1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/ModuleProvider.h"
51 #include "llvm/Pass.h"
52 #include "llvm/PassManager.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/InstVisitor.h"
59 #include "llvm/Support/Streams.h"
60 #include "llvm/ADT/SmallPtrSet.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
72 namespace { // Anonymous namespace for class
73 struct VISIBILITY_HIDDEN PreVerifier
: public FunctionPass
{
74 static char ID
; // Pass ID, replacement for typeid
76 PreVerifier() : FunctionPass(&ID
) { }
78 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
82 // Check that the prerequisites for successful DominatorTree construction
84 bool runOnFunction(Function
&F
) {
87 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
88 if (I
->empty() || !I
->back().isTerminator()) {
89 cerr
<< "Basic Block does not have terminator!\n";
90 WriteAsOperand(*cerr
, I
, true);
97 llvm_report_error("Broken module, no Basic Block terminator!");
104 char PreVerifier::ID
= 0;
105 static RegisterPass
<PreVerifier
>
106 PreVer("preverify", "Preliminary module verification");
107 static const PassInfo
*const PreVerifyID
= &PreVer
;
110 struct VISIBILITY_HIDDEN
111 Verifier
: public FunctionPass
, InstVisitor
<Verifier
> {
112 static char ID
; // Pass ID, replacement for typeid
113 bool Broken
; // Is this module found to be broken?
114 bool RealPass
; // Are we not being run by a PassManager?
115 VerifierFailureAction action
;
116 // What to do if verification fails.
117 Module
*Mod
; // Module we are verifying right now
118 DominatorTree
*DT
; // Dominator Tree, caution can be null!
119 std::stringstream msgs
; // A stringstream to collect messages
121 /// InstInThisBlock - when verifying a basic block, keep track of all of the
122 /// instructions we have seen so far. This allows us to do efficient
123 /// dominance checks for the case when an instruction has an operand that is
124 /// an instruction in the same block.
125 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
129 Broken(false), RealPass(true), action(AbortProcessAction
),
130 DT(0), msgs( std::ios::app
| std::ios::out
) {}
131 explicit Verifier(VerifierFailureAction ctn
)
133 Broken(false), RealPass(true), action(ctn
), DT(0),
134 msgs( std::ios::app
| std::ios::out
) {}
135 explicit Verifier(bool AB
)
137 Broken(false), RealPass(true),
138 action( AB
? AbortProcessAction
: PrintMessageAction
), DT(0),
139 msgs( std::ios::app
| std::ios::out
) {}
140 explicit Verifier(DominatorTree
&dt
)
142 Broken(false), RealPass(false), action(PrintMessageAction
),
143 DT(&dt
), msgs( std::ios::app
| std::ios::out
) {}
146 bool doInitialization(Module
&M
) {
148 verifyTypeSymbolTable(M
.getTypeSymbolTable());
150 // If this is a real pass, in a pass manager, we must abort before
151 // returning back to the pass manager, or else the pass manager may try to
152 // run other passes on the broken module.
154 return abortIfBroken();
158 bool runOnFunction(Function
&F
) {
159 // Get dominator information if we are being run by PassManager
160 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
165 InstsInThisBlock
.clear();
167 // If this is a real pass, in a pass manager, we must abort before
168 // returning back to the pass manager, or else the pass manager may try to
169 // run other passes on the broken module.
171 return abortIfBroken();
176 bool doFinalization(Module
&M
) {
177 // Scan through, checking all of the external function's linkage now...
178 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
179 visitGlobalValue(*I
);
181 // Check to make sure function prototypes are okay.
182 if (I
->isDeclaration()) visitFunction(*I
);
185 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
187 visitGlobalVariable(*I
);
189 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
191 visitGlobalAlias(*I
);
193 // If the module is broken, abort at this time.
194 return abortIfBroken();
197 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
198 AU
.setPreservesAll();
199 AU
.addRequiredID(PreVerifyID
);
201 AU
.addRequired
<DominatorTree
>();
204 /// abortIfBroken - If the module is broken and we are supposed to abort on
205 /// this condition, do so.
207 bool abortIfBroken() {
208 if (!Broken
) return false;
209 msgs
<< "Broken module found, ";
211 default: llvm_unreachable("Unknown action");
212 case AbortProcessAction
:
213 msgs
<< "compilation aborted!\n";
215 // Client should choose different reaction if abort is not desired
217 case PrintMessageAction
:
218 msgs
<< "verification continues.\n";
221 case ReturnStatusAction
:
222 msgs
<< "compilation terminated.\n";
228 // Verification methods...
229 void verifyTypeSymbolTable(TypeSymbolTable
&ST
);
230 void visitGlobalValue(GlobalValue
&GV
);
231 void visitGlobalVariable(GlobalVariable
&GV
);
232 void visitGlobalAlias(GlobalAlias
&GA
);
233 void visitFunction(Function
&F
);
234 void visitBasicBlock(BasicBlock
&BB
);
235 using InstVisitor
<Verifier
>::visit
;
237 void visit(Instruction
&I
);
239 void visitTruncInst(TruncInst
&I
);
240 void visitZExtInst(ZExtInst
&I
);
241 void visitSExtInst(SExtInst
&I
);
242 void visitFPTruncInst(FPTruncInst
&I
);
243 void visitFPExtInst(FPExtInst
&I
);
244 void visitFPToUIInst(FPToUIInst
&I
);
245 void visitFPToSIInst(FPToSIInst
&I
);
246 void visitUIToFPInst(UIToFPInst
&I
);
247 void visitSIToFPInst(SIToFPInst
&I
);
248 void visitIntToPtrInst(IntToPtrInst
&I
);
249 void visitPtrToIntInst(PtrToIntInst
&I
);
250 void visitBitCastInst(BitCastInst
&I
);
251 void visitPHINode(PHINode
&PN
);
252 void visitBinaryOperator(BinaryOperator
&B
);
253 void visitICmpInst(ICmpInst
&IC
);
254 void visitFCmpInst(FCmpInst
&FC
);
255 void visitExtractElementInst(ExtractElementInst
&EI
);
256 void visitInsertElementInst(InsertElementInst
&EI
);
257 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
258 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
259 void visitCallInst(CallInst
&CI
);
260 void visitInvokeInst(InvokeInst
&II
);
261 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
262 void visitLoadInst(LoadInst
&LI
);
263 void visitStoreInst(StoreInst
&SI
);
264 void visitInstruction(Instruction
&I
);
265 void visitTerminatorInst(TerminatorInst
&I
);
266 void visitReturnInst(ReturnInst
&RI
);
267 void visitSwitchInst(SwitchInst
&SI
);
268 void visitSelectInst(SelectInst
&SI
);
269 void visitUserOp1(Instruction
&I
);
270 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
271 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
272 void visitAllocationInst(AllocationInst
&AI
);
273 void visitExtractValueInst(ExtractValueInst
&EVI
);
274 void visitInsertValueInst(InsertValueInst
&IVI
);
276 void VerifyCallSite(CallSite CS
);
277 bool PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
278 int VT
, unsigned ArgNo
, std::string
&Suffix
);
279 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
280 unsigned RetNum
, unsigned ParamNum
, ...);
281 void VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
282 bool isReturnValue
, const Value
*V
);
283 void VerifyFunctionAttrs(const FunctionType
*FT
, const AttrListPtr
&Attrs
,
286 void WriteValue(const Value
*V
) {
288 if (isa
<Instruction
>(V
)) {
291 WriteAsOperand(msgs
, V
, true, Mod
);
296 void WriteType(const Type
*T
) {
298 raw_os_ostream
RO(msgs
);
300 WriteTypeSymbolic(RO
, T
, Mod
);
304 // CheckFailed - A check failed, so print out the condition and the message
305 // that failed. This provides a nice place to put a breakpoint if you want
306 // to see why something is not correct.
