Indentation change.
[llvm/avr.git] / lib / CodeGen / RegAllocLinearScan.cpp
blobfb9745262b7c16435af227a1afd2def9525d24ff
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
17 #include "Spiller.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <set>
43 #include <queue>
44 #include <memory>
45 #include <cmath>
47 using namespace llvm;
49 STATISTIC(NumIters , "Number of iterations performed");
50 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
51 STATISTIC(NumCoalesce, "Number of copies coalesced");
52 STATISTIC(NumDowngrade, "Number of registers downgraded");
54 static cl::opt<bool>
55 NewHeuristic("new-spilling-heuristic",
56 cl::desc("Use new spilling heuristic"),
57 cl::init(false), cl::Hidden);
59 static cl::opt<bool>
60 PreSplitIntervals("pre-alloc-split",
61 cl::desc("Pre-register allocation live interval splitting"),
62 cl::init(false), cl::Hidden);
64 static cl::opt<bool>
65 NewSpillFramework("new-spill-framework",
66 cl::desc("New spilling framework"),
67 cl::init(false), cl::Hidden);
69 static RegisterRegAlloc
70 linearscanRegAlloc("linearscan", "linear scan register allocator",
71 createLinearScanRegisterAllocator);
73 namespace {
74 struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass {
75 static char ID;
76 RALinScan() : MachineFunctionPass(&ID) {}
78 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
79 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
80 private:
81 /// RelatedRegClasses - This structure is built the first time a function is
82 /// compiled, and keeps track of which register classes have registers that
83 /// belong to multiple classes or have aliases that are in other classes.
84 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
85 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
87 // NextReloadMap - For each register in the map, it maps to the another
88 // register which is defined by a reload from the same stack slot and
89 // both reloads are in the same basic block.
90 DenseMap<unsigned, unsigned> NextReloadMap;
92 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
93 // un-favored for allocation.
94 SmallSet<unsigned, 8> DowngradedRegs;
96 // DowngradeMap - A map from virtual registers to physical registers being
97 // downgraded for the virtual registers.
98 DenseMap<unsigned, unsigned> DowngradeMap;
100 MachineFunction* mf_;
101 MachineRegisterInfo* mri_;
102 const TargetMachine* tm_;
103 const TargetRegisterInfo* tri_;
104 const TargetInstrInfo* tii_;
105 BitVector allocatableRegs_;
106 LiveIntervals* li_;
107 LiveStacks* ls_;
108 const MachineLoopInfo *loopInfo;
110 /// handled_ - Intervals are added to the handled_ set in the order of their
111 /// start value. This is uses for backtracking.
112 std::vector<LiveInterval*> handled_;
114 /// fixed_ - Intervals that correspond to machine registers.
116 IntervalPtrs fixed_;
118 /// active_ - Intervals that are currently being processed, and which have a
119 /// live range active for the current point.
120 IntervalPtrs active_;
122 /// inactive_ - Intervals that are currently being processed, but which have
123 /// a hold at the current point.
124 IntervalPtrs inactive_;
126 typedef std::priority_queue<LiveInterval*,
127 SmallVector<LiveInterval*, 64>,
128 greater_ptr<LiveInterval> > IntervalHeap;
129 IntervalHeap unhandled_;
131 /// regUse_ - Tracks register usage.
132 SmallVector<unsigned, 32> regUse_;
133 SmallVector<unsigned, 32> regUseBackUp_;
135 /// vrm_ - Tracks register assignments.
136 VirtRegMap* vrm_;
138 std::auto_ptr<VirtRegRewriter> rewriter_;
140 std::auto_ptr<Spiller> spiller_;
142 public:
143 virtual const char* getPassName() const {
144 return "Linear Scan Register Allocator";
147 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
148 AU.setPreservesCFG();
149 AU.addRequired<LiveIntervals>();
150 if (StrongPHIElim)
151 AU.addRequiredID(StrongPHIEliminationID);
152 // Make sure PassManager knows which analyses to make available
153 // to coalescing and which analyses coalescing invalidates.
154 AU.addRequiredTransitive<RegisterCoalescer>();
155 if (PreSplitIntervals)
156 AU.addRequiredID(PreAllocSplittingID);
157 AU.addRequired<LiveStacks>();
158 AU.addPreserved<LiveStacks>();
159 AU.addRequired<MachineLoopInfo>();
160 AU.addPreserved<MachineLoopInfo>();
161 AU.addRequired<VirtRegMap>();
162 AU.addPreserved<VirtRegMap>();
163 AU.addPreservedID(MachineDominatorsID);
164 MachineFunctionPass::getAnalysisUsage(AU);
167 /// runOnMachineFunction - register allocate the whole function
168 bool runOnMachineFunction(MachineFunction&);
170 private:
171 /// linearScan - the linear scan algorithm
172 void linearScan();
174 /// initIntervalSets - initialize the interval sets.
176 void initIntervalSets();
178 /// processActiveIntervals - expire old intervals and move non-overlapping
179 /// ones to the inactive list.
180 void processActiveIntervals(unsigned CurPoint);
182 /// processInactiveIntervals - expire old intervals and move overlapping
183 /// ones to the active list.
184 void processInactiveIntervals(unsigned CurPoint);
186 /// hasNextReloadInterval - Return the next liveinterval that's being
187 /// defined by a reload from the same SS as the specified one.
188 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
190 /// DowngradeRegister - Downgrade a register for allocation.
