Indentation change.
[llvm/avr.git] / lib / AsmParser / LLParser.cpp
blobec7bc650c45e5b5cdf7d21ff18f7cddec09e8104
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 namespace llvm {
33 /// ValID - Represents a reference of a definition of some sort with no type.
34 /// There are several cases where we have to parse the value but where the
35 /// type can depend on later context. This may either be a numeric reference
36 /// or a symbolic (%var) reference. This is just a discriminated union.
37 struct ValID {
38 enum {
39 t_LocalID, t_GlobalID, // ID in UIntVal.
40 t_LocalName, t_GlobalName, // Name in StrVal.
41 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
42 t_Null, t_Undef, t_Zero, // No value.
43 t_EmptyArray, // No value: []
44 t_Constant, // Value in ConstantVal.
45 t_InlineAsm, // Value in StrVal/StrVal2/UIntVal.
46 t_Metadata // Value in MetadataVal.
47 } Kind;
49 LLParser::LocTy Loc;
50 unsigned UIntVal;
51 std::string StrVal, StrVal2;
52 APSInt APSIntVal;
53 APFloat APFloatVal;
54 Constant *ConstantVal;
55 MetadataBase *MetadataVal;
56 ValID() : APFloatVal(0.0) {}
60 /// Run: module ::= toplevelentity*
61 bool LLParser::Run() {
62 // Prime the lexer.
63 Lex.Lex();
65 return ParseTopLevelEntities() ||
66 ValidateEndOfModule();
69 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70 /// module.
71 bool LLParser::ValidateEndOfModule() {
72 if (!ForwardRefTypes.empty())
73 return Error(ForwardRefTypes.begin()->second.second,
74 "use of undefined type named '" +
75 ForwardRefTypes.begin()->first + "'");
76 if (!ForwardRefTypeIDs.empty())
77 return Error(ForwardRefTypeIDs.begin()->second.second,
78 "use of undefined type '%" +
79 utostr(ForwardRefTypeIDs.begin()->first) + "'");
81 if (!ForwardRefVals.empty())
82 return Error(ForwardRefVals.begin()->second.second,
83 "use of undefined value '@" + ForwardRefVals.begin()->first +
84 "'");
86 if (!ForwardRefValIDs.empty())
87 return Error(ForwardRefValIDs.begin()->second.second,
88 "use of undefined value '@" +
89 utostr(ForwardRefValIDs.begin()->first) + "'");
91 if (!ForwardRefMDNodes.empty())
92 return Error(ForwardRefMDNodes.begin()->second.second,
93 "use of undefined metadata '!" +
94 utostr(ForwardRefMDNodes.begin()->first) + "'");
97 // Look for intrinsic functions and CallInst that need to be upgraded
98 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
99 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
101 return false;
104 //===----------------------------------------------------------------------===//
105 // Top-Level Entities
106 //===----------------------------------------------------------------------===//
108 bool LLParser::ParseTopLevelEntities() {
109 while (1) {
110 switch (Lex.getKind()) {
111 default: return TokError("expected top-level entity");
112 case lltok::Eof: return false;
113 //case lltok::kw_define:
114 case lltok::kw_declare: if (ParseDeclare()) return true; break;
115 case lltok::kw_define: if (ParseDefine()) return true; break;
116 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
117 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
118 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
119 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
120 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
121 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
122 case lltok::LocalVar: if (ParseNamedType()) return true; break;
123 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
124 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
125 case lltok::Metadata: if (ParseStandaloneMetadata()) return true; break;
126 case lltok::NamedMD: if (ParseNamedMetadata()) return true; break;
128 // The Global variable production with no name can have many different
129 // optional leading prefixes, the production is:
130 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
131 // OptionalAddrSpace ('constant'|'global') ...
132 case lltok::kw_private : // OptionalLinkage
133 case lltok::kw_linker_private: // OptionalLinkage
134 case lltok::kw_internal: // OptionalLinkage
135 case lltok::kw_weak: // OptionalLinkage
136 case lltok::kw_weak_odr: // OptionalLinkage
137 case lltok::kw_linkonce: // OptionalLinkage
138 case lltok::kw_linkonce_odr: // OptionalLinkage
139 case lltok::kw_appending: // OptionalLinkage
140 case lltok::kw_dllexport: // OptionalLinkage
141 case lltok::kw_common: // OptionalLinkage
142 case lltok::kw_dllimport: // OptionalLinkage
143 case lltok::kw_extern_weak: // OptionalLinkage
144 case lltok::kw_external: { // OptionalLinkage
145 unsigned Linkage, Visibility;
146 if (ParseOptionalLinkage(Linkage) ||
147 ParseOptionalVisibility(Visibility) ||
148 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
149 return true;
150 break;
152 case lltok::kw_default: // OptionalVisibility
153 case lltok::kw_hidden: // OptionalVisibility
154 case lltok::kw_protected: { // OptionalVisibility
155 unsigned Visibility;
156 if (ParseOptionalVisibility(Visibility) ||
157 ParseGlobal("", SMLoc(), 0, false, Visibility))
158 return true;
159 break;
162 case lltok::kw_thread_local: // OptionalThreadLocal
163 case lltok::kw_addrspace: // OptionalAddrSpace
164 case lltok::kw_constant: // GlobalType
165 case lltok::kw_global: // GlobalType
166 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
167 break;
173 /// toplevelentity
174 /// ::= 'module' 'asm' STRINGCONSTANT
175 bool LLParser::ParseModuleAsm() {
176 assert(Lex.getKind() == lltok::kw_module);
177 Lex.Lex();
179 std::string AsmStr;
180 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
181 ParseStringConstant(AsmStr)) return true;
183 const std::string &AsmSoFar = M->getModuleInlineAsm();
184 if (AsmSoFar.empty())
185 M->setModuleInlineAsm(AsmStr);
186 else
187 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
188 return false;
191 /// toplevelentity
192 /// ::= 'target' 'triple' '=' STRINGCONSTANT
193 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
194 bool LLParser::ParseTargetDefinition() {
195 assert(Lex.getKind() == lltok::kw_target);
196 std::string Str;
197 switch (Lex.Lex()) {
198 default: return TokError("unknown target property");
199 case lltok::kw_triple:
200 Lex.Lex();
201 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
202 ParseStringConstant(Str))
203 return true;
204 M->setTargetTriple(Str);
205 return false;
206 case lltok::kw_datalayout:
207 Lex.Lex();
208 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
209 ParseStringConstant(Str))
210 return true;
211 M->setDataLayout(Str);
212 return false;
216 /// toplevelentity
217 /// ::= 'deplibs' '=' '[' ']'
218 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
219 bool LLParser::ParseDepLibs() {
220 assert(Lex.getKind() == lltok::kw_deplibs);
221 Lex.Lex();
222 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
223 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
224 return true;
226 if (EatIfPresent(lltok::rsquare))
227 return false;
229 std::string Str;
230 if (ParseStringConstant(Str)) return true;
231 M->addLibrary(Str);
233 while (EatIfPresent(lltok::comma)) {
234 if (ParseStringConstant(Str)) return true;
235 M->addLibrary(Str);
238 return ParseToken(lltok::rsquare, "expected ']' at end of list");
241 /// ParseUnnamedType:
242 /// ::= 'type' type
243 /// ::= LocalVarID '=' 'type' type
244 bool LLParser::ParseUnnamedType() {
245 unsigned TypeID = NumberedTypes.size();
247 // Handle the LocalVarID form.
248 if (Lex.getKind() == lltok::LocalVarID) {
249 if (Lex.getUIntVal() != TypeID)
250 return Error(Lex.getLoc(), "type expected to be numbered '%" +
251 utostr(TypeID) + "'");
252 Lex.Lex(); // eat LocalVarID;
254 if (ParseToken(lltok::equal, "expected '=' after name"))
255 return true;
258 assert(Lex.getKind() == lltok::kw_type);
259 LocTy TypeLoc = Lex.getLoc();
260 Lex.Lex(); // eat kw_type
262 PATypeHolder Ty(Type::getVoidTy(Context));
263 if (ParseType(Ty)) return true;
265 // See if this type was previously referenced.
266 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
267 FI = ForwardRefTypeIDs.find(TypeID);
268 if (FI != ForwardRefTypeIDs.end()) {
269 if (FI->second.first.get() == Ty)
270 return Error(TypeLoc, "self referential type is invalid");
272 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
273 Ty = FI->second.first.get();
274 ForwardRefTypeIDs.erase(FI);
277 NumberedTypes.push_back(Ty);
279 return false;
282 /// toplevelentity
283 /// ::= LocalVar '=' 'type' type
284 bool LLParser::ParseNamedType() {
285 std::string Name = Lex.getStrVal();
286 LocTy NameLoc = Lex.getLoc();
287 Lex.Lex(); // eat LocalVar.
289 PATypeHolder Ty(Type::getVoidTy(Context));
291 if (ParseToken(lltok::equal, "expected '=' after name") ||
292 ParseToken(lltok::kw_type, "expected 'type' after name") ||
293 ParseType(Ty))
294 return true;
296 // Set the type name, checking for conflicts as we do so.
297 bool AlreadyExists = M->addTypeName(Name, Ty);
298 if (!AlreadyExists) return false;
300 // See if this type is a forward reference. We need to eagerly resolve
301 // types to allow recursive type redefinitions below.
302 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
303 FI = ForwardRefTypes.find(Name);
304 if (FI != ForwardRefTypes.end()) {
305 if (FI->second.first.get() == Ty)
306 return Error(NameLoc, "self referential type is invalid");
308 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
309 Ty = FI->second.first.get();
310 ForwardRefTypes.erase(FI);
313 // Inserting a name that is already defined, get the existing name.
314 const Type *Existing = M->getTypeByName(Name);
315 assert(Existing && "Conflict but no matching type?!");
317 // Otherwise, this is an attempt to redefine a type. That's okay if
318 // the redefinition is identical to the original.
319 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
320 if (Existing == Ty) return false;
322 // Any other kind of (non-equivalent) redefinition is an error.
323 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
324 Ty->getDescription() + "'");
328 /// toplevelentity
329 /// ::= 'declare' FunctionHeader
330 bool LLParser::ParseDeclare() {
331 assert(Lex.getKind() == lltok::kw_declare);
332 Lex.Lex();
334 Function *F;
335 return ParseFunctionHeader(F, false);
338 /// toplevelentity
339 /// ::= 'define' FunctionHeader '{' ...
340 bool LLParser::ParseDefine() {
341 assert(Lex.getKind() == lltok::kw_define);
342 Lex.Lex();
344 Function *F;
345 return ParseFunctionHeader(F, true) ||
346 ParseFunctionBody(*F);
349 /// ParseGlobalType
350 /// ::= 'constant'
351 /// ::= 'global'
352 bool LLParser::ParseGlobalType(bool &IsConstant) {
353 if (Lex.getKind() == lltok::kw_constant)
354 IsConstant = true;
355 else if (Lex.getKind() == lltok::kw_global)
356 IsConstant = false;
357 else {
358 IsConstant = false;
359 return TokError("expected 'global' or 'constant'");
361 Lex.Lex();
362 return false;
365 /// ParseUnnamedGlobal:
366 /// OptionalVisibility ALIAS ...
367 /// OptionalLinkage OptionalVisibility ... -> global variable
368 /// GlobalID '=' OptionalVisibility ALIAS ...
369 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
370 bool LLParser::ParseUnnamedGlobal() {
371 unsigned VarID = NumberedVals.size();
372 std::string Name;
373 LocTy NameLoc = Lex.getLoc();
375 // Handle the GlobalID form.
376 if (Lex.getKind() == lltok::GlobalID) {
377 if (Lex.getUIntVal() != VarID)
378 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
379 utostr(VarID) + "'");
380 Lex.Lex(); // eat GlobalID;
382 if (ParseToken(lltok::equal, "expected '=' after name"))
383 return true;
386 bool HasLinkage;
387 unsigned Linkage, Visibility;
388 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
389 ParseOptionalVisibility(Visibility))
390 return true;
392 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
393 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
394 return ParseAlias(Name, NameLoc, Visibility);
397 /// ParseNamedGlobal:
398 /// GlobalVar '=' OptionalVisibility ALIAS ...
399 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
400 bool LLParser::ParseNamedGlobal() {
401 assert(Lex.getKind() == lltok::GlobalVar);
402 LocTy NameLoc = Lex.getLoc();
403 std::string Name = Lex.getStrVal();
404 Lex.Lex();
406 bool HasLinkage;
407 unsigned Linkage, Visibility;
408 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
409 ParseOptionalLinkage(Linkage, HasLinkage) ||
410 ParseOptionalVisibility(Visibility))
411 return true;
413 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415 return ParseAlias(Name, NameLoc, Visibility);
418 // MDString:
419 // ::= '!' STRINGCONSTANT
420 bool LLParser::ParseMDString(MetadataBase *&MDS) {
421 std::string Str;
422 if (ParseStringConstant(Str)) return true;
423 MDS = MDString::get(Context, Str);
424 return false;
427 // MDNode:
428 // ::= '!' MDNodeNumber
429 bool LLParser::ParseMDNode(MetadataBase *&Node) {
430 // !{ ..., !42, ... }
431 unsigned MID = 0;
432 if (ParseUInt32(MID)) return true;
434 // Check existing MDNode.
435 std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
436 if (I != MetadataCache.end()) {
437 Node = I->second;
438 return false;
441 // Check known forward references.