307 void CheckFailed(const Twine
&Message
,
308 const Value
*V1
= 0, const Value
*V2
= 0,
309 const Value
*V3
= 0, const Value
*V4
= 0) {
310 msgs
<< Message
.str() << "\n";
318 void CheckFailed(const Twine
&Message
, const Value
* V1
,
319 const Type
* T2
, const Value
* V3
= 0) {
320 msgs
<< Message
.str() << "\n";
327 } // End anonymous namespace
329 char Verifier::ID
= 0;
330 static RegisterPass
<Verifier
> X("verify", "Module Verifier");
332 // Assert - We know that cond should be true, if not print an error message.
333 #define Assert(C, M) \
334 do { if (!(C)) { CheckFailed(M); return; } } while (0)
335 #define Assert1(C, M, V1) \
336 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
337 #define Assert2(C, M, V1, V2) \
338 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
339 #define Assert3(C, M, V1, V2, V3) \
340 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
341 #define Assert4(C, M, V1, V2, V3, V4) \
342 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
344 void Verifier::visit(Instruction
&I
) {
345 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
346 Assert1(I
.getOperand(i
) != 0, "Operand is null", &I
);
347 InstVisitor
<Verifier
>::visit(I
);
351 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
352 Assert1(!GV
.isDeclaration() ||
353 GV
.hasExternalLinkage() ||
354 GV
.hasDLLImportLinkage() ||
355 GV
.hasExternalWeakLinkage() ||
356 GV
.hasGhostLinkage() ||
357 (isa
<GlobalAlias
>(GV
) &&
358 (GV
.hasLocalLinkage() || GV
.hasWeakLinkage())),
359 "Global is external, but doesn't have external or dllimport or weak linkage!",
362 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
363 "Global is marked as dllimport, but not external", &GV
);
365 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
366 "Only global variables can have appending linkage!", &GV
);
368 if (GV
.hasAppendingLinkage()) {
369 GlobalVariable
&GVar
= cast
<GlobalVariable
>(GV
);
370 Assert1(isa
<ArrayType
>(GVar
.getType()->getElementType()),
371 "Only global arrays can have appending linkage!", &GV
);
375 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
376 if (GV
.hasInitializer()) {
377 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
378 "Global variable initializer type does not match global "
379 "variable type!", &GV
);
381 // If the global has common linkage, it must have a zero initializer and
382 // cannot be constant.
383 if (GV
.hasCommonLinkage()) {
384 Assert1(GV
.getInitializer()->isNullValue(),
385 "'common' global must have a zero initializer!", &GV
);
386 Assert1(!GV
.isConstant(), "'common' global may not be marked constant!",
390 // Verify that any metadata used in a global initializer points only to
392 if (MDNode
*FirstNode
= dyn_cast
<MDNode
>(GV
.getInitializer())) {
393 SmallVector
<const MDNode
*, 4> NodesToAnalyze
;
394 NodesToAnalyze
.push_back(FirstNode
);
395 while (!NodesToAnalyze
.empty()) {
396 const MDNode
*N
= NodesToAnalyze
.back();
397 NodesToAnalyze
.pop_back();
399 for (MDNode::const_elem_iterator I
= N
->elem_begin(),
400 E
= N
->elem_end(); I
!= E
; ++I
)
401 if (const Value
*V
= *I
) {
402 if (const MDNode
*Next
= dyn_cast
<MDNode
>(V
))
403 NodesToAnalyze
.push_back(Next
);
405 Assert3(isa
<Constant
>(V
),
406 "reference to instruction from global metadata node",
412 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
413 GV
.hasExternalWeakLinkage(),
414 "invalid linkage type for global declaration", &GV
);
417 visitGlobalValue(GV
);
420 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
421 Assert1(!GA
.getName().empty(),
422 "Alias name cannot be empty!", &GA
);
423 Assert1(GA
.hasExternalLinkage() || GA
.hasLocalLinkage() ||
425 "Alias should have external or external weak linkage!", &GA
);
426 Assert1(GA
.getAliasee(),
427 "Aliasee cannot be NULL!", &GA
);
428 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
429 "Alias and aliasee types should match!", &GA
);
431 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
432 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
434 (CE
->getOpcode() == Instruction::BitCast
||
435 CE
->getOpcode() == Instruction::GetElementPtr
) &&
436 isa
<GlobalValue
>(CE
->getOperand(0)),
437 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
441 const GlobalValue
* Aliasee
= GA
.resolveAliasedGlobal(/*stopOnWeak*/ false);
443 "Aliasing chain should end with function or global variable", &GA
);
445 visitGlobalValue(GA
);
448 void Verifier::verifyTypeSymbolTable(TypeSymbolTable
&ST
) {
451 // VerifyParameterAttrs - Check the given attributes for an argument or return
452 // value of the specified type. The value V is printed in error messages.
453 void Verifier::VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
454 bool isReturnValue
, const Value
*V
) {
455 if (Attrs
== Attribute::None
)
458 Attributes FnCheckAttr
= Attrs
& Attribute::FunctionOnly
;
459 Assert1(!FnCheckAttr
, "Attribute " + Attribute::getAsString(FnCheckAttr
) +
460 " only applies to the function!", V
);
463 Attributes RetI
= Attrs
& Attribute::ParameterOnly
;
464 Assert1(!RetI
, "Attribute " + Attribute::getAsString(RetI
) +
465 " does not apply to return values!", V
);
469 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
470 Attributes MutI
= Attrs
& Attribute::MutuallyIncompatible
[i
];
471 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
472 Attribute::getAsString(MutI
) + " are incompatible!", V
);
475 Attributes TypeI
= Attrs
& Attribute::typeIncompatible(Ty
);
476 Assert1(!TypeI
, "Wrong type for attribute " +
477 Attribute::getAsString(TypeI
), V
);
479 Attributes ByValI
= Attrs
& Attribute::ByVal
;
480 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
481 Assert1(!ByValI
|| PTy
->getElementType()->isSized(),
482 "Attribute " + Attribute::getAsString(ByValI
) +
483 " does not support unsized types!", V
);
486 "Attribute " + Attribute::getAsString(ByValI
) +
487 " only applies to parameters with pointer type!", V
);
491 // VerifyFunctionAttrs - Check parameter attributes against a function type.
492 // The value V is printed in error messages.
493 void Verifier::VerifyFunctionAttrs(const FunctionType
*FT
,
494 const AttrListPtr
&Attrs
,
499 bool SawNest
= false;
501 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
502 const AttributeWithIndex
&Attr
= Attrs
.getSlot(i
);
506 Ty
= FT
->getReturnType();
507 else if (Attr
.Index
-1 < FT
->getNumParams())
508 Ty
= FT
->getParamType(Attr
.Index
-1);
510 break; // VarArgs attributes, verified elsewhere.
