1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
33 /// ValID - Represents a reference of a definition of some sort with no type.
34 /// There are several cases where we have to parse the value but where the
35 /// type can depend on later context. This may either be a numeric reference
36 /// or a symbolic (%var) reference. This is just a discriminated union.
39 t_LocalID
, t_GlobalID
, // ID in UIntVal.
40 t_LocalName
, t_GlobalName
, // Name in StrVal.
41 t_APSInt
, t_APFloat
, // Value in APSIntVal/APFloatVal.
42 t_Null
, t_Undef
, t_Zero
, // No value.
43 t_EmptyArray
, // No value: []
44 t_Constant
, // Value in ConstantVal.
45 t_InlineAsm
, // Value in StrVal/StrVal2/UIntVal.
46 t_Metadata
// Value in MetadataVal.
51 std::string StrVal
, StrVal2
;
54 Constant
*ConstantVal
;
55 MetadataBase
*MetadataVal
;
56 ValID() : APFloatVal(0.0) {}
60 /// Run: module ::= toplevelentity*
61 bool LLParser::Run() {
65 return ParseTopLevelEntities() ||
66 ValidateEndOfModule();
69 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
71 bool LLParser::ValidateEndOfModule() {
72 if (!ForwardRefTypes
.empty())
73 return Error(ForwardRefTypes
.begin()->second
.second
,
74 "use of undefined type named '" +
75 ForwardRefTypes
.begin()->first
+ "'");
76 if (!ForwardRefTypeIDs
.empty())
77 return Error(ForwardRefTypeIDs
.begin()->second
.second
,
78 "use of undefined type '%" +
79 utostr(ForwardRefTypeIDs
.begin()->first
) + "'");
81 if (!ForwardRefVals
.empty())
82 return Error(ForwardRefVals
.begin()->second
.second
,
83 "use of undefined value '@" + ForwardRefVals
.begin()->first
+
86 if (!ForwardRefValIDs
.empty())
87 return Error(ForwardRefValIDs
.begin()->second
.second
,
88 "use of undefined value '@" +
89 utostr(ForwardRefValIDs
.begin()->first
) + "'");
91 if (!ForwardRefMDNodes
.empty())
92 return Error(ForwardRefMDNodes
.begin()->second
.second
,
93 "use of undefined metadata '!" +
94 utostr(ForwardRefMDNodes
.begin()->first
) + "'");
97 // Look for intrinsic functions and CallInst that need to be upgraded
98 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; )
99 UpgradeCallsToIntrinsic(FI
++); // must be post-increment, as we remove
104 //===----------------------------------------------------------------------===//
105 // Top-Level Entities
106 //===----------------------------------------------------------------------===//
108 bool LLParser::ParseTopLevelEntities() {
110 switch (Lex
.getKind()) {
111 default: return TokError("expected top-level entity");
112 case lltok::Eof
: return false;
113 //case lltok::kw_define:
114 case lltok::kw_declare
: if (ParseDeclare()) return true; break;
115 case lltok::kw_define
: if (ParseDefine()) return true; break;
116 case lltok::kw_module
: if (ParseModuleAsm()) return true; break;
117 case lltok::kw_target
: if (ParseTargetDefinition()) return true; break;
118 case lltok::kw_deplibs
: if (ParseDepLibs()) return true; break;
119 case lltok::kw_type
: if (ParseUnnamedType()) return true; break;
120 case lltok::LocalVarID
: if (ParseUnnamedType()) return true; break;
121 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
122 case lltok::LocalVar
: if (ParseNamedType()) return true; break;
123 case lltok::GlobalID
: if (ParseUnnamedGlobal()) return true; break;
124 case lltok::GlobalVar
: if (ParseNamedGlobal()) return true; break;
125 case lltok::Metadata
: if (ParseStandaloneMetadata()) return true; break;
126 case lltok::NamedMD
: if (ParseNamedMetadata()) return true; break;
128 // The Global variable production with no name can have many different
129 // optional leading prefixes, the production is:
130 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
131 // OptionalAddrSpace ('constant'|'global') ...
132 case lltok::kw_private
: // OptionalLinkage
133 case lltok::kw_linker_private
: // OptionalLinkage
134 case lltok::kw_internal
: // OptionalLinkage
135 case lltok::kw_weak
: // OptionalLinkage
136 case lltok::kw_weak_odr
: // OptionalLinkage
137 case lltok::kw_linkonce
: // OptionalLinkage
138 case lltok::kw_linkonce_odr
: // OptionalLinkage
139 case lltok::kw_appending
: // OptionalLinkage
140 case lltok::kw_dllexport
: // OptionalLinkage
141 case lltok::kw_common
: // OptionalLinkage
142 case lltok::kw_dllimport
: // OptionalLinkage
143 case lltok::kw_extern_weak
: // OptionalLinkage
144 case lltok::kw_external
: { // OptionalLinkage
145 unsigned Linkage
, Visibility
;
146 if (ParseOptionalLinkage(Linkage
) ||
147 ParseOptionalVisibility(Visibility
) ||
148 ParseGlobal("", SMLoc(), Linkage
, true, Visibility
))
152 case lltok::kw_default
: // OptionalVisibility
153 case lltok::kw_hidden
: // OptionalVisibility
154 case lltok::kw_protected
: { // OptionalVisibility
156 if (ParseOptionalVisibility(Visibility
) ||
157 ParseGlobal("", SMLoc(), 0, false, Visibility
))
162 case lltok::kw_thread_local
: // OptionalThreadLocal
163 case lltok::kw_addrspace
: // OptionalAddrSpace
164 case lltok::kw_constant
: // GlobalType
165 case lltok::kw_global
: // GlobalType
166 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
174 /// ::= 'module' 'asm' STRINGCONSTANT
175 bool LLParser::ParseModuleAsm() {
176 assert(Lex
.getKind() == lltok::kw_module
);
180 if (ParseToken(lltok::kw_asm
, "expected 'module asm'") ||
181 ParseStringConstant(AsmStr
)) return true;
183 const std::string
&AsmSoFar
= M
->getModuleInlineAsm();
184 if (AsmSoFar
.empty())
185 M
->setModuleInlineAsm(AsmStr
);
187 M
->setModuleInlineAsm(AsmSoFar
+"\n"+AsmStr
);
192 /// ::= 'target' 'triple' '=' STRINGCONSTANT
193 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
194 bool LLParser::ParseTargetDefinition() {
195 assert(Lex
.getKind() == lltok::kw_target
);
198 default: return TokError("unknown target property");
199 case lltok::kw_triple
:
201 if (ParseToken(lltok::equal
, "expected '=' after target triple") ||
202 ParseStringConstant(Str
))
204 M
->setTargetTriple(Str
);
206 case lltok::kw_datalayout
:
208 if (ParseToken(lltok::equal
, "expected '=' after target datalayout") ||
209 ParseStringConstant(Str
))
211 M
->setDataLayout(Str
);
217 /// ::= 'deplibs' '=' '[' ']'
218 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
219 bool LLParser::ParseDepLibs() {
220 assert(Lex
.getKind() == lltok::kw_deplibs
);
222 if (ParseToken(lltok::equal
, "expected '=' after deplibs") ||
223 ParseToken(lltok::lsquare
, "expected '=' after deplibs"))
226 if (EatIfPresent(lltok::rsquare
))
230 if (ParseStringConstant(Str
)) return true;
233 while (EatIfPresent(lltok::comma
)) {
234 if (ParseStringConstant(Str
)) return true;
238 return ParseToken(lltok::rsquare
, "expected ']' at end of list");
241 /// ParseUnnamedType:
243 /// ::= LocalVarID '=' 'type' type
244 bool LLParser::ParseUnnamedType() {
245 unsigned TypeID
= NumberedTypes
.size();
247 // Handle the LocalVarID form.
248 if (Lex
.getKind() == lltok::LocalVarID
) {
249 if (Lex
.getUIntVal() != TypeID
)
250 return Error(Lex
.getLoc(), "type expected to be numbered '%" +
251 utostr(TypeID
) + "'");
252 Lex
.Lex(); // eat LocalVarID;
254 if (ParseToken(lltok::equal
, "expected '=' after name"))
258 assert(Lex
.getKind() == lltok::kw_type
);
259 LocTy TypeLoc
= Lex
.getLoc();
260 Lex
.Lex(); // eat kw_type
262 PATypeHolder
Ty(Type::getVoidTy(Context
));
263 if (ParseType(Ty
)) return true;
265 // See if this type was previously referenced.
266 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
267 FI
= ForwardRefTypeIDs
.find(TypeID
);
268 if (FI
!= ForwardRefTypeIDs
.end()) {
269 if (FI
->second
.first
.get() == Ty
)
270 return Error(TypeLoc
, "self referential type is invalid");
272 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
273 Ty
= FI
->second
.first
.get();
274 ForwardRefTypeIDs
.erase(FI
);
277 NumberedTypes
.push_back(Ty
);
283 /// ::= LocalVar '=' 'type' type
284 bool LLParser::ParseNamedType() {
285 std::string Name
= Lex
.getStrVal();
286 LocTy NameLoc
= Lex
.getLoc();
287 Lex
.Lex(); // eat LocalVar.
289 PATypeHolder
Ty(Type::getVoidTy(Context
));
291 if (ParseToken(lltok::equal
, "expected '=' after name") ||
292 ParseToken(lltok::kw_type
, "expected 'type' after name") ||
296 // Set the type name, checking for conflicts as we do so.
297 bool AlreadyExists
= M
->addTypeName(Name
, Ty
);
298 if (!AlreadyExists
) return false;
300 // See if this type is a forward reference. We need to eagerly resolve
301 // types to allow recursive type redefinitions below.
302 std::map
<std::string
, std::pair
<PATypeHolder
, LocTy
> >::iterator
303 FI
= ForwardRefTypes
.find(Name
);
304 if (FI
!= ForwardRefTypes
.end()) {
305 if (FI
->second
.first
.get() == Ty
)
306 return Error(NameLoc
, "self referential type is invalid");
308 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
309 Ty
= FI
->second
.first
.get();
310 ForwardRefTypes
.erase(FI
);
313 // Inserting a name that is already defined, get the existing name.
314 const Type
*Existing
= M
->getTypeByName(Name
);
315 assert(Existing
&& "Conflict but no matching type?!");
317 // Otherwise, this is an attempt to redefine a type. That's okay if
318 // the redefinition is identical to the original.
319 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
320 if (Existing
== Ty
) return false;
322 // Any other kind of (non-equivalent) redefinition is an error.
323 return Error(NameLoc
, "redefinition of type named '" + Name
+ "' of type '" +
324 Ty
->getDescription() + "'");
329 /// ::= 'declare' FunctionHeader
330 bool LLParser::ParseDeclare() {
331 assert(Lex
.getKind() == lltok::kw_declare
);
335 return ParseFunctionHeader(F
, false);
339 /// ::= 'define' FunctionHeader '{' ...
340 bool LLParser::ParseDefine() {
341 assert(Lex
.getKind() == lltok::kw_define
);
345 return ParseFunctionHeader(F
, true) ||
346 ParseFunctionBody(*F
);
352 bool LLParser::ParseGlobalType(bool &IsConstant
) {
353 if (Lex
.getKind() == lltok::kw_constant
)
355 else if (Lex
.getKind() == lltok::kw_global
)
359 return TokError("expected 'global' or 'constant'");
365 /// ParseUnnamedGlobal:
366 /// OptionalVisibility ALIAS ...
367 /// OptionalLinkage OptionalVisibility ... -> global variable
368 /// GlobalID '=' OptionalVisibility ALIAS ...
369 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
370 bool LLParser::ParseUnnamedGlobal() {
371 unsigned VarID
= NumberedVals
.size();
373 LocTy NameLoc
= Lex
.getLoc();
375 // Handle the GlobalID form.
376 if (Lex
.getKind() == lltok::GlobalID
) {
377 if (Lex
.getUIntVal() != VarID
)
378 return Error(Lex
.getLoc(), "variable expected to be numbered '%" +
379 utostr(VarID
) + "'");
380 Lex
.Lex(); // eat GlobalID;
382 if (ParseToken(lltok::equal
, "expected '=' after name"))
387 unsigned Linkage
, Visibility
;
388 if (ParseOptionalLinkage(Linkage
, HasLinkage
) ||
389 ParseOptionalVisibility(Visibility
))
392 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
393 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
394 return ParseAlias(Name
, NameLoc
, Visibility
);
397 /// ParseNamedGlobal:
398 /// GlobalVar '=' OptionalVisibility ALIAS ...
399 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
400 bool LLParser::ParseNamedGlobal() {
401 assert(Lex
.getKind() == lltok::GlobalVar
);
402 LocTy NameLoc
= Lex
.getLoc();
403 std::string Name
= Lex
.getStrVal();
407 unsigned Linkage
, Visibility
;
408 if (ParseToken(lltok::equal
, "expected '=' in global variable") ||
409 ParseOptionalLinkage(Linkage
, HasLinkage
) ||
410 ParseOptionalVisibility(Visibility
))
413 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
414 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
415 return ParseAlias(Name
, NameLoc
, Visibility
);
419 // ::= '!' STRINGCONSTANT
420 bool LLParser::ParseMDString(MetadataBase
*&MDS
) {
422 if (ParseStringConstant(Str
)) return true;
423 MDS
= MDString::get(Context
, Str
);
428 // ::= '!' MDNodeNumber
429 bool LLParser::ParseMDNode(MetadataBase
*&Node
) {
430 // !{ ..., !42, ... }
432 if (ParseUInt32(MID
)) return true;
434 // Check existing MDNode.
435 std::map
<unsigned, MetadataBase
*>::iterator I
= MetadataCache
.find(MID
);
436 if (I
!= MetadataCache
.end()) {
441 // Check known forward references.
442 std::map
<unsigned, std::pair
<MetadataBase
*, LocTy
> >::iterator
443 FI
= ForwardRefMDNodes
.find(MID
);
444 if (FI
!= ForwardRefMDNodes
.end()) {
445 Node
= FI
->second
.first
;
449 // Create MDNode forward reference
450 SmallVector
<Value
*, 1> Elts
;
451 std::string FwdRefName
= "llvm.mdnode.fwdref." + utostr(MID
);
452 Elts
.push_back(MDString::get(Context
, FwdRefName
));
453 MDNode
*FwdNode
= MDNode::get(Context
, Elts
.data(), Elts
.size());
454 ForwardRefMDNodes
[MID
] = std::make_pair(FwdNode
, Lex
.getLoc());
459 ///ParseNamedMetadata:
460 /// !foo = !{ !1, !2 }
461 bool LLParser::ParseNamedMetadata() {
462 assert(Lex
.getKind() == lltok::NamedMD
);
464 std::string Name
= Lex
.getStrVal();
466 if (ParseToken(lltok::equal
, "expected '=' here"))
469 if (Lex
.getKind() != lltok::Metadata
)
470 return TokError("Expected '!' here");
473 if (Lex
.getKind() != lltok::lbrace
)
474 return TokError("Expected '{' here");
476 SmallVector
<MetadataBase
*, 8> Elts
;
478 if (Lex
.getKind() != lltok::Metadata
)
479 return TokError("Expected '!' here");
482 if (ParseMDNode(N
)) return true;
484 } while (EatIfPresent(lltok::comma
));
486 if (ParseToken(lltok::rbrace
, "expected end of metadata node"))
489 NamedMDNode::Create(Context
, Name
, Elts
.data(), Elts
.size(), M
);
493 /// ParseStandaloneMetadata:
495 bool LLParser::ParseStandaloneMetadata() {
496 assert(Lex
.getKind() == lltok::Metadata
);
498 unsigned MetadataID
= 0;
499 if (ParseUInt32(MetadataID
))
501 if (MetadataCache
.find(MetadataID
) != MetadataCache
.end())
502 return TokError("Metadata id is already used");
503 if (ParseToken(lltok::equal
, "expected '=' here"))
507 PATypeHolder
Ty(Type::getVoidTy(Context
));
508 if (ParseType(Ty
, TyLoc
))
511 if (Lex
.getKind() != lltok::Metadata
)
512 return TokError("Expected metadata here");
515 if (Lex
.getKind() != lltok::lbrace
)
516 return TokError("Expected '{' here");
518 SmallVector
<Value
*, 16> Elts
;
519 if (ParseMDNodeVector(Elts
)
520 || ParseToken(lltok::rbrace
, "expected end of metadata node"))
523 MDNode
*Init
= MDNode::get(Context
, Elts
.data(), Elts
.size());
524 MetadataCache
[MetadataID
] = Init
;
525 std::map
<unsigned, std::pair
<MetadataBase
*, LocTy
> >::iterator
526 FI
= ForwardRefMDNodes
.find(MetadataID
);
527 if (FI
!= ForwardRefMDNodes
.end()) {
528 MDNode
*FwdNode
= cast
<MDNode
>(FI
->second
.first
);
529 FwdNode
->replaceAllUsesWith(Init
);
530 ForwardRefMDNodes
.erase(FI
);
537 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
540 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
541 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
543 /// Everything through visibility has already been parsed.