191 void DowngradeRegister(LiveInterval *li, unsigned Reg);
193 /// UpgradeRegister - Upgrade a register for allocation.
194 void UpgradeRegister(unsigned Reg);
196 /// assignRegOrStackSlotAtInterval - assign a register if one
197 /// is available, or spill.
198 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
200 void updateSpillWeights(std::vector<float> &Weights,
201 unsigned reg, float weight,
202 const TargetRegisterClass *RC);
204 /// findIntervalsToSpill - Determine the intervals to spill for the
205 /// specified interval. It's passed the physical registers whose spill
206 /// weight is the lowest among all the registers whose live intervals
207 /// conflict with the interval.
208 void findIntervalsToSpill(LiveInterval *cur,
209 std::vector<std::pair<unsigned,float> > &Candidates,
210 unsigned NumCands,
211 SmallVector<LiveInterval*, 8> &SpillIntervals);
213 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
214 /// try allocate the definition the same register as the source register
215 /// if the register is not defined during live time of the interval. This
216 /// eliminate a copy. This is used to coalesce copies which were not
217 /// coalesced away before allocation either due to dest and src being in
218 /// different register classes or because the coalescer was overly
219 /// conservative.
220 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
223 /// Register usage / availability tracking helpers.
226 void initRegUses() {
227 regUse_.resize(tri_->getNumRegs(), 0);
228 regUseBackUp_.resize(tri_->getNumRegs(), 0);
231 void finalizeRegUses() {
232 #ifndef NDEBUG
233 // Verify all the registers are "freed".
234 bool Error = false;
235 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
236 if (regUse_[i] != 0) {
237 cerr << tri_->getName(i) << " is still in use!\n";
238 Error = true;
241 if (Error)
242 llvm_unreachable(0);
243 #endif
244 regUse_.clear();
245 regUseBackUp_.clear();
248 void addRegUse(unsigned physReg) {
249 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
250 "should be physical register!");
251 ++regUse_[physReg];
252 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
253 ++regUse_[*as];
256 void delRegUse(unsigned physReg) {
257 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
258 "should be physical register!");
259 assert(regUse_[physReg] != 0);
260 --regUse_[physReg];
261 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
262 assert(regUse_[*as] != 0);
263 --regUse_[*as];
267 bool isRegAvail(unsigned physReg) const {
268 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
269 "should be physical register!");
270 return regUse_[physReg] == 0;
273 void backUpRegUses() {
274 regUseBackUp_ = regUse_;
277 void restoreRegUses() {
278 regUse_ = regUseBackUp_;
282 /// Register handling helpers.
285 /// getFreePhysReg - return a free physical register for this virtual
286 /// register interval if we have one, otherwise return 0.
287 unsigned getFreePhysReg(LiveInterval* cur);
288 unsigned getFreePhysReg(LiveInterval* cur,
289 const TargetRegisterClass *RC,
290 unsigned MaxInactiveCount,
291 SmallVector<unsigned, 256> &inactiveCounts,
292 bool SkipDGRegs);
294 /// assignVirt2StackSlot - assigns this virtual register to a
295 /// stack slot. returns the stack slot
296 int assignVirt2StackSlot(unsigned virtReg);
298 void ComputeRelatedRegClasses();
300 template <typename ItTy>
301 void printIntervals(const char* const str, ItTy i, ItTy e) const {
302 if (str) DOUT << str << " intervals:\n";
303 for (; i != e; ++i) {
304 DOUT << "\t" << *i->first << " -> ";
305 unsigned reg = i->first->reg;
306 if (TargetRegisterInfo::isVirtualRegister(reg)) {
307 reg = vrm_->getPhys(reg);
309 DOUT << tri_->getName(reg) << '\n';
313 char RALinScan::ID = 0;
316 static RegisterPass<RALinScan>
317 X("linearscan-regalloc", "Linear Scan Register Allocator");
319 void RALinScan::ComputeRelatedRegClasses() {
320 // First pass, add all reg classes to the union, and determine at least one
321 // reg class that each register is in.
322 bool HasAliases = false;
323 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
324 E = tri_->regclass_end(); RCI != E; ++RCI) {
325 RelatedRegClasses.insert(*RCI);
326 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
327 I != E; ++I) {
328 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
330 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
331 if (PRC) {
332 // Already processed this register. Just make sure we know that
333 // multiple register classes share a register.
334 RelatedRegClasses.unionSets(PRC, *RCI);
335 } else {
336 PRC = *RCI;
341 // Second pass, now that we know conservatively what register classes each reg
342 // belongs to, add info about aliases. We don't need to do this for targets
343 // without register aliases.
344 if (HasAliases)
345 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
346 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
347 I != E; ++I)
348 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
349 RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
352 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
353 /// try allocate the definition the same register as the source register
354 /// if the register is not defined during live time of the interval. This
355 /// eliminate a copy. This is used to coalesce copies which were not
356 /// coalesced away before allocation either due to dest and src being in
357 /// different register classes or because the coalescer was overly
358 /// conservative.
359 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
360 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
361 if ((Preference && Preference == Reg) || !cur.containsOneValue())
362 return Reg;
364 VNInfo *vni = cur.begin()->valno;
365 if (!vni->def || vni->isUnused() || !vni->isDefAccurate())
366 return Reg;
367 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
368 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
369 if (!CopyMI ||
370 !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg))
371 return Reg;
372 PhysReg = SrcReg;
373 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
374 if (!vrm_->isAssignedReg(SrcReg))
375 return Reg;
376 PhysReg = vrm_->getPhys(SrcReg);
378 if (Reg == PhysReg)
379 return Reg;
381 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
382 if (!RC->contains(PhysReg))
383 return Reg;
385 // Try to coalesce.