512 VerifyParameterAttrs(Attr
.Attrs
, Ty
, Attr
.Index
== 0, V
);
514 if (Attr
.Attrs
& Attribute::Nest
) {
515 Assert1(!SawNest
, "More than one parameter has attribute nest!", V
);
519 if (Attr
.Attrs
& Attribute::StructRet
)
520 Assert1(Attr
.Index
== 1, "Attribute sret not on first parameter!", V
);
523 Attributes FAttrs
= Attrs
.getFnAttributes();
524 Attributes NotFn
= FAttrs
& (~Attribute::FunctionOnly
);
525 Assert1(!NotFn
, "Attribute " + Attribute::getAsString(NotFn
) +
526 " does not apply to the function!", V
);
529 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
530 Attributes MutI
= FAttrs
& Attribute::MutuallyIncompatible
[i
];
531 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
532 Attribute::getAsString(MutI
) + " are incompatible!", V
);
536 static bool VerifyAttributeCount(const AttrListPtr
&Attrs
, unsigned Params
) {
540 unsigned LastSlot
= Attrs
.getNumSlots() - 1;
541 unsigned LastIndex
= Attrs
.getSlot(LastSlot
).Index
;
542 if (LastIndex
<= Params
543 || (LastIndex
== (unsigned)~0
544 && (LastSlot
== 0 || Attrs
.getSlot(LastSlot
- 1).Index
<= Params
)))
549 // visitFunction - Verify that a function is ok.
551 void Verifier::visitFunction(Function
&F
) {
552 // Check function arguments.
553 const FunctionType
*FT
= F
.getFunctionType();
554 unsigned NumArgs
= F
.arg_size();
556 Assert1(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
557 Assert2(FT
->getNumParams() == NumArgs
,
558 "# formal arguments must match # of arguments for function type!",
560 Assert1(F
.getReturnType()->isFirstClassType() ||
561 F
.getReturnType() == Type::VoidTy
||
562 isa
<StructType
>(F
.getReturnType()),
563 "Functions cannot return aggregate values!", &F
);
565 Assert1(!F
.hasStructRetAttr() || F
.getReturnType() == Type::VoidTy
,
566 "Invalid struct return type!", &F
);
568 const AttrListPtr
&Attrs
= F
.getAttributes();
570 Assert1(VerifyAttributeCount(Attrs
, FT
->getNumParams()),
571 "Attributes after last parameter!", &F
);
573 // Check function attributes.
574 VerifyFunctionAttrs(FT
, Attrs
, &F
);
576 // Check that this function meets the restrictions on this calling convention.
577 switch (F
.getCallingConv()) {
582 case CallingConv::Fast
:
583 case CallingConv::Cold
:
584 case CallingConv::X86_FastCall
:
585 Assert1(!F
.isVarArg(),
586 "Varargs functions must have C calling conventions!", &F
);
590 bool isLLVMdotName
= F
.getName().size() >= 5 &&
591 F
.getName().substr(0, 5) == "llvm.";
593 Assert1(F
.getReturnType() != Type::MetadataTy
,
594 "Function may not return metadata unless it's an intrinsic", &F
);
596 // Check that the argument values match the function type for this function...
598 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
600 Assert2(I
->getType() == FT
->getParamType(i
),
601 "Argument value does not match function argument type!",
602 I
, FT
->getParamType(i
));
603 Assert1(I
->getType()->isFirstClassType(),
604 "Function arguments must have first-class types!", I
);
606 Assert2(I
->getType() != Type::MetadataTy
,
607 "Function takes metadata but isn't an intrinsic", I
, &F
);
610 if (F
.isDeclaration()) {
611 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
612 F
.hasExternalWeakLinkage() || F
.hasGhostLinkage(),
613 "invalid linkage type for function declaration", &F
);
615 // Verify that this function (which has a body) is not named "llvm.*". It
616 // is not legal to define intrinsics.
617 Assert1(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
619 // Check the entry node
620 BasicBlock
*Entry
= &F
.getEntryBlock();
621 Assert1(pred_begin(Entry
) == pred_end(Entry
),
622 "Entry block to function must not have predecessors!", Entry
);
627 // verifyBasicBlock - Verify that a basic block is well formed...
629 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
630 InstsInThisBlock
.clear();
632 // Ensure that basic blocks have terminators!
633 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
635 // Check constraints that this basic block imposes on all of the PHI nodes in
637 if (isa
<PHINode
>(BB
.front())) {
638 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
639 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
640 std::sort(Preds
.begin(), Preds
.end());
642 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
644 // Ensure that PHI nodes have at least one entry!
645 Assert1(PN
->getNumIncomingValues() != 0,
646 "PHI nodes must have at least one entry. If the block is dead, "
647 "the PHI should be removed!", PN
);
648 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
649 "PHINode should have one entry for each predecessor of its "
650 "parent basic block!", PN
);
652 // Get and sort all incoming values in the PHI node...
654 Values
.reserve(PN
->getNumIncomingValues());
655 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
656 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
657 PN
->getIncomingValue(i
)));
658 std::sort(Values
.begin(), Values
.end());
660 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
661 // Check to make sure that if there is more than one entry for a
662 // particular basic block in this PHI node, that the incoming values are
665 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
666 Values
[i
].second
== Values
[i
-1].second
,
667 "PHI node has multiple entries for the same basic block with "
668 "different incoming values!", PN
, Values
[i
].first
,
669 Values
[i
].second
, Values
[i
-1].second
);
671 // Check to make sure that the predecessors and PHI node entries are
673 Assert3(Values
[i
].first
== Preds
[i
],
674 "PHI node entries do not match predecessors!", PN
,
675 Values
[i
].first
, Preds
[i
]);
681 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
682 // Ensure that terminators only exist at the end of the basic block.
683 Assert1(&I
== I
.getParent()->getTerminator(),
684 "Terminator found in the middle of a basic block!", I
.getParent());
688 void Verifier::visitReturnInst(ReturnInst
&RI
) {
689 Function
*F
= RI
.getParent()->getParent();
690 unsigned N
= RI
.getNumOperands();
691 if (F
->getReturnType() == Type::VoidTy
)
693 "Found return instr that returns non-void in Function of void "
694 "return type!", &RI
, F
->getReturnType());
695 else if (N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType()) {
696 // Exactly one return value and it matches the return type. Good.
697 } else if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
698 // The return type is a struct; check for multiple return values.
699 Assert2(STy
->getNumElements() == N
,
700 "Incorrect number of return values in ret instruction!",
701 &RI
, F
->getReturnType());
702 for (unsigned i
= 0; i
!= N
; ++i
)
703 Assert2(STy
->getElementType(i
) == RI
.getOperand(i
)->getType(),
704 "Function return type does not match operand "
705 "type of return inst!", &RI
, F
->getReturnType());
706 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(F
->getReturnType())) {
707 // The return type is an array; check for multiple return values.
708 Assert2(ATy
->getNumElements() == N
,
709 "Incorrect number of return values in ret instruction!",
710 &RI
, F
->getReturnType());
711 for (unsigned i
= 0; i
!= N
; ++i
)
712 Assert2(ATy
->getElementType() == RI
.getOperand(i
)->getType(),
713 "Function return type does not match operand "
714 "type of return inst!", &RI
, F
->getReturnType());
716 CheckFailed("Function return type does not match operand "
717 "type of return inst!", &RI
, F
->getReturnType());
720 // Check to make sure that the return value has necessary properties for
722 visitTerminatorInst(RI
);
725 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
726 // Check to make sure that all of the constants in the switch instruction
727 // have the same type as the switched-on value.