442 std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
443 FI = ForwardRefMDNodes.find(MID);
444 if (FI != ForwardRefMDNodes.end()) {
445 Node = FI->second.first;
446 return false;
449 // Create MDNode forward reference
450 SmallVector<Value *, 1> Elts;
451 std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
452 Elts.push_back(MDString::get(Context, FwdRefName));
453 MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
454 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
455 Node = FwdNode;
456 return false;
459 ///ParseNamedMetadata:
460 /// !foo = !{ !1, !2 }
461 bool LLParser::ParseNamedMetadata() {
462 assert(Lex.getKind() == lltok::NamedMD);
463 Lex.Lex();
464 std::string Name = Lex.getStrVal();
466 if (ParseToken(lltok::equal, "expected '=' here"))
467 return true;
469 if (Lex.getKind() != lltok::Metadata)
470 return TokError("Expected '!' here");
471 Lex.Lex();
473 if (Lex.getKind() != lltok::lbrace)
474 return TokError("Expected '{' here");
475 Lex.Lex();
476 SmallVector<MetadataBase *, 8> Elts;
477 do {
478 if (Lex.getKind() != lltok::Metadata)
479 return TokError("Expected '!' here");
480 Lex.Lex();
481 MetadataBase *N = 0;
482 if (ParseMDNode(N)) return true;
483 Elts.push_back(N);
484 } while (EatIfPresent(lltok::comma));
486 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
487 return true;
489 NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
490 return false;
493 /// ParseStandaloneMetadata:
494 /// !42 = !{...}
495 bool LLParser::ParseStandaloneMetadata() {
496 assert(Lex.getKind() == lltok::Metadata);
497 Lex.Lex();
498 unsigned MetadataID = 0;
499 if (ParseUInt32(MetadataID))
500 return true;
501 if (MetadataCache.find(MetadataID) != MetadataCache.end())
502 return TokError("Metadata id is already used");
503 if (ParseToken(lltok::equal, "expected '=' here"))
504 return true;
506 LocTy TyLoc;
507 PATypeHolder Ty(Type::getVoidTy(Context));
508 if (ParseType(Ty, TyLoc))
509 return true;
511 if (Lex.getKind() != lltok::Metadata)
512 return TokError("Expected metadata here");
514 Lex.Lex();
515 if (Lex.getKind() != lltok::lbrace)
516 return TokError("Expected '{' here");
518 SmallVector<Value *, 16> Elts;
519 if (ParseMDNodeVector(Elts)
520 || ParseToken(lltok::rbrace, "expected end of metadata node"))
521 return true;
523 MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
524 MetadataCache[MetadataID] = Init;
525 std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
526 FI = ForwardRefMDNodes.find(MetadataID);
527 if (FI != ForwardRefMDNodes.end()) {
528 MDNode *FwdNode = cast<MDNode>(FI->second.first);
529 FwdNode->replaceAllUsesWith(Init);
530 ForwardRefMDNodes.erase(FI);
533 return false;
536 /// ParseAlias:
537 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
538 /// Aliasee
539 /// ::= TypeAndValue
540 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
541 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
543 /// Everything through visibility has already been parsed.
545 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
546 unsigned Visibility) {
547 assert(Lex.getKind() == lltok::kw_alias);
548 Lex.Lex();
549 unsigned Linkage;
550 LocTy LinkageLoc = Lex.getLoc();
551 if (ParseOptionalLinkage(Linkage))
552 return true;
554 if (Linkage != GlobalValue::ExternalLinkage &&
555 Linkage != GlobalValue::WeakAnyLinkage &&
556 Linkage != GlobalValue::WeakODRLinkage &&
557 Linkage != GlobalValue::InternalLinkage &&
558 Linkage != GlobalValue::PrivateLinkage &&
559 Linkage != GlobalValue::LinkerPrivateLinkage)
560 return Error(LinkageLoc, "invalid linkage type for alias");
562 Constant *Aliasee;
563 LocTy AliaseeLoc = Lex.getLoc();
564 if (Lex.getKind() != lltok::kw_bitcast &&
565 Lex.getKind() != lltok::kw_getelementptr) {
566 if (ParseGlobalTypeAndValue(Aliasee)) return true;
567 } else {
568 // The bitcast dest type is not present, it is implied by the dest type.
569 ValID ID;
570 if (ParseValID(ID)) return true;
571 if (ID.Kind != ValID::t_Constant)
572 return Error(AliaseeLoc, "invalid aliasee");
573 Aliasee = ID.ConstantVal;
576 if (!isa<PointerType>(Aliasee->getType()))
577 return Error(AliaseeLoc, "alias must have pointer type");
579 // Okay, create the alias but do not insert it into the module yet.
580 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
581 (GlobalValue::LinkageTypes)Linkage, Name,
582 Aliasee);
583 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
585 // See if this value already exists in the symbol table. If so, it is either
586 // a redefinition or a definition of a forward reference.
587 if (GlobalValue *Val =
588 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
589 // See if this was a redefinition. If so, there is no entry in
590 // ForwardRefVals.
591 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
592 I = ForwardRefVals.find(Name);
593 if (I == ForwardRefVals.end())
594 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
596 // Otherwise, this was a definition of forward ref. Verify that types
597 // agree.
598 if (Val->getType() != GA->getType())
599 return Error(NameLoc,
600 "forward reference and definition of alias have different types");
602 // If they agree, just RAUW the old value with the alias and remove the
603 // forward ref info.
604 Val->replaceAllUsesWith(GA);
605 Val->eraseFromParent();
606 ForwardRefVals.erase(I);
609 // Insert into the module, we know its name won't collide now.
610 M->getAliasList().push_back(GA);
611 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
613 return false;
616 /// ParseGlobal
617 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
618 /// OptionalAddrSpace GlobalType Type Const
619 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
620 /// OptionalAddrSpace GlobalType Type Const
622 /// Everything through visibility has been parsed already.
624 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
625 unsigned Linkage, bool HasLinkage,
626 unsigned Visibility) {
627 unsigned AddrSpace;
628 bool ThreadLocal, IsConstant;
629 LocTy TyLoc;
631 PATypeHolder Ty(Type::getVoidTy(Context));
632 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
633 ParseOptionalAddrSpace(AddrSpace) ||
634 ParseGlobalType(IsConstant) ||
635 ParseType(Ty, TyLoc))
636 return true;
638 // If the linkage is specified and is external, then no initializer is
639 // present.
640 Constant *Init = 0;
641 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
642 Linkage != GlobalValue::ExternalWeakLinkage &&
643 Linkage != GlobalValue::ExternalLinkage)) {
644 if (ParseGlobalValue(Ty, Init))
645 return true;
648 if (isa<FunctionType>(Ty) || Ty == Type::getLabelTy(Context))
649 return Error(TyLoc, "invalid type for global variable");
651 GlobalVariable *GV = 0;
653 // See if the global was forward referenced, if so, use the global.
654 if (!Name.empty()) {
655 if ((GV = M->getGlobalVariable(Name, true)) &&
656 !ForwardRefVals.erase(Name))
657 return Error(NameLoc, "redefinition of global '@" + Name + "'");
658 } else {
659 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
660 I = ForwardRefValIDs.find(NumberedVals.size());
661 if (I != ForwardRefValIDs.end()) {
662 GV = cast<GlobalVariable>(I->second.first);
663 ForwardRefValIDs.erase(I);
667 if (GV == 0) {
668 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
669 Name, 0, false, AddrSpace);
670 } else {
671 if (GV->getType()->getElementType() != Ty)
672 return Error(TyLoc,
673 "forward reference and definition of global have different types");
675 // Move the forward-reference to the correct spot in the module.
676 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
679 if (Name.empty())
680 NumberedVals.push_back(GV);
682 // Set the parsed properties on the global.
683 if (Init)
684 GV->setInitializer(Init);
685 GV->setConstant(IsConstant);
686 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
687 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
688 GV->setThreadLocal(ThreadLocal);
690 // Parse attributes on the global.
691 while (Lex.getKind() == lltok::comma) {
692 Lex.Lex();
694 if (Lex.getKind() == lltok::kw_section) {
695 Lex.Lex();
696 GV->setSection(Lex.getStrVal());
697 if (ParseToken(lltok::StringConstant, "expected global section string"))
698 return true;
699 } else if (Lex.getKind() == lltok::kw_align) {
700 unsigned Alignment;
701 if (ParseOptionalAlignment(Alignment)) return true;
702 GV->setAlignment(Alignment);
703 } else {
704 TokError("unknown global variable property!");
708 return false;
712 //===----------------------------------------------------------------------===//
713 // GlobalValue Reference/Resolution Routines.
714 //===----------------------------------------------------------------------===//
716 /// GetGlobalVal - Get a value with the specified name or ID, creating a
717 /// forward reference record if needed. This can return null if the value
718 /// exists but does not have the right type.
719 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
720 LocTy Loc) {
721 const PointerType *PTy = dyn_cast<PointerType>(Ty);
722 if (PTy == 0) {
723 Error(Loc, "global variable reference must have pointer type");
724 return 0;
727 // Look this name up in the normal function symbol table.
728 GlobalValue *Val =
729 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
731 // If this is a forward reference for the value, see if we already created a
732 // forward ref record.
733 if (Val == 0) {
734 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
735 I = ForwardRefVals.find(Name);
736 if (I != ForwardRefVals.end())
737 Val = I->second.first;
740 // If we have the value in the symbol table or fwd-ref table, return it.
741 if (Val) {
742 if (Val->getType() == Ty) return Val;
743 Error(Loc, "'@" + Name + "' defined with type '" +
744 Val->getType()->getDescription() + "'");
745 return 0;
748 // Otherwise, create a new forward reference for this value and remember it.
749 GlobalValue *FwdVal;
750 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
751 // Function types can return opaque but functions can't.
752 if (isa<OpaqueType>(FT->getReturnType())) {
753 Error(Loc, "function may not return opaque type");
754 return 0;
757 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
758 } else {
759 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
760 GlobalValue::ExternalWeakLinkage, 0, Name);
763 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
764 return FwdVal;
767 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
768 const PointerType *PTy = dyn_cast<PointerType>(Ty);
769 if (PTy == 0) {
770 Error(Loc, "global variable reference must have pointer type");
771 return 0;
774 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
776 // If this is a forward reference for the value, see if we already created a
777 // forward ref record.
778 if (Val == 0) {
779 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
780 I = ForwardRefValIDs.find(ID);
781 if (I != ForwardRefValIDs.end())
782 Val = I->second.first;
785 // If we have the value in the symbol table or fwd-ref table, return it.
786 if (Val) {
787 if (Val->getType() == Ty) return Val;
788 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
789 Val->getType()->getDescription() + "'");
790 return 0;
793 // Otherwise, create a new forward reference for this value and remember it.
794 GlobalValue *FwdVal;
795 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
796 // Function types can return opaque but functions can't.
797 if (isa<OpaqueType>(FT->getReturnType())) {
798 Error(Loc, "function may not return opaque type");
799 return 0;
801 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
802 } else {
803 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
804 GlobalValue::ExternalWeakLinkage, 0, "");
807 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
808 return FwdVal;
812 //===----------------------------------------------------------------------===//
813 // Helper Routines.
814 //===----------------------------------------------------------------------===//
816 /// ParseToken - If the current token has the specified kind, eat it and return
817 /// success. Otherwise, emit the specified error and return failure.
818 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
819 if (Lex.getKind() != T)
820 return TokError(ErrMsg);
821 Lex.Lex();
822 return false;
825 /// ParseStringConstant
826 /// ::= StringConstant
827 bool LLParser::ParseStringConstant(std::string &Result) {
828 if (Lex.getKind() != lltok::StringConstant)
829 return TokError("expected string constant");
830 Result = Lex.getStrVal();
831 Lex.Lex();
832 return false;
835 /// ParseUInt32
836 /// ::= uint32
837 bool LLParser::ParseUInt32(unsigned &Val) {
838 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
839 return TokError("expected integer");
840 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
841 if (Val64 != unsigned(Val64))
842 return TokError("expected 32-bit integer (too large)");
843 Val = Val64;
844 Lex.Lex();
845 return false;
849 /// ParseOptionalAddrSpace
850 /// := /*empty*/
851 /// := 'addrspace' '(' uint32 ')'
852 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
853 AddrSpace = 0;
854 if (!EatIfPresent(lltok::kw_addrspace))
855 return false;
856 return ParseToken(lltok::lparen, "expected '(' in address space") ||
857 ParseUInt32(AddrSpace) ||
858 ParseToken(lltok::rparen, "expected ')' in address space");
861 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
862 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
863 /// 2: function attr.
864 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
865 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
866 Attrs = Attribute::None;
867 LocTy AttrLoc = Lex.getLoc();
869 while (1) {
870 switch (Lex.getKind()) {
871 case lltok::kw_sext:
872 case lltok::kw_zext:
873 // Treat these as signext/zeroext if they occur in the argument list after
874 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
875 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
876 // expr.
877 // FIXME: REMOVE THIS IN LLVM 3.0
878 if (AttrKind == 3) {
879 if (Lex.getKind() == lltok::kw_sext)
880 Attrs |= Attribute::SExt;
881 else
882 Attrs |= Attribute::ZExt;
883 break;
885 // FALL THROUGH.
886 default: // End of attributes.