545 bool LLParser::ParseAlias(const std::string
&Name
, LocTy NameLoc
,
546 unsigned Visibility
) {
547 assert(Lex
.getKind() == lltok::kw_alias
);
550 LocTy LinkageLoc
= Lex
.getLoc();
551 if (ParseOptionalLinkage(Linkage
))
554 if (Linkage
!= GlobalValue::ExternalLinkage
&&
555 Linkage
!= GlobalValue::WeakAnyLinkage
&&
556 Linkage
!= GlobalValue::WeakODRLinkage
&&
557 Linkage
!= GlobalValue::InternalLinkage
&&
558 Linkage
!= GlobalValue::PrivateLinkage
&&
559 Linkage
!= GlobalValue::LinkerPrivateLinkage
)
560 return Error(LinkageLoc
, "invalid linkage type for alias");
563 LocTy AliaseeLoc
= Lex
.getLoc();
564 if (Lex
.getKind() != lltok::kw_bitcast
&&
565 Lex
.getKind() != lltok::kw_getelementptr
) {
566 if (ParseGlobalTypeAndValue(Aliasee
)) return true;
568 // The bitcast dest type is not present, it is implied by the dest type.
570 if (ParseValID(ID
)) return true;
571 if (ID
.Kind
!= ValID::t_Constant
)
572 return Error(AliaseeLoc
, "invalid aliasee");
573 Aliasee
= ID
.ConstantVal
;
576 if (!isa
<PointerType
>(Aliasee
->getType()))
577 return Error(AliaseeLoc
, "alias must have pointer type");
579 // Okay, create the alias but do not insert it into the module yet.
580 GlobalAlias
* GA
= new GlobalAlias(Aliasee
->getType(),
581 (GlobalValue::LinkageTypes
)Linkage
, Name
,
583 GA
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
585 // See if this value already exists in the symbol table. If so, it is either
586 // a redefinition or a definition of a forward reference.
587 if (GlobalValue
*Val
=
588 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
))) {
589 // See if this was a redefinition. If so, there is no entry in
591 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
592 I
= ForwardRefVals
.find(Name
);
593 if (I
== ForwardRefVals
.end())
594 return Error(NameLoc
, "redefinition of global named '@" + Name
+ "'");
596 // Otherwise, this was a definition of forward ref. Verify that types
598 if (Val
->getType() != GA
->getType())
599 return Error(NameLoc
,
600 "forward reference and definition of alias have different types");
602 // If they agree, just RAUW the old value with the alias and remove the
604 Val
->replaceAllUsesWith(GA
);
605 Val
->eraseFromParent();
606 ForwardRefVals
.erase(I
);
609 // Insert into the module, we know its name won't collide now.
610 M
->getAliasList().push_back(GA
);
611 assert(GA
->getNameStr() == Name
&& "Should not be a name conflict!");
617 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
618 /// OptionalAddrSpace GlobalType Type Const
619 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
620 /// OptionalAddrSpace GlobalType Type Const
622 /// Everything through visibility has been parsed already.
624 bool LLParser::ParseGlobal(const std::string
&Name
, LocTy NameLoc
,
625 unsigned Linkage
, bool HasLinkage
,
626 unsigned Visibility
) {
628 bool ThreadLocal
, IsConstant
;
631 PATypeHolder
Ty(Type::getVoidTy(Context
));
632 if (ParseOptionalToken(lltok::kw_thread_local
, ThreadLocal
) ||
633 ParseOptionalAddrSpace(AddrSpace
) ||
634 ParseGlobalType(IsConstant
) ||
635 ParseType(Ty
, TyLoc
))
638 // If the linkage is specified and is external, then no initializer is
641 if (!HasLinkage
|| (Linkage
!= GlobalValue::DLLImportLinkage
&&
642 Linkage
!= GlobalValue::ExternalWeakLinkage
&&
643 Linkage
!= GlobalValue::ExternalLinkage
)) {
644 if (ParseGlobalValue(Ty
, Init
))
648 if (isa
<FunctionType
>(Ty
) || Ty
== Type::getLabelTy(Context
))
649 return Error(TyLoc
, "invalid type for global variable");
651 GlobalVariable
*GV
= 0;
653 // See if the global was forward referenced, if so, use the global.
655 if ((GV
= M
->getGlobalVariable(Name
, true)) &&
656 !ForwardRefVals
.erase(Name
))
657 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
659 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
660 I
= ForwardRefValIDs
.find(NumberedVals
.size());
661 if (I
!= ForwardRefValIDs
.end()) {
662 GV
= cast
<GlobalVariable
>(I
->second
.first
);
663 ForwardRefValIDs
.erase(I
);
668 GV
= new GlobalVariable(*M
, Ty
, false, GlobalValue::ExternalLinkage
, 0,
669 Name
, 0, false, AddrSpace
);
671 if (GV
->getType()->getElementType() != Ty
)
673 "forward reference and definition of global have different types");
675 // Move the forward-reference to the correct spot in the module.
676 M
->getGlobalList().splice(M
->global_end(), M
->getGlobalList(), GV
);
680 NumberedVals
.push_back(GV
);
682 // Set the parsed properties on the global.
684 GV
->setInitializer(Init
);
685 GV
->setConstant(IsConstant
);
686 GV
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
687 GV
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
688 GV
->setThreadLocal(ThreadLocal
);
690 // Parse attributes on the global.
691 while (Lex
.getKind() == lltok::comma
) {
694 if (Lex
.getKind() == lltok::kw_section
) {
696 GV
->setSection(Lex
.getStrVal());
697 if (ParseToken(lltok::StringConstant
, "expected global section string"))
699 } else if (Lex
.getKind() == lltok::kw_align
) {
701 if (ParseOptionalAlignment(Alignment
)) return true;
702 GV
->setAlignment(Alignment
);
704 TokError("unknown global variable property!");
712 //===----------------------------------------------------------------------===//
713 // GlobalValue Reference/Resolution Routines.
714 //===----------------------------------------------------------------------===//
716 /// GetGlobalVal - Get a value with the specified name or ID, creating a
717 /// forward reference record if needed. This can return null if the value
718 /// exists but does not have the right type.
719 GlobalValue
*LLParser::GetGlobalVal(const std::string
&Name
, const Type
*Ty
,
721 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
723 Error(Loc
, "global variable reference must have pointer type");
727 // Look this name up in the normal function symbol table.
729 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
));
731 // If this is a forward reference for the value, see if we already created a
732 // forward ref record.
734 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
735 I
= ForwardRefVals
.find(Name
);
736 if (I
!= ForwardRefVals
.end())
737 Val
= I
->second
.first
;
740 // If we have the value in the symbol table or fwd-ref table, return it.
742 if (Val
->getType() == Ty
) return Val
;
743 Error(Loc
, "'@" + Name
+ "' defined with type '" +
744 Val
->getType()->getDescription() + "'");
748 // Otherwise, create a new forward reference for this value and remember it.
750 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
751 // Function types can return opaque but functions can't.
752 if (isa
<OpaqueType
>(FT
->getReturnType())) {
753 Error(Loc
, "function may not return opaque type");
757 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, Name
, M
);
759 FwdVal
= new GlobalVariable(*M
, PTy
->getElementType(), false,
760 GlobalValue::ExternalWeakLinkage
, 0, Name
);
763 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
767 GlobalValue
*LLParser::GetGlobalVal(unsigned ID
, const Type
*Ty
, LocTy Loc
) {
768 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
770 Error(Loc
, "global variable reference must have pointer type");
774 GlobalValue
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
776 // If this is a forward reference for the value, see if we already created a
777 // forward ref record.
779 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
780 I
= ForwardRefValIDs
.find(ID
);
781 if (I
!= ForwardRefValIDs
.end())
782 Val
= I
->second
.first
;
785 // If we have the value in the symbol table or fwd-ref table, return it.
787 if (Val
->getType() == Ty
) return Val
;
788 Error(Loc
, "'@" + utostr(ID
) + "' defined with type '" +
789 Val
->getType()->getDescription() + "'");
793 // Otherwise, create a new forward reference for this value and remember it.
795 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
796 // Function types can return opaque but functions can't.
797 if (isa
<OpaqueType
>(FT
->getReturnType())) {
798 Error(Loc
, "function may not return opaque type");
801 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, "", M
);
803 FwdVal
= new GlobalVariable(*M
, PTy
->getElementType(), false,
804 GlobalValue::ExternalWeakLinkage
, 0, "");
807 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
812 //===----------------------------------------------------------------------===//
814 //===----------------------------------------------------------------------===//
816 /// ParseToken - If the current token has the specified kind, eat it and return
817 /// success. Otherwise, emit the specified error and return failure.
818 bool LLParser::ParseToken(lltok::Kind T
, const char *ErrMsg
) {
819 if (Lex
.getKind() != T
)
820 return TokError(ErrMsg
);
825 /// ParseStringConstant
826 /// ::= StringConstant
827 bool LLParser::ParseStringConstant(std::string
&Result
) {
828 if (Lex
.getKind() != lltok::StringConstant
)
829 return TokError("expected string constant");
830 Result
= Lex
.getStrVal();
837 bool LLParser::ParseUInt32(unsigned &Val
) {
838 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
839 return TokError("expected integer");
840 uint64_t Val64
= Lex
.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL
+1);
841 if (Val64
!= unsigned(Val64
))
842 return TokError("expected 32-bit integer (too large)");
849 /// ParseOptionalAddrSpace
851 /// := 'addrspace' '(' uint32 ')'
852 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace
) {
854 if (!EatIfPresent(lltok::kw_addrspace
))
856 return ParseToken(lltok::lparen
, "expected '(' in address space") ||
857 ParseUInt32(AddrSpace
) ||
858 ParseToken(lltok::rparen
, "expected ')' in address space");
861 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
862 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
863 /// 2: function attr.
864 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
865 bool LLParser::ParseOptionalAttrs(unsigned &Attrs
, unsigned AttrKind
) {
866 Attrs
= Attribute::None
;
867 LocTy AttrLoc
= Lex
.getLoc();
870 switch (Lex
.getKind()) {
873 // Treat these as signext/zeroext if they occur in the argument list after
874 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
875 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
877 // FIXME: REMOVE THIS IN LLVM 3.0
879 if (Lex
.getKind() == lltok::kw_sext
)
880 Attrs
|= Attribute::SExt
;
882 Attrs
|= Attribute::ZExt
;
886 default: // End of attributes.
887 if (AttrKind
!= 2 && (Attrs
& Attribute::FunctionOnly
))
888 return Error(AttrLoc
, "invalid use of function-only attribute");
890 if (AttrKind
!= 0 && AttrKind
!= 3 && (Attrs
& Attribute::ParameterOnly
))
891 return Error(AttrLoc
, "invalid use of parameter-only attribute");
894 case lltok::kw_zeroext
: Attrs
|= Attribute::ZExt
; break;
895 case lltok::kw_signext
: Attrs
|= Attribute::SExt
; break;
896 case lltok::kw_inreg
: Attrs
|= Attribute::InReg
; break;
897 case lltok::kw_sret
: Attrs
|= Attribute::StructRet
; break;
898 case lltok::kw_noalias
: Attrs
|= Attribute::NoAlias
; break;
899 case lltok::kw_nocapture
: Attrs
|= Attribute::NoCapture
; break;
900 case lltok::kw_byval
: Attrs
|= Attribute::ByVal
; break;
901 case lltok::kw_nest
: Attrs
|= Attribute::Nest
; break;
903 case lltok::kw_noreturn
: Attrs
|= Attribute::NoReturn
; break;
904 case lltok::kw_nounwind
: Attrs
|= Attribute::NoUnwind
; break;
905 case lltok::kw_noinline
: Attrs
|= Attribute::NoInline
; break;
906 case lltok::kw_readnone
: Attrs
|= Attribute::ReadNone
; break;
907 case lltok::kw_readonly
: Attrs
|= Attribute::ReadOnly
; break;
908 case lltok::kw_alwaysinline
: Attrs
|= Attribute::AlwaysInline
; break;
909 case lltok::kw_optsize
: Attrs
|= Attribute::OptimizeForSize
; break;
910 case lltok::kw_ssp
: Attrs
|= Attribute::StackProtect
; break;
911 case lltok::kw_sspreq
: Attrs
|= Attribute::StackProtectReq
; break;
912 case lltok::kw_noredzone
: Attrs
|= Attribute::NoRedZone
; break;
913 case lltok::kw_noimplicitfloat
: Attrs
|= Attribute::NoImplicitFloat
; break;
914 case lltok::kw_naked
: Attrs
|= Attribute::Naked
; break;
916 case lltok::kw_align
: {
918 if (ParseOptionalAlignment(Alignment
))
920 Attrs
|= Attribute::constructAlignmentFromInt(Alignment
);
928 /// ParseOptionalLinkage
931 /// ::= 'linker_private'
936 /// ::= 'linkonce_odr'
941 /// ::= 'extern_weak'
943 bool LLParser::ParseOptionalLinkage(unsigned &Res
, bool &HasLinkage
) {
945 switch (Lex
.getKind()) {
946 default: Res
=GlobalValue::ExternalLinkage
; return false;
947 case lltok::kw_private
: Res
= GlobalValue::PrivateLinkage
; break;
948 case lltok::kw_linker_private
: Res
= GlobalValue::LinkerPrivateLinkage
; break;
949 case lltok::kw_internal
: Res
= GlobalValue::InternalLinkage
; break;
950 case lltok::kw_weak
: Res
= GlobalValue::WeakAnyLinkage
; break;
951 case lltok::kw_weak_odr
: Res
= GlobalValue::WeakODRLinkage
; break;
952 case lltok::kw_linkonce
: Res
= GlobalValue::LinkOnceAnyLinkage
; break;
953 case lltok::kw_linkonce_odr
: Res
= GlobalValue::LinkOnceODRLinkage
; break;
954 case lltok::kw_available_externally
:
955 Res
= GlobalValue::AvailableExternallyLinkage
;
957 case lltok::kw_appending
: Res
= GlobalValue::AppendingLinkage
; break;
958 case lltok::kw_dllexport
: Res
= GlobalValue::DLLExportLinkage
; break;
959 case lltok::kw_common
: Res
= GlobalValue::CommonLinkage
; break;
960 case lltok::kw_dllimport
: Res
= GlobalValue::DLLImportLinkage
; break;
961 case lltok::kw_extern_weak
: Res
= GlobalValue::ExternalWeakLinkage
; break;
962 case lltok::kw_external
: Res
= GlobalValue::ExternalLinkage
; break;
969 /// ParseOptionalVisibility
975 bool LLParser::ParseOptionalVisibility(unsigned &Res
) {
976 switch (Lex
.getKind()) {
977 default: Res
= GlobalValue::DefaultVisibility
; return false;
978 case lltok::kw_default
: Res
= GlobalValue::DefaultVisibility
; break;
979 case lltok::kw_hidden
: Res
= GlobalValue::HiddenVisibility
; break;
980 case lltok::kw_protected
: Res
= GlobalValue::ProtectedVisibility
; break;
986 /// ParseOptionalCallingConv
991 /// ::= 'x86_stdcallcc'
992 /// ::= 'x86_fastcallcc'
994 /// ::= 'arm_aapcscc'
995 /// ::= 'arm_aapcs_vfpcc'
998 bool LLParser::ParseOptionalCallingConv(unsigned &CC
) {
999 switch (Lex
.getKind()) {
1000 default: CC
= CallingConv::C
; return false;
1001 case lltok::kw_ccc
: CC
= CallingConv::C
; break;
1002 case lltok::kw_fastcc
: CC
= CallingConv::Fast
; break;
1003 case lltok::kw_coldcc
: CC
= CallingConv::Cold
; break;
1004 case lltok::kw_x86_stdcallcc
: CC
= CallingConv::X86_StdCall
; break;
1005 case lltok::kw_x86_fastcallcc
: CC
= CallingConv::X86_FastCall
; break;
1006 case lltok::kw_arm_apcscc
: CC
= CallingConv::ARM_APCS
; break;
1007 case lltok::kw_arm_aapcscc
: CC
= CallingConv::ARM_AAPCS
; break;
1008 case lltok::kw_arm_aapcs_vfpcc
:CC
= CallingConv::ARM_AAPCS_VFP
; break;
1009 case lltok::kw_cc
: Lex
.Lex(); return ParseUInt32(CC
);
1015 /// ParseOptionalAlignment
1018 bool LLParser::ParseOptionalAlignment(unsigned &Alignment
) {
1020 if (!EatIfPresent(lltok::kw_align
))
1022 LocTy AlignLoc
= Lex
.getLoc();
1023 if (ParseUInt32(Alignment
)) return true;
1024 if (!isPowerOf2_32(Alignment
))
1025 return Error(AlignLoc
, "alignment is not a power of two");
1029 /// ParseOptionalCommaAlignment
1031 /// ::= ',' 'align' 4
1032 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment
) {
1034 if (!EatIfPresent(lltok::comma
))
1036 return ParseToken(lltok::kw_align
, "expected 'align'") ||
1037 ParseUInt32(Alignment
);
1041 /// ::= (',' uint32)+
1042 bool LLParser::ParseIndexList(SmallVectorImpl
<unsigned> &Indices
) {
1043 if (Lex
.getKind() != lltok::comma
)
1044 return TokError("expected ',' as start of index list");
1046 while (EatIfPresent(lltok::comma
)) {
1048 if (ParseUInt32(Idx
)) return true;
1049 Indices
.push_back(Idx
);
1055 //===----------------------------------------------------------------------===//
1057 //===----------------------------------------------------------------------===//
1059 /// ParseType - Parse and resolve a full type.