728 const Type
*SwitchTy
= SI
.getCondition()->getType();
729 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
)
730 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
731 "Switch constants must all be same type as switch value!", &SI
);
733 visitTerminatorInst(SI
);
736 void Verifier::visitSelectInst(SelectInst
&SI
) {
737 Assert1(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
739 "Invalid operands for select instruction!", &SI
);
741 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
742 "Select values must have same type as select instruction!", &SI
);
743 visitInstruction(SI
);
747 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
748 /// a pass, if any exist, it's an error.
750 void Verifier::visitUserOp1(Instruction
&I
) {
751 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
754 void Verifier::visitTruncInst(TruncInst
&I
) {
755 // Get the source and destination types
756 const Type
*SrcTy
= I
.getOperand(0)->getType();
757 const Type
*DestTy
= I
.getType();
759 // Get the size of the types in bits, we'll need this later
760 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
761 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
763 Assert1(SrcTy
->isIntOrIntVector(), "Trunc only operates on integer", &I
);
764 Assert1(DestTy
->isIntOrIntVector(), "Trunc only produces integer", &I
);
765 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
766 "trunc source and destination must both be a vector or neither", &I
);
767 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
772 void Verifier::visitZExtInst(ZExtInst
&I
) {
773 // Get the source and destination types
774 const Type
*SrcTy
= I
.getOperand(0)->getType();
775 const Type
*DestTy
= I
.getType();
777 // Get the size of the types in bits, we'll need this later
778 Assert1(SrcTy
->isIntOrIntVector(), "ZExt only operates on integer", &I
);
779 Assert1(DestTy
->isIntOrIntVector(), "ZExt only produces an integer", &I
);
780 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
781 "zext source and destination must both be a vector or neither", &I
);
782 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
783 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
785 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
790 void Verifier::visitSExtInst(SExtInst
&I
) {
791 // Get the source and destination types
792 const Type
*SrcTy
= I
.getOperand(0)->getType();
793 const Type
*DestTy
= I
.getType();
795 // Get the size of the types in bits, we'll need this later
796 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
797 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
799 Assert1(SrcTy
->isIntOrIntVector(), "SExt only operates on integer", &I
);
800 Assert1(DestTy
->isIntOrIntVector(), "SExt only produces an integer", &I
);
801 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
802 "sext source and destination must both be a vector or neither", &I
);
803 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
808 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
809 // Get the source and destination types
810 const Type
*SrcTy
= I
.getOperand(0)->getType();
811 const Type
*DestTy
= I
.getType();
812 // Get the size of the types in bits, we'll need this later
813 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
814 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
816 Assert1(SrcTy
->isFPOrFPVector(),"FPTrunc only operates on FP", &I
);
817 Assert1(DestTy
->isFPOrFPVector(),"FPTrunc only produces an FP", &I
);
818 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
819 "fptrunc source and destination must both be a vector or neither",&I
);
820 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
825 void Verifier::visitFPExtInst(FPExtInst
&I
) {
826 // Get the source and destination types
827 const Type
*SrcTy
= I
.getOperand(0)->getType();
828 const Type
*DestTy
= I
.getType();
830 // Get the size of the types in bits, we'll need this later
831 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
832 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
834 Assert1(SrcTy
->isFPOrFPVector(),"FPExt only operates on FP", &I
);
835 Assert1(DestTy
->isFPOrFPVector(),"FPExt only produces an FP", &I
);
836 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
837 "fpext source and destination must both be a vector or neither", &I
);
838 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
843 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
844 // Get the source and destination types
845 const Type
*SrcTy
= I
.getOperand(0)->getType();
846 const Type
*DestTy
= I
.getType();
848 bool SrcVec
= isa
<VectorType
>(SrcTy
);
849 bool DstVec
= isa
<VectorType
>(DestTy
);
851 Assert1(SrcVec
== DstVec
,
852 "UIToFP source and dest must both be vector or scalar", &I
);
853 Assert1(SrcTy
->isIntOrIntVector(),
854 "UIToFP source must be integer or integer vector", &I
);
855 Assert1(DestTy
->isFPOrFPVector(),
856 "UIToFP result must be FP or FP vector", &I
);
858 if (SrcVec
&& DstVec
)
859 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
860 cast
<VectorType
>(DestTy
)->getNumElements(),
861 "UIToFP source and dest vector length mismatch", &I
);
866 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
867 // Get the source and destination types
868 const Type
*SrcTy
= I
.getOperand(0)->getType();
869 const Type
*DestTy
= I
.getType();
871 bool SrcVec
= SrcTy
->getTypeID() == Type::VectorTyID
;
872 bool DstVec
= DestTy
->getTypeID() == Type::VectorTyID
;
874 Assert1(SrcVec
== DstVec
,
875 "SIToFP source and dest must both be vector or scalar", &I
);
876 Assert1(SrcTy
->isIntOrIntVector(),
877 "SIToFP source must be integer or integer vector", &I
);
878 Assert1(DestTy
->isFPOrFPVector(),
879 "SIToFP result must be FP or FP vector", &I
);
881 if (SrcVec
&& DstVec
)
882 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
883 cast
<VectorType
>(DestTy
)->getNumElements(),
884 "SIToFP source and dest vector length mismatch", &I
);
889 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
890 // Get the source and destination types
891 const Type
*SrcTy
= I
.getOperand(0)->getType();
892 const Type
*DestTy
= I
.getType();
894 bool SrcVec
= isa
<VectorType
>(SrcTy
);
895 bool DstVec
= isa
<VectorType
>(DestTy
);
897 Assert1(SrcVec
== DstVec
,
898 "FPToUI source and dest must both be vector or scalar", &I
);
899 Assert1(SrcTy
->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I
);
900 Assert1(DestTy
->isIntOrIntVector(),
901 "FPToUI result must be integer or integer vector", &I
);
903 if (SrcVec
&& DstVec
)
904 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
905 cast
<VectorType
>(DestTy
)->getNumElements(),
906 "FPToUI source and dest vector length mismatch", &I
);
911 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
912 // Get the source and destination types
913 const Type
*SrcTy
= I
.getOperand(0)->getType();
914 const Type
*DestTy
= I
.getType();
916 bool SrcVec
= isa
<VectorType
>(SrcTy
);
917 bool DstVec
= isa
<VectorType
>(DestTy
);
919 Assert1(SrcVec
== DstVec
,
920 "FPToSI source and dest must both be vector or scalar", &I
);
921 Assert1(SrcTy
->isFPOrFPVector(),
922 "FPToSI source must be FP or FP vector", &I
);
923 Assert1(DestTy
->isIntOrIntVector(),
924 "FPToSI result must be integer or integer vector", &I
);
926 if (SrcVec
&& DstVec
)
927 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
928 cast
<VectorType
>(DestTy
)->getNumElements(),
929 "FPToSI source and dest vector length mismatch", &I
);
934 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
935 // Get the source and destination types
936 const Type
*SrcTy
= I
.getOperand(0)->getType();
937 const Type
*DestTy
= I
.getType();
939 Assert1(isa
<PointerType
>(SrcTy
), "PtrToInt source must be pointer", &I
);
940 Assert1(DestTy
->isInteger(), "PtrToInt result must be integral", &I
);
945 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
946 // Get the source and destination types
947 const Type
*SrcTy
= I
.getOperand(0)->getType();
948 const Type
*DestTy
= I
.getType();
950 Assert1(SrcTy
->isInteger(), "IntToPtr source must be an integral", &I
);
951 Assert1(isa
<PointerType
>(DestTy
), "IntToPtr result must be a pointer",&I
);
956 void Verifier::visitBitCastInst(BitCastInst
&I
) {
957 // Get the source and destination types
958 const Type
*SrcTy
= I
.getOperand(0)->getType();
959 const Type
*DestTy
= I
.getType();
961 // Get the size of the types in bits, we'll need this later
962 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
963 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
965 // BitCast implies a no-op cast of type only. No bits change.
