Big change #1 for personality function references:
[llvm/avr.git] / lib / CodeGen / AsmPrinter / DwarfException.cpp
blob4ee8d8c6d58cb6d104a11664587809641294b90b
1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing DWARF exception info into asm files.
12 //===----------------------------------------------------------------------===//
14 #include "DwarfException.h"
15 #include "llvm/Module.h"
16 #include "llvm/CodeGen/MachineModuleInfo.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineLocation.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetFrameInfo.h"
27 #include "llvm/Target/TargetLoweringObjectFile.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Target/TargetRegisterInfo.h"
30 #include "llvm/Support/Dwarf.h"
31 #include "llvm/Support/Mangler.h"
32 #include "llvm/Support/Timer.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/StringExtras.h"
36 using namespace llvm;
38 static TimerGroup &getDwarfTimerGroup() {
39 static TimerGroup DwarfTimerGroup("DWARF Exception");
40 return DwarfTimerGroup;
43 DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
44 const MCAsmInfo *T)
45 : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
46 shouldEmitTableModule(false), shouldEmitMovesModule(false),
47 ExceptionTimer(0) {
48 if (TimePassesIsEnabled)
49 ExceptionTimer = new Timer("DWARF Exception Writer",
50 getDwarfTimerGroup());
53 DwarfException::~DwarfException() {
54 delete ExceptionTimer;
57 /// SizeOfEncodedValue - Return the size of the encoding in bytes.
58 unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
59 if (Encoding == dwarf::DW_EH_PE_omit)
60 return 0;
62 switch (Encoding & 0x07) {
63 case dwarf::DW_EH_PE_absptr:
64 return TD->getPointerSize();
65 case dwarf::DW_EH_PE_udata2:
66 return 2;
67 case dwarf::DW_EH_PE_udata4:
68 return 4;
69 case dwarf::DW_EH_PE_udata8:
70 return 8;
73 assert(0 && "Invalid encoded value.");
74 return 0;
77 /// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
78 /// is shared among many Frame Description Entries. There is at least one CIE
79 /// in every non-empty .debug_frame section.
80 void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
81 // Size and sign of stack growth.
82 int stackGrowth =
83 Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
84 TargetFrameInfo::StackGrowsUp ?
85 TD->getPointerSize() : -TD->getPointerSize();
87 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
89 // Begin eh frame section.
90 Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
92 if (MAI->is_EHSymbolPrivate())
93 O << MAI->getPrivateGlobalPrefix();
94 O << "EH_frame" << Index << ":\n";
96 EmitLabel("section_eh_frame", Index);
98 // Define base labels.
99 EmitLabel("eh_frame_common", Index);
101 // Define the eh frame length.
102 EmitDifference("eh_frame_common_end", Index,
103 "eh_frame_common_begin", Index, true);
104 Asm->EOL("Length of Common Information Entry");
106 // EH frame header.
107 EmitLabel("eh_frame_common_begin", Index);
108 Asm->EmitInt32((int)0);
109 Asm->EOL("CIE Identifier Tag");
110 Asm->EmitInt8(dwarf::DW_CIE_VERSION);
111 Asm->EOL("CIE Version");
113 // The personality presence indicates that language specific information will
114 // show up in the eh frame. Find out how we are supposed to lower the
115 // personality function reference:
116 const MCExpr *PersonalityRef = 0;
117 bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
118 if (PersonalityFn) {
119 // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
121 // In non-static mode, ask the object file how to represent this reference.
122 PersonalityRef =
123 TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
124 IsPersonalityIndirect,
125 IsPersonalityPCRel);
128 unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
129 if (IsPersonalityIndirect)
130 PerEncoding |= dwarf::DW_EH_PE_indirect;
131 unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
132 unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
134 char Augmentation[5] = { 0 };
135 unsigned AugmentationSize = 0;
136 char *APtr = Augmentation + 1;
138 if (PersonalityRef) {
139 // There is a personality function.
140 *APtr++ = 'P';
141 AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
144 if (UsesLSDA[Index]) {
145 // An LSDA pointer is in the FDE augmentation.