1060 bool LLParser::ParseType(PATypeHolder
&Result
, bool AllowVoid
) {
1061 LocTy TypeLoc
= Lex
.getLoc();
1062 if (ParseTypeRec(Result
)) return true;
1064 // Verify no unresolved uprefs.
1065 if (!UpRefs
.empty())
1066 return Error(UpRefs
.back().Loc
, "invalid unresolved type up reference");
1068 if (!AllowVoid
&& Result
.get() == Type::getVoidTy(Context
))
1069 return Error(TypeLoc
, "void type only allowed for function results");
1074 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1075 /// called. It loops through the UpRefs vector, which is a list of the
1076 /// currently active types. For each type, if the up-reference is contained in
1077 /// the newly completed type, we decrement the level count. When the level
1078 /// count reaches zero, the up-referenced type is the type that is passed in:
1079 /// thus we can complete the cycle.
1081 PATypeHolder
LLParser::HandleUpRefs(const Type
*ty
) {
1082 // If Ty isn't abstract, or if there are no up-references in it, then there is
1083 // nothing to resolve here.
1084 if (!ty
->isAbstract() || UpRefs
.empty()) return ty
;
1086 PATypeHolder
Ty(ty
);
1088 errs() << "Type '" << Ty
->getDescription()
1089 << "' newly formed. Resolving upreferences.\n"
1090 << UpRefs
.size() << " upreferences active!\n";
1093 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1094 // to zero), we resolve them all together before we resolve them to Ty. At
1095 // the end of the loop, if there is anything to resolve to Ty, it will be in
1097 OpaqueType
*TypeToResolve
= 0;
1099 for (unsigned i
= 0; i
!= UpRefs
.size(); ++i
) {
1100 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1102 std::find(Ty
->subtype_begin(), Ty
->subtype_end(),
1103 UpRefs
[i
].LastContainedTy
) != Ty
->subtype_end();
1106 errs() << " UR#" << i
<< " - TypeContains(" << Ty
->getDescription() << ", "
1107 << UpRefs
[i
].LastContainedTy
->getDescription() << ") = "
1108 << (ContainsType
? "true" : "false")
1109 << " level=" << UpRefs
[i
].NestingLevel
<< "\n";
1114 // Decrement level of upreference
1115 unsigned Level
= --UpRefs
[i
].NestingLevel
;
1116 UpRefs
[i
].LastContainedTy
= Ty
;
1118 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1123 errs() << " * Resolving upreference for " << UpRefs
[i
].UpRefTy
<< "\n";
1126 TypeToResolve
= UpRefs
[i
].UpRefTy
;
1128 UpRefs
[i
].UpRefTy
->refineAbstractTypeTo(TypeToResolve
);
1129 UpRefs
.erase(UpRefs
.begin()+i
); // Remove from upreference list.
1130 --i
; // Do not skip the next element.
1134 TypeToResolve
->refineAbstractTypeTo(Ty
);
1140 /// ParseTypeRec - The recursive function used to process the internal
1141 /// implementation details of types.
1142 bool LLParser::ParseTypeRec(PATypeHolder
&Result
) {
1143 switch (Lex
.getKind()) {
1145 return TokError("expected type");
1147 // TypeRec ::= 'float' | 'void' (etc)
1148 Result
= Lex
.getTyVal();
1151 case lltok::kw_opaque
:
1152 // TypeRec ::= 'opaque'
1153 Result
= OpaqueType::get(Context
);
1157 // TypeRec ::= '{' ... '}'
1158 if (ParseStructType(Result
, false))
1161 case lltok::lsquare
:
1162 // TypeRec ::= '[' ... ']'
1163 Lex
.Lex(); // eat the lsquare.
1164 if (ParseArrayVectorType(Result
, false))
1167 case lltok::less
: // Either vector or packed struct.
1168 // TypeRec ::= '<' ... '>'
1170 if (Lex
.getKind() == lltok::lbrace
) {
1171 if (ParseStructType(Result
, true) ||
1172 ParseToken(lltok::greater
, "expected '>' at end of packed struct"))
1174 } else if (ParseArrayVectorType(Result
, true))
1177 case lltok::LocalVar
:
1178 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
1180 if (const Type
*T
= M
->getTypeByName(Lex
.getStrVal())) {
1183 Result
= OpaqueType::get(Context
);
1184 ForwardRefTypes
.insert(std::make_pair(Lex
.getStrVal(),
1185 std::make_pair(Result
,
1187 M
->addTypeName(Lex
.getStrVal(), Result
.get());
1192 case lltok::LocalVarID
:
1194 if (Lex
.getUIntVal() < NumberedTypes
.size())
1195 Result
= NumberedTypes
[Lex
.getUIntVal()];
1197 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
1198 I
= ForwardRefTypeIDs
.find(Lex
.getUIntVal());
1199 if (I
!= ForwardRefTypeIDs
.end())
1200 Result
= I
->second
.first
;
1202 Result
= OpaqueType::get(Context
);
1203 ForwardRefTypeIDs
.insert(std::make_pair(Lex
.getUIntVal(),
1204 std::make_pair(Result
,
1210 case lltok::backslash
: {
1211 // TypeRec ::= '\' 4
1214 if (ParseUInt32(Val
)) return true;
1215 OpaqueType
*OT
= OpaqueType::get(Context
); //Use temporary placeholder.
1216 UpRefs
.push_back(UpRefRecord(Lex
.getLoc(), Val
, OT
));
1222 // Parse the type suffixes.
1224 switch (Lex
.getKind()) {
1226 default: return false;
1228 // TypeRec ::= TypeRec '*'
1230 if (Result
.get() == Type::getLabelTy(Context
))
1231 return TokError("basic block pointers are invalid");
1232 if (Result
.get() == Type::getVoidTy(Context
))
1233 return TokError("pointers to void are invalid; use i8* instead");
1234 if (!PointerType::isValidElementType(Result
.get()))
1235 return TokError("pointer to this type is invalid");
1236 Result
= HandleUpRefs(PointerType::getUnqual(Result
.get()));
1240 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1241 case lltok::kw_addrspace
: {
1242 if (Result
.get() == Type::getLabelTy(Context
))
1243 return TokError("basic block pointers are invalid");
1244 if (Result
.get() == Type::getVoidTy(Context
))
1245 return TokError("pointers to void are invalid; use i8* instead");
1246 if (!PointerType::isValidElementType(Result
.get()))
1247 return TokError("pointer to this type is invalid");
1249 if (ParseOptionalAddrSpace(AddrSpace
) ||
1250 ParseToken(lltok::star
, "expected '*' in address space"))
1253 Result
= HandleUpRefs(PointerType::get(Result
.get(), AddrSpace
));
1257 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1259 if (ParseFunctionType(Result
))
1266 /// ParseParameterList
1268 /// ::= '(' Arg (',' Arg)* ')'
1270 /// ::= Type OptionalAttributes Value OptionalAttributes
1271 bool LLParser::ParseParameterList(SmallVectorImpl
<ParamInfo
> &ArgList
,
1272 PerFunctionState
&PFS
) {
1273 if (ParseToken(lltok::lparen
, "expected '(' in call"))
1276 while (Lex
.getKind() != lltok::rparen
) {
1277 // If this isn't the first argument, we need a comma.
1278 if (!ArgList
.empty() &&
1279 ParseToken(lltok::comma
, "expected ',' in argument list"))
1282 // Parse the argument.
1284 PATypeHolder
ArgTy(Type::getVoidTy(Context
));
1285 unsigned ArgAttrs1
, ArgAttrs2
;
1287 if (ParseType(ArgTy
, ArgLoc
) ||
1288 ParseOptionalAttrs(ArgAttrs1
, 0) ||
1289 ParseValue(ArgTy
, V
, PFS
) ||
1290 // FIXME: Should not allow attributes after the argument, remove this in
1292 ParseOptionalAttrs(ArgAttrs2
, 3))
1294 ArgList
.push_back(ParamInfo(ArgLoc
, V
, ArgAttrs1
|ArgAttrs2
));
1297 Lex
.Lex(); // Lex the ')'.
1303 /// ParseArgumentList - Parse the argument list for a function type or function
1304 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1305 /// ::= '(' ArgTypeListI ')'
1309 /// ::= ArgTypeList ',' '...'
1310 /// ::= ArgType (',' ArgType)*
1312 bool LLParser::ParseArgumentList(std::vector
<ArgInfo
> &ArgList
,
1313 bool &isVarArg
, bool inType
) {
1315 assert(Lex
.getKind() == lltok::lparen
);
1316 Lex
.Lex(); // eat the (.
1318 if (Lex
.getKind() == lltok::rparen
) {
1320 } else if (Lex
.getKind() == lltok::dotdotdot
) {
1324 LocTy TypeLoc
= Lex
.getLoc();
1325 PATypeHolder
ArgTy(Type::getVoidTy(Context
));
1329 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1330 // types (such as a function returning a pointer to itself). If parsing a
1331 // function prototype, we require fully resolved types.
1332 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1333 ParseOptionalAttrs(Attrs
, 0)) return true;
1335 if (ArgTy
== Type::getVoidTy(Context
))
1336 return Error(TypeLoc
, "argument can not have void type");
1338 if (Lex
.getKind() == lltok::LocalVar
||
1339 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1340 Name
= Lex
.getStrVal();
1344 if (!FunctionType::isValidArgumentType(ArgTy
))
1345 return Error(TypeLoc
, "invalid type for function argument");
1347 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1349 while (EatIfPresent(lltok::comma
)) {
1350 // Handle ... at end of arg list.
1351 if (EatIfPresent(lltok::dotdotdot
)) {
1356 // Otherwise must be an argument type.
1357 TypeLoc
= Lex
.getLoc();
1358 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1359 ParseOptionalAttrs(Attrs
, 0)) return true;
1361 if (ArgTy
== Type::getVoidTy(Context
))
1362 return Error(TypeLoc
, "argument can not have void type");
1364 if (Lex
.getKind() == lltok::LocalVar
||
1365 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1366 Name
= Lex
.getStrVal();
1372 if (!ArgTy
->isFirstClassType() && !isa
<OpaqueType
>(ArgTy
))
1373 return Error(TypeLoc
, "invalid type for function argument");
1375 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1379 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
1382 /// ParseFunctionType
1383 /// ::= Type ArgumentList OptionalAttrs
1384 bool LLParser::ParseFunctionType(PATypeHolder
&Result
) {
1385 assert(Lex
.getKind() == lltok::lparen
);
1387 if (!FunctionType::isValidReturnType(Result
))
1388 return TokError("invalid function return type");
1390 std::vector
<ArgInfo
> ArgList
;
1393 if (ParseArgumentList(ArgList
, isVarArg
, true) ||
1394 // FIXME: Allow, but ignore attributes on function types!
1395 // FIXME: Remove in LLVM 3.0
1396 ParseOptionalAttrs(Attrs
, 2))
1399 // Reject names on the arguments lists.
1400 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
1401 if (!ArgList
[i
].Name
.empty())
1402 return Error(ArgList
[i
].Loc
, "argument name invalid in function type");
1403 if (!ArgList
[i
].Attrs
!= 0) {
1404 // Allow but ignore attributes on function types; this permits
1406 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1410 std::vector
<const Type
*> ArgListTy
;
1411 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
1412 ArgListTy
.push_back(ArgList
[i
].Type
);
1414 Result
= HandleUpRefs(FunctionType::get(Result
.get(),
1415 ArgListTy
, isVarArg
));
1419 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1422 /// ::= '{' TypeRec (',' TypeRec)* '}'
1423 /// ::= '<' '{' '}' '>'
1424 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1425 bool LLParser::ParseStructType(PATypeHolder
&Result
, bool Packed
) {
1426 assert(Lex
.getKind() == lltok::lbrace
);
1427 Lex
.Lex(); // Consume the '{'
1429 if (EatIfPresent(lltok::rbrace
)) {
1430 Result
= StructType::get(Context
, Packed
);
1434 std::vector
<PATypeHolder
> ParamsList
;
1435 LocTy EltTyLoc
= Lex
.getLoc();
1436 if (ParseTypeRec(Result
)) return true;
1437 ParamsList
.push_back(Result
);
1439 if (Result
== Type::getVoidTy(Context
))
1440 return Error(EltTyLoc
, "struct element can not have void type");
1441 if (!StructType::isValidElementType(Result
))
1442 return Error(EltTyLoc
, "invalid element type for struct");
1444 while (EatIfPresent(lltok::comma
)) {
1445 EltTyLoc
= Lex
.getLoc();
1446 if (ParseTypeRec(Result
)) return true;
1448 if (Result
== Type::getVoidTy(Context
))
1449 return Error(EltTyLoc
, "struct element can not have void type");
1450 if (!StructType::isValidElementType(Result
))
1451 return Error(EltTyLoc
, "invalid element type for struct");
1453 ParamsList
.push_back(Result
);
1456 if (ParseToken(lltok::rbrace
, "expected '}' at end of struct"))
1459 std::vector
<const Type
*> ParamsListTy
;
1460 for (unsigned i
= 0, e
= ParamsList
.size(); i
!= e
; ++i
)
1461 ParamsListTy
.push_back(ParamsList
[i
].get());
1462 Result
= HandleUpRefs(StructType::get(Context
, ParamsListTy
, Packed
));
1466 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1467 /// token has already been consumed.