887 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
888 return Error(AttrLoc, "invalid use of function-only attribute");
890 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
891 return Error(AttrLoc, "invalid use of parameter-only attribute");
893 return false;
894 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
895 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
896 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
897 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
898 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
899 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
900 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
901 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
903 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
904 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
905 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
906 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
907 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
908 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
909 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
910 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
911 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
912 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
913 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
914 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
916 case lltok::kw_align: {
917 unsigned Alignment;
918 if (ParseOptionalAlignment(Alignment))
919 return true;
920 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
921 continue;
924 Lex.Lex();
928 /// ParseOptionalLinkage
929 /// ::= /*empty*/
930 /// ::= 'private'
931 /// ::= 'linker_private'
932 /// ::= 'internal'
933 /// ::= 'weak'
934 /// ::= 'weak_odr'
935 /// ::= 'linkonce'
936 /// ::= 'linkonce_odr'
937 /// ::= 'appending'
938 /// ::= 'dllexport'
939 /// ::= 'common'
940 /// ::= 'dllimport'
941 /// ::= 'extern_weak'
942 /// ::= 'external'
943 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
944 HasLinkage = false;
945 switch (Lex.getKind()) {
946 default: Res=GlobalValue::ExternalLinkage; return false;
947 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
948 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
949 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
950 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
951 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
952 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
953 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
954 case lltok::kw_available_externally:
955 Res = GlobalValue::AvailableExternallyLinkage;
956 break;
957 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
958 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
959 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
960 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
961 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
962 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
964 Lex.Lex();
965 HasLinkage = true;
966 return false;
969 /// ParseOptionalVisibility
970 /// ::= /*empty*/
971 /// ::= 'default'
972 /// ::= 'hidden'
973 /// ::= 'protected'
974 ///
975 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
976 switch (Lex.getKind()) {
977 default: Res = GlobalValue::DefaultVisibility; return false;
978 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
979 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
980 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
982 Lex.Lex();
983 return false;
986 /// ParseOptionalCallingConv
987 /// ::= /*empty*/
988 /// ::= 'ccc'
989 /// ::= 'fastcc'
990 /// ::= 'coldcc'
991 /// ::= 'x86_stdcallcc'
992 /// ::= 'x86_fastcallcc'
993 /// ::= 'arm_apcscc'
994 /// ::= 'arm_aapcscc'
995 /// ::= 'arm_aapcs_vfpcc'
996 /// ::= 'cc' UINT
998 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
999 switch (Lex.getKind()) {
1000 default: CC = CallingConv::C; return false;
1001 case lltok::kw_ccc: CC = CallingConv::C; break;
1002 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1003 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1004 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1005 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1006 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1007 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1008 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1009 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
1011 Lex.Lex();
1012 return false;
1015 /// ParseOptionalAlignment
1016 /// ::= /* empty */
1017 /// ::= 'align' 4
1018 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1019 Alignment = 0;
1020 if (!EatIfPresent(lltok::kw_align))
1021 return false;
1022 LocTy AlignLoc = Lex.getLoc();
1023 if (ParseUInt32(Alignment)) return true;
1024 if (!isPowerOf2_32(Alignment))
1025 return Error(AlignLoc, "alignment is not a power of two");
1026 return false;
1029 /// ParseOptionalCommaAlignment
1030 /// ::= /* empty */
1031 /// ::= ',' 'align' 4
1032 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
1033 Alignment = 0;
1034 if (!EatIfPresent(lltok::comma))
1035 return false;
1036 return ParseToken(lltok::kw_align, "expected 'align'") ||
1037 ParseUInt32(Alignment);
1040 /// ParseIndexList
1041 /// ::= (',' uint32)+
1042 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1043 if (Lex.getKind() != lltok::comma)
1044 return TokError("expected ',' as start of index list");
1046 while (EatIfPresent(lltok::comma)) {
1047 unsigned Idx;
1048 if (ParseUInt32(Idx)) return true;
1049 Indices.push_back(Idx);
1052 return false;
1055 //===----------------------------------------------------------------------===//
1056 // Type Parsing.
1057 //===----------------------------------------------------------------------===//
1059 /// ParseType - Parse and resolve a full type.
1060 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1061 LocTy TypeLoc = Lex.getLoc();
1062 if (ParseTypeRec(Result)) return true;
1064 // Verify no unresolved uprefs.
1065 if (!UpRefs.empty())
1066 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1068 if (!AllowVoid && Result.get() == Type::getVoidTy(Context))
1069 return Error(TypeLoc, "void type only allowed for function results");
1071 return false;
1074 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1075 /// called. It loops through the UpRefs vector, which is a list of the
1076 /// currently active types. For each type, if the up-reference is contained in
1077 /// the newly completed type, we decrement the level count. When the level
1078 /// count reaches zero, the up-referenced type is the type that is passed in:
1079 /// thus we can complete the cycle.
1081 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1082 // If Ty isn't abstract, or if there are no up-references in it, then there is
1083 // nothing to resolve here.
1084 if (!ty->isAbstract() || UpRefs.empty()) return ty;
1086 PATypeHolder Ty(ty);
1087 #if 0
1088 errs() << "Type '" << Ty->getDescription()
1089 << "' newly formed. Resolving upreferences.\n"
1090 << UpRefs.size() << " upreferences active!\n";
1091 #endif
1093 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1094 // to zero), we resolve them all together before we resolve them to Ty. At
1095 // the end of the loop, if there is anything to resolve to Ty, it will be in
1096 // this variable.
1097 OpaqueType *TypeToResolve = 0;
1099 for (unsigned i = 0; i != UpRefs.size(); ++i) {
1100 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1101 bool ContainsType =
1102 std::find(Ty->subtype_begin(), Ty->subtype_end(),
1103 UpRefs[i].LastContainedTy) != Ty->subtype_end();
1105 #if 0
1106 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1107 << UpRefs[i].LastContainedTy->getDescription() << ") = "
1108 << (ContainsType ? "true" : "false")
1109 << " level=" << UpRefs[i].NestingLevel << "\n";
1110 #endif
1111 if (!ContainsType)
1112 continue;
1114 // Decrement level of upreference
1115 unsigned Level = --UpRefs[i].NestingLevel;
1116 UpRefs[i].LastContainedTy = Ty;
1118 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1119 if (Level != 0)
1120 continue;
1122 #if 0
1123 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1124 #endif
1125 if (!TypeToResolve)
1126 TypeToResolve = UpRefs[i].UpRefTy;
1127 else
1128 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1129 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
1130 --i; // Do not skip the next element.
1133 if (TypeToResolve)
1134 TypeToResolve->refineAbstractTypeTo(Ty);
1136 return Ty;
1140 /// ParseTypeRec - The recursive function used to process the internal
1141 /// implementation details of types.
1142 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1143 switch (Lex.getKind()) {
1144 default:
1145 return TokError("expected type");
1146 case lltok::Type:
1147 // TypeRec ::= 'float' | 'void' (etc)
1148 Result = Lex.getTyVal();
1149 Lex.Lex();
1150 break;
1151 case lltok::kw_opaque:
1152 // TypeRec ::= 'opaque'
1153 Result = OpaqueType::get(Context);
1154 Lex.Lex();
1155 break;
1156 case lltok::lbrace:
1157 // TypeRec ::= '{' ... '}'
1158 if (ParseStructType(Result, false))
1159 return true;
1160 break;
1161 case lltok::lsquare:
1162 // TypeRec ::= '[' ... ']'
1163 Lex.Lex(); // eat the lsquare.
1164 if (ParseArrayVectorType(Result, false))
1165 return true;
1166 break;
1167 case lltok::less: // Either vector or packed struct.
1168 // TypeRec ::= '<' ... '>'
1169 Lex.Lex();
1170 if (Lex.getKind() == lltok::lbrace) {
1171 if (ParseStructType(Result, true) ||
1172 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1173 return true;
1174 } else if (ParseArrayVectorType(Result, true))
1175 return true;
1176 break;
1177 case lltok::LocalVar:
1178 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
1179 // TypeRec ::= %foo
1180 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1181 Result = T;
1182 } else {
1183 Result = OpaqueType::get(Context);
1184 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1185 std::make_pair(Result,
1186 Lex.getLoc())));
1187 M->addTypeName(Lex.getStrVal(), Result.get());
1189 Lex.Lex();
1190 break;
1192 case lltok::LocalVarID:
1193 // TypeRec ::= %4
1194 if (Lex.getUIntVal() < NumberedTypes.size())
1195 Result = NumberedTypes[Lex.getUIntVal()];
1196 else {
1197 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1198 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1199 if (I != ForwardRefTypeIDs.end())
1200 Result = I->second.first;
1201 else {
1202 Result = OpaqueType::get(Context);
1203 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1204 std::make_pair(Result,
1205 Lex.getLoc())));
1208 Lex.Lex();
1209 break;
1210 case lltok::backslash: {
1211 // TypeRec ::= '\' 4
1212 Lex.Lex();
1213 unsigned Val;
1214 if (ParseUInt32(Val)) return true;
1215 OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1216 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1217 Result = OT;
1218 break;
1222 // Parse the type suffixes.
1223 while (1) {
1224 switch (Lex.getKind()) {
1225 // End of type.
1226 default: return false;
1228 // TypeRec ::= TypeRec '*'
1229 case lltok::star:
1230 if (Result.get() == Type::getLabelTy(Context))
1231 return TokError("basic block pointers are invalid");
1232 if (Result.get() == Type::getVoidTy(Context))
1233 return TokError("pointers to void are invalid; use i8* instead");
1234 if (!PointerType::isValidElementType(Result.get()))
1235 return TokError("pointer to this type is invalid");
1236 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1237 Lex.Lex();
1238 break;
1240 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1241 case lltok::kw_addrspace: {
1242 if (Result.get() == Type::getLabelTy(Context))
1243 return TokError("basic block pointers are invalid");
1244 if (Result.get() == Type::getVoidTy(Context))
1245 return TokError("pointers to void are invalid; use i8* instead");
1246 if (!PointerType::isValidElementType(Result.get()))
1247 return TokError("pointer to this type is invalid");
1248 unsigned AddrSpace;
1249 if (ParseOptionalAddrSpace(AddrSpace) ||
1250 ParseToken(lltok::star, "expected '*' in address space"))
1251 return true;
1253 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1254 break;
1257 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1258 case lltok::lparen:
1259 if (ParseFunctionType(Result))
1260 return true;
1261 break;
1266 /// ParseParameterList
1267 /// ::= '(' ')'
1268 /// ::= '(' Arg (',' Arg)* ')'
1269 /// Arg
1270 /// ::= Type OptionalAttributes Value OptionalAttributes
1271 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1272 PerFunctionState &PFS) {
1273 if (ParseToken(lltok::lparen, "expected '(' in call"))
1274 return true;
1276 while (Lex.getKind() != lltok::rparen) {
1277 // If this isn't the first argument, we need a comma.
1278 if (!ArgList.empty() &&
1279 ParseToken(lltok::comma, "expected ',' in argument list"))
1280 return true;
1282 // Parse the argument.
1283 LocTy ArgLoc;
1284 PATypeHolder ArgTy(Type::getVoidTy(Context));
1285 unsigned ArgAttrs1, ArgAttrs2;
1286 Value *V;
1287 if (ParseType(ArgTy, ArgLoc) ||
1288 ParseOptionalAttrs(ArgAttrs1, 0) ||
1289 ParseValue(ArgTy, V, PFS) ||
1290 // FIXME: Should not allow attributes after the argument, remove this in
1291 // LLVM 3.0.
1292 ParseOptionalAttrs(ArgAttrs2, 3))
1293 return true;
1294 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1297 Lex.Lex(); // Lex the ')'.
1298 return false;
1303 /// ParseArgumentList - Parse the argument list for a function type or function
1304 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1305 /// ::= '(' ArgTypeListI ')'
1306 /// ArgTypeListI
1307 /// ::= /*empty*/
1308 /// ::= '...'
1309 /// ::= ArgTypeList ',' '...'
1310 /// ::= ArgType (',' ArgType)*
1312 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1313 bool &isVarArg, bool inType) {
1314 isVarArg = false;
1315 assert(Lex.getKind() == lltok::lparen);
1316 Lex.Lex(); // eat the (.
1318 if (Lex.getKind() == lltok::rparen) {
1319 // empty
1320 } else if (Lex.getKind() == lltok::dotdotdot) {
1321 isVarArg = true;
1322 Lex.Lex();
1323 } else {
1324 LocTy TypeLoc = Lex.getLoc();
1325 PATypeHolder ArgTy(Type::getVoidTy(Context));
1326 unsigned Attrs;
1327 std::string Name;
1329 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1330 // types (such as a function returning a pointer to itself). If parsing a
1331 // function prototype, we require fully resolved types.
1332 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1333 ParseOptionalAttrs(Attrs, 0)) return true;
1335 if (ArgTy == Type::getVoidTy(Context))
1336 return Error(TypeLoc, "argument can not have void type");
1338 if (Lex.getKind() == lltok::LocalVar ||
1339 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1340 Name = Lex.getStrVal();
1341 Lex.Lex();
1344 if (!FunctionType::isValidArgumentType(ArgTy))
1345 return Error(TypeLoc, "invalid type for function argument");
1347 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1349 while (EatIfPresent(lltok::comma)) {
1350 // Handle ... at end of arg list.
1351 if (EatIfPresent(lltok::dotdotdot)) {
1352 isVarArg = true;
1353 break;
1356 // Otherwise must be an argument type.
1357 TypeLoc = Lex.getLoc();
1358 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1359 ParseOptionalAttrs(Attrs, 0)) return true;
1361 if (ArgTy == Type::getVoidTy(Context))
1362 return Error(TypeLoc, "argument can not have void type");
1364 if (Lex.getKind() == lltok::LocalVar ||
1365 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1366 Name = Lex.getStrVal();
1367 Lex.Lex();
1368 } else {
1369 Name = "";
1372 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1373 return Error(TypeLoc, "invalid type for function argument");
1375 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1379 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1382 /// ParseFunctionType
1383 /// ::= Type ArgumentList OptionalAttrs
1384 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1385 assert(Lex.getKind() == lltok::lparen);
1387 if (!FunctionType::isValidReturnType(Result))
1388 return TokError("invalid function return type");
1390 std::vector<ArgInfo> ArgList;
1391 bool isVarArg;
1392 unsigned Attrs;
1393 if (ParseArgumentList(ArgList, isVarArg, true) ||
1394 // FIXME: Allow, but ignore attributes on function types!