966 // However, you can't cast pointers to anything but pointers.
967 Assert1(isa
<PointerType
>(DestTy
) == isa
<PointerType
>(DestTy
),
968 "Bitcast requires both operands to be pointer or neither", &I
);
969 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requires types of same width",&I
);
971 // Disallow aggregates.
972 Assert1(!SrcTy
->isAggregateType(),
973 "Bitcast operand must not be aggregate", &I
);
974 Assert1(!DestTy
->isAggregateType(),
975 "Bitcast type must not be aggregate", &I
);
980 /// visitPHINode - Ensure that a PHI node is well formed.
982 void Verifier::visitPHINode(PHINode
&PN
) {
983 // Ensure that the PHI nodes are all grouped together at the top of the block.
984 // This can be tested by checking whether the instruction before this is
985 // either nonexistent (because this is begin()) or is a PHI node. If not,
986 // then there is some other instruction before a PHI.
987 Assert2(&PN
== &PN
.getParent()->front() ||
988 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
989 "PHI nodes not grouped at top of basic block!",
990 &PN
, PN
.getParent());
992 // Check that all of the operands of the PHI node have the same type as the
994 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
995 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
996 "PHI node operands are not the same type as the result!", &PN
);
998 // All other PHI node constraints are checked in the visitBasicBlock method.
1000 visitInstruction(PN
);
1003 void Verifier::VerifyCallSite(CallSite CS
) {
1004 Instruction
*I
= CS
.getInstruction();
1006 Assert1(isa
<PointerType
>(CS
.getCalledValue()->getType()),
1007 "Called function must be a pointer!", I
);
1008 const PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1009 Assert1(isa
<FunctionType
>(FPTy
->getElementType()),
1010 "Called function is not pointer to function type!", I
);
1012 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
1014 // Verify that the correct number of arguments are being passed
1015 if (FTy
->isVarArg())
1016 Assert1(CS
.arg_size() >= FTy
->getNumParams(),
1017 "Called function requires more parameters than were provided!",I
);
1019 Assert1(CS
.arg_size() == FTy
->getNumParams(),
1020 "Incorrect number of arguments passed to called function!", I
);
1022 // Verify that all arguments to the call match the function type...
1023 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1024 Assert3(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
1025 "Call parameter type does not match function signature!",
1026 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
1028 const AttrListPtr
&Attrs
= CS
.getAttributes();
1030 Assert1(VerifyAttributeCount(Attrs
, CS
.arg_size()),
1031 "Attributes after last parameter!", I
);
1033 // Verify call attributes.
1034 VerifyFunctionAttrs(FTy
, Attrs
, I
);
1036 if (FTy
->isVarArg())
1037 // Check attributes on the varargs part.
1038 for (unsigned Idx
= 1 + FTy
->getNumParams(); Idx
<= CS
.arg_size(); ++Idx
) {
1039 Attributes Attr
= Attrs
.getParamAttributes(Idx
);
1041 VerifyParameterAttrs(Attr
, CS
.getArgument(Idx
-1)->getType(), false, I
);
1043 Attributes VArgI
= Attr
& Attribute::VarArgsIncompatible
;
1044 Assert1(!VArgI
, "Attribute " + Attribute::getAsString(VArgI
) +
1045 " cannot be used for vararg call arguments!", I
);
1048 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1049 if (!CS
.getCalledFunction() || CS
.getCalledFunction()->getName().size() < 5 ||
1050 CS
.getCalledFunction()->getName().substr(0, 5) != "llvm.") {
1051 Assert1(FTy
->getReturnType() != Type::MetadataTy
,
1052 "Only intrinsics may return metadata", I
);
1053 for (FunctionType::param_iterator PI
= FTy
->param_begin(),
1054 PE
= FTy
->param_end(); PI
!= PE
; ++PI
)
1055 Assert1(PI
->get() != Type::MetadataTy
, "Function has metadata parameter "
1056 "but isn't an intrinsic", I
);
1059 visitInstruction(*I
);
1062 void Verifier::visitCallInst(CallInst
&CI
) {
1063 VerifyCallSite(&CI
);
1065 if (Function
*F
= CI
.getCalledFunction())
1066 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
1067 visitIntrinsicFunctionCall(ID
, CI
);
1070 void Verifier::visitInvokeInst(InvokeInst
&II
) {
1071 VerifyCallSite(&II
);
1074 /// visitBinaryOperator - Check that both arguments to the binary operator are
1075 /// of the same type!
1077 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
1078 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
1079 "Both operands to a binary operator are not of the same type!", &B
);
1081 switch (B
.getOpcode()) {
1082 // Check that integer arithmetic operators are only used with
1083 // integral operands.
1084 case Instruction::Add
:
1085 case Instruction::Sub
:
1086 case Instruction::Mul
:
1087 case Instruction::SDiv
:
1088 case Instruction::UDiv
:
1089 case Instruction::SRem
:
1090 case Instruction::URem
:
1091 Assert1(B
.getType()->isIntOrIntVector(),
1092 "Integer arithmetic operators only work with integral types!", &B
);
1093 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1094 "Integer arithmetic operators must have same type "
1095 "for operands and result!", &B
);
1097 // Check that floating-point arithmetic operators are only used with
1098 // floating-point operands.
1099 case Instruction::FAdd
:
1100 case Instruction::FSub
:
1101 case Instruction::FMul
:
1102 case Instruction::FDiv
:
1103 case Instruction::FRem
:
1104 Assert1(B
.getType()->isFPOrFPVector(),
1105 "Floating-point arithmetic operators only work with "
1106 "floating-point types!", &B
);
1107 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1108 "Floating-point arithmetic operators must have same type "
1109 "for operands and result!", &B
);
1111 // Check that logical operators are only used with integral operands.