146 *APtr++ = 'L';
147 ++AugmentationSize;
150 if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
151 // A non-default pointer encoding for the FDE.
152 *APtr++ = 'R';
153 ++AugmentationSize;
156 if (APtr != Augmentation + 1)
157 Augmentation[0] = 'z';
159 Asm->EmitString(Augmentation);
160 Asm->EOL("CIE Augmentation");
162 // Round out reader.
163 Asm->EmitULEB128Bytes(1);
164 Asm->EOL("CIE Code Alignment Factor");
165 Asm->EmitSLEB128Bytes(stackGrowth);
166 Asm->EOL("CIE Data Alignment Factor");
167 Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
168 Asm->EOL("CIE Return Address Column");
170 Asm->EmitULEB128Bytes(AugmentationSize);
171 Asm->EOL("Augmentation Size");
173 Asm->EmitInt8(PerEncoding);
174 Asm->EOL("Personality", PerEncoding);
176 // If there is a personality, we need to indicate the function's location.
177 if (PersonalityRef) {
178 // If the reference to the personality function symbol is not already
179 // pc-relative, then we need to subtract our current address from it. Do
180 // this by emitting a label and subtracting it from the expression we
181 // already have. This is equivalent to emitting "foo - .", but we have to
182 // emit the label for "." directly.
183 if (!IsPersonalityPCRel) {
184 SmallString<64> Name;
185 raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
186 << "personalityref_addr" << Asm->getFunctionNumber() << "_" << Index;
187 MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
188 Asm->OutStreamer.EmitLabel(DotSym);
190 PersonalityRef =
191 MCBinaryExpr::CreateSub(PersonalityRef,
192 MCSymbolRefExpr::Create(DotSym,Asm->OutContext),
193 Asm->OutContext);
196 O << MAI->getData32bitsDirective();
197 PersonalityRef->print(O, MAI);
198 Asm->EOL("Personality");
200 Asm->EmitInt8(LSDAEncoding);
201 Asm->EOL("LSDA Encoding", LSDAEncoding);
203 Asm->EmitInt8(FDEEncoding);
204 Asm->EOL("FDE Encoding", FDEEncoding);
207 // Indicate locations of general callee saved registers in frame.
208 std::vector<MachineMove> Moves;
209 RI->getInitialFrameState(Moves);
210 EmitFrameMoves(NULL, 0, Moves, true);
212 // On Darwin the linker honors the alignment of eh_frame, which means it must
213 // be 8-byte on 64-bit targets to match what gcc does. Otherwise you get
214 // holes which confuse readers of eh_frame.
215 Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
216 EmitLabel("eh_frame_common_end", Index);
218 Asm->EOL();
221 /// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
222 void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
223 assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
224 "Should not emit 'available externally' functions at all");
226 const Function *TheFunc = EHFrameInfo.function;
228 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
230 // Externally visible entry into the functions eh frame info. If the
231 // corresponding function is static, this should not be externally visible.
232 if (!TheFunc->hasLocalLinkage())
233 if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
234 O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
236 // If corresponding function is weak definition, this should be too.
237 if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
238 O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
240 // If there are no calls then you can't unwind. This may mean we can omit the
241 // EH Frame, but some environments do not handle weak absolute symbols. If
242 // UnwindTablesMandatory is set we cannot do this optimization; the unwind
243 // info is to be available for non-EH uses.
244 if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
245 (!TheFunc->isWeakForLinker() ||
246 !MAI->getWeakDefDirective() ||
247 MAI->getSupportsWeakOmittedEHFrame())) {
248 O << EHFrameInfo.FnName << " = 0\n";
249 // This name has no connection to the function, so it might get
250 // dead-stripped when the function is not, erroneously. Prohibit
251 // dead-stripping unconditionally.
252 if (const char *UsedDirective = MAI->getUsedDirective())
253 O << UsedDirective << EHFrameInfo.FnName << "\n\n";
254 } else {
255 O << EHFrameInfo.FnName << ":\n";
257 // EH frame header.