386 if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) {
387 DOUT << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
388 << '\n';
389 vrm_->clearVirt(cur.reg);
390 vrm_->assignVirt2Phys(cur.reg, PhysReg);
392 // Remove unnecessary kills since a copy does not clobber the register.
393 if (li_->hasInterval(SrcReg)) {
394 LiveInterval &SrcLI = li_->getInterval(SrcReg);
395 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg),
396 E = mri_->reg_end(); I != E; ++I) {
397 MachineOperand &O = I.getOperand();
398 if (!O.isUse() || !O.isKill())
399 continue;
400 MachineInstr *MI = &*I;
401 if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI))))
402 O.setIsKill(false);
406 ++NumCoalesce;
407 return PhysReg;
410 return Reg;
413 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
414 mf_ = &fn;
415 mri_ = &fn.getRegInfo();
416 tm_ = &fn.getTarget();
417 tri_ = tm_->getRegisterInfo();
418 tii_ = tm_->getInstrInfo();
419 allocatableRegs_ = tri_->getAllocatableSet(fn);
420 li_ = &getAnalysis<LiveIntervals>();
421 ls_ = &getAnalysis<LiveStacks>();
422 loopInfo = &getAnalysis<MachineLoopInfo>();
424 // We don't run the coalescer here because we have no reason to
425 // interact with it. If the coalescer requires interaction, it
426 // won't do anything. If it doesn't require interaction, we assume
427 // it was run as a separate pass.
429 // If this is the first function compiled, compute the related reg classes.
430 if (RelatedRegClasses.empty())
431 ComputeRelatedRegClasses();
433 // Also resize register usage trackers.
434 initRegUses();
436 vrm_ = &getAnalysis<VirtRegMap>();
437 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
439 if (NewSpillFramework) {
440 spiller_.reset(createSpiller(mf_, li_, ls_, vrm_));
443 initIntervalSets();
445 linearScan();
447 // Rewrite spill code and update the PhysRegsUsed set.
448 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
450 assert(unhandled_.empty() && "Unhandled live intervals remain!");
452 finalizeRegUses();
454 fixed_.clear();
455 active_.clear();
456 inactive_.clear();
457 handled_.clear();
458 NextReloadMap.clear();
459 DowngradedRegs.clear();
460 DowngradeMap.clear();
461 spiller_.reset(0);
463 return true;
466 /// initIntervalSets - initialize the interval sets.
468 void RALinScan::initIntervalSets()
470 assert(unhandled_.empty() && fixed_.empty() &&
471 active_.empty() && inactive_.empty() &&
472 "interval sets should be empty on initialization");
474 handled_.reserve(li_->getNumIntervals());
476 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
477 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
478 mri_->setPhysRegUsed(i->second->reg);
479 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
480 } else
481 unhandled_.push(i->second);
485 void RALinScan::linearScan()
487 // linear scan algorithm
488 DOUT << "********** LINEAR SCAN **********\n";
489 DEBUG(errs() << "********** Function: "
490 << mf_->getFunction()->getName() << '\n');
492 DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
494 while (!unhandled_.empty()) {
495 // pick the interval with the earliest start point
496 LiveInterval* cur = unhandled_.top();
497 unhandled_.pop();
498 ++NumIters;
499 DOUT << "\n*** CURRENT ***: " << *cur << '\n';
501 if (!cur->empty()) {
502 processActiveIntervals(cur->beginNumber());
503 processInactiveIntervals(cur->beginNumber());
505 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
506 "Can only allocate virtual registers!");
509 // Allocating a virtual register. try to find a free
510 // physical register or spill an interval (possibly this one) in order to
511 // assign it one.
512 assignRegOrStackSlotAtInterval(cur);
514 DEBUG(printIntervals("active", active_.begin(), active_.end()));
515 DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
518 // Expire any remaining active intervals
519 while (!active_.empty()) {
520 IntervalPtr &IP = active_.back();
521 unsigned reg = IP.first->reg;
522 DOUT << "\tinterval " << *IP.first << " expired\n";
523 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
524 "Can only allocate virtual registers!");
525 reg = vrm_->getPhys(reg);
526 delRegUse(reg);
527 active_.pop_back();
530 // Expire any remaining inactive intervals
531 DEBUG(for (IntervalPtrs::reverse_iterator
532 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
533 DOUT << "\tinterval " << *i->first << " expired\n");
534 inactive_.clear();
536 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
537 MachineFunction::iterator EntryMBB = mf_->begin();
538 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
539 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
540 LiveInterval &cur = *i->second;
541 unsigned Reg = 0;
542 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
543 if (isPhys)
544 Reg = cur.reg;
545 else if (vrm_->isAssignedReg(cur.reg))
546 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
547 if (!Reg)
548 continue;
549 // Ignore splited live intervals.
550 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
551 continue;
553 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
554 I != E; ++I) {
555 const LiveRange &LR = *I;
556 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
557 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
558 if (LiveInMBBs[i] != EntryMBB) {
559 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
560 "Adding a virtual register to livein set?");
561 LiveInMBBs[i]->addLiveIn(Reg);
563 LiveInMBBs.clear();
568 DOUT << *vrm_;
570 // Look for physical registers that end up not being allocated even though
571 // register allocator had to spill other registers in its register class.
