1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
44 STATISTIC(NodesCombined
, "Number of dag nodes combined");
45 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
46 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
47 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
51 CombinerAA("combiner-alias-analysis", cl::Hidden
,
52 cl::desc("Turn on alias analysis during testing"));
55 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
56 cl::desc("Include global information in alias analysis"));
58 //------------------------------ DAGCombiner ---------------------------------//
60 class VISIBILITY_HIDDEN DAGCombiner
{
62 const TargetLowering
&TLI
;
64 CodeGenOpt::Level OptLevel
;
68 // Worklist of all of the nodes that need to be simplified.
69 std::vector
<SDNode
*> WorkList
;
71 // AA - Used for DAG load/store alias analysis.
74 /// AddUsersToWorkList - When an instruction is simplified, add all users of
75 /// the instruction to the work lists because they might get more simplified
78 void AddUsersToWorkList(SDNode
*N
) {
79 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
84 /// visit - call the node-specific routine that knows how to fold each
85 /// particular type of node.
86 SDValue
visit(SDNode
*N
);
89 /// AddToWorkList - Add to the work list making sure it's instance is at the
90 /// the back (next to be processed.)
91 void AddToWorkList(SDNode
*N
) {
92 removeFromWorkList(N
);
93 WorkList
.push_back(N
);
96 /// removeFromWorkList - remove all instances of N from the worklist.
98 void removeFromWorkList(SDNode
*N
) {
99 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
103 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
106 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
107 return CombineTo(N
, &Res
, 1, AddTo
);
110 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
112 SDValue To
[] = { Res0
, Res1
};
113 return CombineTo(N
, To
, 2, AddTo
);
116 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
120 /// SimplifyDemandedBits - Check the specified integer node value to see if
121 /// it can be simplified or if things it uses can be simplified by bit
122 /// propagation. If so, return true.
123 bool SimplifyDemandedBits(SDValue Op
) {
124 APInt Demanded
= APInt::getAllOnesValue(Op
.getValueSizeInBits());
125 return SimplifyDemandedBits(Op
, Demanded
);
128 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
130 bool CombineToPreIndexedLoadStore(SDNode
*N
);
131 bool CombineToPostIndexedLoadStore(SDNode
*N
);
134 /// combine - call the node-specific routine that knows how to fold each
135 /// particular type of node. If that doesn't do anything, try the
136 /// target-specific DAG combines.
137 SDValue
combine(SDNode
*N
);
139 // Visitation implementation - Implement dag node combining for different
140 // node types. The semantics are as follows:
142 // SDValue.getNode() == 0 - No change was made
143 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
144 // otherwise - N should be replaced by the returned Operand.
146 SDValue
visitTokenFactor(SDNode
*N
);
147 SDValue
visitMERGE_VALUES(SDNode
*N
);
148 SDValue
visitADD(SDNode
*N
);
149 SDValue
visitSUB(SDNode
*N
);
150 SDValue
visitADDC(SDNode
*N
);
151 SDValue
visitADDE(SDNode
*N
);
152 SDValue
visitMUL(SDNode
*N
);
153 SDValue
visitSDIV(SDNode
*N
);
154 SDValue
visitUDIV(SDNode
*N
);
155 SDValue
visitSREM(SDNode
*N
);
156 SDValue
visitUREM(SDNode
*N
);
157 SDValue
visitMULHU(SDNode
*N
);
158 SDValue
visitMULHS(SDNode
*N
);
159 SDValue
visitSMUL_LOHI(SDNode
*N
);
160 SDValue
visitUMUL_LOHI(SDNode
*N
);
161 SDValue
visitSDIVREM(SDNode
*N
);
162 SDValue
visitUDIVREM(SDNode
*N
);
163 SDValue
visitAND(SDNode
*N
);
164 SDValue
visitOR(SDNode
*N
);
165 SDValue
visitXOR(SDNode
*N
);
166 SDValue
SimplifyVBinOp(SDNode
*N
);
167 SDValue
visitSHL(SDNode
*N
);
168 SDValue
visitSRA(SDNode
*N
);
169 SDValue
visitSRL(SDNode
*N
);
170 SDValue
visitCTLZ(SDNode
*N
);
171 SDValue
visitCTTZ(SDNode
*N
);
172 SDValue
visitCTPOP(SDNode
*N
);
173 SDValue
visitSELECT(SDNode
*N
);
174 SDValue
visitSELECT_CC(SDNode
*N
);
175 SDValue
visitSETCC(SDNode
*N
);
176 SDValue
visitSIGN_EXTEND(SDNode
*N
);
177 SDValue
visitZERO_EXTEND(SDNode
*N
);
178 SDValue
visitANY_EXTEND(SDNode
*N
);
179 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
180 SDValue
visitTRUNCATE(SDNode
*N
);
181 SDValue
visitBIT_CONVERT(SDNode
*N
);
182 SDValue
visitBUILD_PAIR(SDNode
*N
);
183 SDValue
visitFADD(SDNode
*N
);
184 SDValue
visitFSUB(SDNode
*N
);
185 SDValue
visitFMUL(SDNode
*N
);
186 SDValue
visitFDIV(SDNode
*N
);
187 SDValue
visitFREM(SDNode
*N
);
188 SDValue
visitFCOPYSIGN(SDNode
*N
);
189 SDValue
visitSINT_TO_FP(SDNode
*N
);
190 SDValue
visitUINT_TO_FP(SDNode
*N
);
191 SDValue
visitFP_TO_SINT(SDNode
*N
);
192 SDValue
visitFP_TO_UINT(SDNode
*N
);
193 SDValue
visitFP_ROUND(SDNode
*N
);
194 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
195 SDValue
visitFP_EXTEND(SDNode
*N
);
196 SDValue
visitFNEG(SDNode
*N
);
197 SDValue
visitFABS(SDNode
*N
);
198 SDValue
visitBRCOND(SDNode
*N
);
199 SDValue
visitBR_CC(SDNode
*N
);
200 SDValue
visitLOAD(SDNode
*N
);
201 SDValue
visitSTORE(SDNode
*N
);
202 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
203 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
204 SDValue
visitBUILD_VECTOR(SDNode
*N
);
205 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
206 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
208 SDValue
XformToShuffleWithZero(SDNode
*N
);
209 SDValue
ReassociateOps(unsigned Opc
, DebugLoc DL
, SDValue LHS
, SDValue RHS
);
211 SDValue
visitShiftByConstant(SDNode
*N
, unsigned Amt
);
213 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
214 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
215 SDValue
SimplifySelect(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
);
216 SDValue
SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
,
217 SDValue N3
, ISD::CondCode CC
,
218 bool NotExtCompare
= false);
219 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
220 DebugLoc DL
, bool foldBooleans
= true);
221 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
223 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
224 SDValue
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*, EVT
);
225 SDValue
BuildSDIV(SDNode
*N
);
226 SDValue
BuildUDIV(SDNode
*N
);
227 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
);
228 SDValue
ReduceLoadWidth(SDNode
*N
);
229 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
231 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
233 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
234 /// looking for aliasing nodes and adding them to the Aliases vector.