258 EmitDifference("eh_frame_end", EHFrameInfo.Number,
259 "eh_frame_begin", EHFrameInfo.Number, true);
260 Asm->EOL("Length of Frame Information Entry");
262 EmitLabel("eh_frame_begin", EHFrameInfo.Number);
264 EmitSectionOffset("eh_frame_begin", "eh_frame_common",
265 EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
266 true, true, false);
268 Asm->EOL("FDE CIE offset");
270 EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
271 Asm->EOL("FDE initial location");
272 EmitDifference("eh_func_end", EHFrameInfo.Number,
273 "eh_func_begin", EHFrameInfo.Number, true);
274 Asm->EOL("FDE address range");
276 // If there is a personality and landing pads then point to the language
277 // specific data area in the exception table.
278 if (MMI->getPersonalities()[0] != NULL) {
279 bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
281 Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
282 Asm->EOL("Augmentation size");
284 if (EHFrameInfo.hasLandingPads)
285 EmitReference("exception", EHFrameInfo.Number, true, false);
286 else {
287 if (is4Byte)
288 Asm->EmitInt32((int)0);
289 else
290 Asm->EmitInt64((int)0);
292 Asm->EOL("Language Specific Data Area");
293 } else {
294 Asm->EmitULEB128Bytes(0);
295 Asm->EOL("Augmentation size");
298 // Indicate locations of function specific callee saved registers in frame.
299 EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
300 true);
302 // On Darwin the linker honors the alignment of eh_frame, which means it
303 // must be 8-byte on 64-bit targets to match what gcc does. Otherwise you
304 // get holes which confuse readers of eh_frame.
305 Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
306 0, 0, false);
307 EmitLabel("eh_frame_end", EHFrameInfo.Number);
309 // If the function is marked used, this table should be also. We cannot
310 // make the mark unconditional in this case, since retaining the table also
311 // retains the function in this case, and there is code around that depends
312 // on unused functions (calling undefined externals) being dead-stripped to
313 // link correctly. Yes, there really is.
314 if (MMI->isUsedFunction(EHFrameInfo.function))
315 if (const char *UsedDirective = MAI->getUsedDirective())
316 O << UsedDirective << EHFrameInfo.FnName << "\n\n";
319 Asm->EOL();
322 /// SharedTypeIds - How many leading type ids two landing pads have in common.
323 unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
324 const LandingPadInfo *R) {
325 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
326 unsigned LSize = LIds.size(), RSize = RIds.size();
327 unsigned MinSize = LSize < RSize ? LSize : RSize;
328 unsigned Count = 0;
330 for (; Count != MinSize; ++Count)
331 if (LIds[Count] != RIds[Count])
332 return Count;
334 return Count;
337 /// PadLT - Order landing pads lexicographically by type id.
338 bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
339 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
340 unsigned LSize = LIds.size(), RSize = RIds.size();
341 unsigned MinSize = LSize < RSize ? LSize : RSize;
343 for (unsigned i = 0; i != MinSize; ++i)
344 if (LIds[i] != RIds[i])
345 return LIds[i] < RIds[i];
347 return LSize < RSize;
350 /// ComputeActionsTable - Compute the actions table and gather the first action
351 /// index for each landing pad site.
352 unsigned DwarfException::
353 ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
354 SmallVectorImpl<ActionEntry> &Actions,
355 SmallVectorImpl<unsigned> &FirstActions) {
357 // The action table follows the call-site table in the LSDA. The individual
358 // records are of two types:
360 // * Catch clause
361 // * Exception specification
363 // The two record kinds have the same format, with only small differences.
364 // They are distinguished by the "switch value" field: Catch clauses
365 // (TypeInfos) have strictly positive switch values, and exception
366 // specifications (FilterIds) have strictly negative switch values. Value 0
367 // indicates a catch-all clause.