572 if (ls_->getNumIntervals() == 0)
573 return;
574 if (!vrm_->FindUnusedRegisters(li_))
575 return;
578 /// processActiveIntervals - expire old intervals and move non-overlapping ones
579 /// to the inactive list.
580 void RALinScan::processActiveIntervals(unsigned CurPoint)
582 DOUT << "\tprocessing active intervals:\n";
584 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
585 LiveInterval *Interval = active_[i].first;
586 LiveInterval::iterator IntervalPos = active_[i].second;
587 unsigned reg = Interval->reg;
589 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
591 if (IntervalPos == Interval->end()) { // Remove expired intervals.
592 DOUT << "\t\tinterval " << *Interval << " expired\n";
593 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
594 "Can only allocate virtual registers!");
595 reg = vrm_->getPhys(reg);
596 delRegUse(reg);
598 // Pop off the end of the list.
599 active_[i] = active_.back();
600 active_.pop_back();
601 --i; --e;
603 } else if (IntervalPos->start > CurPoint) {
604 // Move inactive intervals to inactive list.
605 DOUT << "\t\tinterval " << *Interval << " inactive\n";
606 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
607 "Can only allocate virtual registers!");
608 reg = vrm_->getPhys(reg);
609 delRegUse(reg);
610 // add to inactive.
611 inactive_.push_back(std::make_pair(Interval, IntervalPos));
613 // Pop off the end of the list.
614 active_[i] = active_.back();
615 active_.pop_back();
616 --i; --e;
617 } else {
618 // Otherwise, just update the iterator position.
619 active_[i].second = IntervalPos;
624 /// processInactiveIntervals - expire old intervals and move overlapping
625 /// ones to the active list.
626 void RALinScan::processInactiveIntervals(unsigned CurPoint)
628 DOUT << "\tprocessing inactive intervals:\n";
630 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
631 LiveInterval *Interval = inactive_[i].first;
632 LiveInterval::iterator IntervalPos = inactive_[i].second;
633 unsigned reg = Interval->reg;
635 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
637 if (IntervalPos == Interval->end()) { // remove expired intervals.
638 DOUT << "\t\tinterval " << *Interval << " expired\n";
640 // Pop off the end of the list.
641 inactive_[i] = inactive_.back();
642 inactive_.pop_back();
643 --i; --e;
644 } else if (IntervalPos->start <= CurPoint) {
645 // move re-activated intervals in active list
646 DOUT << "\t\tinterval " << *Interval << " active\n";
647 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
648 "Can only allocate virtual registers!");
649 reg = vrm_->getPhys(reg);
650 addRegUse(reg);
651 // add to active
652 active_.push_back(std::make_pair(Interval, IntervalPos));
654 // Pop off the end of the list.
655 inactive_[i] = inactive_.back();
656 inactive_.pop_back();
657 --i; --e;
658 } else {
659 // Otherwise, just update the iterator position.
660 inactive_[i].second = IntervalPos;
665 /// updateSpillWeights - updates the spill weights of the specifed physical
666 /// register and its weight.
667 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
668 unsigned reg, float weight,
669 const TargetRegisterClass *RC) {
670 SmallSet<unsigned, 4> Processed;
671 SmallSet<unsigned, 4> SuperAdded;
672 SmallVector<unsigned, 4> Supers;
673 Weights[reg] += weight;
674 Processed.insert(reg);
675 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
676 Weights[*as] += weight;
677 Processed.insert(*as);
678 if (tri_->isSubRegister(*as, reg) &&
679 SuperAdded.insert(*as) &&
680 RC->contains(*as)) {
681 Supers.push_back(*as);
685 // If the alias is a super-register, and the super-register is in the
686 // register class we are trying to allocate. Then add the weight to all
687 // sub-registers of the super-register even if they are not aliases.
688 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
689 // bl should get the same spill weight otherwise it will be choosen
690 // as a spill candidate since spilling bh doesn't make ebx available.
691 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
692 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
693 if (!Processed.count(*sr))
694 Weights[*sr] += weight;
698 static
699 RALinScan::IntervalPtrs::iterator
700 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
701 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
702 I != E; ++I)
703 if (I->first == LI) return I;
704 return IP.end();
707 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
708 for (unsigned i = 0, e = V.size(); i != e; ++i) {
709 RALinScan::IntervalPtr &IP = V[i];
710 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
711 IP.second, Point);
712 if (I != IP.first->begin()) --I;
713 IP.second = I;
717 /// addStackInterval - Create a LiveInterval for stack if the specified live
718 /// interval has been spilled.
719 static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
720 LiveIntervals *li_,
721 MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
722 int SS = vrm_.getStackSlot(cur->reg);
723 if (SS == VirtRegMap::NO_STACK_SLOT)
724 return;
726 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
727 LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);
729 VNInfo *VNI;
730 if (SI.hasAtLeastOneValue())
731 VNI = SI.getValNumInfo(0);
732 else
733 VNI = SI.getNextValue(0, 0, false, ls_->getVNInfoAllocator());
735 LiveInterval &RI = li_->getInterval(cur->reg);
736 // FIXME: This may be overly conservative.
737 SI.MergeRangesInAsValue(RI, VNI);
740 /// getConflictWeight - Return the number of conflicts between cur
741 /// live interval and defs and uses of Reg weighted by loop depthes.