1112 case Instruction::And
:
1113 case Instruction::Or
:
1114 case Instruction::Xor
:
1115 Assert1(B
.getType()->isIntOrIntVector(),
1116 "Logical operators only work with integral types!", &B
);
1117 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1118 "Logical operators must have same type for operands and result!",
1121 case Instruction::Shl
:
1122 case Instruction::LShr
:
1123 case Instruction::AShr
:
1124 Assert1(B
.getType()->isIntOrIntVector(),
1125 "Shifts only work with integral types!", &B
);
1126 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1127 "Shift return type must be same as operands!", &B
);
1130 llvm_unreachable("Unknown BinaryOperator opcode!");
1133 visitInstruction(B
);
1136 void Verifier::visitICmpInst(ICmpInst
& IC
) {
1137 // Check that the operands are the same type
1138 const Type
* Op0Ty
= IC
.getOperand(0)->getType();
1139 const Type
* Op1Ty
= IC
.getOperand(1)->getType();
1140 Assert1(Op0Ty
== Op1Ty
,
1141 "Both operands to ICmp instruction are not of the same type!", &IC
);
1142 // Check that the operands are the right type
1143 Assert1(Op0Ty
->isIntOrIntVector() || isa
<PointerType
>(Op0Ty
),
1144 "Invalid operand types for ICmp instruction", &IC
);
1146 visitInstruction(IC
);
1149 void Verifier::visitFCmpInst(FCmpInst
& FC
) {
1150 // Check that the operands are the same type
1151 const Type
* Op0Ty
= FC
.getOperand(0)->getType();
1152 const Type
* Op1Ty
= FC
.getOperand(1)->getType();
1153 Assert1(Op0Ty
== Op1Ty
,
1154 "Both operands to FCmp instruction are not of the same type!", &FC
);
1155 // Check that the operands are the right type
1156 Assert1(Op0Ty
->isFPOrFPVector(),
1157 "Invalid operand types for FCmp instruction", &FC
);
1158 visitInstruction(FC
);
1161 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
1162 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
1164 "Invalid extractelement operands!", &EI
);
1165 visitInstruction(EI
);
1168 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
1169 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
1172 "Invalid insertelement operands!", &IE
);
1173 visitInstruction(IE
);
1176 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
1177 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
1179 "Invalid shufflevector operands!", &SV
);
1181 const VectorType
*VTy
= dyn_cast
<VectorType
>(SV
.getOperand(0)->getType());
1182 Assert1(VTy
, "Operands are not a vector type", &SV
);
1184 // Check to see if Mask is valid.
1185 if (const ConstantVector
*MV
= dyn_cast
<ConstantVector
>(SV
.getOperand(2))) {
1186 for (unsigned i
= 0, e
= MV
->getNumOperands(); i
!= e
; ++i
) {
1187 if (ConstantInt
* CI
= dyn_cast
<ConstantInt
>(MV
->getOperand(i
))) {
1188 Assert1(!CI
->uge(VTy
->getNumElements()*2),
1189 "Invalid shufflevector shuffle mask!", &SV
);
1191 Assert1(isa
<UndefValue
>(MV
->getOperand(i
)),
1192 "Invalid shufflevector shuffle mask!", &SV
);
1196 Assert1(isa
<UndefValue
>(SV
.getOperand(2)) ||
1197 isa
<ConstantAggregateZero
>(SV
.getOperand(2)),
1198 "Invalid shufflevector shuffle mask!", &SV
);
1201 visitInstruction(SV
);
1204 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1205 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
1207 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
1208 Idxs
.begin(), Idxs
.end());
1209 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
1210 Assert2(isa
<PointerType
>(GEP
.getType()) &&
1211 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
1212 "GEP is not of right type for indices!", &GEP
, ElTy
);
1213 visitInstruction(GEP
);
1216 void Verifier::visitLoadInst(LoadInst
&LI
) {
1218 cast
<PointerType
>(LI
.getOperand(0)->getType())->getElementType();
1219 Assert2(ElTy
== LI
.getType(),
1220 "Load result type does not match pointer operand type!", &LI
, ElTy
);
1221 Assert1(ElTy
!= Type::MetadataTy
, "Can't load metadata!", &LI
);
1222 visitInstruction(LI
);
1225 void Verifier::visitStoreInst(StoreInst
&SI
) {
1227 cast
<PointerType
>(SI
.getOperand(1)->getType())->getElementType();
1228 Assert2(ElTy
== SI
.getOperand(0)->getType(),
1229 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
1230 Assert1(ElTy
!= Type::MetadataTy
, "Can't store metadata!", &SI
);
1231 visitInstruction(SI
);
1234 void Verifier::visitAllocationInst(AllocationInst
&AI
) {
1235 const PointerType
*PTy
= AI
.getType();
1236 Assert1(PTy
->getAddressSpace() == 0,
1237 "Allocation instruction pointer not in the generic address space!",
1239 Assert1(PTy
->getElementType()->isSized(), "Cannot allocate unsized type",
1241 visitInstruction(AI
);
1244 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
1245 Assert1(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
1246 EVI
.idx_begin(), EVI
.idx_end()) ==
1248 "Invalid ExtractValueInst operands!", &EVI
);
1250 visitInstruction(EVI
);
1253 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
1254 Assert1(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
1255 IVI
.idx_begin(), IVI
.idx_end()) ==
1256 IVI
.getOperand(1)->getType(),
1257 "Invalid InsertValueInst operands!", &IVI
);
1259 visitInstruction(IVI
);
1262 /// verifyInstruction - Verify that an instruction is well formed.
1264 void Verifier::visitInstruction(Instruction
&I
) {
1265 BasicBlock
*BB
= I
.getParent();
1266 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
1268 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
1269 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1271 Assert1(*UI
!= (User
*)&I
|| !DT
->isReachableFromEntry(BB
),
1272 "Only PHI nodes may reference their own value!", &I
);
1275 // Verify that if this is a terminator that it is at the end of the block.
1276 if (isa
<TerminatorInst
>(I
))
1277 Assert1(BB
->getTerminator() == &I
, "Terminator not at end of block!", &I
);
1280 // Check that void typed values don't have names
1281 Assert1(I
.getType() != Type::VoidTy
|| !I
.hasName(),
1282 "Instruction has a name, but provides a void value!", &I
);
1284 // Check that the return value of the instruction is either void or a legal
1286 Assert1(I
.getType() == Type::VoidTy
|| I
.getType()->isFirstClassType()
1287 || ((isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
))
1288 && isa
<StructType
>(I
.getType())),
1289 "Instruction returns a non-scalar type!", &I
);
1291 // Check that the instruction doesn't produce metadata or metadata*. Calls
1292 // all already checked against the callee type.
1293 Assert1(I
.getType() != Type::MetadataTy
||
1294 isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
1295 "Invalid use of metadata!", &I
);
1297 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(I
.getType()))
1298 Assert1(PTy
->getElementType() != Type::MetadataTy
,
1299 "Instructions may not produce pointer to metadata.", &I
);
1302 // Check that all uses of the instruction, if they are instructions
1303 // themselves, actually have parent basic blocks. If the use is not an
1304 // instruction, it is an error!
1305 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1307 Assert1(isa
<Instruction
>(*UI
), "Use of instruction is not an instruction!",
1309 Instruction
*Used
= cast
<Instruction
>(*UI
);
1310 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
1311 " embedded in a basic block!", &I
, Used
);
1314 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1315 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
1317 // Check to make sure that only first-class-values are operands to
1319 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
1320 Assert1(0, "Instruction operands must be first-class values!", &I
);
1323 if (const PointerType
*PTy
=
1324 dyn_cast
<PointerType
>(I
.getOperand(i
)->getType()))
1325 Assert1(PTy
->getElementType() != Type::MetadataTy
,
1326 "Invalid use of metadata pointer.", &I
);
1328 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
1329 // Check to make sure that the "address of" an intrinsic function is never
1331 Assert1(!F
->isIntrinsic() || (i
== 0 && isa
<CallInst
>(I
)),
1332 "Cannot take the address of an intrinsic!", &I
);
1333 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
1335 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1336 Assert1(OpBB
->getParent() == BB
->getParent(),
1337 "Referring to a basic block in another function!", &I
);
1338 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1339 Assert1(OpArg
->getParent() == BB
->getParent(),
1340 "Referring to an argument in another function!", &I
);
1341 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1342 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1344 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1345 BasicBlock
*OpBlock
= Op
->getParent();
1347 // Check that a definition dominates all of its uses.