369 // Negative type IDs index into FilterIds. Positive type IDs index into
370 // TypeInfos. The value written for a positive type ID is just the type ID
371 // itself. For a negative type ID, however, the value written is the
372 // (negative) byte offset of the corresponding FilterIds entry. The byte
373 // offset is usually equal to the type ID (because the FilterIds entries are
374 // written using a variable width encoding, which outputs one byte per entry
375 // as long as the value written is not too large) but can differ. This kind
376 // of complication does not occur for positive type IDs because type infos are
377 // output using a fixed width encoding. FilterOffsets[i] holds the byte
378 // offset corresponding to FilterIds[i].
380 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
381 SmallVector<int, 16> FilterOffsets;
382 FilterOffsets.reserve(FilterIds.size());
383 int Offset = -1;
385 for (std::vector<unsigned>::const_iterator
386 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
387 FilterOffsets.push_back(Offset);
388 Offset -= MCAsmInfo::getULEB128Size(*I);
391 FirstActions.reserve(LandingPads.size());
393 int FirstAction = 0;
394 unsigned SizeActions = 0;
395 const LandingPadInfo *PrevLPI = 0;
397 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
398 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
399 const LandingPadInfo *LPI = *I;
400 const std::vector<int> &TypeIds = LPI->TypeIds;
401 const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
402 unsigned SizeSiteActions = 0;
404 if (NumShared < TypeIds.size()) {
405 unsigned SizeAction = 0;
406 ActionEntry *PrevAction = 0;
408 if (NumShared) {
409 const unsigned SizePrevIds = PrevLPI->TypeIds.size();
410 assert(Actions.size());
411 PrevAction = &Actions.back();
412 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
413 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
415 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
416 SizeAction -=
417 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
418 SizeAction += -PrevAction->NextAction;
419 PrevAction = PrevAction->Previous;
423 // Compute the actions.
424 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
425 int TypeID = TypeIds[J];
426 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
427 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
428 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
430 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
431 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
432 SizeSiteActions += SizeAction;
434 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
435 Actions.push_back(Action);
436 PrevAction = &Actions.back();
439 // Record the first action of the landing pad site.
440 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
441 } // else identical - re-use previous FirstAction
443 // Information used when created the call-site table. The action record
444 // field of the call site record is the offset of the first associated
445 // action record, relative to the start of the actions table. This value is
446 // biased by 1 (1 in dicating the start of the actions table), and 0
447 // indicates that there are no actions.
448 FirstActions.push_back(FirstAction);
450 // Compute this sites contribution to size.
451 SizeActions += SizeSiteActions;
453 PrevLPI = LPI;
456 return SizeActions;
459 /// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke
460 /// has a try-range containing the call, a non-zero landing pad, and an
461 /// appropriate action. The entry for an ordinary call has a try-range
462 /// containing the call and zero for the landing pad and the action. Calls
463 /// marked 'nounwind' have no entry and must not be contained in the try-range
464 /// of any entry - they form gaps in the table. Entries must be ordered by
465 /// try-range address.
466 void DwarfException::
467 ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
468 const RangeMapType &PadMap,
469 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
470 const SmallVectorImpl<unsigned> &FirstActions) {
471 // The end label of the previous invoke or nounwind try-range.
472 unsigned LastLabel = 0;
474 // Whether there is a potentially throwing instruction (currently this means
475 // an ordinary call) between the end of the previous try-range and now.
476 bool SawPotentiallyThrowing = false;
478 // Whether the last CallSite entry was for an invoke.
479 bool PreviousIsInvoke = false;
481 // Visit all instructions in order of address.
482 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
483 I != E; ++I) {
484 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
485 MI != E; ++MI) {
486 if (!MI->isLabel()) {
487 SawPotentiallyThrowing |= MI->getDesc().isCall();
488 continue;
491 unsigned BeginLabel = MI->getOperand(0).getImm();
492 assert(BeginLabel && "Invalid label!");
494 // End of the previous try-range?
495 if (BeginLabel == LastLabel)
496 SawPotentiallyThrowing = false;
498 // Beginning of a new try-range?
499 RangeMapType::iterator L = PadMap.find(BeginLabel);
500 if (L == PadMap.end())
501 // Nope, it was just some random label.