742 static
743 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
744 MachineRegisterInfo *mri_,
745 const MachineLoopInfo *loopInfo) {
746 float Conflicts = 0;
747 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
748 E = mri_->reg_end(); I != E; ++I) {
749 MachineInstr *MI = &*I;
750 if (cur->liveAt(li_->getInstructionIndex(MI))) {
751 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
752 Conflicts += powf(10.0f, (float)loopDepth);
755 return Conflicts;
758 /// findIntervalsToSpill - Determine the intervals to spill for the
759 /// specified interval. It's passed the physical registers whose spill
760 /// weight is the lowest among all the registers whose live intervals
761 /// conflict with the interval.
762 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
763 std::vector<std::pair<unsigned,float> > &Candidates,
764 unsigned NumCands,
765 SmallVector<LiveInterval*, 8> &SpillIntervals) {
766 // We have figured out the *best* register to spill. But there are other
767 // registers that are pretty good as well (spill weight within 3%). Spill
768 // the one that has fewest defs and uses that conflict with cur.
769 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
770 SmallVector<LiveInterval*, 8> SLIs[3];
772 DOUT << "\tConsidering " << NumCands << " candidates: ";
773 DEBUG(for (unsigned i = 0; i != NumCands; ++i)
774 DOUT << tri_->getName(Candidates[i].first) << " ";
775 DOUT << "\n";);
777 // Calculate the number of conflicts of each candidate.
778 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
779 unsigned Reg = i->first->reg;
780 unsigned PhysReg = vrm_->getPhys(Reg);
781 if (!cur->overlapsFrom(*i->first, i->second))
782 continue;
783 for (unsigned j = 0; j < NumCands; ++j) {
784 unsigned Candidate = Candidates[j].first;
785 if (tri_->regsOverlap(PhysReg, Candidate)) {
786 if (NumCands > 1)
787 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
788 SLIs[j].push_back(i->first);
793 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
794 unsigned Reg = i->first->reg;
795 unsigned PhysReg = vrm_->getPhys(Reg);
796 if (!cur->overlapsFrom(*i->first, i->second-1))
797 continue;
798 for (unsigned j = 0; j < NumCands; ++j) {
799 unsigned Candidate = Candidates[j].first;
800 if (tri_->regsOverlap(PhysReg, Candidate)) {
801 if (NumCands > 1)
802 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
803 SLIs[j].push_back(i->first);
808 // Which is the best candidate?
809 unsigned BestCandidate = 0;
810 float MinConflicts = Conflicts[0];
811 for (unsigned i = 1; i != NumCands; ++i) {
812 if (Conflicts[i] < MinConflicts) {
813 BestCandidate = i;
814 MinConflicts = Conflicts[i];
818 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
819 std::back_inserter(SpillIntervals));
822 namespace {
823 struct WeightCompare {
824 typedef std::pair<unsigned, float> RegWeightPair;
825 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
826 return LHS.second < RHS.second;
831 static bool weightsAreClose(float w1, float w2) {
832 if (!NewHeuristic)
833 return false;
835 float diff = w1 - w2;
836 if (diff <= 0.02f) // Within 0.02f
837 return true;
838 return (diff / w2) <= 0.05f; // Within 5%.
841 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
842 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
843 if (I == NextReloadMap.end())
844 return 0;
845 return &li_->getInterval(I->second);
848 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
849 bool isNew = DowngradedRegs.insert(Reg);
850 isNew = isNew; // Silence compiler warning.
851 assert(isNew && "Multiple reloads holding the same register?");
852 DowngradeMap.insert(std::make_pair(li->reg, Reg));
853 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
854 isNew = DowngradedRegs.insert(*AS);
855 isNew = isNew; // Silence compiler warning.
856 assert(isNew && "Multiple reloads holding the same register?");
857 DowngradeMap.insert(std::make_pair(li->reg, *AS));
859 ++NumDowngrade;
862 void RALinScan::UpgradeRegister(unsigned Reg) {
863 if (Reg) {
864 DowngradedRegs.erase(Reg);
865 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
866 DowngradedRegs.erase(*AS);
870 namespace {
871 struct LISorter {
872 bool operator()(LiveInterval* A, LiveInterval* B) {
873 return A->beginNumber() < B->beginNumber();
878 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
879 /// spill.
880 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
882 DOUT << "\tallocating current interval: ";
884 // This is an implicitly defined live interval, just assign any register.
885 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
886 if (cur->empty()) {
887 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
888 if (!physReg)
889 physReg = *RC->allocation_order_begin(*mf_);
890 DOUT << tri_->getName(physReg) << '\n';
891 // Note the register is not really in use.
892 vrm_->assignVirt2Phys(cur->reg, physReg);
893 return;
896 backUpRegUses();
898 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
899 unsigned StartPosition = cur->beginNumber();
900 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
902 // If start of this live interval is defined by a move instruction and its
903 // source is assigned a physical register that is compatible with the target
904 // register class, then we should try to assign it the same register.
905 // This can happen when the move is from a larger register class to a smaller
906 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
907 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
908 VNInfo *vni = cur->begin()->valno;
909 if (vni->def && !vni->isUnused() && vni->isDefAccurate()) {
910 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
911 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
912 if (CopyMI &&
913 tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
914 unsigned Reg = 0;
915 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
916 Reg = SrcReg;
917 else if (vrm_->isAssignedReg(SrcReg))
918 Reg = vrm_->getPhys(SrcReg);
919 if (Reg) {
920 if (SrcSubReg)
921 Reg = tri_->getSubReg(Reg, SrcSubReg);
922 if (DstSubReg)
923 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
924 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
925 mri_->setRegAllocationHint(cur->reg, 0, Reg);
931 // For every interval in inactive we overlap with, mark the
932 // register as not free and update spill weights.