1469 /// ::= '[' APSINTVAL 'x' Types ']'
1470 /// ::= '<' APSINTVAL 'x' Types '>'
1471 bool LLParser::ParseArrayVectorType(PATypeHolder
&Result
, bool isVector
) {
1472 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned() ||
1473 Lex
.getAPSIntVal().getBitWidth() > 64)
1474 return TokError("expected number in address space");
1476 LocTy SizeLoc
= Lex
.getLoc();
1477 uint64_t Size
= Lex
.getAPSIntVal().getZExtValue();
1480 if (ParseToken(lltok::kw_x
, "expected 'x' after element count"))
1483 LocTy TypeLoc
= Lex
.getLoc();
1484 PATypeHolder
EltTy(Type::getVoidTy(Context
));
1485 if (ParseTypeRec(EltTy
)) return true;
1487 if (EltTy
== Type::getVoidTy(Context
))
1488 return Error(TypeLoc
, "array and vector element type cannot be void");
1490 if (ParseToken(isVector
? lltok::greater
: lltok::rsquare
,
1491 "expected end of sequential type"))
1496 return Error(SizeLoc
, "zero element vector is illegal");
1497 if ((unsigned)Size
!= Size
)
1498 return Error(SizeLoc
, "size too large for vector");
1499 if (!VectorType::isValidElementType(EltTy
))
1500 return Error(TypeLoc
, "vector element type must be fp or integer");
1501 Result
= VectorType::get(EltTy
, unsigned(Size
));
1503 if (!ArrayType::isValidElementType(EltTy
))
1504 return Error(TypeLoc
, "invalid array element type");
1505 Result
= HandleUpRefs(ArrayType::get(EltTy
, Size
));
1510 //===----------------------------------------------------------------------===//
1511 // Function Semantic Analysis.
1512 //===----------------------------------------------------------------------===//
1514 LLParser::PerFunctionState::PerFunctionState(LLParser
&p
, Function
&f
)
1517 // Insert unnamed arguments into the NumberedVals list.
1518 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end();
1521 NumberedVals
.push_back(AI
);
1524 LLParser::PerFunctionState::~PerFunctionState() {
1525 // If there were any forward referenced non-basicblock values, delete them.
1526 for (std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1527 I
= ForwardRefVals
.begin(), E
= ForwardRefVals
.end(); I
!= E
; ++I
)
1528 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1529 I
->second
.first
->replaceAllUsesWith(
1530 UndefValue::get(I
->second
.first
->getType()));
1531 delete I
->second
.first
;
1532 I
->second
.first
= 0;
1535 for (std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1536 I
= ForwardRefValIDs
.begin(), E
= ForwardRefValIDs
.end(); I
!= E
; ++I
)
1537 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1538 I
->second
.first
->replaceAllUsesWith(
1539 UndefValue::get(I
->second
.first
->getType()));
1540 delete I
->second
.first
;
1541 I
->second
.first
= 0;
1545 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1546 if (!ForwardRefVals
.empty())
1547 return P
.Error(ForwardRefVals
.begin()->second
.second
,
1548 "use of undefined value '%" + ForwardRefVals
.begin()->first
+
1550 if (!ForwardRefValIDs
.empty())
1551 return P
.Error(ForwardRefValIDs
.begin()->second
.second
,
1552 "use of undefined value '%" +
1553 utostr(ForwardRefValIDs
.begin()->first
) + "'");
1558 /// GetVal - Get a value with the specified name or ID, creating a
1559 /// forward reference record if needed. This can return null if the value
1560 /// exists but does not have the right type.
1561 Value
*LLParser::PerFunctionState::GetVal(const std::string
&Name
,
1562 const Type
*Ty
, LocTy Loc
) {
1563 // Look this name up in the normal function symbol table.
1564 Value
*Val
= F
.getValueSymbolTable().lookup(Name
);
1566 // If this is a forward reference for the value, see if we already created a
1567 // forward ref record.
1569 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1570 I
= ForwardRefVals
.find(Name
);
1571 if (I
!= ForwardRefVals
.end())
1572 Val
= I
->second
.first
;
1575 // If we have the value in the symbol table or fwd-ref table, return it.
1577 if (Val
->getType() == Ty
) return Val
;
1578 if (Ty
== Type::getLabelTy(F
.getContext()))
1579 P
.Error(Loc
, "'%" + Name
+ "' is not a basic block");
1581 P
.Error(Loc
, "'%" + Name
+ "' defined with type '" +
1582 Val
->getType()->getDescription() + "'");
1586 // Don't make placeholders with invalid type.
1587 if (!Ty
->isFirstClassType() && !isa
<OpaqueType
>(Ty
) &&
1588 Ty
!= Type::getLabelTy(F
.getContext())) {
1589 P
.Error(Loc
, "invalid use of a non-first-class type");
1593 // Otherwise, create a new forward reference for this value and remember it.
1595 if (Ty
== Type::getLabelTy(F
.getContext()))
1596 FwdVal
= BasicBlock::Create(F
.getContext(), Name
, &F
);
1598 FwdVal
= new Argument(Ty
, Name
);
1600 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
1604 Value
*LLParser::PerFunctionState::GetVal(unsigned ID
, const Type
*Ty
,
1606 // Look this name up in the normal function symbol table.
1607 Value
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
1609 // If this is a forward reference for the value, see if we already created a
1610 // forward ref record.
1612 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1613 I
= ForwardRefValIDs
.find(ID
);
1614 if (I
!= ForwardRefValIDs
.end())
1615 Val
= I
->second
.first
;
1618 // If we have the value in the symbol table or fwd-ref table, return it.
1620 if (Val
->getType() == Ty
) return Val
;
1621 if (Ty
== Type::getLabelTy(F
.getContext()))
1622 P
.Error(Loc
, "'%" + utostr(ID
) + "' is not a basic block");
1624 P
.Error(Loc
, "'%" + utostr(ID
) + "' defined with type '" +
1625 Val
->getType()->getDescription() + "'");
1629 if (!Ty
->isFirstClassType() && !isa
<OpaqueType
>(Ty
) &&
1630 Ty
!= Type::getLabelTy(F
.getContext())) {
1631 P
.Error(Loc
, "invalid use of a non-first-class type");
1635 // Otherwise, create a new forward reference for this value and remember it.
1637 if (Ty
== Type::getLabelTy(F
.getContext()))
1638 FwdVal
= BasicBlock::Create(F
.getContext(), "", &F
);
1640 FwdVal
= new Argument(Ty
);
1642 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
1646 /// SetInstName - After an instruction is parsed and inserted into its
1647 /// basic block, this installs its name.
1648 bool LLParser::PerFunctionState::SetInstName(int NameID
,
1649 const std::string
&NameStr
,
1650 LocTy NameLoc
, Instruction
*Inst
) {
1651 // If this instruction has void type, it cannot have a name or ID specified.
1652 if (Inst
->getType() == Type::getVoidTy(F
.getContext())) {
1653 if (NameID
!= -1 || !NameStr
.empty())
1654 return P
.Error(NameLoc
, "instructions returning void cannot have a name");
1658 // If this was a numbered instruction, verify that the instruction is the
1659 // expected value and resolve any forward references.
1660 if (NameStr
.empty()) {
1661 // If neither a name nor an ID was specified, just use the next ID.
1663 NameID
= NumberedVals
.size();
1665 if (unsigned(NameID
) != NumberedVals
.size())
1666 return P
.Error(NameLoc
, "instruction expected to be numbered '%" +
1667 utostr(NumberedVals
.size()) + "'");
1669 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator FI
=
1670 ForwardRefValIDs
.find(NameID
);
1671 if (FI
!= ForwardRefValIDs
.end()) {
1672 if (FI
->second
.first
->getType() != Inst
->getType())
1673 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1674 FI
->second
.first
->getType()->getDescription() + "'");
1675 FI
->second
.first
->replaceAllUsesWith(Inst
);
1676 ForwardRefValIDs
.erase(FI
);
1679 NumberedVals
.push_back(Inst
);
1683 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1684 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1685 FI
= ForwardRefVals
.find(NameStr
);
1686 if (FI
!= ForwardRefVals
.end()) {
1687 if (FI
->second
.first
->getType() != Inst
->getType())
1688 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1689 FI
->second
.first
->getType()->getDescription() + "'");
1690 FI
->second
.first
->replaceAllUsesWith(Inst
);
1691 ForwardRefVals
.erase(FI
);
1694 // Set the name on the instruction.
1695 Inst
->setName(NameStr
);
1697 if (Inst
->getNameStr() != NameStr
)
1698 return P
.Error(NameLoc
, "multiple definition of local value named '" +
1703 /// GetBB - Get a basic block with the specified name or ID, creating a
1704 /// forward reference record if needed.
1705 BasicBlock
*LLParser::PerFunctionState::GetBB(const std::string
&Name
,
1707 return cast_or_null
<BasicBlock
>(GetVal(Name
,
1708 Type::getLabelTy(F
.getContext()), Loc
));
1711 BasicBlock
*LLParser::PerFunctionState::GetBB(unsigned ID
, LocTy Loc
) {
1712 return cast_or_null
<BasicBlock
>(GetVal(ID
,
1713 Type::getLabelTy(F
.getContext()), Loc
));
1716 /// DefineBB - Define the specified basic block, which is either named or
1717 /// unnamed. If there is an error, this returns null otherwise it returns
1718 /// the block being defined.
1719 BasicBlock
*LLParser::PerFunctionState::DefineBB(const std::string
&Name
,
1723 BB
= GetBB(NumberedVals
.size(), Loc
);
1725 BB
= GetBB(Name
, Loc
);
1726 if (BB
== 0) return 0; // Already diagnosed error.
1728 // Move the block to the end of the function. Forward ref'd blocks are
1729 // inserted wherever they happen to be referenced.
1730 F
.getBasicBlockList().splice(F
.end(), F
.getBasicBlockList(), BB
);
1732 // Remove the block from forward ref sets.
1734 ForwardRefValIDs
.erase(NumberedVals
.size());
1735 NumberedVals
.push_back(BB
);
1737 // BB forward references are already in the function symbol table.
1738 ForwardRefVals
.erase(Name
);
1744 //===----------------------------------------------------------------------===//
1746 //===----------------------------------------------------------------------===//
1748 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1749 /// type implied. For example, if we parse "4" we don't know what integer type
1750 /// it has. The value will later be combined with its type and checked for
1752 bool LLParser::ParseValID(ValID
&ID
) {
1753 ID
.Loc
= Lex
.getLoc();
1754 switch (Lex
.getKind()) {
1755 default: return TokError("expected value token");
1756 case lltok::GlobalID
: // @42
1757 ID
.UIntVal
= Lex
.getUIntVal();
1758 ID
.Kind
= ValID::t_GlobalID
;
1760 case lltok::GlobalVar
: // @foo
1761 ID
.StrVal
= Lex
.getStrVal();
1762 ID
.Kind
= ValID::t_GlobalName
;
1764 case lltok::LocalVarID
: // %42
1765 ID
.UIntVal
= Lex
.getUIntVal();
1766 ID
.Kind
= ValID::t_LocalID
;
1768 case lltok::LocalVar
: // %foo
1769 case lltok::StringConstant
: // "foo" - FIXME: REMOVE IN LLVM 3.0
1770 ID
.StrVal
= Lex
.getStrVal();
1771 ID
.Kind
= ValID::t_LocalName
;
1773 case lltok::Metadata
: { // !{...} MDNode, !"foo" MDString
1774 ID
.Kind
= ValID::t_Metadata
;
1776 if (Lex
.getKind() == lltok::lbrace
) {
1777 SmallVector
<Value
*, 16> Elts
;
1778 if (ParseMDNodeVector(Elts
) ||
1779 ParseToken(lltok::rbrace
, "expected end of metadata node"))
1782 ID
.MetadataVal
= MDNode::get(Context
, Elts
.data(), Elts
.size());
1786 // Standalone metadata reference
1787 // !{ ..., !42, ... }
1788 if (!ParseMDNode(ID
.MetadataVal
))
1792 // ::= '!' STRINGCONSTANT
1793 if (ParseMDString(ID
.MetadataVal
)) return true;
1794 ID
.Kind
= ValID::t_Metadata
;
1798 ID
.APSIntVal
= Lex
.getAPSIntVal();
1799 ID
.Kind
= ValID::t_APSInt
;
1801 case lltok::APFloat
:
1802 ID
.APFloatVal
= Lex
.getAPFloatVal();
1803 ID
.Kind
= ValID::t_APFloat
;
1805 case lltok::kw_true
:
1806 ID
.ConstantVal
= ConstantInt::getTrue(Context
);
1807 ID
.Kind
= ValID::t_Constant
;
1809 case lltok::kw_false
:
1810 ID
.ConstantVal
= ConstantInt::getFalse(Context
);
1811 ID
.Kind
= ValID::t_Constant
;
1813 case lltok::kw_null
: ID
.Kind
= ValID::t_Null
; break;
1814 case lltok::kw_undef
: ID
.Kind
= ValID::t_Undef
; break;
1815 case lltok::kw_zeroinitializer
: ID
.Kind
= ValID::t_Zero
; break;
1817 case lltok::lbrace
: {
1818 // ValID ::= '{' ConstVector '}'
1820 SmallVector
<Constant
*, 16> Elts
;
1821 if (ParseGlobalValueVector(Elts
) ||
1822 ParseToken(lltok::rbrace
, "expected end of struct constant"))
1825 ID
.ConstantVal
= ConstantStruct::get(Context
, Elts
.data(),
1826 Elts
.size(), false);
1827 ID
.Kind
= ValID::t_Constant
;
1831 // ValID ::= '<' ConstVector '>' --> Vector.
1832 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1834 bool isPackedStruct
= EatIfPresent(lltok::lbrace
);
1836 SmallVector
<Constant
*, 16> Elts
;
1837 LocTy FirstEltLoc
= Lex
.getLoc();
1838 if (ParseGlobalValueVector(Elts
) ||
1840 ParseToken(lltok::rbrace
, "expected end of packed struct")) ||
1841 ParseToken(lltok::greater
, "expected end of constant"))
1844 if (isPackedStruct
) {
1846 ConstantStruct::get(Context
, Elts
.data(), Elts
.size(), true);
1847 ID
.Kind
= ValID::t_Constant
;
1852 return Error(ID
.Loc
, "constant vector must not be empty");
1854 if (!Elts
[0]->getType()->isInteger() &&
1855 !Elts
[0]->getType()->isFloatingPoint())
1856 return Error(FirstEltLoc
,
1857 "vector elements must have integer or floating point type");
1859 // Verify that all the vector elements have the same type.
1860 for (unsigned i
= 1, e
= Elts
.size(); i
!= e
; ++i
)
1861 if (Elts
[i
]->getType() != Elts
[0]->getType())
1862 return Error(FirstEltLoc
,
1863 "vector element #" + utostr(i
) +
1864 " is not of type '" + Elts
[0]->getType()->getDescription());
1866 ID
.ConstantVal
= ConstantVector::get(Elts
.data(), Elts
.size());
1867 ID
.Kind
= ValID::t_Constant
;
1870 case lltok::lsquare
: { // Array Constant
1872 SmallVector
<Constant
*, 16> Elts
;
1873 LocTy FirstEltLoc
= Lex
.getLoc();
1874 if (ParseGlobalValueVector(Elts
) ||
1875 ParseToken(lltok::rsquare
, "expected end of array constant"))
1878 // Handle empty element.
1880 // Use undef instead of an array because it's inconvenient to determine
1881 // the element type at this point, there being no elements to examine.
1882 ID
.Kind
= ValID::t_EmptyArray
;
1886 if (!Elts
[0]->getType()->isFirstClassType())
1887 return Error(FirstEltLoc
, "invalid array element type: " +
1888 Elts
[0]->getType()->getDescription());
1890 ArrayType
*ATy
= ArrayType::get(Elts
[0]->getType(), Elts
.size());
1892 // Verify all elements are correct type!