502 continue;
504 const PadRange &P = L->second;
505 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
506 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
507 "Inconsistent landing pad map!");
509 // For Dwarf exception handling (SjLj handling doesn't use this). If some
510 // instruction between the previous try-range and this one may throw,
511 // create a call-site entry with no landing pad for the region between the
512 // try-ranges.
513 if (SawPotentiallyThrowing &&
514 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
515 CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
516 CallSites.push_back(Site);
517 PreviousIsInvoke = false;
520 LastLabel = LandingPad->EndLabels[P.RangeIndex];
521 assert(BeginLabel && LastLabel && "Invalid landing pad!");
523 if (LandingPad->LandingPadLabel) {
524 // This try-range is for an invoke.
525 CallSiteEntry Site = {
526 BeginLabel,
527 LastLabel,
528 LandingPad->LandingPadLabel,
529 FirstActions[P.PadIndex]
532 // Try to merge with the previous call-site. SJLJ doesn't do this
533 if (PreviousIsInvoke &&
534 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
535 CallSiteEntry &Prev = CallSites.back();
536 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
537 // Extend the range of the previous entry.
538 Prev.EndLabel = Site.EndLabel;
539 continue;
543 // Otherwise, create a new call-site.
544 CallSites.push_back(Site);
545 PreviousIsInvoke = true;
546 } else {
547 // Create a gap.
548 PreviousIsInvoke = false;
553 // If some instruction between the previous try-range and the end of the
554 // function may throw, create a call-site entry with no landing pad for the
555 // region following the try-range.
556 if (SawPotentiallyThrowing &&
557 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
558 CallSiteEntry Site = { LastLabel, 0, 0, 0 };
559 CallSites.push_back(Site);
563 /// EmitExceptionTable - Emit landing pads and actions.
565 /// The general organization of the table is complex, but the basic concepts are
566 /// easy. First there is a header which describes the location and organization
567 /// of the three components that follow.
569 /// 1. The landing pad site information describes the range of code covered by
570 /// the try. In our case it's an accumulation of the ranges covered by the
571 /// invokes in the try. There is also a reference to the landing pad that
572 /// handles the exception once processed. Finally an index into the actions
573 /// table.
574 /// 2. The action table, in our case, is composed of pairs of type IDs and next
575 /// action offset. Starting with the action index from the landing pad
576 /// site, each type ID is checked for a match to the current exception. If
577 /// it matches then the exception and type id are passed on to the landing
578 /// pad. Otherwise the next action is looked up. This chain is terminated
579 /// with a next action of zero. If no type id is found then the frame is
580 /// unwound and handling continues.
581 /// 3. Type ID table contains references to all the C++ typeinfo for all
582 /// catches in the function. This tables is reverse indexed base 1.
583 void DwarfException::EmitExceptionTable() {
584 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
585 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
586 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
587 if (PadInfos.empty()) return;
589 // Sort the landing pads in order of their type ids. This is used to fold
590 // duplicate actions.
591 SmallVector<const LandingPadInfo *, 64> LandingPads;
592 LandingPads.reserve(PadInfos.size());
594 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
595 LandingPads.push_back(&PadInfos[i]);
597 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
599 // Compute the actions table and gather the first action index for each
600 // landing pad site.
601 SmallVector<ActionEntry, 32> Actions;
602 SmallVector<unsigned, 64> FirstActions;
603 unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
604 FirstActions);
606 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
607 // by try-range labels when lowered). Ordinary calls do not, so appropriate
608 // try-ranges for them need be deduced when using DWARF exception handling.
609 RangeMapType PadMap;
610 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
611 const LandingPadInfo *LandingPad = LandingPads[i];
612 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
613 unsigned BeginLabel = LandingPad->BeginLabels[j];
614 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
615 PadRange P = { i, j };
616 PadMap[BeginLabel] = P;
620 // Compute the call-site table.
621 SmallVector<CallSiteEntry, 64> CallSites;
622 ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
624 // Final tallies.
626 // Call sites.