933 for (IntervalPtrs::const_iterator i = inactive_.begin(),
934 e = inactive_.end(); i != e; ++i) {
935 unsigned Reg = i->first->reg;
936 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
937 "Can only allocate virtual registers!");
938 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
939 // If this is not in a related reg class to the register we're allocating,
940 // don't check it.
941 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
942 cur->overlapsFrom(*i->first, i->second-1)) {
943 Reg = vrm_->getPhys(Reg);
944 addRegUse(Reg);
945 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
949 // Speculatively check to see if we can get a register right now. If not,
950 // we know we won't be able to by adding more constraints. If so, we can
951 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
952 // is very bad (it contains all callee clobbered registers for any functions
953 // with a call), so we want to avoid doing that if possible.
954 unsigned physReg = getFreePhysReg(cur);
955 unsigned BestPhysReg = physReg;
956 if (physReg) {
957 // We got a register. However, if it's in the fixed_ list, we might
958 // conflict with it. Check to see if we conflict with it or any of its
959 // aliases.
960 SmallSet<unsigned, 8> RegAliases;
961 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
962 RegAliases.insert(*AS);
964 bool ConflictsWithFixed = false;
965 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
966 IntervalPtr &IP = fixed_[i];
967 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
968 // Okay, this reg is on the fixed list. Check to see if we actually
969 // conflict.
970 LiveInterval *I = IP.first;
971 if (I->endNumber() > StartPosition) {
972 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
973 IP.second = II;
974 if (II != I->begin() && II->start > StartPosition)
975 --II;
976 if (cur->overlapsFrom(*I, II)) {
977 ConflictsWithFixed = true;
978 break;
984 // Okay, the register picked by our speculative getFreePhysReg call turned
985 // out to be in use. Actually add all of the conflicting fixed registers to
986 // regUse_ so we can do an accurate query.
987 if (ConflictsWithFixed) {
988 // For every interval in fixed we overlap with, mark the register as not
989 // free and update spill weights.
990 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
991 IntervalPtr &IP = fixed_[i];
992 LiveInterval *I = IP.first;
994 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
995 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
996 I->endNumber() > StartPosition) {
997 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
998 IP.second = II;
999 if (II != I->begin() && II->start > StartPosition)
1000 --II;
1001 if (cur->overlapsFrom(*I, II)) {
1002 unsigned reg = I->reg;
1003 addRegUse(reg);
1004 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1009 // Using the newly updated regUse_ object, which includes conflicts in the
1010 // future, see if there are any registers available.
1011 physReg = getFreePhysReg(cur);
1015 // Restore the physical register tracker, removing information about the
1016 // future.
1017 restoreRegUses();
1019 // If we find a free register, we are done: assign this virtual to
1020 // the free physical register and add this interval to the active
1021 // list.
1022 if (physReg) {
1023 DOUT << tri_->getName(physReg) << '\n';
1024 vrm_->assignVirt2Phys(cur->reg, physReg);
1025 addRegUse(physReg);
1026 active_.push_back(std::make_pair(cur, cur->begin()));
1027 handled_.push_back(cur);
1029 // "Upgrade" the physical register since it has been allocated.
1030 UpgradeRegister(physReg);
1031 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1032 // "Downgrade" physReg to try to keep physReg from being allocated until
1033 // the next reload from the same SS is allocated.
1034 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1035 DowngradeRegister(cur, physReg);
1037 return;
1039 DOUT << "no free registers\n";
1041 // Compile the spill weights into an array that is better for scanning.
1042 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1043 for (std::vector<std::pair<unsigned, float> >::iterator
1044 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1045 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1047 // for each interval in active, update spill weights.
1048 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1049 i != e; ++i) {
1050 unsigned reg = i->first->reg;
1051 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1052 "Can only allocate virtual registers!");
1053 reg = vrm_->getPhys(reg);
1054 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1057 DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
1059 // Find a register to spill.
1060 float minWeight = HUGE_VALF;
1061 unsigned minReg = 0;
1063 bool Found = false;
1064 std::vector<std::pair<unsigned,float> > RegsWeights;
1065 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1066 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1067 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1068 unsigned reg = *i;
1069 float regWeight = SpillWeights[reg];
1070 if (minWeight > regWeight)
1071 Found = true;
1072 RegsWeights.push_back(std::make_pair(reg, regWeight));
1075 // If we didn't find a register that is spillable, try aliases?
1076 if (!Found) {
1077 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1078 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1079 unsigned reg = *i;
1080 // No need to worry about if the alias register size < regsize of RC.
1081 // We are going to spill all registers that alias it anyway.
1082 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1083 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1087 // Sort all potential spill candidates by weight.
1088 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
1089 minReg = RegsWeights[0].first;
1090 minWeight = RegsWeights[0].second;
1091 if (minWeight == HUGE_VALF) {
1092 // All registers must have inf weight. Just grab one!
1093 minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
1094 if (cur->weight == HUGE_VALF ||
1095 li_->getApproximateInstructionCount(*cur) == 0) {
1096 // Spill a physical register around defs and uses.
1097 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1098 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1099 // in fixed_. Reset them.
1100 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1101 IntervalPtr &IP = fixed_[i];
1102 LiveInterval *I = IP.first;
1103 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1104 IP.second = I->advanceTo(I->begin(), StartPosition);
1107 DowngradedRegs.clear();
1108 assignRegOrStackSlotAtInterval(cur);
1109 } else {
1110 llvm_report_error("Ran out of registers during register allocation!");
1112 return;
1116 // Find up to 3 registers to consider as spill candidates.