1348 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1349 // Invoke results are only usable in the normal destination, not in the
1350 // exceptional destination.
1351 BasicBlock
*NormalDest
= II
->getNormalDest();
1353 Assert2(NormalDest
!= II
->getUnwindDest(),
1354 "No uses of invoke possible due to dominance structure!",
1357 // PHI nodes differ from other nodes because they actually "use" the
1358 // value in the predecessor basic blocks they correspond to.
1359 BasicBlock
*UseBlock
= BB
;
1360 if (isa
<PHINode
>(I
))
1361 UseBlock
= cast
<BasicBlock
>(I
.getOperand(i
+1));
1363 if (isa
<PHINode
>(I
) && UseBlock
== OpBlock
) {
1364 // Special case of a phi node in the normal destination or the unwind
1366 Assert2(BB
== NormalDest
|| !DT
->isReachableFromEntry(UseBlock
),
1367 "Invoke result not available in the unwind destination!",
1370 Assert2(DT
->dominates(NormalDest
, UseBlock
) ||
1371 !DT
->isReachableFromEntry(UseBlock
),
1372 "Invoke result does not dominate all uses!", Op
, &I
);
1374 // If the normal successor of an invoke instruction has multiple
1375 // predecessors, then the normal edge from the invoke is critical,
1376 // so the invoke value can only be live if the destination block
1377 // dominates all of it's predecessors (other than the invoke).
1378 if (!NormalDest
->getSinglePredecessor() &&
1379 DT
->isReachableFromEntry(UseBlock
))
1380 // If it is used by something non-phi, then the other case is that
1381 // 'NormalDest' dominates all of its predecessors other than the
1382 // invoke. In this case, the invoke value can still be used.
1383 for (pred_iterator PI
= pred_begin(NormalDest
),
1384 E
= pred_end(NormalDest
); PI
!= E
; ++PI
)
1385 if (*PI
!= II
->getParent() && !DT
->dominates(NormalDest
, *PI
) &&
1386 DT
->isReachableFromEntry(*PI
)) {
1387 CheckFailed("Invoke result does not dominate all uses!", Op
,&I
);
1391 } else if (isa
<PHINode
>(I
)) {
1392 // PHI nodes are more difficult than other nodes because they actually
1393 // "use" the value in the predecessor basic blocks they correspond to.
1394 BasicBlock
*PredBB
= cast
<BasicBlock
>(I
.getOperand(i
+1));
1395 Assert2(DT
->dominates(OpBlock
, PredBB
) ||
1396 !DT
->isReachableFromEntry(PredBB
),
1397 "Instruction does not dominate all uses!", Op
, &I
);
1399 if (OpBlock
== BB
) {
1400 // If they are in the same basic block, make sure that the definition
1401 // comes before the use.
1402 Assert2(InstsInThisBlock
.count(Op
) || !DT
->isReachableFromEntry(BB
),
1403 "Instruction does not dominate all uses!", Op
, &I
);
1406 // Definition must dominate use unless use is unreachable!
1407 Assert2(InstsInThisBlock
.count(Op
) || DT
->dominates(Op
, &I
) ||
1408 !DT
->isReachableFromEntry(BB
),
1409 "Instruction does not dominate all uses!", Op
, &I
);
1411 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1412 Assert1(i
== 0 && (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)),
1413 "Cannot take the address of an inline asm!", &I
);
1416 InstsInThisBlock
.insert(&I
);
1419 // Flags used by TableGen to mark intrinsic parameters with the
1420 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1421 static const unsigned ExtendedElementVectorType
= 0x40000000;
1422 static const unsigned TruncatedElementVectorType
= 0x20000000;
1424 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1426 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1427 Function
*IF
= CI
.getCalledFunction();
1428 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1431 #define GET_INTRINSIC_VERIFIER
1432 #include "llvm/Intrinsics.gen"
1433 #undef GET_INTRINSIC_VERIFIER
1438 case Intrinsic::dbg_declare
: // llvm.dbg.declare
1439 if (Constant
*C
= dyn_cast
<Constant
>(CI
.getOperand(1)))
1440 Assert1(C
&& !isa
<ConstantPointerNull
>(C
),
1441 "invalid llvm.dbg.declare intrinsic call", &CI
);
1443 case Intrinsic::memcpy
:
1444 case Intrinsic::memmove
:
1445 case Intrinsic::memset
:
1446 Assert1(isa
<ConstantInt
>(CI
.getOperand(4)),
1447 "alignment argument of memory intrinsics must be a constant int",
1450 case Intrinsic::gcroot
:
1451 case Intrinsic::gcwrite
:
1452 case Intrinsic::gcread
:
1453 if (ID
== Intrinsic::gcroot
) {
1455 dyn_cast
<AllocaInst
>(CI
.getOperand(1)->stripPointerCasts());
1456 Assert1(AI
&& isa
<PointerType
>(AI
->getType()->getElementType()),
1457 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI
);
1458 Assert1(isa
<Constant
>(CI
.getOperand(2)),
1459 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1462 Assert1(CI
.getParent()->getParent()->hasGC(),
1463 "Enclosing function does not use GC.", &CI
);
1465 case Intrinsic::init_trampoline
:
1466 Assert1(isa
<Function
>(CI
.getOperand(2)->stripPointerCasts()),
1467 "llvm.init_trampoline parameter #2 must resolve to a function.",
1470 case Intrinsic::prefetch
:
1471 Assert1(isa
<ConstantInt
>(CI
.getOperand(2)) &&
1472 isa
<ConstantInt
>(CI
.getOperand(3)) &&
1473 cast
<ConstantInt
>(CI
.getOperand(2))->getZExtValue() < 2 &&
1474 cast
<ConstantInt
>(CI
.getOperand(3))->getZExtValue() < 4,
1475 "invalid arguments to llvm.prefetch",
1478 case Intrinsic::stackprotector
:
1479 Assert1(isa
<AllocaInst
>(CI
.getOperand(2)->stripPointerCasts()),
1480 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1486 /// Produce a string to identify an intrinsic parameter or return value.
1487 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1488 /// parameters beginning with NumRets.
1490 static std::string
IntrinsicParam(unsigned ArgNo
, unsigned NumRets
) {
1491 if (ArgNo
< NumRets
) {
1493 return "Intrinsic result type";
1495 return "Intrinsic result type #" + utostr(ArgNo
);
1497 return "Intrinsic parameter #" + utostr(ArgNo
- NumRets
);
1500 bool Verifier::PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
1501 int VT
, unsigned ArgNo
, std::string
&Suffix
) {
1502 const FunctionType
*FTy
= F
->getFunctionType();
1504 unsigned NumElts
= 0;
1505 const Type
*EltTy
= Ty
;
1506 const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1508 EltTy
= VTy
->getElementType();
1509 NumElts
= VTy
->getNumElements();
1512 const Type
*RetTy
= FTy
->getReturnType();
1513 const StructType
*ST
= dyn_cast
<StructType
>(RetTy
);
1514 unsigned NumRets
= 1;
1516 NumRets
= ST
->getNumElements();
1521 // Check flags that indicate a type that is an integral vector type with
1522 // elements that are larger or smaller than the elements of the matched
1524 if ((Match
& (ExtendedElementVectorType
|
1525 TruncatedElementVectorType
)) != 0) {
1526 const IntegerType
*IEltTy
= dyn_cast
<IntegerType
>(EltTy
);
1527 if (!VTy
|| !IEltTy
) {
1528 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1529 "an integral vector type.", F
);
1532 // Adjust the current Ty (in the opposite direction) rather than
1533 // the type being matched against.