1395 // FIXME: Remove in LLVM 3.0
1396 ParseOptionalAttrs(Attrs, 2))
1397 return true;
1399 // Reject names on the arguments lists.
1400 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1401 if (!ArgList[i].Name.empty())
1402 return Error(ArgList[i].Loc, "argument name invalid in function type");
1403 if (!ArgList[i].Attrs != 0) {
1404 // Allow but ignore attributes on function types; this permits
1405 // auto-upgrade.
1406 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1410 std::vector<const Type*> ArgListTy;
1411 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1412 ArgListTy.push_back(ArgList[i].Type);
1414 Result = HandleUpRefs(FunctionType::get(Result.get(),
1415 ArgListTy, isVarArg));
1416 return false;
1419 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1420 /// TypeRec
1421 /// ::= '{' '}'
1422 /// ::= '{' TypeRec (',' TypeRec)* '}'
1423 /// ::= '<' '{' '}' '>'
1424 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1425 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1426 assert(Lex.getKind() == lltok::lbrace);
1427 Lex.Lex(); // Consume the '{'
1429 if (EatIfPresent(lltok::rbrace)) {
1430 Result = StructType::get(Context, Packed);
1431 return false;
1434 std::vector<PATypeHolder> ParamsList;
1435 LocTy EltTyLoc = Lex.getLoc();
1436 if (ParseTypeRec(Result)) return true;
1437 ParamsList.push_back(Result);
1439 if (Result == Type::getVoidTy(Context))
1440 return Error(EltTyLoc, "struct element can not have void type");
1441 if (!StructType::isValidElementType(Result))
1442 return Error(EltTyLoc, "invalid element type for struct");
1444 while (EatIfPresent(lltok::comma)) {
1445 EltTyLoc = Lex.getLoc();
1446 if (ParseTypeRec(Result)) return true;
1448 if (Result == Type::getVoidTy(Context))
1449 return Error(EltTyLoc, "struct element can not have void type");
1450 if (!StructType::isValidElementType(Result))
1451 return Error(EltTyLoc, "invalid element type for struct");
1453 ParamsList.push_back(Result);
1456 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1457 return true;
1459 std::vector<const Type*> ParamsListTy;
1460 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1461 ParamsListTy.push_back(ParamsList[i].get());
1462 Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1463 return false;
1466 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1467 /// token has already been consumed.
1468 /// TypeRec
1469 /// ::= '[' APSINTVAL 'x' Types ']'
1470 /// ::= '<' APSINTVAL 'x' Types '>'
1471 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1472 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1473 Lex.getAPSIntVal().getBitWidth() > 64)
1474 return TokError("expected number in address space");
1476 LocTy SizeLoc = Lex.getLoc();
1477 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1478 Lex.Lex();
1480 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1481 return true;
1483 LocTy TypeLoc = Lex.getLoc();
1484 PATypeHolder EltTy(Type::getVoidTy(Context));
1485 if (ParseTypeRec(EltTy)) return true;
1487 if (EltTy == Type::getVoidTy(Context))
1488 return Error(TypeLoc, "array and vector element type cannot be void");
1490 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1491 "expected end of sequential type"))
1492 return true;
1494 if (isVector) {
1495 if (Size == 0)
1496 return Error(SizeLoc, "zero element vector is illegal");
1497 if ((unsigned)Size != Size)
1498 return Error(SizeLoc, "size too large for vector");
1499 if (!VectorType::isValidElementType(EltTy))
1500 return Error(TypeLoc, "vector element type must be fp or integer");
1501 Result = VectorType::get(EltTy, unsigned(Size));
1502 } else {
1503 if (!ArrayType::isValidElementType(EltTy))
1504 return Error(TypeLoc, "invalid array element type");
1505 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1507 return false;
1510 //===----------------------------------------------------------------------===//
1511 // Function Semantic Analysis.
1512 //===----------------------------------------------------------------------===//
1514 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1515 : P(p), F(f) {
1517 // Insert unnamed arguments into the NumberedVals list.
1518 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1519 AI != E; ++AI)
1520 if (!AI->hasName())
1521 NumberedVals.push_back(AI);
1524 LLParser::PerFunctionState::~PerFunctionState() {
1525 // If there were any forward referenced non-basicblock values, delete them.
1526 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1527 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1528 if (!isa<BasicBlock>(I->second.first)) {
1529 I->second.first->replaceAllUsesWith(
1530 UndefValue::get(I->second.first->getType()));
1531 delete I->second.first;
1532 I->second.first = 0;
1535 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1536 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1537 if (!isa<BasicBlock>(I->second.first)) {
1538 I->second.first->replaceAllUsesWith(
1539 UndefValue::get(I->second.first->getType()));
1540 delete I->second.first;
1541 I->second.first = 0;
1545 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1546 if (!ForwardRefVals.empty())
1547 return P.Error(ForwardRefVals.begin()->second.second,
1548 "use of undefined value '%" + ForwardRefVals.begin()->first +
1549 "'");
1550 if (!ForwardRefValIDs.empty())
1551 return P.Error(ForwardRefValIDs.begin()->second.second,
1552 "use of undefined value '%" +
1553 utostr(ForwardRefValIDs.begin()->first) + "'");
1554 return false;
1558 /// GetVal - Get a value with the specified name or ID, creating a
1559 /// forward reference record if needed. This can return null if the value
1560 /// exists but does not have the right type.
1561 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1562 const Type *Ty, LocTy Loc) {
1563 // Look this name up in the normal function symbol table.
1564 Value *Val = F.getValueSymbolTable().lookup(Name);
1566 // If this is a forward reference for the value, see if we already created a
1567 // forward ref record.
1568 if (Val == 0) {
1569 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1570 I = ForwardRefVals.find(Name);
1571 if (I != ForwardRefVals.end())
1572 Val = I->second.first;
1575 // If we have the value in the symbol table or fwd-ref table, return it.
1576 if (Val) {
1577 if (Val->getType() == Ty) return Val;
1578 if (Ty == Type::getLabelTy(F.getContext()))
1579 P.Error(Loc, "'%" + Name + "' is not a basic block");
1580 else
1581 P.Error(Loc, "'%" + Name + "' defined with type '" +
1582 Val->getType()->getDescription() + "'");
1583 return 0;
1586 // Don't make placeholders with invalid type.
1587 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1588 Ty != Type::getLabelTy(F.getContext())) {
1589 P.Error(Loc, "invalid use of a non-first-class type");
1590 return 0;
1593 // Otherwise, create a new forward reference for this value and remember it.
1594 Value *FwdVal;
1595 if (Ty == Type::getLabelTy(F.getContext()))
1596 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1597 else
1598 FwdVal = new Argument(Ty, Name);
1600 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1601 return FwdVal;
1604 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1605 LocTy Loc) {
1606 // Look this name up in the normal function symbol table.
1607 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1609 // If this is a forward reference for the value, see if we already created a
1610 // forward ref record.
1611 if (Val == 0) {
1612 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1613 I = ForwardRefValIDs.find(ID);
1614 if (I != ForwardRefValIDs.end())
1615 Val = I->second.first;
1618 // If we have the value in the symbol table or fwd-ref table, return it.
1619 if (Val) {
1620 if (Val->getType() == Ty) return Val;
1621 if (Ty == Type::getLabelTy(F.getContext()))
1622 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1623 else
1624 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1625 Val->getType()->getDescription() + "'");
1626 return 0;
1629 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1630 Ty != Type::getLabelTy(F.getContext())) {
1631 P.Error(Loc, "invalid use of a non-first-class type");
1632 return 0;
1635 // Otherwise, create a new forward reference for this value and remember it.
1636 Value *FwdVal;
1637 if (Ty == Type::getLabelTy(F.getContext()))
1638 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1639 else
1640 FwdVal = new Argument(Ty);
1642 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1643 return FwdVal;
1646 /// SetInstName - After an instruction is parsed and inserted into its
1647 /// basic block, this installs its name.
1648 bool LLParser::PerFunctionState::SetInstName(int NameID,
1649 const std::string &NameStr,
1650 LocTy NameLoc, Instruction *Inst) {
1651 // If this instruction has void type, it cannot have a name or ID specified.
1652 if (Inst->getType() == Type::getVoidTy(F.getContext())) {
1653 if (NameID != -1 || !NameStr.empty())
1654 return P.Error(NameLoc, "instructions returning void cannot have a name");
1655 return false;
1658 // If this was a numbered instruction, verify that the instruction is the
1659 // expected value and resolve any forward references.
1660 if (NameStr.empty()) {
1661 // If neither a name nor an ID was specified, just use the next ID.
1662 if (NameID == -1)
1663 NameID = NumberedVals.size();
1665 if (unsigned(NameID) != NumberedVals.size())
1666 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1667 utostr(NumberedVals.size()) + "'");
1669 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1670 ForwardRefValIDs.find(NameID);
1671 if (FI != ForwardRefValIDs.end()) {
1672 if (FI->second.first->getType() != Inst->getType())
1673 return P.Error(NameLoc, "instruction forward referenced with type '" +
1674 FI->second.first->getType()->getDescription() + "'");
1675 FI->second.first->replaceAllUsesWith(Inst);
1676 ForwardRefValIDs.erase(FI);
1679 NumberedVals.push_back(Inst);
1680 return false;
1683 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1684 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1685 FI = ForwardRefVals.find(NameStr);
1686 if (FI != ForwardRefVals.end()) {
1687 if (FI->second.first->getType() != Inst->getType())
1688 return P.Error(NameLoc, "instruction forward referenced with type '" +
1689 FI->second.first->getType()->getDescription() + "'");
1690 FI->second.first->replaceAllUsesWith(Inst);
1691 ForwardRefVals.erase(FI);
1694 // Set the name on the instruction.
1695 Inst->setName(NameStr);
1697 if (Inst->getNameStr() != NameStr)
1698 return P.Error(NameLoc, "multiple definition of local value named '" +
1699 NameStr + "'");
1700 return false;
1703 /// GetBB - Get a basic block with the specified name or ID, creating a
1704 /// forward reference record if needed.
1705 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1706 LocTy Loc) {
1707 return cast_or_null<BasicBlock>(GetVal(Name,
1708 Type::getLabelTy(F.getContext()), Loc));
1711 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1712 return cast_or_null<BasicBlock>(GetVal(ID,
1713 Type::getLabelTy(F.getContext()), Loc));
1716 /// DefineBB - Define the specified basic block, which is either named or
1717 /// unnamed. If there is an error, this returns null otherwise it returns
1718 /// the block being defined.
1719 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1720 LocTy Loc) {
1721 BasicBlock *BB;
1722 if (Name.empty())
1723 BB = GetBB(NumberedVals.size(), Loc);
1724 else
1725 BB = GetBB(Name, Loc);
1726 if (BB == 0) return 0; // Already diagnosed error.
1728 // Move the block to the end of the function. Forward ref'd blocks are
1729 // inserted wherever they happen to be referenced.
1730 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1732 // Remove the block from forward ref sets.
1733 if (Name.empty()) {
1734 ForwardRefValIDs.erase(NumberedVals.size());
1735 NumberedVals.push_back(BB);
1736 } else {
1737 // BB forward references are already in the function symbol table.
1738 ForwardRefVals.erase(Name);
1741 return BB;
1744 //===----------------------------------------------------------------------===//
1745 // Constants.
1746 //===----------------------------------------------------------------------===//
1748 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1749 /// type implied. For example, if we parse "4" we don't know what integer type
1750 /// it has. The value will later be combined with its type and checked for
1751 /// sanity.
1752 bool LLParser::ParseValID(ValID &ID) {
1753 ID.Loc = Lex.getLoc();
1754 switch (Lex.getKind()) {
1755 default: return TokError("expected value token");
1756 case lltok::GlobalID: // @42
1757 ID.UIntVal = Lex.getUIntVal();
1758 ID.Kind = ValID::t_GlobalID;
1759 break;
1760 case lltok::GlobalVar: // @foo
1761 ID.StrVal = Lex.getStrVal();
1762 ID.Kind = ValID::t_GlobalName;
1763 break;
1764 case lltok::LocalVarID: // %42
1765 ID.UIntVal = Lex.getUIntVal();
1766 ID.Kind = ValID::t_LocalID;
1767 break;
1768 case lltok::LocalVar: // %foo
1769 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1770 ID.StrVal = Lex.getStrVal();
1771 ID.Kind = ValID::t_LocalName;
1772 break;
1773 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1774 ID.Kind = ValID::t_Metadata;
1775 Lex.Lex();
1776 if (Lex.getKind() == lltok::lbrace) {
1777 SmallVector<Value*, 16> Elts;
1778 if (ParseMDNodeVector(Elts) ||
1779 ParseToken(lltok::rbrace, "expected end of metadata node"))
1780 return true;
1782 ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1783 return false;
1786 // Standalone metadata reference
1787 // !{ ..., !42, ... }
1788 if (!ParseMDNode(ID.MetadataVal))
1789 return false;
1791 // MDString:
1792 // ::= '!' STRINGCONSTANT
1793 if (ParseMDString(ID.MetadataVal)) return true;
1794 ID.Kind = ValID::t_Metadata;
1795 return false;
1797 case lltok::APSInt:
1798 ID.APSIntVal = Lex.getAPSIntVal();
1799 ID.Kind = ValID::t_APSInt;
1800 break;
1801 case lltok::APFloat:
1802 ID.APFloatVal = Lex.getAPFloatVal();
1803 ID.Kind = ValID::t_APFloat;
1804 break;
1805 case lltok::kw_true:
1806 ID.ConstantVal = ConstantInt::getTrue(Context);
1807 ID.Kind = ValID::t_Constant;
1808 break;
1809 case lltok::kw_false:
1810 ID.ConstantVal = ConstantInt::getFalse(Context);
1811 ID.Kind = ValID::t_Constant;
1812 break;
1813 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1814 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1815 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1817 case lltok::lbrace: {
1818 // ValID ::= '{' ConstVector '}'
1819 Lex.Lex();
1820 SmallVector<Constant*, 16> Elts;
1821 if (ParseGlobalValueVector(Elts) ||
1822 ParseToken(lltok::rbrace, "expected end of struct constant"))
1823 return true;
1825 ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1826 Elts.size(), false);
1827 ID.Kind = ValID::t_Constant;
1828 return false;
1830 case lltok::less: {
1831 // ValID ::= '<' ConstVector '>' --> Vector.