627 const unsigned SiteStartSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
628 const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
629 const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
630 bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
631 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
632 unsigned SizeSites;
634 if (IsSJLJ)
635 SizeSites = 0;
636 else
637 SizeSites = CallSites.size() *
638 (SiteStartSize + SiteLengthSize + LandingPadSize);
640 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
641 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
642 if (IsSJLJ)
643 SizeSites += MCAsmInfo::getULEB128Size(i);
646 // Type infos.
647 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
648 unsigned TTypeFormat;
649 unsigned TypeFormatSize;
651 if (!HaveTTData) {
652 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
653 // that we're omitting that bit.
654 TTypeFormat = dwarf::DW_EH_PE_omit;
655 TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
656 } else {
657 // Okay, we have actual filters or typeinfos to emit. As such, we need to
658 // pick a type encoding for them. We're about to emit a list of pointers to
659 // typeinfo objects at the end of the LSDA. However, unless we're in static
660 // mode, this reference will require a relocation by the dynamic linker.
662 // Because of this, we have a couple of options:
664 // 1) If we are in -static mode, we can always use an absolute reference
665 // from the LSDA, because the static linker will resolve it.
667 // 2) Otherwise, if the LSDA section is writable, we can output the direct
668 // reference to the typeinfo and allow the dynamic linker to relocate
669 // it. Since it is in a writable section, the dynamic linker won't
670 // have a problem.
672 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
673 // we need to use some form of indirection. For example, on Darwin,
674 // we can output a statically-relocatable reference to a dyld stub. The
675 // offset to the stub is constant, but the contents are in a section
676 // that is updated by the dynamic linker. This is easy enough, but we
677 // need to tell the personality function of the unwinder to indirect
678 // through the dyld stub.
680 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
681 // somewhere. This predicate should be moved to a shared location that is
682 // in target-independent code.
684 if (LSDASection->getKind().isWriteable() ||
685 Asm->TM.getRelocationModel() == Reloc::Static)
686 TTypeFormat = dwarf::DW_EH_PE_absptr;
687 else
688 TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
689 dwarf::DW_EH_PE_sdata4;
691 TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
694 // Begin the exception table.
695 Asm->OutStreamer.SwitchSection(LSDASection);
696 Asm->EmitAlignment(2, 0, 0, false);
698 O << "GCC_except_table" << SubprogramCount << ":\n";
700 // The type infos need to be aligned. GCC does this by inserting padding just
701 // before the type infos. However, this changes the size of the exception
702 // table, so you need to take this into account when you output the exception
703 // table size. However, the size is output using a variable length encoding.
704 // So by increasing the size by inserting padding, you may increase the number
705 // of bytes used for writing the size. If it increases, say by one byte, then
706 // you now need to output one less byte of padding to get the type infos
707 // aligned. However this decreases the size of the exception table. This
708 // changes the value you have to output for the exception table size. Due to
709 // the variable length encoding, the number of bytes used for writing the
710 // length may decrease. If so, you then have to increase the amount of
711 // padding. And so on. If you look carefully at the GCC code you will see that
712 // it indeed does this in a loop, going on and on until the values stabilize.
713 // We chose another solution: don't output padding inside the table like GCC
714 // does, instead output it before the table.
715 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
716 unsigned TyOffset = sizeof(int8_t) + // Call site format
717 MCAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
718 SizeSites + SizeActions + SizeTypes;
719 unsigned TotalSize = sizeof(int8_t) + // LPStart format
720 sizeof(int8_t) + // TType format
721 (HaveTTData ?
722 MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
723 TyOffset;
724 unsigned SizeAlign = (4 - TotalSize) & 3;
726 for (unsigned i = 0; i != SizeAlign; ++i) {
727 Asm->EmitInt8(0);
728 Asm->EOL("Padding");
731 EmitLabel("exception", SubprogramCount);
733 if (IsSJLJ) {
734 SmallString<16> LSDAName;
735 raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
736 "_LSDA_" << Asm->getFunctionNumber();
737 O << LSDAName.str() << ":\n";
740 // Emit the header.