1893 for (unsigned i
= 0, e
= Elts
.size(); i
!= e
; ++i
) {
1894 if (Elts
[i
]->getType() != Elts
[0]->getType())
1895 return Error(FirstEltLoc
,
1896 "array element #" + utostr(i
) +
1897 " is not of type '" +Elts
[0]->getType()->getDescription());
1900 ID
.ConstantVal
= ConstantArray::get(ATy
, Elts
.data(), Elts
.size());
1901 ID
.Kind
= ValID::t_Constant
;
1904 case lltok::kw_c
: // c "foo"
1906 ID
.ConstantVal
= ConstantArray::get(Context
, Lex
.getStrVal(), false);
1907 if (ParseToken(lltok::StringConstant
, "expected string")) return true;
1908 ID
.Kind
= ValID::t_Constant
;
1911 case lltok::kw_asm
: {
1912 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1915 if (ParseOptionalToken(lltok::kw_sideeffect
, HasSideEffect
) ||
1916 ParseStringConstant(ID
.StrVal
) ||
1917 ParseToken(lltok::comma
, "expected comma in inline asm expression") ||
1918 ParseToken(lltok::StringConstant
, "expected constraint string"))
1920 ID
.StrVal2
= Lex
.getStrVal();
1921 ID
.UIntVal
= HasSideEffect
;
1922 ID
.Kind
= ValID::t_InlineAsm
;
1926 case lltok::kw_trunc
:
1927 case lltok::kw_zext
:
1928 case lltok::kw_sext
:
1929 case lltok::kw_fptrunc
:
1930 case lltok::kw_fpext
:
1931 case lltok::kw_bitcast
:
1932 case lltok::kw_uitofp
:
1933 case lltok::kw_sitofp
:
1934 case lltok::kw_fptoui
:
1935 case lltok::kw_fptosi
:
1936 case lltok::kw_inttoptr
:
1937 case lltok::kw_ptrtoint
: {
1938 unsigned Opc
= Lex
.getUIntVal();
1939 PATypeHolder
DestTy(Type::getVoidTy(Context
));
1942 if (ParseToken(lltok::lparen
, "expected '(' after constantexpr cast") ||
1943 ParseGlobalTypeAndValue(SrcVal
) ||
1944 ParseToken(lltok::kw_to
, "expected 'to' in constantexpr cast") ||
1945 ParseType(DestTy
) ||
1946 ParseToken(lltok::rparen
, "expected ')' at end of constantexpr cast"))
1948 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, SrcVal
, DestTy
))
1949 return Error(ID
.Loc
, "invalid cast opcode for cast from '" +
1950 SrcVal
->getType()->getDescription() + "' to '" +
1951 DestTy
->getDescription() + "'");
1952 ID
.ConstantVal
= ConstantExpr::getCast((Instruction::CastOps
)Opc
,
1954 ID
.Kind
= ValID::t_Constant
;
1957 case lltok::kw_extractvalue
: {
1960 SmallVector
<unsigned, 4> Indices
;
1961 if (ParseToken(lltok::lparen
, "expected '(' in extractvalue constantexpr")||
1962 ParseGlobalTypeAndValue(Val
) ||
1963 ParseIndexList(Indices
) ||
1964 ParseToken(lltok::rparen
, "expected ')' in extractvalue constantexpr"))
1966 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
1967 return Error(ID
.Loc
, "extractvalue operand must be array or struct");
1968 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
1970 return Error(ID
.Loc
, "invalid indices for extractvalue");
1972 ConstantExpr::getExtractValue(Val
, Indices
.data(), Indices
.size());
1973 ID
.Kind
= ValID::t_Constant
;
1976 case lltok::kw_insertvalue
: {
1978 Constant
*Val0
, *Val1
;
1979 SmallVector
<unsigned, 4> Indices
;
1980 if (ParseToken(lltok::lparen
, "expected '(' in insertvalue constantexpr")||
1981 ParseGlobalTypeAndValue(Val0
) ||
1982 ParseToken(lltok::comma
, "expected comma in insertvalue constantexpr")||
1983 ParseGlobalTypeAndValue(Val1
) ||
1984 ParseIndexList(Indices
) ||
1985 ParseToken(lltok::rparen
, "expected ')' in insertvalue constantexpr"))
1987 if (!isa
<StructType
>(Val0
->getType()) && !isa
<ArrayType
>(Val0
->getType()))
1988 return Error(ID
.Loc
, "extractvalue operand must be array or struct");
1989 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
1991 return Error(ID
.Loc
, "invalid indices for insertvalue");
1992 ID
.ConstantVal
= ConstantExpr::getInsertValue(Val0
, Val1
,
1993 Indices
.data(), Indices
.size());
1994 ID
.Kind
= ValID::t_Constant
;
1997 case lltok::kw_icmp
:
1998 case lltok::kw_fcmp
: {
1999 unsigned PredVal
, Opc
= Lex
.getUIntVal();
2000 Constant
*Val0
, *Val1
;
2002 if (ParseCmpPredicate(PredVal
, Opc
) ||
2003 ParseToken(lltok::lparen
, "expected '(' in compare constantexpr") ||
2004 ParseGlobalTypeAndValue(Val0
) ||
2005 ParseToken(lltok::comma
, "expected comma in compare constantexpr") ||
2006 ParseGlobalTypeAndValue(Val1
) ||
2007 ParseToken(lltok::rparen
, "expected ')' in compare constantexpr"))
2010 if (Val0
->getType() != Val1
->getType())
2011 return Error(ID
.Loc
, "compare operands must have the same type");
2013 CmpInst::Predicate Pred
= (CmpInst::Predicate
)PredVal
;
2015 if (Opc
== Instruction::FCmp
) {
2016 if (!Val0
->getType()->isFPOrFPVector())
2017 return Error(ID
.Loc
, "fcmp requires floating point operands");
2018 ID
.ConstantVal
= ConstantExpr::getFCmp(Pred
, Val0
, Val1
);
2020 assert(Opc
== Instruction::ICmp
&& "Unexpected opcode for CmpInst!");
2021 if (!Val0
->getType()->isIntOrIntVector() &&
2022 !isa
<PointerType
>(Val0
->getType()))
2023 return Error(ID
.Loc
, "icmp requires pointer or integer operands");
2024 ID
.ConstantVal
= ConstantExpr::getICmp(Pred
, Val0
, Val1
);
2026 ID
.Kind
= ValID::t_Constant
;
2030 // Binary Operators.
2032 case lltok::kw_fadd
:
2034 case lltok::kw_fsub
:
2036 case lltok::kw_fmul
:
2037 case lltok::kw_udiv
:
2038 case lltok::kw_sdiv
:
2039 case lltok::kw_fdiv
:
2040 case lltok::kw_urem
:
2041 case lltok::kw_srem
:
2042 case lltok::kw_frem
: {
2046 unsigned Opc
= Lex
.getUIntVal();
2047 Constant
*Val0
, *Val1
;
2049 LocTy ModifierLoc
= Lex
.getLoc();
2050 if (Opc
== Instruction::Add
||
2051 Opc
== Instruction::Sub
||
2052 Opc
== Instruction::Mul
) {
2053 if (EatIfPresent(lltok::kw_nuw
))
2055 if (EatIfPresent(lltok::kw_nsw
)) {
2057 if (EatIfPresent(lltok::kw_nuw
))
2060 } else if (Opc
== Instruction::SDiv
) {
2061 if (EatIfPresent(lltok::kw_exact
))
2064 if (ParseToken(lltok::lparen
, "expected '(' in binary constantexpr") ||
2065 ParseGlobalTypeAndValue(Val0
) ||
2066 ParseToken(lltok::comma
, "expected comma in binary constantexpr") ||
2067 ParseGlobalTypeAndValue(Val1
) ||
2068 ParseToken(lltok::rparen
, "expected ')' in binary constantexpr"))
2070 if (Val0
->getType() != Val1
->getType())
2071 return Error(ID
.Loc
, "operands of constexpr must have same type");
2072 if (!Val0
->getType()->isIntOrIntVector()) {
2074 return Error(ModifierLoc
, "nuw only applies to integer operations");
2076 return Error(ModifierLoc
, "nsw only applies to integer operations");
2078 // API compatibility: Accept either integer or floating-point types with
2079 // add, sub, and mul.
2080 if (!Val0
->getType()->isIntOrIntVector() &&
2081 !Val0
->getType()->isFPOrFPVector())
2082 return Error(ID
.Loc
,"constexpr requires integer, fp, or vector operands");
2083 Constant
*C
= ConstantExpr::get(Opc
, Val0
, Val1
);
2085 cast
<OverflowingBinaryOperator
>(C
)->setHasNoUnsignedOverflow(true);
2087 cast
<OverflowingBinaryOperator
>(C
)->setHasNoSignedOverflow(true);
2089 cast
<SDivOperator
>(C
)->setIsExact(true);
2091 ID
.Kind
= ValID::t_Constant
;
2095 // Logical Operations
2097 case lltok::kw_lshr
:
2098 case lltok::kw_ashr
:
2101 case lltok::kw_xor
: {
2102 unsigned Opc
= Lex
.getUIntVal();
2103 Constant
*Val0
, *Val1
;
2105 if (ParseToken(lltok::lparen
, "expected '(' in logical constantexpr") ||
2106 ParseGlobalTypeAndValue(Val0
) ||
2107 ParseToken(lltok::comma
, "expected comma in logical constantexpr") ||
2108 ParseGlobalTypeAndValue(Val1
) ||
2109 ParseToken(lltok::rparen
, "expected ')' in logical constantexpr"))
2111 if (Val0
->getType() != Val1
->getType())
2112 return Error(ID
.Loc
, "operands of constexpr must have same type");
2113 if (!Val0
->getType()->isIntOrIntVector())
2114 return Error(ID
.Loc
,
2115 "constexpr requires integer or integer vector operands");
2116 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
2117 ID
.Kind
= ValID::t_Constant
;
2121 case lltok::kw_getelementptr
:
2122 case lltok::kw_shufflevector
:
2123 case lltok::kw_insertelement
:
2124 case lltok::kw_extractelement
:
2125 case lltok::kw_select
: {
2126 unsigned Opc
= Lex
.getUIntVal();
2127 SmallVector
<Constant
*, 16> Elts
;
2128 bool InBounds
= false;
2130 if (Opc
== Instruction::GetElementPtr
)
2131 InBounds
= EatIfPresent(lltok::kw_inbounds
);
2132 if (ParseToken(lltok::lparen
, "expected '(' in constantexpr") ||
2133 ParseGlobalValueVector(Elts
) ||
2134 ParseToken(lltok::rparen
, "expected ')' in constantexpr"))
2137 if (Opc
== Instruction::GetElementPtr
) {
2138 if (Elts
.size() == 0 || !isa
<PointerType
>(Elts
[0]->getType()))
2139 return Error(ID
.Loc
, "getelementptr requires pointer operand");
2141 if (!GetElementPtrInst::getIndexedType(Elts
[0]->getType(),
2142 (Value
**)(Elts
.data() + 1),
2144 return Error(ID
.Loc
, "invalid indices for getelementptr");
2145 ID
.ConstantVal
= ConstantExpr::getGetElementPtr(Elts
[0],
2146 Elts
.data() + 1, Elts
.size() - 1);
2148 cast
<GEPOperator
>(ID
.ConstantVal
)->setIsInBounds(true);
2149 } else if (Opc
== Instruction::Select
) {
2150 if (Elts
.size() != 3)
2151 return Error(ID
.Loc
, "expected three operands to select");
2152 if (const char *Reason
= SelectInst::areInvalidOperands(Elts
[0], Elts
[1],
2154 return Error(ID
.Loc
, Reason
);
2155 ID
.ConstantVal
= ConstantExpr::getSelect(Elts
[0], Elts
[1], Elts
[2]);
2156 } else if (Opc
== Instruction::ShuffleVector
) {
2157 if (Elts
.size() != 3)
2158 return Error(ID
.Loc
, "expected three operands to shufflevector");
2159 if (!ShuffleVectorInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
2160 return Error(ID
.Loc
, "invalid operands to shufflevector");
2162 ConstantExpr::getShuffleVector(Elts
[0], Elts
[1],Elts
[2]);
2163 } else if (Opc
== Instruction::ExtractElement
) {
2164 if (Elts
.size() != 2)
2165 return Error(ID
.Loc
, "expected two operands to extractelement");
2166 if (!ExtractElementInst::isValidOperands(Elts
[0], Elts
[1]))
2167 return Error(ID
.Loc
, "invalid extractelement operands");
2168 ID
.ConstantVal
= ConstantExpr::getExtractElement(Elts
[0], Elts
[1]);
2170 assert(Opc
== Instruction::InsertElement
&& "Unknown opcode");
2171 if (Elts
.size() != 3)
2172 return Error(ID
.Loc
, "expected three operands to insertelement");
2173 if (!InsertElementInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
2174 return Error(ID
.Loc
, "invalid insertelement operands");
2176 ConstantExpr::getInsertElement(Elts
[0], Elts
[1],Elts
[2]);
2179 ID
.Kind
= ValID::t_Constant
;
2188 /// ParseGlobalValue - Parse a global value with the specified type.
2189 bool LLParser::ParseGlobalValue(const Type
*Ty
, Constant
*&V
) {
2192 return ParseValID(ID
) ||
2193 ConvertGlobalValIDToValue(Ty
, ID
, V
);
2196 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2198 bool LLParser::ConvertGlobalValIDToValue(const Type
*Ty
, ValID
&ID
,
2200 if (isa
<FunctionType
>(Ty
))
2201 return Error(ID
.Loc
, "functions are not values, refer to them as pointers");
2204 default: llvm_unreachable("Unknown ValID!");
2205 case ValID::t_Metadata
:
2206 return Error(ID
.Loc
, "invalid use of metadata");
2207 case ValID::t_LocalID
:
2208 case ValID::t_LocalName
:
2209 return Error(ID
.Loc
, "invalid use of function-local name");
2210 case ValID::t_InlineAsm
:
2211 return Error(ID
.Loc
, "inline asm can only be an operand of call/invoke");
2212 case ValID::t_GlobalName
:
2213 V
= GetGlobalVal(ID
.StrVal
, Ty
, ID
.Loc
);
2215 case ValID::t_GlobalID
:
2216 V
= GetGlobalVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2218 case ValID::t_APSInt
:
2219 if (!isa
<IntegerType
>(Ty
))
2220 return Error(ID
.Loc
, "integer constant must have integer type");
2221 ID
.APSIntVal
.extOrTrunc(Ty
->getPrimitiveSizeInBits());
2222 V
= ConstantInt::get(Context
, ID
.APSIntVal
);
2224 case ValID::t_APFloat
:
2225 if (!Ty
->isFloatingPoint() ||
2226 !ConstantFP::isValueValidForType(Ty
, ID
.APFloatVal
))
2227 return Error(ID
.Loc
, "floating point constant invalid for type");
2229 // The lexer has no type info, so builds all float and double FP constants
2230 // as double. Fix this here. Long double does not need this.
2231 if (&ID
.APFloatVal
.getSemantics() == &APFloat::IEEEdouble
&&
2232 Ty
== Type::getFloatTy(Context
)) {
2234 ID
.APFloatVal
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
,
2237 V
= ConstantFP::get(Context
, ID
.APFloatVal
);
2239 if (V
->getType() != Ty
)
2240 return Error(ID
.Loc
, "floating point constant does not have type '" +
2241 Ty
->getDescription() + "'");
2245 if (!isa
<PointerType
>(Ty
))
2246 return Error(ID
.Loc
, "null must be a pointer type");
2247 V
= ConstantPointerNull::get(cast
<PointerType
>(Ty
));
2249 case ValID::t_Undef
:
2250 // FIXME: LabelTy should not be a first-class type.
2251 if ((!Ty
->isFirstClassType() || Ty
== Type::getLabelTy(Context
)) &&
2252 !isa
<OpaqueType
>(Ty
))
2253 return Error(ID
.Loc
, "invalid type for undef constant");
2254 V
= UndefValue::get(Ty
);
2256 case ValID::t_EmptyArray
:
2257 if (!isa
<ArrayType
>(Ty
) || cast
<ArrayType
>(Ty
)->getNumElements() != 0)
2258 return Error(ID
.Loc
, "invalid empty array initializer");
2259 V
= UndefValue::get(Ty
);
2262 // FIXME: LabelTy should not be a first-class type.