1832 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1833 Lex.Lex();
1834 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1836 SmallVector<Constant*, 16> Elts;
1837 LocTy FirstEltLoc = Lex.getLoc();
1838 if (ParseGlobalValueVector(Elts) ||
1839 (isPackedStruct &&
1840 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1841 ParseToken(lltok::greater, "expected end of constant"))
1842 return true;
1844 if (isPackedStruct) {
1845 ID.ConstantVal =
1846 ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1847 ID.Kind = ValID::t_Constant;
1848 return false;
1851 if (Elts.empty())
1852 return Error(ID.Loc, "constant vector must not be empty");
1854 if (!Elts[0]->getType()->isInteger() &&
1855 !Elts[0]->getType()->isFloatingPoint())
1856 return Error(FirstEltLoc,
1857 "vector elements must have integer or floating point type");
1859 // Verify that all the vector elements have the same type.
1860 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1861 if (Elts[i]->getType() != Elts[0]->getType())
1862 return Error(FirstEltLoc,
1863 "vector element #" + utostr(i) +
1864 " is not of type '" + Elts[0]->getType()->getDescription());
1866 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1867 ID.Kind = ValID::t_Constant;
1868 return false;
1870 case lltok::lsquare: { // Array Constant
1871 Lex.Lex();
1872 SmallVector<Constant*, 16> Elts;
1873 LocTy FirstEltLoc = Lex.getLoc();
1874 if (ParseGlobalValueVector(Elts) ||
1875 ParseToken(lltok::rsquare, "expected end of array constant"))
1876 return true;
1878 // Handle empty element.
1879 if (Elts.empty()) {
1880 // Use undef instead of an array because it's inconvenient to determine
1881 // the element type at this point, there being no elements to examine.
1882 ID.Kind = ValID::t_EmptyArray;
1883 return false;
1886 if (!Elts[0]->getType()->isFirstClassType())
1887 return Error(FirstEltLoc, "invalid array element type: " +
1888 Elts[0]->getType()->getDescription());
1890 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1892 // Verify all elements are correct type!
1893 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1894 if (Elts[i]->getType() != Elts[0]->getType())
1895 return Error(FirstEltLoc,
1896 "array element #" + utostr(i) +
1897 " is not of type '" +Elts[0]->getType()->getDescription());
1900 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1901 ID.Kind = ValID::t_Constant;
1902 return false;
1904 case lltok::kw_c: // c "foo"
1905 Lex.Lex();
1906 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
1907 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1908 ID.Kind = ValID::t_Constant;
1909 return false;
1911 case lltok::kw_asm: {
1912 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1913 bool HasSideEffect;
1914 Lex.Lex();
1915 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1916 ParseStringConstant(ID.StrVal) ||
1917 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1918 ParseToken(lltok::StringConstant, "expected constraint string"))
1919 return true;
1920 ID.StrVal2 = Lex.getStrVal();
1921 ID.UIntVal = HasSideEffect;
1922 ID.Kind = ValID::t_InlineAsm;
1923 return false;
1926 case lltok::kw_trunc:
1927 case lltok::kw_zext:
1928 case lltok::kw_sext:
1929 case lltok::kw_fptrunc:
1930 case lltok::kw_fpext:
1931 case lltok::kw_bitcast:
1932 case lltok::kw_uitofp:
1933 case lltok::kw_sitofp:
1934 case lltok::kw_fptoui:
1935 case lltok::kw_fptosi:
1936 case lltok::kw_inttoptr:
1937 case lltok::kw_ptrtoint: {
1938 unsigned Opc = Lex.getUIntVal();
1939 PATypeHolder DestTy(Type::getVoidTy(Context));
1940 Constant *SrcVal;
1941 Lex.Lex();
1942 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1943 ParseGlobalTypeAndValue(SrcVal) ||
1944 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1945 ParseType(DestTy) ||
1946 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1947 return true;
1948 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1949 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1950 SrcVal->getType()->getDescription() + "' to '" +
1951 DestTy->getDescription() + "'");
1952 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
1953 SrcVal, DestTy);
1954 ID.Kind = ValID::t_Constant;
1955 return false;
1957 case lltok::kw_extractvalue: {
1958 Lex.Lex();
1959 Constant *Val;
1960 SmallVector<unsigned, 4> Indices;
1961 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1962 ParseGlobalTypeAndValue(Val) ||
1963 ParseIndexList(Indices) ||
1964 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1965 return true;
1966 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1967 return Error(ID.Loc, "extractvalue operand must be array or struct");
1968 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1969 Indices.end()))
1970 return Error(ID.Loc, "invalid indices for extractvalue");
1971 ID.ConstantVal =
1972 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1973 ID.Kind = ValID::t_Constant;
1974 return false;
1976 case lltok::kw_insertvalue: {
1977 Lex.Lex();
1978 Constant *Val0, *Val1;
1979 SmallVector<unsigned, 4> Indices;
1980 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1981 ParseGlobalTypeAndValue(Val0) ||
1982 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1983 ParseGlobalTypeAndValue(Val1) ||
1984 ParseIndexList(Indices) ||
1985 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1986 return true;
1987 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1988 return Error(ID.Loc, "extractvalue operand must be array or struct");
1989 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1990 Indices.end()))
1991 return Error(ID.Loc, "invalid indices for insertvalue");
1992 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1993 Indices.data(), Indices.size());
1994 ID.Kind = ValID::t_Constant;
1995 return false;
1997 case lltok::kw_icmp:
1998 case lltok::kw_fcmp: {
1999 unsigned PredVal, Opc = Lex.getUIntVal();
2000 Constant *Val0, *Val1;
2001 Lex.Lex();
2002 if (ParseCmpPredicate(PredVal, Opc) ||
2003 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2004 ParseGlobalTypeAndValue(Val0) ||
2005 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2006 ParseGlobalTypeAndValue(Val1) ||
2007 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2008 return true;
2010 if (Val0->getType() != Val1->getType())
2011 return Error(ID.Loc, "compare operands must have the same type");
2013 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2015 if (Opc == Instruction::FCmp) {
2016 if (!Val0->getType()->isFPOrFPVector())
2017 return Error(ID.Loc, "fcmp requires floating point operands");
2018 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2019 } else {
2020 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2021 if (!Val0->getType()->isIntOrIntVector() &&
2022 !isa<PointerType>(Val0->getType()))
2023 return Error(ID.Loc, "icmp requires pointer or integer operands");
2024 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2026 ID.Kind = ValID::t_Constant;
2027 return false;
2030 // Binary Operators.
2031 case lltok::kw_add:
2032 case lltok::kw_fadd:
2033 case lltok::kw_sub:
2034 case lltok::kw_fsub:
2035 case lltok::kw_mul:
2036 case lltok::kw_fmul:
2037 case lltok::kw_udiv:
2038 case lltok::kw_sdiv:
2039 case lltok::kw_fdiv:
2040 case lltok::kw_urem:
2041 case lltok::kw_srem:
2042 case lltok::kw_frem: {
2043 bool NUW = false;
2044 bool NSW = false;
2045 bool Exact = false;
2046 unsigned Opc = Lex.getUIntVal();
2047 Constant *Val0, *Val1;
2048 Lex.Lex();
2049 LocTy ModifierLoc = Lex.getLoc();
2050 if (Opc == Instruction::Add ||
2051 Opc == Instruction::Sub ||
2052 Opc == Instruction::Mul) {
2053 if (EatIfPresent(lltok::kw_nuw))
2054 NUW = true;
2055 if (EatIfPresent(lltok::kw_nsw)) {
2056 NSW = true;
2057 if (EatIfPresent(lltok::kw_nuw))
2058 NUW = true;
2060 } else if (Opc == Instruction::SDiv) {
2061 if (EatIfPresent(lltok::kw_exact))
2062 Exact = true;
2064 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2065 ParseGlobalTypeAndValue(Val0) ||
2066 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2067 ParseGlobalTypeAndValue(Val1) ||
2068 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2069 return true;
2070 if (Val0->getType() != Val1->getType())
2071 return Error(ID.Loc, "operands of constexpr must have same type");
2072 if (!Val0->getType()->isIntOrIntVector()) {
2073 if (NUW)
2074 return Error(ModifierLoc, "nuw only applies to integer operations");
2075 if (NSW)
2076 return Error(ModifierLoc, "nsw only applies to integer operations");
2078 // API compatibility: Accept either integer or floating-point types with
2079 // add, sub, and mul.
2080 if (!Val0->getType()->isIntOrIntVector() &&
2081 !Val0->getType()->isFPOrFPVector())
2082 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2083 Constant *C = ConstantExpr::get(Opc, Val0, Val1);
2084 if (NUW)
2085 cast<OverflowingBinaryOperator>(C)->setHasNoUnsignedOverflow(true);
2086 if (NSW)
2087 cast<OverflowingBinaryOperator>(C)->setHasNoSignedOverflow(true);
2088 if (Exact)
2089 cast<SDivOperator>(C)->setIsExact(true);
2090 ID.ConstantVal = C;
2091 ID.Kind = ValID::t_Constant;
2092 return false;
2095 // Logical Operations
2096 case lltok::kw_shl:
2097 case lltok::kw_lshr:
2098 case lltok::kw_ashr:
2099 case lltok::kw_and:
2100 case lltok::kw_or:
2101 case lltok::kw_xor: {
2102 unsigned Opc = Lex.getUIntVal();
2103 Constant *Val0, *Val1;
2104 Lex.Lex();
2105 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2106 ParseGlobalTypeAndValue(Val0) ||
2107 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2108 ParseGlobalTypeAndValue(Val1) ||
2109 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2110 return true;
2111 if (Val0->getType() != Val1->getType())
2112 return Error(ID.Loc, "operands of constexpr must have same type");
2113 if (!Val0->getType()->isIntOrIntVector())
2114 return Error(ID.Loc,
2115 "constexpr requires integer or integer vector operands");
2116 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2117 ID.Kind = ValID::t_Constant;
2118 return false;
2121 case lltok::kw_getelementptr:
2122 case lltok::kw_shufflevector:
2123 case lltok::kw_insertelement:
2124 case lltok::kw_extractelement:
2125 case lltok::kw_select: {
2126 unsigned Opc = Lex.getUIntVal();
2127 SmallVector<Constant*, 16> Elts;
2128 bool InBounds = false;
2129 Lex.Lex();
2130 if (Opc == Instruction::GetElementPtr)
2131 InBounds = EatIfPresent(lltok::kw_inbounds);
2132 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2133 ParseGlobalValueVector(Elts) ||
2134 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2135 return true;
2137 if (Opc == Instruction::GetElementPtr) {
2138 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2139 return Error(ID.Loc, "getelementptr requires pointer operand");
2141 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2142 (Value**)(Elts.data() + 1),
2143 Elts.size() - 1))
2144 return Error(ID.Loc, "invalid indices for getelementptr");
2145 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
2146 Elts.data() + 1, Elts.size() - 1);
2147 if (InBounds)
2148 cast<GEPOperator>(ID.ConstantVal)->setIsInBounds(true);
2149 } else if (Opc == Instruction::Select) {
2150 if (Elts.size() != 3)
2151 return Error(ID.Loc, "expected three operands to select");
2152 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2153 Elts[2]))
2154 return Error(ID.Loc, Reason);
2155 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2156 } else if (Opc == Instruction::ShuffleVector) {
2157 if (Elts.size() != 3)
2158 return Error(ID.Loc, "expected three operands to shufflevector");
2159 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2160 return Error(ID.Loc, "invalid operands to shufflevector");
2161 ID.ConstantVal =
2162 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2163 } else if (Opc == Instruction::ExtractElement) {
2164 if (Elts.size() != 2)
2165 return Error(ID.Loc, "expected two operands to extractelement");
2166 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2167 return Error(ID.Loc, "invalid extractelement operands");
2168 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2169 } else {
2170 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2171 if (Elts.size() != 3)
2172 return Error(ID.Loc, "expected three operands to insertelement");
2173 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2174 return Error(ID.Loc, "invalid insertelement operands");
2175 ID.ConstantVal =
2176 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2179 ID.Kind = ValID::t_Constant;
2180 return false;
2184 Lex.Lex();
2185 return false;
2188 /// ParseGlobalValue - Parse a global value with the specified type.
2189 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2190 V = 0;
2191 ValID ID;
2192 return ParseValID(ID) ||
2193 ConvertGlobalValIDToValue(Ty, ID, V);
2196 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2197 /// constant.