741 Asm->EmitInt8(dwarf::DW_EH_PE_omit);
742 Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
744 Asm->EmitInt8(TTypeFormat);
745 Asm->EOL("@TType format", TTypeFormat);
747 if (HaveTTData) {
748 Asm->EmitULEB128Bytes(TyOffset);
749 Asm->EOL("@TType base offset");
752 // SjLj Exception handling
753 if (IsSJLJ) {
754 Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
755 Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
756 Asm->EmitULEB128Bytes(SizeSites);
757 Asm->EOL("Call site table length");
759 // Emit the landing pad site information.
760 unsigned idx = 0;
761 for (SmallVectorImpl<CallSiteEntry>::const_iterator
762 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
763 const CallSiteEntry &S = *I;
765 // Offset of the landing pad, counted in 16-byte bundles relative to the
766 // @LPStart address.
767 Asm->EmitULEB128Bytes(idx);
768 Asm->EOL("Landing pad");
770 // Offset of the first associated action record, relative to the start of
771 // the action table. This value is biased by 1 (1 indicates the start of
772 // the action table), and 0 indicates that there are no actions.
773 Asm->EmitULEB128Bytes(S.Action);
774 Asm->EOL("Action");
776 } else {
777 // DWARF Exception handling
778 assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
780 // The call-site table is a list of all call sites that may throw an
781 // exception (including C++ 'throw' statements) in the procedure
782 // fragment. It immediately follows the LSDA header. Each entry indicates,
783 // for a given call, the first corresponding action record and corresponding
784 // landing pad.
786 // The table begins with the number of bytes, stored as an LEB128
787 // compressed, unsigned integer. The records immediately follow the record
788 // count. They are sorted in increasing call-site address. Each record
789 // indicates:
791 // * The position of the call-site.
792 // * The position of the landing pad.
793 // * The first action record for that call site.
795 // A missing entry in the call-site table indicates that a call is not
796 // supposed to throw.
798 // Emit the landing pad call site table.
799 Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
800 Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
801 Asm->EmitULEB128Bytes(SizeSites);
802 Asm->EOL("Call site table size");
804 for (SmallVectorImpl<CallSiteEntry>::const_iterator
805 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
806 const CallSiteEntry &S = *I;
807 const char *BeginTag;
808 unsigned BeginNumber;
810 if (!S.BeginLabel) {
811 BeginTag = "eh_func_begin";
812 BeginNumber = SubprogramCount;
813 } else {
814 BeginTag = "label";
815 BeginNumber = S.BeginLabel;
818 // Offset of the call site relative to the previous call site, counted in
819 // number of 16-byte bundles. The first call site is counted relative to
820 // the start of the procedure fragment.
821 EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
822 true, true);
823 Asm->EOL("Region start");
825 if (!S.EndLabel)
826 EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
827 true);
828 else
829 EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
831 Asm->EOL("Region length");
833 // Offset of the landing pad, counted in 16-byte bundles relative to the
834 // @LPStart address.
835 if (!S.PadLabel)
836 Asm->EmitInt32(0);
837 else
838 EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
839 true, true);
841 Asm->EOL("Landing pad");
843 // Offset of the first associated action record, relative to the start of
844 // the action table. This value is biased by 1 (1 indicates the start of
845 // the action table), and 0 indicates that there are no actions.
846 Asm->EmitULEB128Bytes(S.Action);
847 Asm->EOL("Action");
851 // Emit the Action Table.
852 for (SmallVectorImpl<ActionEntry>::const_iterator
853 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
854 const ActionEntry &Action = *I;
856 // Type Filter
858 // Used by the runtime to match the type of the thrown exception to the
859 // type of the catch clauses or the types in the exception specification.
861 Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
862 Asm->EOL("TypeInfo index");
864 // Action Record
866 // Self-relative signed displacement in bytes of the next action record,
867 // or 0 if there is no next action record.
869 Asm->EmitSLEB128Bytes(Action.NextAction);
870 Asm->EOL("Next action");
873 // Emit the Catch Clauses. The code for the catch clauses following the same
874 // try is similar to a switch statement. The catch clause action record
875 // informs the runtime about the type of a catch clause and about the
876 // associated switch value.