1117 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1118 while (LastCandidate > 1) {
1119 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1120 break;
1121 --LastCandidate;
1124 DOUT << "\t\tregister(s) with min weight(s): ";
1125 DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
1126 DOUT << tri_->getName(RegsWeights[i].first)
1127 << " (" << RegsWeights[i].second << ")\n");
1129 // If the current has the minimum weight, we need to spill it and
1130 // add any added intervals back to unhandled, and restart
1131 // linearscan.
1132 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1133 DOUT << "\t\t\tspilling(c): " << *cur << '\n';
1134 SmallVector<LiveInterval*, 8> spillIs;
1135 std::vector<LiveInterval*> added;
1137 if (!NewSpillFramework) {
1138 added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
1139 } else {
1140 added = spiller_->spill(cur);
1143 std::sort(added.begin(), added.end(), LISorter());
1144 addStackInterval(cur, ls_, li_, mri_, *vrm_);
1145 if (added.empty())
1146 return; // Early exit if all spills were folded.
1148 // Merge added with unhandled. Note that we have already sorted
1149 // intervals returned by addIntervalsForSpills by their starting
1150 // point.
1151 // This also update the NextReloadMap. That is, it adds mapping from a
1152 // register defined by a reload from SS to the next reload from SS in the
1153 // same basic block.
1154 MachineBasicBlock *LastReloadMBB = 0;
1155 LiveInterval *LastReload = 0;
1156 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1157 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1158 LiveInterval *ReloadLi = added[i];
1159 if (ReloadLi->weight == HUGE_VALF &&
1160 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1161 unsigned ReloadIdx = ReloadLi->beginNumber();
1162 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1163 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1164 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1165 // Last reload of same SS is in the same MBB. We want to try to
1166 // allocate both reloads the same register and make sure the reg
1167 // isn't clobbered in between if at all possible.
1168 assert(LastReload->beginNumber() < ReloadIdx);
1169 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1171 LastReloadMBB = ReloadMBB;
1172 LastReload = ReloadLi;
1173 LastReloadSS = ReloadSS;
1175 unhandled_.push(ReloadLi);
1177 return;
1180 ++NumBacktracks;
1182 // Push the current interval back to unhandled since we are going
1183 // to re-run at least this iteration. Since we didn't modify it it
1184 // should go back right in the front of the list
1185 unhandled_.push(cur);
1187 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1188 "did not choose a register to spill?");
1190 // We spill all intervals aliasing the register with
1191 // minimum weight, rollback to the interval with the earliest
1192 // start point and let the linear scan algorithm run again
1193 SmallVector<LiveInterval*, 8> spillIs;
1195 // Determine which intervals have to be spilled.
1196 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1198 // Set of spilled vregs (used later to rollback properly)
1199 SmallSet<unsigned, 8> spilled;
1201 // The earliest start of a Spilled interval indicates up to where
1202 // in handled we need to roll back
1204 LiveInterval *earliestStartInterval = cur;
1206 // Spill live intervals of virtual regs mapped to the physical register we
1207 // want to clear (and its aliases). We only spill those that overlap with the
1208 // current interval as the rest do not affect its allocation. we also keep
1209 // track of the earliest start of all spilled live intervals since this will
1210 // mark our rollback point.
1211 std::vector<LiveInterval*> added;
1212 while (!spillIs.empty()) {
1213 LiveInterval *sli = spillIs.back();
1214 spillIs.pop_back();
1215 DOUT << "\t\t\tspilling(a): " << *sli << '\n';
1216 earliestStartInterval =
1217 (earliestStartInterval->beginNumber() < sli->beginNumber()) ?
1218 earliestStartInterval : sli;
1220 std::vector<LiveInterval*> newIs;
1221 if (!NewSpillFramework) {
1222 newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
1223 } else {
1224 newIs = spiller_->spill(sli);
1226 addStackInterval(sli, ls_, li_, mri_, *vrm_);
1227 std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
1228 spilled.insert(sli->reg);
1231 unsigned earliestStart = earliestStartInterval->beginNumber();
1233 DOUT << "\t\trolling back to: " << earliestStart << '\n';
1235 // Scan handled in reverse order up to the earliest start of a
1236 // spilled live interval and undo each one, restoring the state of
1237 // unhandled.
1238 while (!handled_.empty()) {
1239 LiveInterval* i = handled_.back();
1240 // If this interval starts before t we are done.
1241 if (i->beginNumber() < earliestStart)
1242 break;
1243 DOUT << "\t\t\tundo changes for: " << *i << '\n';
1244 handled_.pop_back();
1246 // When undoing a live interval allocation we must know if it is active or
1247 // inactive to properly update regUse_ and the VirtRegMap.
1248 IntervalPtrs::iterator it;
1249 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1250 active_.erase(it);
1251 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1252 if (!spilled.count(i->reg))
1253 unhandled_.push(i);
1254 delRegUse(vrm_->getPhys(i->reg));
1255 vrm_->clearVirt(i->reg);
1256 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1257 inactive_.erase(it);
1258 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1259 if (!spilled.count(i->reg))
1260 unhandled_.push(i);
1261 vrm_->clearVirt(i->reg);
1262 } else {
1263 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1264 "Can only allocate virtual registers!");
1265 vrm_->clearVirt(i->reg);
1266 unhandled_.push(i);
1269 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1270 if (ii == DowngradeMap.end())
1271 // It interval has a preference, it must be defined by a copy. Clear the
1272 // preference now since the source interval allocation may have been
1273 // undone as well.