2198 bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2199 Constant *&V) {
2200 if (isa<FunctionType>(Ty))
2201 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2203 switch (ID.Kind) {
2204 default: llvm_unreachable("Unknown ValID!");
2205 case ValID::t_Metadata:
2206 return Error(ID.Loc, "invalid use of metadata");
2207 case ValID::t_LocalID:
2208 case ValID::t_LocalName:
2209 return Error(ID.Loc, "invalid use of function-local name");
2210 case ValID::t_InlineAsm:
2211 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2212 case ValID::t_GlobalName:
2213 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2214 return V == 0;
2215 case ValID::t_GlobalID:
2216 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2217 return V == 0;
2218 case ValID::t_APSInt:
2219 if (!isa<IntegerType>(Ty))
2220 return Error(ID.Loc, "integer constant must have integer type");
2221 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2222 V = ConstantInt::get(Context, ID.APSIntVal);
2223 return false;
2224 case ValID::t_APFloat:
2225 if (!Ty->isFloatingPoint() ||
2226 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2227 return Error(ID.Loc, "floating point constant invalid for type");
2229 // The lexer has no type info, so builds all float and double FP constants
2230 // as double. Fix this here. Long double does not need this.
2231 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2232 Ty == Type::getFloatTy(Context)) {
2233 bool Ignored;
2234 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2235 &Ignored);
2237 V = ConstantFP::get(Context, ID.APFloatVal);
2239 if (V->getType() != Ty)
2240 return Error(ID.Loc, "floating point constant does not have type '" +
2241 Ty->getDescription() + "'");
2243 return false;
2244 case ValID::t_Null:
2245 if (!isa<PointerType>(Ty))
2246 return Error(ID.Loc, "null must be a pointer type");
2247 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2248 return false;
2249 case ValID::t_Undef:
2250 // FIXME: LabelTy should not be a first-class type.
2251 if ((!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context)) &&
2252 !isa<OpaqueType>(Ty))
2253 return Error(ID.Loc, "invalid type for undef constant");
2254 V = UndefValue::get(Ty);
2255 return false;
2256 case ValID::t_EmptyArray:
2257 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2258 return Error(ID.Loc, "invalid empty array initializer");
2259 V = UndefValue::get(Ty);
2260 return false;
2261 case ValID::t_Zero:
2262 // FIXME: LabelTy should not be a first-class type.
2263 if (!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context))
2264 return Error(ID.Loc, "invalid type for null constant");
2265 V = Constant::getNullValue(Ty);
2266 return false;
2267 case ValID::t_Constant:
2268 if (ID.ConstantVal->getType() != Ty)
2269 return Error(ID.Loc, "constant expression type mismatch");
2270 V = ID.ConstantVal;
2271 return false;
2275 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2276 PATypeHolder Type(Type::getVoidTy(Context));
2277 return ParseType(Type) ||
2278 ParseGlobalValue(Type, V);
2281 /// ParseGlobalValueVector
2282 /// ::= /*empty*/
2283 /// ::= TypeAndValue (',' TypeAndValue)*
2284 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2285 // Empty list.
2286 if (Lex.getKind() == lltok::rbrace ||
2287 Lex.getKind() == lltok::rsquare ||
2288 Lex.getKind() == lltok::greater ||
2289 Lex.getKind() == lltok::rparen)
2290 return false;
2292 Constant *C;
2293 if (ParseGlobalTypeAndValue(C)) return true;
2294 Elts.push_back(C);
2296 while (EatIfPresent(lltok::comma)) {
2297 if (ParseGlobalTypeAndValue(C)) return true;
2298 Elts.push_back(C);
2301 return false;
2305 //===----------------------------------------------------------------------===//
2306 // Function Parsing.
2307 //===----------------------------------------------------------------------===//
2309 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2310 PerFunctionState &PFS) {
2311 if (ID.Kind == ValID::t_LocalID)
2312 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2313 else if (ID.Kind == ValID::t_LocalName)
2314 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2315 else if (ID.Kind == ValID::t_InlineAsm) {
2316 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2317 const FunctionType *FTy =
2318 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2319 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2320 return Error(ID.Loc, "invalid type for inline asm constraint string");
2321 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2322 return false;
2323 } else if (ID.Kind == ValID::t_Metadata) {
2324 V = ID.MetadataVal;
2325 } else {
2326 Constant *C;
2327 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2328 V = C;
2329 return false;
2332 return V == 0;
2335 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2336 V = 0;
2337 ValID ID;
2338 return ParseValID(ID) ||
2339 ConvertValIDToValue(Ty, ID, V, PFS);
2342 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2343 PATypeHolder T(Type::getVoidTy(Context));
2344 return ParseType(T) ||
2345 ParseValue(T, V, PFS);
2348 /// FunctionHeader
2349 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2350 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2351 /// OptionalAlign OptGC
2352 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2353 // Parse the linkage.
2354 LocTy LinkageLoc = Lex.getLoc();
2355 unsigned Linkage;
2357 unsigned Visibility, CC, RetAttrs;
2358 PATypeHolder RetType(Type::getVoidTy(Context));
2359 LocTy RetTypeLoc = Lex.getLoc();
2360 if (ParseOptionalLinkage(Linkage) ||
2361 ParseOptionalVisibility(Visibility) ||
2362 ParseOptionalCallingConv(CC) ||
2363 ParseOptionalAttrs(RetAttrs, 1) ||
2364 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2365 return true;
2367 // Verify that the linkage is ok.
2368 switch ((GlobalValue::LinkageTypes)Linkage) {
2369 case GlobalValue::ExternalLinkage:
2370 break; // always ok.
2371 case GlobalValue::DLLImportLinkage:
2372 case GlobalValue::ExternalWeakLinkage:
2373 if (isDefine)
2374 return Error(LinkageLoc, "invalid linkage for function definition");
2375 break;
2376 case GlobalValue::PrivateLinkage:
2377 case GlobalValue::LinkerPrivateLinkage:
2378 case GlobalValue::InternalLinkage:
2379 case GlobalValue::AvailableExternallyLinkage:
2380 case GlobalValue::LinkOnceAnyLinkage:
2381 case GlobalValue::LinkOnceODRLinkage:
2382 case GlobalValue::WeakAnyLinkage:
2383 case GlobalValue::WeakODRLinkage:
2384 case GlobalValue::DLLExportLinkage:
2385 if (!isDefine)
2386 return Error(LinkageLoc, "invalid linkage for function declaration");
2387 break;
2388 case GlobalValue::AppendingLinkage:
2389 case GlobalValue::GhostLinkage:
2390 case GlobalValue::CommonLinkage:
2391 return Error(LinkageLoc, "invalid function linkage type");
2394 if (!FunctionType::isValidReturnType(RetType) ||
2395 isa<OpaqueType>(RetType))
2396 return Error(RetTypeLoc, "invalid function return type");
2398 LocTy NameLoc = Lex.getLoc();
2400 std::string FunctionName;
2401 if (Lex.getKind() == lltok::GlobalVar) {
2402 FunctionName = Lex.getStrVal();
2403 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2404 unsigned NameID = Lex.getUIntVal();
2406 if (NameID != NumberedVals.size())
2407 return TokError("function expected to be numbered '%" +
2408 utostr(NumberedVals.size()) + "'");
2409 } else {
2410 return TokError("expected function name");
2413 Lex.Lex();
2415 if (Lex.getKind() != lltok::lparen)
2416 return TokError("expected '(' in function argument list");
2418 std::vector<ArgInfo> ArgList;
2419 bool isVarArg;
2420 unsigned FuncAttrs;
2421 std::string Section;
2422 unsigned Alignment;
2423 std::string GC;
2425 if (ParseArgumentList(ArgList, isVarArg, false) ||
2426 ParseOptionalAttrs(FuncAttrs, 2) ||
2427 (EatIfPresent(lltok::kw_section) &&
2428 ParseStringConstant(Section)) ||
2429 ParseOptionalAlignment(Alignment) ||
2430 (EatIfPresent(lltok::kw_gc) &&
2431 ParseStringConstant(GC)))
2432 return true;
2434 // If the alignment was parsed as an attribute, move to the alignment field.
2435 if (FuncAttrs & Attribute::Alignment) {
2436 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2437 FuncAttrs &= ~Attribute::Alignment;
2440 // Okay, if we got here, the function is syntactically valid. Convert types
2441 // and do semantic checks.
2442 std::vector<const Type*> ParamTypeList;
2443 SmallVector<AttributeWithIndex, 8> Attrs;
2444 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2445 // attributes.
2446 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2447 if (FuncAttrs & ObsoleteFuncAttrs) {
2448 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2449 FuncAttrs &= ~ObsoleteFuncAttrs;
2452 if (RetAttrs != Attribute::None)
2453 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2455 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2456 ParamTypeList.push_back(ArgList[i].Type);
2457 if (ArgList[i].Attrs != Attribute::None)
2458 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2461 if (FuncAttrs != Attribute::None)
2462 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2464 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2466 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2467 RetType != Type::getVoidTy(Context))
2468 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2470 const FunctionType *FT =
2471 FunctionType::get(RetType, ParamTypeList, isVarArg);
2472 const PointerType *PFT = PointerType::getUnqual(FT);
2474 Fn = 0;
2475 if (!FunctionName.empty()) {
2476 // If this was a definition of a forward reference, remove the definition
2477 // from the forward reference table and fill in the forward ref.
2478 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2479 ForwardRefVals.find(FunctionName);
2480 if (FRVI != ForwardRefVals.end()) {
2481 Fn = M->getFunction(FunctionName);
2482 ForwardRefVals.erase(FRVI);
2483 } else if ((Fn = M->getFunction(FunctionName))) {
2484 // If this function already exists in the symbol table, then it is
2485 // multiply defined. We accept a few cases for old backwards compat.
2486 // FIXME: Remove this stuff for LLVM 3.0.
2487 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2488 (!Fn->isDeclaration() && isDefine)) {
2489 // If the redefinition has different type or different attributes,
2490 // reject it. If both have bodies, reject it.
2491 return Error(NameLoc, "invalid redefinition of function '" +
2492 FunctionName + "'");
2493 } else if (Fn->isDeclaration()) {
2494 // Make sure to strip off any argument names so we can't get conflicts.
2495 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2496 AI != AE; ++AI)
2497 AI->setName("");
2501 } else if (FunctionName.empty()) {
2502 // If this is a definition of a forward referenced function, make sure the
2503 // types agree.
2504 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2505 = ForwardRefValIDs.find(NumberedVals.size());
2506 if (I != ForwardRefValIDs.end()) {
2507 Fn = cast<Function>(I->second.first);
2508 if (Fn->getType() != PFT)
2509 return Error(NameLoc, "type of definition and forward reference of '@" +
2510 utostr(NumberedVals.size()) +"' disagree");
2511 ForwardRefValIDs.erase(I);
2515 if (Fn == 0)
2516 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2517 else // Move the forward-reference to the correct spot in the module.
2518 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2520 if (FunctionName.empty())
2521 NumberedVals.push_back(Fn);
2523 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2524 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2525 Fn->setCallingConv(CC);
2526 Fn->setAttributes(PAL);
2527 Fn->setAlignment(Alignment);
2528 Fn->setSection(Section);
2529 if (!GC.empty()) Fn->setGC(GC.c_str());
2531 // Add all of the arguments we parsed to the function.
2532 Function::arg_iterator ArgIt = Fn->arg_begin();
2533 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2534 // If the argument has a name, insert it into the argument symbol table.
2535 if (ArgList[i].Name.empty()) continue;
2537 // Set the name, if it conflicted, it will be auto-renamed.
2538 ArgIt->setName(ArgList[i].Name);
2540 if (ArgIt->getNameStr() != ArgList[i].Name)
2541 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2542 ArgList[i].Name + "'");
2545 return false;
2549 /// ParseFunctionBody
2550 /// ::= '{' BasicBlock+ '}'
2551 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2553 bool LLParser::ParseFunctionBody(Function &Fn) {
2554 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2555 return TokError("expected '{' in function body");
2556 Lex.Lex(); // eat the {.
2558 PerFunctionState PFS(*this, Fn);
2560 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2561 if (ParseBasicBlock(PFS)) return true;
2563 // Eat the }.
2564 Lex.Lex();
2566 // Verify function is ok.
2567 return PFS.VerifyFunctionComplete();
2570 /// ParseBasicBlock
2571 /// ::= LabelStr? Instruction*
2572 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2573 // If this basic block starts out with a name, remember it.
2574 std::string Name;
2575 LocTy NameLoc = Lex.getLoc();
2576 if (Lex.getKind() == lltok::LabelStr) {
2577 Name = Lex.getStrVal();
2578 Lex.Lex();
2581 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2582 if (BB == 0) return true;
2584 std::string NameStr;
2586 // Parse the instructions in this block until we get a terminator.
2587 Instruction *Inst;
2588 do {
2589 // This instruction may have three possibilities for a name: a) none
2590 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2591 LocTy NameLoc = Lex.getLoc();
2592 int NameID = -1;
2593 NameStr = "";
2595 if (Lex.getKind() == lltok::LocalVarID) {
2596 NameID = Lex.getUIntVal();
2597 Lex.Lex();
2598 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2599 return true;
2600 } else if (Lex.getKind() == lltok::LocalVar ||
2601 // FIXME: REMOVE IN LLVM 3.0
2602 Lex.getKind() == lltok::StringConstant) {
2603 NameStr = Lex.getStrVal();
2604 Lex.Lex();
2605 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2606 return true;
2609 if (ParseInstruction(Inst, BB, PFS)) return true;
2611 BB->getInstList().push_back(Inst);
2613 // Set the name on the instruction.
2614 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2615 } while (!isa<TerminatorInst>(Inst));
2617 return false;
2620 //===----------------------------------------------------------------------===//
2621 // Instruction Parsing.