878 // Action Record Fields:
880 // * Filter Value
881 // Positive value, starting at 1. Index in the types table of the
882 // __typeinfo for the catch-clause type. 1 is the first word preceding
883 // TTBase, 2 is the second word, and so on. Used by the runtime to check
884 // if the thrown exception type matches the catch-clause type. Back-end
885 // generated switch statements check against this value.
887 // * Next
888 // Signed offset, in bytes from the start of this field, to the next
889 // chained action record, or zero if none.
891 // The order of the action records determined by the next field is the order
892 // of the catch clauses as they appear in the source code, and must be kept in
893 // the same order. As a result, changing the order of the catch clause would
894 // change the semantics of the program.
895 for (std::vector<GlobalVariable *>::const_reverse_iterator
896 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
897 const GlobalVariable *GV = *I;
898 PrintRelDirective();
900 if (GV) {
901 O << Asm->Mang->getMangledName(GV);
902 } else {
903 O << "0x0";
906 Asm->EOL("TypeInfo");
909 // Emit the Type Table.
910 for (std::vector<unsigned>::const_iterator
911 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
912 unsigned TypeID = *I;
913 Asm->EmitULEB128Bytes(TypeID);
914 Asm->EOL("Filter TypeInfo index");
917 Asm->EmitAlignment(2, 0, 0, false);
920 /// EndModule - Emit all exception information that should come after the
921 /// content.
922 void DwarfException::EndModule() {
923 if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
924 return;
926 if (!shouldEmitMovesModule && !shouldEmitTableModule)
927 return;
929 if (TimePassesIsEnabled)
930 ExceptionTimer->startTimer();
932 const std::vector<Function *> Personalities = MMI->getPersonalities();
934 for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
935 EmitCIE(Personalities[I], I);
937 for (std::vector<FunctionEHFrameInfo>::iterator
938 I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
939 EmitFDE(*I);
941 if (TimePassesIsEnabled)
942 ExceptionTimer->stopTimer();
945 /// BeginFunction - Gather pre-function exception information. Assumes it's
946 /// being emitted immediately after the function entry point.
947 void DwarfException::BeginFunction(MachineFunction *MF) {
948 if (!MMI || !MAI->doesSupportExceptionHandling()) return;
950 if (TimePassesIsEnabled)
951 ExceptionTimer->startTimer();
953 this->MF = MF;
954 shouldEmitTable = shouldEmitMoves = false;
956 // Map all labels and get rid of any dead landing pads.
957 MMI->TidyLandingPads();
959 // If any landing pads survive, we need an EH table.
960 if (!MMI->getLandingPads().empty())
961 shouldEmitTable = true;
963 // See if we need frame move info.
964 if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
965 shouldEmitMoves = true;
967 if (shouldEmitMoves || shouldEmitTable)
968 // Assumes in correct section after the entry point.
969 EmitLabel("eh_func_begin", ++SubprogramCount);
971 shouldEmitTableModule |= shouldEmitTable;
972 shouldEmitMovesModule |= shouldEmitMoves;
974 if (TimePassesIsEnabled)
975 ExceptionTimer->stopTimer();
978 /// EndFunction - Gather and emit post-function exception information.
980 void DwarfException::EndFunction() {
981 if (!shouldEmitMoves && !shouldEmitTable) return;
983 if (TimePassesIsEnabled)
984 ExceptionTimer->startTimer();
986 EmitLabel("eh_func_end", SubprogramCount);
987 EmitExceptionTable();
989 std::string FunctionEHName =
990 Asm->Mang->getMangledName(MF->getFunction(), ".eh",
991 Asm->MAI->is_EHSymbolPrivate());
993 // Save EH frame information
994 EHFrames.push_back(FunctionEHFrameInfo(FunctionEHName, SubprogramCount,
995 MMI->getPersonalityIndex(),
996 MF->getFrameInfo()->hasCalls(),
997 !MMI->getLandingPads().empty(),
998 MMI->getFrameMoves(),
999 MF->getFunction()));
1001 // Record if this personality index uses a landing pad.
1002 UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
1004 if (TimePassesIsEnabled)
1005 ExceptionTimer->stopTimer();