1274 mri_->setRegAllocationHint(i->reg, 0, 0);
1275 else {
1276 UpgradeRegister(ii->second);
1280 // Rewind the iterators in the active, inactive, and fixed lists back to the
1281 // point we reverted to.
1282 RevertVectorIteratorsTo(active_, earliestStart);
1283 RevertVectorIteratorsTo(inactive_, earliestStart);
1284 RevertVectorIteratorsTo(fixed_, earliestStart);
1286 // Scan the rest and undo each interval that expired after t and
1287 // insert it in active (the next iteration of the algorithm will
1288 // put it in inactive if required)
1289 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1290 LiveInterval *HI = handled_[i];
1291 if (!HI->expiredAt(earliestStart) &&
1292 HI->expiredAt(cur->beginNumber())) {
1293 DOUT << "\t\t\tundo changes for: " << *HI << '\n';
1294 active_.push_back(std::make_pair(HI, HI->begin()));
1295 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1296 addRegUse(vrm_->getPhys(HI->reg));
1300 // Merge added with unhandled.
1301 // This also update the NextReloadMap. That is, it adds mapping from a
1302 // register defined by a reload from SS to the next reload from SS in the
1303 // same basic block.
1304 MachineBasicBlock *LastReloadMBB = 0;
1305 LiveInterval *LastReload = 0;
1306 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1307 std::sort(added.begin(), added.end(), LISorter());
1308 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1309 LiveInterval *ReloadLi = added[i];
1310 if (ReloadLi->weight == HUGE_VALF &&
1311 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1312 unsigned ReloadIdx = ReloadLi->beginNumber();
1313 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1314 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1315 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1316 // Last reload of same SS is in the same MBB. We want to try to
1317 // allocate both reloads the same register and make sure the reg
1318 // isn't clobbered in between if at all possible.
1319 assert(LastReload->beginNumber() < ReloadIdx);
1320 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1322 LastReloadMBB = ReloadMBB;
1323 LastReload = ReloadLi;
1324 LastReloadSS = ReloadSS;
1326 unhandled_.push(ReloadLi);
1330 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1331 const TargetRegisterClass *RC,
1332 unsigned MaxInactiveCount,
1333 SmallVector<unsigned, 256> &inactiveCounts,
1334 bool SkipDGRegs) {
1335 unsigned FreeReg = 0;
1336 unsigned FreeRegInactiveCount = 0;
1338 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1339 // Resolve second part of the hint (if possible) given the current allocation.
1340 unsigned physReg = Hint.second;
1341 if (physReg &&
1342 TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1343 physReg = vrm_->getPhys(physReg);
1345 TargetRegisterClass::iterator I, E;
1346 tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
1347 assert(I != E && "No allocatable register in this register class!");
1349 // Scan for the first available register.
1350 for (; I != E; ++I) {
1351 unsigned Reg = *I;
1352 // Ignore "downgraded" registers.
1353 if (SkipDGRegs && DowngradedRegs.count(Reg))
1354 continue;
1355 if (isRegAvail(Reg)) {
1356 FreeReg = Reg;
1357 if (FreeReg < inactiveCounts.size())
1358 FreeRegInactiveCount = inactiveCounts[FreeReg];
1359 else
1360 FreeRegInactiveCount = 0;
1361 break;
1365 // If there are no free regs, or if this reg has the max inactive count,
1366 // return this register.
1367 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
1368 return FreeReg;
1370 // Continue scanning the registers, looking for the one with the highest
1371 // inactive count. Alkis found that this reduced register pressure very
1372 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1373 // reevaluated now.
1374 for (; I != E; ++I) {
1375 unsigned Reg = *I;
1376 // Ignore "downgraded" registers.
1377 if (SkipDGRegs && DowngradedRegs.count(Reg))
1378 continue;
1379 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1380 FreeRegInactiveCount < inactiveCounts[Reg]) {
1381 FreeReg = Reg;
1382 FreeRegInactiveCount = inactiveCounts[Reg];
1383 if (FreeRegInactiveCount == MaxInactiveCount)
1384 break; // We found the one with the max inactive count.
1388 return FreeReg;
1391 /// getFreePhysReg - return a free physical register for this virtual register
1392 /// interval if we have one, otherwise return 0.
1393 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1394 SmallVector<unsigned, 256> inactiveCounts;
1395 unsigned MaxInactiveCount = 0;
1397 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1398 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1400 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1401 i != e; ++i) {
1402 unsigned reg = i->first->reg;
1403 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1404 "Can only allocate virtual registers!");
1406 // If this is not in a related reg class to the register we're allocating,
1407 // don't check it.
1408 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1409 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1410 reg = vrm_->getPhys(reg);
1411 if (inactiveCounts.size() <= reg)
1412 inactiveCounts.resize(reg+1);
1413 ++inactiveCounts[reg];
1414 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1418 // If copy coalescer has assigned a "preferred" register, check if it's
1419 // available first.
1420 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1421 if (Preference) {
1422 DOUT << "(preferred: " << tri_->getName(Preference) << ") ";
1423 if (isRegAvail(Preference) &&
1424 RC->contains(Preference))
1425 return Preference;
1428 if (!DowngradedRegs.empty()) {
1429 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1430 true);
1431 if (FreeReg)
1432 return FreeReg;
1434 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1437 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1438 return new RALinScan();