2622 //===----------------------------------------------------------------------===//
2624 /// ParseInstruction - Parse one of the many different instructions.
2626 bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2627 PerFunctionState &PFS) {
2628 lltok::Kind Token = Lex.getKind();
2629 if (Token == lltok::Eof)
2630 return TokError("found end of file when expecting more instructions");
2631 LocTy Loc = Lex.getLoc();
2632 unsigned KeywordVal = Lex.getUIntVal();
2633 Lex.Lex(); // Eat the keyword.
2635 switch (Token) {
2636 default: return Error(Loc, "expected instruction opcode");
2637 // Terminator Instructions.
2638 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false;
2639 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2640 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2641 case lltok::kw_br: return ParseBr(Inst, PFS);
2642 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2643 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2644 // Binary Operators.
2645 case lltok::kw_add:
2646 case lltok::kw_sub:
2647 case lltok::kw_mul: {
2648 bool NUW = false;
2649 bool NSW = false;
2650 LocTy ModifierLoc = Lex.getLoc();
2651 if (EatIfPresent(lltok::kw_nuw))
2652 NUW = true;
2653 if (EatIfPresent(lltok::kw_nsw)) {
2654 NSW = true;
2655 if (EatIfPresent(lltok::kw_nuw))
2656 NUW = true;
2658 // API compatibility: Accept either integer or floating-point types.
2659 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2660 if (!Result) {
2661 if (!Inst->getType()->isIntOrIntVector()) {
2662 if (NUW)
2663 return Error(ModifierLoc, "nuw only applies to integer operations");
2664 if (NSW)
2665 return Error(ModifierLoc, "nsw only applies to integer operations");
2667 if (NUW)
2668 cast<OverflowingBinaryOperator>(Inst)->setHasNoUnsignedOverflow(true);
2669 if (NSW)
2670 cast<OverflowingBinaryOperator>(Inst)->setHasNoSignedOverflow(true);
2672 return Result;
2674 case lltok::kw_fadd:
2675 case lltok::kw_fsub:
2676 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2678 case lltok::kw_sdiv: {
2679 bool Exact = false;
2680 if (EatIfPresent(lltok::kw_exact))
2681 Exact = true;
2682 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2683 if (!Result)
2684 if (Exact)
2685 cast<SDivOperator>(Inst)->setIsExact(true);
2686 return Result;
2689 case lltok::kw_udiv:
2690 case lltok::kw_urem:
2691 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2692 case lltok::kw_fdiv:
2693 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2694 case lltok::kw_shl:
2695 case lltok::kw_lshr:
2696 case lltok::kw_ashr:
2697 case lltok::kw_and:
2698 case lltok::kw_or:
2699 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2700 case lltok::kw_icmp:
2701 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
2702 // Casts.
2703 case lltok::kw_trunc:
2704 case lltok::kw_zext:
2705 case lltok::kw_sext:
2706 case lltok::kw_fptrunc:
2707 case lltok::kw_fpext:
2708 case lltok::kw_bitcast:
2709 case lltok::kw_uitofp:
2710 case lltok::kw_sitofp:
2711 case lltok::kw_fptoui:
2712 case lltok::kw_fptosi:
2713 case lltok::kw_inttoptr:
2714 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2715 // Other.
2716 case lltok::kw_select: return ParseSelect(Inst, PFS);
2717 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2718 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2719 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2720 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2721 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2722 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2723 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2724 // Memory.
2725 case lltok::kw_alloca:
2726 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2727 case lltok::kw_free: return ParseFree(Inst, PFS);
2728 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2729 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2730 case lltok::kw_volatile:
2731 if (EatIfPresent(lltok::kw_load))
2732 return ParseLoad(Inst, PFS, true);
2733 else if (EatIfPresent(lltok::kw_store))
2734 return ParseStore(Inst, PFS, true);
2735 else
2736 return TokError("expected 'load' or 'store'");
2737 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2738 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2739 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2740 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2744 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2745 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2746 if (Opc == Instruction::FCmp) {
2747 switch (Lex.getKind()) {
2748 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2749 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2750 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2751 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2752 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2753 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2754 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2755 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2756 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2757 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2758 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2759 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2760 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2761 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2762 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2763 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2764 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2766 } else {
2767 switch (Lex.getKind()) {
2768 default: TokError("expected icmp predicate (e.g. 'eq')");
2769 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2770 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2771 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2772 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2773 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2774 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2775 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2776 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2777 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2778 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2781 Lex.Lex();
2782 return false;
2785 //===----------------------------------------------------------------------===//
2786 // Terminator Instructions.
2787 //===----------------------------------------------------------------------===//
2789 /// ParseRet - Parse a return instruction.
2790 /// ::= 'ret' void
2791 /// ::= 'ret' TypeAndValue
2792 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2793 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2794 PerFunctionState &PFS) {
2795 PATypeHolder Ty(Type::getVoidTy(Context));
2796 if (ParseType(Ty, true /*void allowed*/)) return true;
2798 if (Ty == Type::getVoidTy(Context)) {
2799 Inst = ReturnInst::Create(Context);
2800 return false;
2803 Value *RV;
2804 if (ParseValue(Ty, RV, PFS)) return true;
2806 // The normal case is one return value.
2807 if (Lex.getKind() == lltok::comma) {
2808 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2809 // of 'ret {i32,i32} {i32 1, i32 2}'
2810 SmallVector<Value*, 8> RVs;
2811 RVs.push_back(RV);
2813 while (EatIfPresent(lltok::comma)) {
2814 if (ParseTypeAndValue(RV, PFS)) return true;
2815 RVs.push_back(RV);
2818 RV = UndefValue::get(PFS.getFunction().getReturnType());
2819 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2820 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2821 BB->getInstList().push_back(I);
2822 RV = I;
2825 Inst = ReturnInst::Create(Context, RV);
2826 return false;
2830 /// ParseBr
2831 /// ::= 'br' TypeAndValue
2832 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2833 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2834 LocTy Loc, Loc2;
2835 Value *Op0, *Op1, *Op2;
2836 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2838 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2839 Inst = BranchInst::Create(BB);
2840 return false;
2843 if (Op0->getType() != Type::getInt1Ty(Context))
2844 return Error(Loc, "branch condition must have 'i1' type");
2846 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2847 ParseTypeAndValue(Op1, Loc, PFS) ||
2848 ParseToken(lltok::comma, "expected ',' after true destination") ||
2849 ParseTypeAndValue(Op2, Loc2, PFS))
2850 return true;
2852 if (!isa<BasicBlock>(Op1))
2853 return Error(Loc, "true destination of branch must be a basic block");
2854 if (!isa<BasicBlock>(Op2))
2855 return Error(Loc2, "true destination of branch must be a basic block");
2857 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2858 return false;
2861 /// ParseSwitch
2862 /// Instruction
2863 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2864 /// JumpTable
2865 /// ::= (TypeAndValue ',' TypeAndValue)*
2866 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2867 LocTy CondLoc, BBLoc;
2868 Value *Cond, *DefaultBB;
2869 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2870 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2871 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2872 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2873 return true;
2875 if (!isa<IntegerType>(Cond->getType()))
2876 return Error(CondLoc, "switch condition must have integer type");
2877 if (!isa<BasicBlock>(DefaultBB))
2878 return Error(BBLoc, "default destination must be a basic block");
2880 // Parse the jump table pairs.
2881 SmallPtrSet<Value*, 32> SeenCases;
2882 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2883 while (Lex.getKind() != lltok::rsquare) {
2884 Value *Constant, *DestBB;
2886 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2887 ParseToken(lltok::comma, "expected ',' after case value") ||
2888 ParseTypeAndValue(DestBB, BBLoc, PFS))
2889 return true;
2891 if (!SeenCases.insert(Constant))
2892 return Error(CondLoc, "duplicate case value in switch");
2893 if (!isa<ConstantInt>(Constant))
2894 return Error(CondLoc, "case value is not a constant integer");
2895 if (!isa<BasicBlock>(DestBB))
2896 return Error(BBLoc, "case destination is not a basic block");
2898 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2899 cast<BasicBlock>(DestBB)));
2902 Lex.Lex(); // Eat the ']'.
2904 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2905 Table.size());
2906 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2907 SI->addCase(Table[i].first, Table[i].second);
2908 Inst = SI;
2909 return false;
2912 /// ParseInvoke
2913 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2914 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2915 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2916 LocTy CallLoc = Lex.getLoc();
2917 unsigned CC, RetAttrs, FnAttrs;
2918 PATypeHolder RetType(Type::getVoidTy(Context));
2919 LocTy RetTypeLoc;
2920 ValID CalleeID;
2921 SmallVector<ParamInfo, 16> ArgList;
2923 Value *NormalBB, *UnwindBB;
2924 if (ParseOptionalCallingConv(CC) ||
2925 ParseOptionalAttrs(RetAttrs, 1) ||
2926 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2927 ParseValID(CalleeID) ||
2928 ParseParameterList(ArgList, PFS) ||
2929 ParseOptionalAttrs(FnAttrs, 2) ||
2930 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2931 ParseTypeAndValue(NormalBB, PFS) ||
2932 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2933 ParseTypeAndValue(UnwindBB, PFS))
2934 return true;
2936 if (!isa<BasicBlock>(NormalBB))
2937 return Error(CallLoc, "normal destination is not a basic block");
2938 if (!isa<BasicBlock>(UnwindBB))
2939 return Error(CallLoc, "unwind destination is not a basic block");
2941 // If RetType is a non-function pointer type, then this is the short syntax
2942 // for the call, which means that RetType is just the return type. Infer the
2943 // rest of the function argument types from the arguments that are present.
2944 const PointerType *PFTy = 0;
2945 const FunctionType *Ty = 0;
2946 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2947 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2948 // Pull out the types of all of the arguments...
2949 std::vector<const Type*> ParamTypes;
2950 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2951 ParamTypes.push_back(ArgList[i].V->getType());
2953 if (!FunctionType::isValidReturnType(RetType))
2954 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2956 Ty = FunctionType::get(RetType, ParamTypes, false);
2957 PFTy = PointerType::getUnqual(Ty);
2960 // Look up the callee.
2961 Value *Callee;
2962 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2964 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2965 // function attributes.
2966 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2967 if (FnAttrs & ObsoleteFuncAttrs) {
2968 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2969 FnAttrs &= ~ObsoleteFuncAttrs;
2972 // Set up the Attributes for the function.
2973 SmallVector<AttributeWithIndex, 8> Attrs;
2974 if (RetAttrs != Attribute::None)
2975 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2977 SmallVector<Value*, 8> Args;
2979 // Loop through FunctionType's arguments and ensure they are specified
2980 // correctly. Also, gather any parameter attributes.
2981 FunctionType::param_iterator I = Ty->param_begin();
2982 FunctionType::param_iterator E = Ty->param_end();
2983 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2984 const Type *ExpectedTy = 0;
2985 if (I != E) {
2986 ExpectedTy = *I++;
2987 } else if (!Ty->isVarArg()) {
2988 return Error(ArgList[i].Loc, "too many arguments specified");
2991 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2992 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2993 ExpectedTy->getDescription() + "'");
2994 Args.push_back(ArgList[i].V);
2995 if (ArgList[i].Attrs != Attribute::None)
2996 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2999 if (I != E)
3000 return Error(CallLoc, "not enough parameters specified for call");
3002 if (FnAttrs != Attribute::None)
3003 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3005 // Finish off the Attributes and check them
3006 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3008 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
3009 cast<BasicBlock>(UnwindBB),
3010 Args.begin(), Args.end());
3011 II->setCallingConv(CC);
3012 II->setAttributes(PAL);
3013 Inst = II;
3014 return false;
3019 //===----------------------------------------------------------------------===//
3020 // Binary Operators.
3021 //===----------------------------------------------------------------------===//
3023 /// ParseArithmetic
3024 /// ::= ArithmeticOps TypeAndValue ',' Value
3026 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3027 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3028 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3029 unsigned Opc, unsigned OperandType) {
3030 LocTy Loc; Value *LHS, *RHS;
3031 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3032 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3033 ParseValue(LHS->getType(), RHS, PFS))
3034 return true;
3036 bool Valid;
3037 switch (OperandType) {
3038 default: llvm_unreachable("Unknown operand type!");
3039 case 0: // int or FP.
3040 Valid = LHS->getType()->isIntOrIntVector() ||
3041 LHS->getType()->isFPOrFPVector();
3042 break;
3043 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3044 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3047 if (!Valid)
3048 return Error(Loc, "invalid operand type for instruction");
3050 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3051 return false;
3054 /// ParseLogical
3055 /// ::= ArithmeticOps TypeAndValue ',' Value {
3056 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3057 unsigned Opc) {
3058 LocTy Loc; Value *LHS, *RHS;
3059 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3060 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3061 ParseValue(LHS->getType(), RHS, PFS))
3062 return true;
3064 if (!LHS->getType()->isIntOrIntVector())
3065 return Error(Loc,"instruction requires integer or integer vector operands");
3067 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3068 return false;
3072 /// ParseCompare
3073 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3074 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3075 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3076 unsigned Opc) {
3077 // Parse the integer/fp comparison predicate.