1534 if ((Match
& ExtendedElementVectorType
) != 0) {
1535 if ((IEltTy
->getBitWidth() & 1) != 0) {
1536 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " vector "
1537 "element bit-width is odd.", F
);
1540 Ty
= VectorType::getTruncatedElementVectorType(VTy
);
1542 Ty
= VectorType::getExtendedElementVectorType(VTy
);
1543 Match
&= ~(ExtendedElementVectorType
| TruncatedElementVectorType
);
1546 if (Match
<= static_cast<int>(NumRets
- 1)) {
1548 RetTy
= ST
->getElementType(Match
);
1551 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " does not "
1552 "match return type.", F
);
1556 if (Ty
!= FTy
->getParamType(Match
- NumRets
)) {
1557 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " does not "
1558 "match parameter %" + utostr(Match
- NumRets
) + ".", F
);
1562 } else if (VT
== MVT::iAny
) {
1563 if (!EltTy
->isInteger()) {
1564 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1565 "an integer type.", F
);
1569 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1573 Suffix
+= "v" + utostr(NumElts
);
1575 Suffix
+= "i" + utostr(GotBits
);
1577 // Check some constraints on various intrinsics.
1579 default: break; // Not everything needs to be checked.
1580 case Intrinsic::bswap
:
1581 if (GotBits
< 16 || GotBits
% 16 != 0) {
1582 CheckFailed("Intrinsic requires even byte width argument", F
);
1587 } else if (VT
== MVT::fAny
) {
1588 if (!EltTy
->isFloatingPoint()) {
1589 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1590 "a floating-point type.", F
);
1597 Suffix
+= "v" + utostr(NumElts
);
1599 Suffix
+= MVT::getMVT(EltTy
).getMVTString();
1600 } else if (VT
== MVT::iPTR
) {
1601 if (!isa
<PointerType
>(Ty
)) {
1602 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not a "
1603 "pointer and a pointer is required.", F
);
1606 } else if (VT
== MVT::iPTRAny
) {
1607 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1608 // and iPTR. In the verifier, we can not distinguish which case we have so
1609 // allow either case to be legal.
1610 if (const PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
1611 Suffix
+= ".p" + utostr(PTyp
->getAddressSpace()) +
1612 MVT::getMVT(PTyp
->getElementType()).getMVTString();
1614 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not a "
1615 "pointer and a pointer is required.", F
);
1618 } else if (MVT((MVT::SimpleValueType
)VT
).isVector()) {
1619 MVT VVT
= MVT((MVT::SimpleValueType
)VT
);
1621 // If this is a vector argument, verify the number and type of elements.
1622 if (VVT
.getVectorElementType() != MVT::getMVT(EltTy
)) {
1623 CheckFailed("Intrinsic prototype has incorrect vector element type!", F
);
1627 if (VVT
.getVectorNumElements() != NumElts
) {
1628 CheckFailed("Intrinsic prototype has incorrect number of "
1629 "vector elements!", F
);
1632 } else if (MVT((MVT::SimpleValueType
)VT
).getTypeForMVT() != EltTy
) {
1633 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is wrong!", F
);
1635 } else if (EltTy
!= Ty
) {
1636 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is a vector "
1637 "and a scalar is required.", F
);
1644 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1645 /// Intrinsics.gen. This implements a little state machine that verifies the
1646 /// prototype of intrinsics.
1647 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
1649 unsigned ParamNum
, ...) {
1651 va_start(VA
, ParamNum
);
1652 const FunctionType
*FTy
= F
->getFunctionType();
1654 // For overloaded intrinsics, the Suffix of the function name must match the
1655 // types of the arguments. This variable keeps track of the expected
1656 // suffix, to be checked at the end.
1659 if (FTy
->getNumParams() + FTy
->isVarArg() != ParamNum
) {
1660 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1664 const Type
*Ty
= FTy
->getReturnType();
1665 const StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1667 // Verify the return types.
1668 if (ST
&& ST
->getNumElements() != RetNum
) {
1669 CheckFailed("Intrinsic prototype has incorrect number of return types!", F
);
1673 for (unsigned ArgNo
= 0; ArgNo
< RetNum
; ++ArgNo
) {
1674 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1676 if (ST
) Ty
= ST
->getElementType(ArgNo
);
1678 if (!PerformTypeCheck(ID
, F
, Ty
, VT
, ArgNo
, Suffix
))
1682 // Verify the parameter types.
1683 for (unsigned ArgNo
= 0; ArgNo
< ParamNum
; ++ArgNo
) {
1684 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1686 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1687 if (!FTy
->isVarArg())
1688 CheckFailed("Intrinsic prototype has no '...'!", F
);
1692 if (!PerformTypeCheck(ID
, F
, FTy
->getParamType(ArgNo
), VT
, ArgNo
+ RetNum
,
1699 // For intrinsics without pointer arguments, if we computed a Suffix then the
1700 // intrinsic is overloaded and we need to make sure that the name of the
1701 // function is correct. We add the suffix to the name of the intrinsic and
1702 // compare against the given function name. If they are not the same, the
1703 // function name is invalid. This ensures that overloading of intrinsics
1704 // uses a sane and consistent naming convention. Note that intrinsics with
1705 // pointer argument may or may not be overloaded so we will check assuming it
1706 // has a suffix and not.
1707 if (!Suffix
.empty()) {
1708 std::string
Name(Intrinsic::getName(ID
));
1709 if (Name
+ Suffix
!= F
->getName()) {
1710 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1711 F
->getName().substr(Name
.length()) + "'. It should be '" +
1716 // Check parameter attributes.
1717 Assert1(F
->getAttributes() == Intrinsic::getAttributes(ID
),
1718 "Intrinsic has wrong parameter attributes!", F
);
1722 //===----------------------------------------------------------------------===//
1723 // Implement the public interfaces to this file...
1724 //===----------------------------------------------------------------------===//
1726 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1727 return new Verifier(action
);
1731 // verifyFunction - Create
1732 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1733 Function
&F
= const_cast<Function
&>(f
);
1734 assert(!F
.isDeclaration() && "Cannot verify external functions");
1736 ExistingModuleProvider
MP(F
.getParent());
1737 FunctionPassManager
FPM(&MP
);
1738 Verifier
*V
= new Verifier(action
);
1745 /// verifyModule - Check a module for errors, printing messages on stderr.
1746 /// Return true if the module is corrupt.
1748 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1749 std::string
*ErrorInfo
) {
1751 Verifier
*V
= new Verifier(action
);
1753 PM
.run(const_cast<Module
&>(M
));
1755 if (ErrorInfo
&& V
->Broken
)
1756 *ErrorInfo
= V
->msgs
.str();