2263 if (!Ty
->isFirstClassType() || Ty
== Type::getLabelTy(Context
))
2264 return Error(ID
.Loc
, "invalid type for null constant");
2265 V
= Constant::getNullValue(Ty
);
2267 case ValID::t_Constant
:
2268 if (ID
.ConstantVal
->getType() != Ty
)
2269 return Error(ID
.Loc
, "constant expression type mismatch");
2275 bool LLParser::ParseGlobalTypeAndValue(Constant
*&V
) {
2276 PATypeHolder
Type(Type::getVoidTy(Context
));
2277 return ParseType(Type
) ||
2278 ParseGlobalValue(Type
, V
);
2281 /// ParseGlobalValueVector
2283 /// ::= TypeAndValue (',' TypeAndValue)*
2284 bool LLParser::ParseGlobalValueVector(SmallVectorImpl
<Constant
*> &Elts
) {
2286 if (Lex
.getKind() == lltok::rbrace
||
2287 Lex
.getKind() == lltok::rsquare
||
2288 Lex
.getKind() == lltok::greater
||
2289 Lex
.getKind() == lltok::rparen
)
2293 if (ParseGlobalTypeAndValue(C
)) return true;
2296 while (EatIfPresent(lltok::comma
)) {
2297 if (ParseGlobalTypeAndValue(C
)) return true;
2305 //===----------------------------------------------------------------------===//
2306 // Function Parsing.
2307 //===----------------------------------------------------------------------===//
2309 bool LLParser::ConvertValIDToValue(const Type
*Ty
, ValID
&ID
, Value
*&V
,
2310 PerFunctionState
&PFS
) {
2311 if (ID
.Kind
== ValID::t_LocalID
)
2312 V
= PFS
.GetVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2313 else if (ID
.Kind
== ValID::t_LocalName
)
2314 V
= PFS
.GetVal(ID
.StrVal
, Ty
, ID
.Loc
);
2315 else if (ID
.Kind
== ValID::t_InlineAsm
) {
2316 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
2317 const FunctionType
*FTy
=
2318 PTy
? dyn_cast
<FunctionType
>(PTy
->getElementType()) : 0;
2319 if (!FTy
|| !InlineAsm::Verify(FTy
, ID
.StrVal2
))
2320 return Error(ID
.Loc
, "invalid type for inline asm constraint string");
2321 V
= InlineAsm::get(FTy
, ID
.StrVal
, ID
.StrVal2
, ID
.UIntVal
);
2323 } else if (ID
.Kind
== ValID::t_Metadata
) {
2327 if (ConvertGlobalValIDToValue(Ty
, ID
, C
)) return true;
2335 bool LLParser::ParseValue(const Type
*Ty
, Value
*&V
, PerFunctionState
&PFS
) {
2338 return ParseValID(ID
) ||
2339 ConvertValIDToValue(Ty
, ID
, V
, PFS
);
2342 bool LLParser::ParseTypeAndValue(Value
*&V
, PerFunctionState
&PFS
) {
2343 PATypeHolder
T(Type::getVoidTy(Context
));
2344 return ParseType(T
) ||
2345 ParseValue(T
, V
, PFS
);
2349 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2350 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2351 /// OptionalAlign OptGC
2352 bool LLParser::ParseFunctionHeader(Function
*&Fn
, bool isDefine
) {
2353 // Parse the linkage.
2354 LocTy LinkageLoc
= Lex
.getLoc();
2357 unsigned Visibility
, CC
, RetAttrs
;
2358 PATypeHolder
RetType(Type::getVoidTy(Context
));
2359 LocTy RetTypeLoc
= Lex
.getLoc();
2360 if (ParseOptionalLinkage(Linkage
) ||
2361 ParseOptionalVisibility(Visibility
) ||
2362 ParseOptionalCallingConv(CC
) ||
2363 ParseOptionalAttrs(RetAttrs
, 1) ||
2364 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/))
2367 // Verify that the linkage is ok.
2368 switch ((GlobalValue::LinkageTypes
)Linkage
) {
2369 case GlobalValue::ExternalLinkage
:
2370 break; // always ok.
2371 case GlobalValue::DLLImportLinkage
:
2372 case GlobalValue::ExternalWeakLinkage
:
2374 return Error(LinkageLoc
, "invalid linkage for function definition");
2376 case GlobalValue::PrivateLinkage
:
2377 case GlobalValue::LinkerPrivateLinkage
:
2378 case GlobalValue::InternalLinkage
:
2379 case GlobalValue::AvailableExternallyLinkage
:
2380 case GlobalValue::LinkOnceAnyLinkage
:
2381 case GlobalValue::LinkOnceODRLinkage
:
2382 case GlobalValue::WeakAnyLinkage
:
2383 case GlobalValue::WeakODRLinkage
:
2384 case GlobalValue::DLLExportLinkage
:
2386 return Error(LinkageLoc
, "invalid linkage for function declaration");
2388 case GlobalValue::AppendingLinkage
:
2389 case GlobalValue::GhostLinkage
:
2390 case GlobalValue::CommonLinkage
:
2391 return Error(LinkageLoc
, "invalid function linkage type");
2394 if (!FunctionType::isValidReturnType(RetType
) ||
2395 isa
<OpaqueType
>(RetType
))
2396 return Error(RetTypeLoc
, "invalid function return type");
2398 LocTy NameLoc
= Lex
.getLoc();
2400 std::string FunctionName
;
2401 if (Lex
.getKind() == lltok::GlobalVar
) {
2402 FunctionName
= Lex
.getStrVal();
2403 } else if (Lex
.getKind() == lltok::GlobalID
) { // @42 is ok.
2404 unsigned NameID
= Lex
.getUIntVal();
2406 if (NameID
!= NumberedVals
.size())
2407 return TokError("function expected to be numbered '%" +
2408 utostr(NumberedVals
.size()) + "'");
2410 return TokError("expected function name");
2415 if (Lex
.getKind() != lltok::lparen
)
2416 return TokError("expected '(' in function argument list");
2418 std::vector
<ArgInfo
> ArgList
;
2421 std::string Section
;
2425 if (ParseArgumentList(ArgList
, isVarArg
, false) ||
2426 ParseOptionalAttrs(FuncAttrs
, 2) ||
2427 (EatIfPresent(lltok::kw_section
) &&
2428 ParseStringConstant(Section
)) ||
2429 ParseOptionalAlignment(Alignment
) ||
2430 (EatIfPresent(lltok::kw_gc
) &&
2431 ParseStringConstant(GC
)))
2434 // If the alignment was parsed as an attribute, move to the alignment field.
2435 if (FuncAttrs
& Attribute::Alignment
) {
2436 Alignment
= Attribute::getAlignmentFromAttrs(FuncAttrs
);
2437 FuncAttrs
&= ~Attribute::Alignment
;
2440 // Okay, if we got here, the function is syntactically valid. Convert types
2441 // and do semantic checks.
2442 std::vector
<const Type
*> ParamTypeList
;
2443 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2444 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2446 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2447 if (FuncAttrs
& ObsoleteFuncAttrs
) {
2448 RetAttrs
|= FuncAttrs
& ObsoleteFuncAttrs
;
2449 FuncAttrs
&= ~ObsoleteFuncAttrs
;
2452 if (RetAttrs
!= Attribute::None
)
2453 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2455 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2456 ParamTypeList
.push_back(ArgList
[i
].Type
);
2457 if (ArgList
[i
].Attrs
!= Attribute::None
)
2458 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2461 if (FuncAttrs
!= Attribute::None
)
2462 Attrs
.push_back(AttributeWithIndex::get(~0, FuncAttrs
));
2464 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2466 if (PAL
.paramHasAttr(1, Attribute::StructRet
) &&
2467 RetType
!= Type::getVoidTy(Context
))
2468 return Error(RetTypeLoc
, "functions with 'sret' argument must return void");
2470 const FunctionType
*FT
=
2471 FunctionType::get(RetType
, ParamTypeList
, isVarArg
);
2472 const PointerType
*PFT
= PointerType::getUnqual(FT
);
2475 if (!FunctionName
.empty()) {
2476 // If this was a definition of a forward reference, remove the definition
2477 // from the forward reference table and fill in the forward ref.
2478 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator FRVI
=
2479 ForwardRefVals
.find(FunctionName
);
2480 if (FRVI
!= ForwardRefVals
.end()) {
2481 Fn
= M
->getFunction(FunctionName
);
2482 ForwardRefVals
.erase(FRVI
);
2483 } else if ((Fn
= M
->getFunction(FunctionName
))) {
2484 // If this function already exists in the symbol table, then it is
2485 // multiply defined. We accept a few cases for old backwards compat.
2486 // FIXME: Remove this stuff for LLVM 3.0.
2487 if (Fn
->getType() != PFT
|| Fn
->getAttributes() != PAL
||
2488 (!Fn
->isDeclaration() && isDefine
)) {
2489 // If the redefinition has different type or different attributes,
2490 // reject it. If both have bodies, reject it.
2491 return Error(NameLoc
, "invalid redefinition of function '" +
2492 FunctionName
+ "'");
2493 } else if (Fn
->isDeclaration()) {
2494 // Make sure to strip off any argument names so we can't get conflicts.
2495 for (Function::arg_iterator AI
= Fn
->arg_begin(), AE
= Fn
->arg_end();
2501 } else if (FunctionName
.empty()) {
2502 // If this is a definition of a forward referenced function, make sure the
2504 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator I
2505 = ForwardRefValIDs
.find(NumberedVals
.size());
2506 if (I
!= ForwardRefValIDs
.end()) {
2507 Fn
= cast
<Function
>(I
->second
.first
);
2508 if (Fn
->getType() != PFT
)
2509 return Error(NameLoc
, "type of definition and forward reference of '@" +
2510 utostr(NumberedVals
.size()) +"' disagree");
2511 ForwardRefValIDs
.erase(I
);
2516 Fn
= Function::Create(FT
, GlobalValue::ExternalLinkage
, FunctionName
, M
);
2517 else // Move the forward-reference to the correct spot in the module.
2518 M
->getFunctionList().splice(M
->end(), M
->getFunctionList(), Fn
);
2520 if (FunctionName
.empty())
2521 NumberedVals
.push_back(Fn
);
2523 Fn
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
2524 Fn
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
2525 Fn
->setCallingConv(CC
);
2526 Fn
->setAttributes(PAL
);
2527 Fn
->setAlignment(Alignment
);
2528 Fn
->setSection(Section
);
2529 if (!GC
.empty()) Fn
->setGC(GC
.c_str());
2531 // Add all of the arguments we parsed to the function.
2532 Function::arg_iterator ArgIt
= Fn
->arg_begin();
2533 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
, ++ArgIt
) {
2534 // If the argument has a name, insert it into the argument symbol table.
2535 if (ArgList
[i
].Name
.empty()) continue;
2537 // Set the name, if it conflicted, it will be auto-renamed.
2538 ArgIt
->setName(ArgList
[i
].Name
);
2540 if (ArgIt
->getNameStr() != ArgList
[i
].Name
)
2541 return Error(ArgList
[i
].Loc
, "redefinition of argument '%" +
2542 ArgList
[i
].Name
+ "'");
2549 /// ParseFunctionBody
2550 /// ::= '{' BasicBlock+ '}'
2551 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2553 bool LLParser::ParseFunctionBody(Function
&Fn
) {
2554 if (Lex
.getKind() != lltok::lbrace
&& Lex
.getKind() != lltok::kw_begin
)
2555 return TokError("expected '{' in function body");
2556 Lex
.Lex(); // eat the {.
2558 PerFunctionState
PFS(*this, Fn
);
2560 while (Lex
.getKind() != lltok::rbrace
&& Lex
.getKind() != lltok::kw_end
)
2561 if (ParseBasicBlock(PFS
)) return true;
2566 // Verify function is ok.
2567 return PFS
.VerifyFunctionComplete();
2571 /// ::= LabelStr? Instruction*
2572 bool LLParser::ParseBasicBlock(PerFunctionState
&PFS
) {
2573 // If this basic block starts out with a name, remember it.
2575 LocTy NameLoc
= Lex
.getLoc();
2576 if (Lex
.getKind() == lltok::LabelStr
) {
2577 Name
= Lex
.getStrVal();
2581 BasicBlock
*BB
= PFS
.DefineBB(Name
, NameLoc
);
2582 if (BB
== 0) return true;
2584 std::string NameStr
;
2586 // Parse the instructions in this block until we get a terminator.
2589 // This instruction may have three possibilities for a name: a) none
2590 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2591 LocTy NameLoc
= Lex
.getLoc();
2595 if (Lex
.getKind() == lltok::LocalVarID
) {
2596 NameID
= Lex
.getUIntVal();
2598 if (ParseToken(lltok::equal
, "expected '=' after instruction id"))
2600 } else if (Lex
.getKind() == lltok::LocalVar
||
2601 // FIXME: REMOVE IN LLVM 3.0
2602 Lex
.getKind() == lltok::StringConstant
) {
2603 NameStr
= Lex
.getStrVal();
2605 if (ParseToken(lltok::equal
, "expected '=' after instruction name"))
2609 if (ParseInstruction(Inst
, BB
, PFS
)) return true;
2611 BB
->getInstList().push_back(Inst
);
2613 // Set the name on the instruction.
2614 if (PFS
.SetInstName(NameID
, NameStr
, NameLoc
, Inst
)) return true;
2615 } while (!isa
<TerminatorInst
>(Inst
));
2620 //===----------------------------------------------------------------------===//
2621 // Instruction Parsing.
2622 //===----------------------------------------------------------------------===//
2624 /// ParseInstruction - Parse one of the many different instructions.
2626 bool LLParser::ParseInstruction(Instruction
*&Inst
, BasicBlock
*BB
,
2627 PerFunctionState
&PFS
) {
2628 lltok::Kind Token
= Lex
.getKind();
2629 if (Token
== lltok::Eof
)
2630 return TokError("found end of file when expecting more instructions");
2631 LocTy Loc
= Lex
.getLoc();
2632 unsigned KeywordVal
= Lex
.getUIntVal();
2633 Lex
.Lex(); // Eat the keyword.
2636 default: return Error(Loc
, "expected instruction opcode");
2637 // Terminator Instructions.
2638 case lltok::kw_unwind
: Inst
= new UnwindInst(Context
); return false;
2639 case lltok::kw_unreachable
: Inst
= new UnreachableInst(Context
); return false;
2640 case lltok::kw_ret
: return ParseRet(Inst
, BB
, PFS
);
2641 case lltok::kw_br
: return ParseBr(Inst
, PFS
);
2642 case lltok::kw_switch
: return ParseSwitch(Inst
, PFS
);
2643 case lltok::kw_invoke
: return ParseInvoke(Inst
, PFS
);
2644 // Binary Operators.
2647 case lltok::kw_mul
: {
2650 LocTy ModifierLoc
= Lex
.getLoc();
2651 if (EatIfPresent(lltok::kw_nuw
))
2653 if (EatIfPresent(lltok::kw_nsw
)) {
2655 if (EatIfPresent(lltok::kw_nuw
))
2658 // API compatibility: Accept either integer or floating-point types.
