 if (C3 == From) C3 = To;
2005 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2006 } else if (getOpcode() == Instruction::ShuffleVector) {
2007 Constant *C1 = getOperand(0);
2008 Constant *C2 = getOperand(1);
2009 Constant *C3 = getOperand(2);
2010 if (C1 == From) C1 = To;
2011 if (C2 == From) C2 = To;
2012 if (C3 == From) C3 = To;
2013 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2014 } else if (isCompare()) {
2015 Constant *C1 = getOperand(0);
2016 Constant *C2 = getOperand(1);
2017 if (C1 == From) C1 = To;
2018 if (C2 == From) C2 = To;
2019 if (getOpcode() == Instruction::ICmp)
2020 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2021 else {
2022 assert(getOpcode() == Instruction::FCmp);
2023 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2025 } else if (getNumOperands() == 2) {
2026 Constant *C1 = getOperand(0);
2027 Constant *C2 = getOperand(1);
2028 if (C1 == From) C1 = To;
2029 if (C2 == From) C2 = To;
2030 Replacement = ConstantExpr::get(getOpcode(), C1, C2);
2031 } else {
2032 llvm_unreachable("Unknown ConstantExpr type!");
2033 return;
2036 assert(Replacement != this && "I didn't contain From!");
2038 // Everyone using this now uses the replacement.
2039 uncheckedReplaceAllUsesWith(Replacement);
2041 // Delete the old constant!
2042 destroyConstant();