3078 LocTy Loc;
3079 unsigned Pred;
3080 Value *LHS, *RHS;
3081 if (ParseCmpPredicate(Pred, Opc) ||
3082 ParseTypeAndValue(LHS, Loc, PFS) ||
3083 ParseToken(lltok::comma, "expected ',' after compare value") ||
3084 ParseValue(LHS->getType(), RHS, PFS))
3085 return true;
3087 if (Opc == Instruction::FCmp) {
3088 if (!LHS->getType()->isFPOrFPVector())
3089 return Error(Loc, "fcmp requires floating point operands");
3090 Inst = new FCmpInst(Context, CmpInst::Predicate(Pred), LHS, RHS);
3091 } else {
3092 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3093 if (!LHS->getType()->isIntOrIntVector() &&
3094 !isa<PointerType>(LHS->getType()))
3095 return Error(Loc, "icmp requires integer operands");
3096 Inst = new ICmpInst(Context, CmpInst::Predicate(Pred), LHS, RHS);
3098 return false;
3101 //===----------------------------------------------------------------------===//
3102 // Other Instructions.
3103 //===----------------------------------------------------------------------===//
3106 /// ParseCast
3107 /// ::= CastOpc TypeAndValue 'to' Type
3108 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3109 unsigned Opc) {
3110 LocTy Loc; Value *Op;
3111 PATypeHolder DestTy(Type::getVoidTy(Context));
3112 if (ParseTypeAndValue(Op, Loc, PFS) ||
3113 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3114 ParseType(DestTy))
3115 return true;
3117 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3118 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3119 return Error(Loc, "invalid cast opcode for cast from '" +
3120 Op->getType()->getDescription() + "' to '" +
3121 DestTy->getDescription() + "'");
3123 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3124 return false;
3127 /// ParseSelect
3128 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3129 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3130 LocTy Loc;
3131 Value *Op0, *Op1, *Op2;
3132 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3133 ParseToken(lltok::comma, "expected ',' after select condition") ||
3134 ParseTypeAndValue(Op1, PFS) ||
3135 ParseToken(lltok::comma, "expected ',' after select value") ||
3136 ParseTypeAndValue(Op2, PFS))
3137 return true;
3139 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3140 return Error(Loc, Reason);
3142 Inst = SelectInst::Create(Op0, Op1, Op2);
3143 return false;
3146 /// ParseVA_Arg
3147 /// ::= 'va_arg' TypeAndValue ',' Type
3148 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3149 Value *Op;
3150 PATypeHolder EltTy(Type::getVoidTy(Context));
3151 LocTy TypeLoc;
3152 if (ParseTypeAndValue(Op, PFS) ||
3153 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3154 ParseType(EltTy, TypeLoc))
3155 return true;
3157 if (!EltTy->isFirstClassType())
3158 return Error(TypeLoc, "va_arg requires operand with first class type");
3160 Inst = new VAArgInst(Op, EltTy);
3161 return false;
3164 /// ParseExtractElement
3165 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3166 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3167 LocTy Loc;
3168 Value *Op0, *Op1;
3169 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3170 ParseToken(lltok::comma, "expected ',' after extract value") ||
3171 ParseTypeAndValue(Op1, PFS))
3172 return true;
3174 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3175 return Error(Loc, "invalid extractelement operands");
3177 Inst = ExtractElementInst::Create(Op0, Op1);
3178 return false;
3181 /// ParseInsertElement
3182 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3183 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3184 LocTy Loc;
3185 Value *Op0, *Op1, *Op2;
3186 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3187 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3188 ParseTypeAndValue(Op1, PFS) ||
3189 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3190 ParseTypeAndValue(Op2, PFS))
3191 return true;
3193 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3194 return Error(Loc, "invalid insertelement operands");
3196 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3197 return false;
3200 /// ParseShuffleVector
3201 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3202 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3203 LocTy Loc;
3204 Value *Op0, *Op1, *Op2;
3205 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3206 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3207 ParseTypeAndValue(Op1, PFS) ||
3208 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3209 ParseTypeAndValue(Op2, PFS))
3210 return true;
3212 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3213 return Error(Loc, "invalid extractelement operands");
3215 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3216 return false;
3219 /// ParsePHI
3220 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3221 bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3222 PATypeHolder Ty(Type::getVoidTy(Context));
3223 Value *Op0, *Op1;
3224 LocTy TypeLoc = Lex.getLoc();
3226 if (ParseType(Ty) ||
3227 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3228 ParseValue(Ty, Op0, PFS) ||
3229 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3230 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3231 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3232 return true;
3234 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3235 while (1) {
3236 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3238 if (!EatIfPresent(lltok::comma))
3239 break;
3241 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3242 ParseValue(Ty, Op0, PFS) ||
3243 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3244 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3245 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3246 return true;
3249 if (!Ty->isFirstClassType())
3250 return Error(TypeLoc, "phi node must have first class type");
3252 PHINode *PN = PHINode::Create(Ty);
3253 PN->reserveOperandSpace(PHIVals.size());
3254 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3255 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3256 Inst = PN;
3257 return false;
3260 /// ParseCall
3261 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3262 /// ParameterList OptionalAttrs
3263 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3264 bool isTail) {
3265 unsigned CC, RetAttrs, FnAttrs;
3266 PATypeHolder RetType(Type::getVoidTy(Context));
3267 LocTy RetTypeLoc;
3268 ValID CalleeID;
3269 SmallVector<ParamInfo, 16> ArgList;
3270 LocTy CallLoc = Lex.getLoc();
3272 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3273 ParseOptionalCallingConv(CC) ||
3274 ParseOptionalAttrs(RetAttrs, 1) ||
3275 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3276 ParseValID(CalleeID) ||
3277 ParseParameterList(ArgList, PFS) ||
3278 ParseOptionalAttrs(FnAttrs, 2))
3279 return true;
3281 // If RetType is a non-function pointer type, then this is the short syntax
3282 // for the call, which means that RetType is just the return type. Infer the
3283 // rest of the function argument types from the arguments that are present.
3284 const PointerType *PFTy = 0;
3285 const FunctionType *Ty = 0;
3286 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3287 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3288 // Pull out the types of all of the arguments...
3289 std::vector<const Type*> ParamTypes;
3290 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3291 ParamTypes.push_back(ArgList[i].V->getType());
3293 if (!FunctionType::isValidReturnType(RetType))
3294 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3296 Ty = FunctionType::get(RetType, ParamTypes, false);
3297 PFTy = PointerType::getUnqual(Ty);
3300 // Look up the callee.
3301 Value *Callee;
3302 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3304 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3305 // function attributes.
3306 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3307 if (FnAttrs & ObsoleteFuncAttrs) {
3308 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3309 FnAttrs &= ~ObsoleteFuncAttrs;
3312 // Set up the Attributes for the function.
3313 SmallVector<AttributeWithIndex, 8> Attrs;
3314 if (RetAttrs != Attribute::None)
3315 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3317 SmallVector<Value*, 8> Args;
3319 // Loop through FunctionType's arguments and ensure they are specified
3320 // correctly. Also, gather any parameter attributes.
3321 FunctionType::param_iterator I = Ty->param_begin();
3322 FunctionType::param_iterator E = Ty->param_end();
3323 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3324 const Type *ExpectedTy = 0;
3325 if (I != E) {
3326 ExpectedTy = *I++;
3327 } else if (!Ty->isVarArg()) {
3328 return Error(ArgList[i].Loc, "too many arguments specified");
3331 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3332 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3333 ExpectedTy->getDescription() + "'");
3334 Args.push_back(ArgList[i].V);
3335 if (ArgList[i].Attrs != Attribute::None)
3336 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3339 if (I != E)
3340 return Error(CallLoc, "not enough parameters specified for call");
3342 if (FnAttrs != Attribute::None)
3343 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3345 // Finish off the Attributes and check them
3346 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3348 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3349 CI->setTailCall(isTail);
3350 CI->setCallingConv(CC);
3351 CI->setAttributes(PAL);
3352 Inst = CI;
3353 return false;
3356 //===----------------------------------------------------------------------===//
3357 // Memory Instructions.
3358 //===----------------------------------------------------------------------===//
3360 /// ParseAlloc
3361 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3362 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3363 bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3364 unsigned Opc) {
3365 PATypeHolder Ty(Type::getVoidTy(Context));
3366 Value *Size = 0;
3367 LocTy SizeLoc;
3368 unsigned Alignment = 0;
3369 if (ParseType(Ty)) return true;
3371 if (EatIfPresent(lltok::comma)) {
3372 if (Lex.getKind() == lltok::kw_align) {
3373 if (ParseOptionalAlignment(Alignment)) return true;
3374 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3375 ParseOptionalCommaAlignment(Alignment)) {
3376 return true;
3380 if (Size && Size->getType() != Type::getInt32Ty(Context))
3381 return Error(SizeLoc, "element count must be i32");
3383 if (Opc == Instruction::Malloc)
3384 Inst = new MallocInst(Ty, Size, Alignment);
3385 else
3386 Inst = new AllocaInst(Ty, Size, Alignment);
3387 return false;
3390 /// ParseFree
3391 /// ::= 'free' TypeAndValue
3392 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3393 Value *Val; LocTy Loc;
3394 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3395 if (!isa<PointerType>(Val->getType()))
3396 return Error(Loc, "operand to free must be a pointer");
3397 Inst = new FreeInst(Val);
3398 return false;
3401 /// ParseLoad
3402 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3403 bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3404 bool isVolatile) {
3405 Value *Val; LocTy Loc;
3406 unsigned Alignment;
3407 if (ParseTypeAndValue(Val, Loc, PFS) ||
3408 ParseOptionalCommaAlignment(Alignment))
3409 return true;
3411 if (!isa<PointerType>(Val->getType()) ||
3412 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3413 return Error(Loc, "load operand must be a pointer to a first class type");
3415 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3416 return false;
3419 /// ParseStore
3420 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3421 bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3422 bool isVolatile) {
3423 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3424 unsigned Alignment;
3425 if (ParseTypeAndValue(Val, Loc, PFS) ||
3426 ParseToken(lltok::comma, "expected ',' after store operand") ||
3427 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3428 ParseOptionalCommaAlignment(Alignment))
3429 return true;
3431 if (!isa<PointerType>(Ptr->getType()))
3432 return Error(PtrLoc, "store operand must be a pointer");
3433 if (!Val->getType()->isFirstClassType())
3434 return Error(Loc, "store operand must be a first class value");
3435 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3436 return Error(Loc, "stored value and pointer type do not match");
3438 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3439 return false;
3442 /// ParseGetResult
3443 /// ::= 'getresult' TypeAndValue ',' i32
3444 /// FIXME: Remove support for getresult in LLVM 3.0
3445 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3446 Value *Val; LocTy ValLoc, EltLoc;
3447 unsigned Element;
3448 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3449 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3450 ParseUInt32(Element, EltLoc))
3451 return true;
3453 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3454 return Error(ValLoc, "getresult inst requires an aggregate operand");
3455 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3456 return Error(EltLoc, "invalid getresult index for value");
3457 Inst = ExtractValueInst::Create(Val, Element);
3458 return false;
3461 /// ParseGetElementPtr
3462 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3463 bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3464 Value *Ptr, *Val; LocTy Loc, EltLoc;
3466 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3468 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3470 if (!isa<PointerType>(Ptr->getType()))
3471 return Error(Loc, "base of getelementptr must be a pointer");
3473 SmallVector<Value*, 16> Indices;
3474 while (EatIfPresent(lltok::comma)) {
3475 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3476 if (!isa<IntegerType>(Val->getType()))
3477 return Error(EltLoc, "getelementptr index must be an integer");
3478 Indices.push_back(Val);
3481 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3482 Indices.begin(), Indices.end()))
3483 return Error(Loc, "invalid getelementptr indices");
3484 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3485 if (InBounds)
3486 cast<GEPOperator>(Inst)->setIsInBounds(true);
3487 return false;
3490 /// ParseExtractValue
3491 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3492 bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3493 Value *Val; LocTy Loc;
3494 SmallVector<unsigned, 4> Indices;
3495 if (ParseTypeAndValue(Val, Loc, PFS) ||
3496 ParseIndexList(Indices))
3497 return true;
3499 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3500 return Error(Loc, "extractvalue operand must be array or struct");
3502 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3503 Indices.end()))
3504 return Error(Loc, "invalid indices for extractvalue");
3505 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3506 return false;
3509 /// ParseInsertValue
3510 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3511 bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3512 Value *Val0, *Val1; LocTy Loc0, Loc1;
3513 SmallVector<unsigned, 4> Indices;
3514 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3515 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3516 ParseTypeAndValue(Val1, Loc1, PFS) ||
3517 ParseIndexList(Indices))
3518 return true;
3520 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3521 return Error(Loc0, "extractvalue operand must be array or struct");
3523 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3524 Indices.end()))
3525 return Error(Loc0, "invalid indices for insertvalue");
3526 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3527 return false;
3530 //===----------------------------------------------------------------------===//
3531 // Embedded metadata.
3532 //===----------------------------------------------------------------------===//
3534 /// ParseMDNodeVector
3535 /// ::= Element (',' Element)*
3536 /// Element
3537 /// ::= 'null' | TypeAndValue
3538 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3539 assert(Lex.getKind() == lltok::lbrace);
3540 Lex.Lex();
3541 do {
3542 Value *V = 0;
3543 if (Lex.getKind() == lltok::kw_null) {
3544 Lex.Lex();
3545 V = 0;
3546 } else {
3547 PATypeHolder Ty(Type::getVoidTy(Context));
3548 if (ParseType(Ty)) return true;
3549 if (Lex.getKind() == lltok::Metadata) {
3550 Lex.Lex();
3551 MetadataBase *Node = 0;
3552 if (!ParseMDNode(Node))
3553 V = Node;
3554 else {
3555 MetadataBase *MDS = 0;
3556 if (ParseMDString(MDS)) return true;
3557 V = MDS;
3559 } else {
3560 Constant *C;
3561 if (ParseGlobalValue(Ty, C)) return true;
3562 V = C;
3565 Elts.push_back(V);
3566 } while (EatIfPresent(lltok::comma));
3568 return false;