2659 bool Result
= ParseArithmetic(Inst
, PFS
, KeywordVal
, 0);
2661 if (!Inst
->getType()->isIntOrIntVector()) {
2663 return Error(ModifierLoc
, "nuw only applies to integer operations");
2665 return Error(ModifierLoc
, "nsw only applies to integer operations");
2668 cast
<OverflowingBinaryOperator
>(Inst
)->setHasNoUnsignedOverflow(true);
2670 cast
<OverflowingBinaryOperator
>(Inst
)->setHasNoSignedOverflow(true);
2674 case lltok::kw_fadd
:
2675 case lltok::kw_fsub
:
2676 case lltok::kw_fmul
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
2678 case lltok::kw_sdiv
: {
2680 if (EatIfPresent(lltok::kw_exact
))
2682 bool Result
= ParseArithmetic(Inst
, PFS
, KeywordVal
, 1);
2685 cast
<SDivOperator
>(Inst
)->setIsExact(true);
2689 case lltok::kw_udiv
:
2690 case lltok::kw_urem
:
2691 case lltok::kw_srem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 1);
2692 case lltok::kw_fdiv
:
2693 case lltok::kw_frem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
2695 case lltok::kw_lshr
:
2696 case lltok::kw_ashr
:
2699 case lltok::kw_xor
: return ParseLogical(Inst
, PFS
, KeywordVal
);
2700 case lltok::kw_icmp
:
2701 case lltok::kw_fcmp
: return ParseCompare(Inst
, PFS
, KeywordVal
);
2703 case lltok::kw_trunc
:
2704 case lltok::kw_zext
:
2705 case lltok::kw_sext
:
2706 case lltok::kw_fptrunc
:
2707 case lltok::kw_fpext
:
2708 case lltok::kw_bitcast
:
2709 case lltok::kw_uitofp
:
2710 case lltok::kw_sitofp
:
2711 case lltok::kw_fptoui
:
2712 case lltok::kw_fptosi
:
2713 case lltok::kw_inttoptr
:
2714 case lltok::kw_ptrtoint
: return ParseCast(Inst
, PFS
, KeywordVal
);
2716 case lltok::kw_select
: return ParseSelect(Inst
, PFS
);
2717 case lltok::kw_va_arg
: return ParseVA_Arg(Inst
, PFS
);
2718 case lltok::kw_extractelement
: return ParseExtractElement(Inst
, PFS
);
2719 case lltok::kw_insertelement
: return ParseInsertElement(Inst
, PFS
);
2720 case lltok::kw_shufflevector
: return ParseShuffleVector(Inst
, PFS
);
2721 case lltok::kw_phi
: return ParsePHI(Inst
, PFS
);
2722 case lltok::kw_call
: return ParseCall(Inst
, PFS
, false);
2723 case lltok::kw_tail
: return ParseCall(Inst
, PFS
, true);
2725 case lltok::kw_alloca
:
2726 case lltok::kw_malloc
: return ParseAlloc(Inst
, PFS
, KeywordVal
);
2727 case lltok::kw_free
: return ParseFree(Inst
, PFS
);
2728 case lltok::kw_load
: return ParseLoad(Inst
, PFS
, false);
2729 case lltok::kw_store
: return ParseStore(Inst
, PFS
, false);
2730 case lltok::kw_volatile
:
2731 if (EatIfPresent(lltok::kw_load
))
2732 return ParseLoad(Inst
, PFS
, true);
2733 else if (EatIfPresent(lltok::kw_store
))
2734 return ParseStore(Inst
, PFS
, true);
2736 return TokError("expected 'load' or 'store'");
2737 case lltok::kw_getresult
: return ParseGetResult(Inst
, PFS
);
2738 case lltok::kw_getelementptr
: return ParseGetElementPtr(Inst
, PFS
);
2739 case lltok::kw_extractvalue
: return ParseExtractValue(Inst
, PFS
);
2740 case lltok::kw_insertvalue
: return ParseInsertValue(Inst
, PFS
);
2744 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2745 bool LLParser::ParseCmpPredicate(unsigned &P
, unsigned Opc
) {
2746 if (Opc
== Instruction::FCmp
) {
2747 switch (Lex
.getKind()) {
2748 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2749 case lltok::kw_oeq
: P
= CmpInst::FCMP_OEQ
; break;
2750 case lltok::kw_one
: P
= CmpInst::FCMP_ONE
; break;
2751 case lltok::kw_olt
: P
= CmpInst::FCMP_OLT
; break;
2752 case lltok::kw_ogt
: P
= CmpInst::FCMP_OGT
; break;
2753 case lltok::kw_ole
: P
= CmpInst::FCMP_OLE
; break;
2754 case lltok::kw_oge
: P
= CmpInst::FCMP_OGE
; break;
2755 case lltok::kw_ord
: P
= CmpInst::FCMP_ORD
; break;
2756 case lltok::kw_uno
: P
= CmpInst::FCMP_UNO
; break;
2757 case lltok::kw_ueq
: P
= CmpInst::FCMP_UEQ
; break;
2758 case lltok::kw_une
: P
= CmpInst::FCMP_UNE
; break;
2759 case lltok::kw_ult
: P
= CmpInst::FCMP_ULT
; break;
2760 case lltok::kw_ugt
: P
= CmpInst::FCMP_UGT
; break;
2761 case lltok::kw_ule
: P
= CmpInst::FCMP_ULE
; break;
2762 case lltok::kw_uge
: P
= CmpInst::FCMP_UGE
; break;
2763 case lltok::kw_true
: P
= CmpInst::FCMP_TRUE
; break;
2764 case lltok::kw_false
: P
= CmpInst::FCMP_FALSE
; break;
2767 switch (Lex
.getKind()) {
2768 default: TokError("expected icmp predicate (e.g. 'eq')");
2769 case lltok::kw_eq
: P
= CmpInst::ICMP_EQ
; break;
2770 case lltok::kw_ne
: P
= CmpInst::ICMP_NE
; break;
2771 case lltok::kw_slt
: P
= CmpInst::ICMP_SLT
; break;
2772 case lltok::kw_sgt
: P
= CmpInst::ICMP_SGT
; break;
2773 case lltok::kw_sle
: P
= CmpInst::ICMP_SLE
; break;
2774 case lltok::kw_sge
: P
= CmpInst::ICMP_SGE
; break;
2775 case lltok::kw_ult
: P
= CmpInst::ICMP_ULT
; break;
2776 case lltok::kw_ugt
: P
= CmpInst::ICMP_UGT
; break;
2777 case lltok::kw_ule
: P
= CmpInst::ICMP_ULE
; break;
2778 case lltok::kw_uge
: P
= CmpInst::ICMP_UGE
; break;
2785 //===----------------------------------------------------------------------===//
2786 // Terminator Instructions.
2787 //===----------------------------------------------------------------------===//
2789 /// ParseRet - Parse a return instruction.
2791 /// ::= 'ret' TypeAndValue
2792 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2793 bool LLParser::ParseRet(Instruction
*&Inst
, BasicBlock
*BB
,
2794 PerFunctionState
&PFS
) {
2795 PATypeHolder
Ty(Type::getVoidTy(Context
));
2796 if (ParseType(Ty
, true /*void allowed*/)) return true;
2798 if (Ty
== Type::getVoidTy(Context
)) {
2799 Inst
= ReturnInst::Create(Context
);
2804 if (ParseValue(Ty
, RV
, PFS
)) return true;
2806 // The normal case is one return value.
2807 if (Lex
.getKind() == lltok::comma
) {
2808 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2809 // of 'ret {i32,i32} {i32 1, i32 2}'
2810 SmallVector
<Value
*, 8> RVs
;
2813 while (EatIfPresent(lltok::comma
)) {
2814 if (ParseTypeAndValue(RV
, PFS
)) return true;
2818 RV
= UndefValue::get(PFS
.getFunction().getReturnType());
2819 for (unsigned i
= 0, e
= RVs
.size(); i
!= e
; ++i
) {
2820 Instruction
*I
= InsertValueInst::Create(RV
, RVs
[i
], i
, "mrv");
2821 BB
->getInstList().push_back(I
);
2825 Inst
= ReturnInst::Create(Context
, RV
);
2831 /// ::= 'br' TypeAndValue
2832 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2833 bool LLParser::ParseBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2835 Value
*Op0
, *Op1
, *Op2
;
2836 if (ParseTypeAndValue(Op0
, Loc
, PFS
)) return true;
2838 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op0
)) {
2839 Inst
= BranchInst::Create(BB
);
2843 if (Op0
->getType() != Type::getInt1Ty(Context
))
2844 return Error(Loc
, "branch condition must have 'i1' type");
2846 if (ParseToken(lltok::comma
, "expected ',' after branch condition") ||
2847 ParseTypeAndValue(Op1
, Loc
, PFS
) ||
2848 ParseToken(lltok::comma
, "expected ',' after true destination") ||
2849 ParseTypeAndValue(Op2
, Loc2
, PFS
))
2852 if (!isa
<BasicBlock
>(Op1
))
2853 return Error(Loc
, "true destination of branch must be a basic block");
2854 if (!isa
<BasicBlock
>(Op2
))
2855 return Error(Loc2
, "true destination of branch must be a basic block");
2857 Inst
= BranchInst::Create(cast
<BasicBlock
>(Op1
), cast
<BasicBlock
>(Op2
), Op0
);
2863 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2865 /// ::= (TypeAndValue ',' TypeAndValue)*
2866 bool LLParser::ParseSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2867 LocTy CondLoc
, BBLoc
;
2868 Value
*Cond
, *DefaultBB
;
2869 if (ParseTypeAndValue(Cond
, CondLoc
, PFS
) ||
2870 ParseToken(lltok::comma
, "expected ',' after switch condition") ||
2871 ParseTypeAndValue(DefaultBB
, BBLoc
, PFS
) ||
2872 ParseToken(lltok::lsquare
, "expected '[' with switch table"))
2875 if (!isa
<IntegerType
>(Cond
->getType()))
2876 return Error(CondLoc
, "switch condition must have integer type");
2877 if (!isa
<BasicBlock
>(DefaultBB
))
2878 return Error(BBLoc
, "default destination must be a basic block");
2880 // Parse the jump table pairs.
2881 SmallPtrSet
<Value
*, 32> SeenCases
;
2882 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 32> Table
;
2883 while (Lex
.getKind() != lltok::rsquare
) {
2884 Value
*Constant
, *DestBB
;
2886 if (ParseTypeAndValue(Constant
, CondLoc
, PFS
) ||
2887 ParseToken(lltok::comma
, "expected ',' after case value") ||
2888 ParseTypeAndValue(DestBB
, BBLoc
, PFS
))
2891 if (!SeenCases
.insert(Constant
))
2892 return Error(CondLoc
, "duplicate case value in switch");
2893 if (!isa
<ConstantInt
>(Constant
))
2894 return Error(CondLoc
, "case value is not a constant integer");
2895 if (!isa
<BasicBlock
>(DestBB
))
2896 return Error(BBLoc
, "case destination is not a basic block");
2898 Table
.push_back(std::make_pair(cast
<ConstantInt
>(Constant
),
2899 cast
<BasicBlock
>(DestBB
)));
2902 Lex
.Lex(); // Eat the ']'.
2904 SwitchInst
*SI
= SwitchInst::Create(Cond
, cast
<BasicBlock
>(DefaultBB
),
2906 for (unsigned i
= 0, e
= Table
.size(); i
!= e
; ++i
)
2907 SI
->addCase(Table
[i
].first
, Table
[i
].second
);
2913 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2914 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2915 bool LLParser::ParseInvoke(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2916 LocTy CallLoc
= Lex
.getLoc();
2917 unsigned CC
, RetAttrs
, FnAttrs
;
2918 PATypeHolder
RetType(Type::getVoidTy(Context
));
2921 SmallVector
<ParamInfo
, 16> ArgList
;
2923 Value
*NormalBB
, *UnwindBB
;
2924 if (ParseOptionalCallingConv(CC
) ||
2925 ParseOptionalAttrs(RetAttrs
, 1) ||
2926 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
2927 ParseValID(CalleeID
) ||
2928 ParseParameterList(ArgList
, PFS
) ||
2929 ParseOptionalAttrs(FnAttrs
, 2) ||
2930 ParseToken(lltok::kw_to
, "expected 'to' in invoke") ||
2931 ParseTypeAndValue(NormalBB
, PFS
) ||
2932 ParseToken(lltok::kw_unwind
, "expected 'unwind' in invoke") ||
2933 ParseTypeAndValue(UnwindBB
, PFS
))
2936 if (!isa
<BasicBlock
>(NormalBB
))
2937 return Error(CallLoc
, "normal destination is not a basic block");
2938 if (!isa
<BasicBlock
>(UnwindBB
))
2939 return Error(CallLoc
, "unwind destination is not a basic block");
2941 // If RetType is a non-function pointer type, then this is the short syntax
2942 // for the call, which means that RetType is just the return type. Infer the
2943 // rest of the function argument types from the arguments that are present.
2944 const PointerType
*PFTy
= 0;
2945 const FunctionType
*Ty
= 0;
2946 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
2947 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
2948 // Pull out the types of all of the arguments...
2949 std::vector
<const Type
*> ParamTypes
;
2950 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
2951 ParamTypes
.push_back(ArgList
[i
].V
->getType());
2953 if (!FunctionType::isValidReturnType(RetType
))
2954 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
2956 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
2957 PFTy
= PointerType::getUnqual(Ty
);
2960 // Look up the callee.
2962 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, PFS
)) return true;
2964 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2965 // function attributes.
2966 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2967 if (FnAttrs
& ObsoleteFuncAttrs
) {
2968 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
2969 FnAttrs
&= ~ObsoleteFuncAttrs
;
2972 // Set up the Attributes for the function.
2973 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2974 if (RetAttrs
!= Attribute::None
)
2975 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2977 SmallVector
<Value
*, 8> Args
;
2979 // Loop through FunctionType's arguments and ensure they are specified
2980 // correctly. Also, gather any parameter attributes.
2981 FunctionType::param_iterator I
= Ty
->param_begin();
2982 FunctionType::param_iterator E
= Ty
->param_end();
2983 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2984 const Type
*ExpectedTy
= 0;
2987 } else if (!Ty
->isVarArg()) {
2988 return Error(ArgList
[i
].Loc
, "too many arguments specified");
2991 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
2992 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
2993 ExpectedTy
->getDescription() + "'");
2994 Args
.push_back(ArgList
[i
].V
);
2995 if (ArgList
[i
].Attrs
!= Attribute::None
)
2996 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3000 return Error(CallLoc
, "not enough parameters specified for call");
3002 if (FnAttrs
!= Attribute::None
)
3003 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3005 // Finish off the Attributes and check them
3006 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3008 InvokeInst
*II
= InvokeInst::Create(Callee
, cast
<BasicBlock
>(NormalBB
),
3009 cast
<BasicBlock
>(UnwindBB
),
3010 Args
.begin(), Args
.end());
3011 II
->setCallingConv(CC
);
3012 II
->setAttributes(PAL
);
3019 //===----------------------------------------------------------------------===//
3020 // Binary Operators.
3021 //===----------------------------------------------------------------------===//
3024 /// ::= ArithmeticOps TypeAndValue ',' Value
3026 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3027 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3028 bool LLParser::ParseArithmetic(Instruction
*&Inst
, PerFunctionState
&PFS
,
3029 unsigned Opc
, unsigned OperandType
) {
3030 LocTy Loc
; Value
*LHS
, *RHS
;
3031 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3032 ParseToken(lltok::comma
, "expected ',' in arithmetic operation") ||
3033 ParseValue(LHS
->getType(), RHS
, PFS
))
3037 switch (OperandType
) {
3038 default: llvm_unreachable("Unknown operand type!");
3039 case 0: // int or FP.
3040 Valid
= LHS
->getType()->isIntOrIntVector() ||
3041 LHS
->getType()->isFPOrFPVector();
3043 case 1: Valid
= LHS
->getType()->isIntOrIntVector(); break;
3044 case 2: Valid
= LHS
->getType()->isFPOrFPVector(); break;
3048 return Error(Loc
, "invalid operand type for instruction");
3050 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
3055 /// ::= ArithmeticOps TypeAndValue ',' Value {
3056 bool LLParser::ParseLogical(Instruction
*&Inst
, PerFunctionState
&PFS
,
3058 LocTy Loc
; Value
*LHS
, *RHS
;
3059 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3060 ParseToken(lltok::comma
, "expected ',' in logical operation") ||
3061 ParseValue(LHS
->getType(), RHS
, PFS
))
3064 if (!LHS
->getType()->isIntOrIntVector())
3065 return Error(Loc
,"instruction requires integer or integer vector operands");
3067 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
3073 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3074 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3075 bool LLParser::ParseCompare(Instruction
*&Inst
, PerFunctionState
&PFS
,
3077 // Parse the integer/fp comparison predicate.
3081 if (ParseCmpPredicate(Pred
, Opc
) ||
3082 ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3083 ParseToken(lltok::comma
, "expected ',' after compare value") ||
3084 ParseValue(LHS
->getType(), RHS
, PFS
))
3087 if (Opc
== Instruction::FCmp
) {
3088 if (!LHS
->getType()->isFPOrFPVector())
3089 return Error(Loc
, "fcmp requires floating point operands");
3090 Inst
= new FCmpInst(Context
, CmpInst::Predicate(Pred
), LHS
, RHS
);
3092 assert(Opc
== Instruction::ICmp
&& "Unknown opcode for CmpInst!");
3093 if (!LHS
->getType()->isIntOrIntVector() &&
3094 !isa
<PointerType
>(LHS
->getType()))
3095 return Error(Loc
, "icmp requires integer operands");
3096 Inst
= new ICmpInst(Context
, CmpInst::Predicate(Pred
), LHS
, RHS
);
3101 //===----------------------------------------------------------------------===//
3102 // Other Instructions.
3103 //===----------------------------------------------------------------------===//
3107 /// ::= CastOpc TypeAndValue 'to' Type
3108 bool LLParser::ParseCast(Instruction
*&Inst
, PerFunctionState
&PFS
,
3110 LocTy Loc
; Value
*Op
;
3111 PATypeHolder
DestTy(Type::getVoidTy(Context
));
3112 if (ParseTypeAndValue(Op
, Loc
, PFS
) ||
3113 ParseToken(lltok::kw_to
, "expected 'to' after cast value") ||
3117 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
)) {
3118 CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
);
3119 return Error(Loc
, "invalid cast opcode for cast from '" +
3120 Op
->getType()->getDescription() + "' to '" +
3121 DestTy
->getDescription() + "'");
3123 Inst
= CastInst::Create((Instruction::CastOps
)Opc
, Op
, DestTy
);
3128 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3129 bool LLParser::ParseSelect(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3131 Value
*Op0
, *Op1
, *Op2
;
3132 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3133 ParseToken(lltok::comma
, "expected ',' after select condition") ||
3134 ParseTypeAndValue(Op1
, PFS
) ||
3135 ParseToken(lltok::comma
, "expected ',' after select value") ||
3136 ParseTypeAndValue(Op2
, PFS
))
3139 if (const char *Reason
= SelectInst::areInvalidOperands(Op0
, Op1
, Op2
))
3140 return Error(Loc
, Reason
);
3142 Inst
= SelectInst::Create(Op0
, Op1
, Op2
);
3147 /// ::= 'va_arg' TypeAndValue ',' Type
3148 bool LLParser::ParseVA_Arg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3150 PATypeHolder
EltTy(Type::getVoidTy(Context
));
3152 if (ParseTypeAndValue(Op
, PFS
) ||
3153 ParseToken(lltok::comma
, "expected ',' after vaarg operand") ||
3154 ParseType(EltTy
, TypeLoc
))
3157 if (!EltTy
->isFirstClassType())
3158 return Error(TypeLoc
, "va_arg requires operand with first class type");
3160 Inst
= new VAArgInst(Op
, EltTy
);
3164 /// ParseExtractElement
3165 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3166 bool LLParser::ParseExtractElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3169 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3170 ParseToken(lltok::comma
, "expected ',' after extract value") ||
3171 ParseTypeAndValue(Op1
, PFS
))
3174 if (!ExtractElementInst::isValidOperands(Op0
, Op1
))
3175 return Error(Loc
, "invalid extractelement operands");
3177 Inst
= ExtractElementInst::Create(Op0
, Op1
);
3181 /// ParseInsertElement
3182 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3183 bool LLParser::ParseInsertElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3185 Value
*Op0
, *Op1
, *Op2
;
3186 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3187 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3188 ParseTypeAndValue(Op1
, PFS
) ||
3189 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3190 ParseTypeAndValue(Op2
, PFS
))
3193 if (!InsertElementInst::isValidOperands(Op0
, Op1
, Op2
))
3194 return Error(Loc
, "invalid insertelement operands");
3196 Inst
= InsertElementInst::Create(Op0
, Op1
, Op2
);
3200 /// ParseShuffleVector
3201 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3202 bool LLParser::ParseShuffleVector(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3204 Value
*Op0
, *Op1
, *Op2
;
3205 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3206 ParseToken(lltok::comma
, "expected ',' after shuffle mask") ||
3207 ParseTypeAndValue(Op1
, PFS
) ||
3208 ParseToken(lltok::comma
, "expected ',' after shuffle value") ||
3209 ParseTypeAndValue(Op2
, PFS
))
3212 if (!ShuffleVectorInst::isValidOperands(Op0
, Op1
, Op2
))
3213 return Error(Loc
, "invalid extractelement operands");
3215 Inst
= new ShuffleVectorInst(Op0
, Op1
, Op2
);
3220 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3221 bool LLParser::ParsePHI(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3222 PATypeHolder
Ty(Type::getVoidTy(Context
));
3224 LocTy TypeLoc
= Lex
.getLoc();
3226 if (ParseType(Ty
) ||
3227 ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
3228 ParseValue(Ty
, Op0
, PFS
) ||
3229 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3230 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
3231 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
3234 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 16> PHIVals
;
3236 PHIVals
.push_back(std::make_pair(Op0
, cast
<BasicBlock
>(Op1
)));
3238 if (!EatIfPresent(lltok::comma
))
3241 if (ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
3242 ParseValue(Ty
, Op0
, PFS
) ||
3243 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3244 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
3245 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
3249 if (!Ty
->isFirstClassType())
3250 return Error(TypeLoc
, "phi node must have first class type");
3252 PHINode
*PN
= PHINode::Create(Ty
);
3253 PN
->reserveOperandSpace(PHIVals
.size());
3254 for (unsigned i
= 0, e
= PHIVals
.size(); i
!= e
; ++i
)
3255 PN
->addIncoming(PHIVals
[i
].first
, PHIVals
[i
].second
);
3261 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3262 /// ParameterList OptionalAttrs
3263 bool LLParser::ParseCall(Instruction
*&Inst
, PerFunctionState
&PFS
,
3265 unsigned CC
, RetAttrs
, FnAttrs
;
3266 PATypeHolder
RetType(Type::getVoidTy(Context
));
3269 SmallVector
<ParamInfo
, 16> ArgList
;
3270 LocTy CallLoc
= Lex
.getLoc();
3272 if ((isTail
&& ParseToken(lltok::kw_call
, "expected 'tail call'")) ||
3273 ParseOptionalCallingConv(CC
) ||
3274 ParseOptionalAttrs(RetAttrs
, 1) ||
3275 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3276 ParseValID(CalleeID
) ||
3277 ParseParameterList(ArgList
, PFS
) ||
3278 ParseOptionalAttrs(FnAttrs
, 2))
3281 // If RetType is a non-function pointer type, then this is the short syntax
3282 // for the call, which means that RetType is just the return type. Infer the
3283 // rest of the function argument types from the arguments that are present.
3284 const PointerType
*PFTy
= 0;
3285 const FunctionType
*Ty
= 0;
3286 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3287 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3288 // Pull out the types of all of the arguments...
3289 std::vector
<const Type
*> ParamTypes
;
3290 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3291 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3293 if (!FunctionType::isValidReturnType(RetType
))
3294 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3296 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3297 PFTy
= PointerType::getUnqual(Ty
);
3300 // Look up the callee.
3302 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, PFS
)) return true;
3304 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3305 // function attributes.
3306 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
3307 if (FnAttrs
& ObsoleteFuncAttrs
) {
3308 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
3309 FnAttrs
&= ~ObsoleteFuncAttrs
;
3312 // Set up the Attributes for the function.
3313 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3314 if (RetAttrs
!= Attribute::None
)
3315 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3317 SmallVector
<Value
*, 8> Args
;
3319 // Loop through FunctionType's arguments and ensure they are specified
3320 // correctly. Also, gather any parameter attributes.
3321 FunctionType::param_iterator I
= Ty
->param_begin();
3322 FunctionType::param_iterator E
= Ty
->param_end();
3323 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3324 const Type
*ExpectedTy
= 0;
3327 } else if (!Ty
->isVarArg()) {
3328 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3331 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3332 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3333 ExpectedTy
->getDescription() + "'");
3334 Args
.push_back(ArgList
[i
].V
);
3335 if (ArgList
[i
].Attrs
!= Attribute::None
)
3336 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3340 return Error(CallLoc
, "not enough parameters specified for call");
3342 if (FnAttrs
!= Attribute::None
)
3343 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3345 // Finish off the Attributes and check them
3346 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3348 CallInst
*CI
= CallInst::Create(Callee
, Args
.begin(), Args
.end());
3349 CI
->setTailCall(isTail
);
3350 CI
->setCallingConv(CC
);
3351 CI
->setAttributes(PAL
);
3356 //===----------------------------------------------------------------------===//
3357 // Memory Instructions.
3358 //===----------------------------------------------------------------------===//
3361 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3362 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3363 bool LLParser::ParseAlloc(Instruction
*&Inst
, PerFunctionState
&PFS
,
3365 PATypeHolder
Ty(Type::getVoidTy(Context
));
3368 unsigned Alignment
= 0;
3369 if (ParseType(Ty
)) return true;
3371 if (EatIfPresent(lltok::comma
)) {
3372 if (Lex
.getKind() == lltok::kw_align
) {
3373 if (ParseOptionalAlignment(Alignment
)) return true;
3374 } else if (ParseTypeAndValue(Size
, SizeLoc
, PFS
) ||
3375 ParseOptionalCommaAlignment(Alignment
)) {
3380 if (Size
&& Size
->getType() != Type::getInt32Ty(Context
))
3381 return Error(SizeLoc
, "element count must be i32");
3383 if (Opc
== Instruction::Malloc
)
3384 Inst
= new MallocInst(Ty
, Size
, Alignment
);
3386 Inst
= new AllocaInst(Ty
, Size
, Alignment
);
3391 /// ::= 'free' TypeAndValue
3392 bool LLParser::ParseFree(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3393 Value
*Val
; LocTy Loc
;
3394 if (ParseTypeAndValue(Val
, Loc
, PFS
)) return true;
3395 if (!isa
<PointerType
>(Val
->getType()))
3396 return Error(Loc
, "operand to free must be a pointer");
3397 Inst
= new FreeInst(Val
);
3402 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3403 bool LLParser::ParseLoad(Instruction
*&Inst
, PerFunctionState
&PFS
,
3405 Value
*Val
; LocTy Loc
;
3407 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3408 ParseOptionalCommaAlignment(Alignment
))
3411 if (!isa
<PointerType
>(Val
->getType()) ||
3412 !cast
<PointerType
>(Val
->getType())->getElementType()->isFirstClassType())
3413 return Error(Loc
, "load operand must be a pointer to a first class type");
3415 Inst
= new LoadInst(Val
, "", isVolatile
, Alignment
);
3420 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3421 bool LLParser::ParseStore(Instruction
*&Inst
, PerFunctionState
&PFS
,
3423 Value
*Val
, *Ptr
; LocTy Loc
, PtrLoc
;
3425 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3426 ParseToken(lltok::comma
, "expected ',' after store operand") ||
3427 ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
3428 ParseOptionalCommaAlignment(Alignment
))
3431 if (!isa
<PointerType
>(Ptr
->getType()))
3432 return Error(PtrLoc
, "store operand must be a pointer");
3433 if (!Val
->getType()->isFirstClassType())
3434 return Error(Loc
, "store operand must be a first class value");
3435 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
3436 return Error(Loc
, "stored value and pointer type do not match");
3438 Inst
= new StoreInst(Val
, Ptr
, isVolatile
, Alignment
);
3443 /// ::= 'getresult' TypeAndValue ',' i32
3444 /// FIXME: Remove support for getresult in LLVM 3.0
3445 bool LLParser::ParseGetResult(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3446 Value
*Val
; LocTy ValLoc
, EltLoc
;
3448 if (ParseTypeAndValue(Val
, ValLoc
, PFS
) ||
3449 ParseToken(lltok::comma
, "expected ',' after getresult operand") ||
3450 ParseUInt32(Element
, EltLoc
))
3453 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
3454 return Error(ValLoc
, "getresult inst requires an aggregate operand");
3455 if (!ExtractValueInst::getIndexedType(Val
->getType(), Element
))
3456 return Error(EltLoc
, "invalid getresult index for value");
3457 Inst
= ExtractValueInst::Create(Val
, Element
);
3461 /// ParseGetElementPtr
3462 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3463 bool LLParser::ParseGetElementPtr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3464 Value
*Ptr
, *Val
; LocTy Loc
, EltLoc
;
3466 bool InBounds
= EatIfPresent(lltok::kw_inbounds
);
3468 if (ParseTypeAndValue(Ptr
, Loc
, PFS
)) return true;
3470 if (!isa
<PointerType
>(Ptr
->getType()))
3471 return Error(Loc
, "base of getelementptr must be a pointer");
3473 SmallVector
<Value
*, 16> Indices
;
3474 while (EatIfPresent(lltok::comma
)) {
3475 if (ParseTypeAndValue(Val
, EltLoc
, PFS
)) return true;
3476 if (!isa
<IntegerType
>(Val
->getType()))
3477 return Error(EltLoc
, "getelementptr index must be an integer");
3478 Indices
.push_back(Val
);
3481 if (!GetElementPtrInst::getIndexedType(Ptr
->getType(),
3482 Indices
.begin(), Indices
.end()))
3483 return Error(Loc
, "invalid getelementptr indices");
3484 Inst
= GetElementPtrInst::Create(Ptr
, Indices
.begin(), Indices
.end());
3486 cast
<GEPOperator
>(Inst
)->setIsInBounds(true);
3490 /// ParseExtractValue
3491 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3492 bool LLParser::ParseExtractValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3493 Value
*Val
; LocTy Loc
;
3494 SmallVector
<unsigned, 4> Indices
;
3495 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3496 ParseIndexList(Indices
))
3499 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
3500 return Error(Loc
, "extractvalue operand must be array or struct");
3502 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
3504 return Error(Loc
, "invalid indices for extractvalue");
3505 Inst
= ExtractValueInst::Create(Val
, Indices
.begin(), Indices
.end());
3509 /// ParseInsertValue
3510 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3511 bool LLParser::ParseInsertValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3512 Value
*Val0
, *Val1
; LocTy Loc0
, Loc1
;
3513 SmallVector
<unsigned, 4> Indices
;
3514 if (ParseTypeAndValue(Val0
, Loc0
, PFS
) ||
3515 ParseToken(lltok::comma
, "expected comma after insertvalue operand") ||
3516 ParseTypeAndValue(Val1
, Loc1
, PFS
) ||
3517 ParseIndexList(Indices
))
3520 if (!isa
<StructType
>(Val0
->getType()) && !isa
<ArrayType
>(Val0
->getType()))
3521 return Error(Loc0
, "extractvalue operand must be array or struct");
3523 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
3525 return Error(Loc0
, "invalid indices for insertvalue");
3526 Inst
= InsertValueInst::Create(Val0
, Val1
, Indices
.begin(), Indices
.end());
3530 //===----------------------------------------------------------------------===//
3531 // Embedded metadata.
3532 //===----------------------------------------------------------------------===//
3534 /// ParseMDNodeVector
3535 /// ::= Element (',' Element)*
3537 /// ::= 'null' | TypeAndValue
3538 bool LLParser::ParseMDNodeVector(SmallVectorImpl
<Value
*> &Elts
) {
3539 assert(Lex
.getKind() == lltok::lbrace
);
3543 if (Lex
.getKind() == lltok::kw_null
) {
3547 PATypeHolder
Ty(Type::getVoidTy(Context
));
3548 if (ParseType(Ty
)) return true;
3549 if (Lex
.getKind() == lltok::Metadata
) {
3551 MetadataBase
*Node
= 0;
3552 if (!ParseMDNode(Node
))
3555 MetadataBase
*MDS
= 0;
3556 if (ParseMDString(MDS
)) return true;
3561 if (ParseGlobalValue(Ty
, C
)) return true;
3566 } while (EatIfPresent(lltok::comma
));