235 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
236 SmallVector
<SDValue
, 8> &Aliases
);
238 /// isAlias - Return true if there is any possibility that the two addresses
240 bool isAlias(SDValue Ptr1
, int64_t Size1
,
241 const Value
*SrcValue1
, int SrcValueOffset1
,
242 unsigned SrcValueAlign1
,
243 SDValue Ptr2
, int64_t Size2
,
244 const Value
*SrcValue2
, int SrcValueOffset2
,
245 unsigned SrcValueAlign2
) const;
247 /// FindAliasInfo - Extracts the relevant alias information from the memory
248 /// node. Returns true if the operand was a load.
249 bool FindAliasInfo(SDNode
*N
,
250 SDValue
&Ptr
, int64_t &Size
,
251 const Value
*&SrcValue
, int &SrcValueOffset
,
252 unsigned &SrcValueAlignment
) const;
254 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
255 /// looking for a better chain (aliasing node.)
256 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
258 /// getShiftAmountTy - Returns a type large enough to hold any valid
259 /// shift amount - before type legalization these can be huge.
260 EVT
getShiftAmountTy() {
261 return LegalTypes
? TLI
.getShiftAmountTy() : TLI
.getPointerTy();
265 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
, CodeGenOpt::Level OL
)
267 TLI(D
.getTargetLoweringInfo()),
270 LegalOperations(false),
274 /// Run - runs the dag combiner on all nodes in the work list
275 void Run(CombineLevel AtLevel
);
281 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
282 /// nodes from the worklist.
283 class VISIBILITY_HIDDEN WorkListRemover
:
284 public SelectionDAG::DAGUpdateListener
{
287 explicit WorkListRemover(DAGCombiner
&dc
) : DC(dc
) {}
289 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
290 DC
.removeFromWorkList(N
);
293 virtual void NodeUpdated(SDNode
*N
) {
299 //===----------------------------------------------------------------------===//
300 // TargetLowering::DAGCombinerInfo implementation
301 //===----------------------------------------------------------------------===//
303 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
304 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
307 SDValue
TargetLowering::DAGCombinerInfo::
308 CombineTo(SDNode
*N
, const std::vector
<SDValue
> &To
, bool AddTo
) {
309 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
312 SDValue
TargetLowering::DAGCombinerInfo::
313 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
314 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
318 SDValue
TargetLowering::DAGCombinerInfo::
319 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
320 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
323 void TargetLowering::DAGCombinerInfo::
324 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
325 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
328 //===----------------------------------------------------------------------===//
330 //===----------------------------------------------------------------------===//
332 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
333 /// specified expression for the same cost as the expression itself, or 2 if we
334 /// can compute the negated form more cheaply than the expression itself.
335 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
336 unsigned Depth
= 0) {
337 // No compile time optimizations on this type.
338 if (Op
.getValueType() == MVT::ppcf128
)
341 // fneg is removable even if it has multiple uses.
342 if (Op
.getOpcode() == ISD::FNEG
) return 2;
344 // Don't allow anything with multiple uses.
345 if (!Op
.hasOneUse()) return 0;
347 // Don't recurse exponentially.
348 if (Depth
> 6) return 0;
350 switch (Op
.getOpcode()) {
351 default: return false;
352 case ISD::ConstantFP
:
353 // Don't invert constant FP values after legalize. The negated constant
354 // isn't necessarily legal.
355 return LegalOperations
? 0 : 1;
357 // FIXME: determine better conditions for this xform.
358 if (!UnsafeFPMath
) return 0;
360 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
361 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
363 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
364 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
366 // We can't turn -(A-B) into B-A when we honor signed zeros.
367 if (!UnsafeFPMath
) return 0;
369 // fold (fneg (fsub A, B)) -> (fsub B, A)
374 if (HonorSignDependentRoundingFPMath()) return 0;
376 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
377 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
380 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
385 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1);
389 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
390 /// returns the newly negated expression.
391 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
392 bool LegalOperations
, unsigned Depth
= 0) {
393 // fneg is removable even if it has multiple uses.
394 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
396 // Don't allow anything with multiple uses.
397 assert(Op
.hasOneUse() && "Unknown reuse!");
399 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
400 switch (Op
.getOpcode()) {
401 default: llvm_unreachable("Unknown code");
402 case ISD::ConstantFP
: {
403 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
405 return DAG
.getConstantFP(V
, Op
.getValueType());
408 // FIXME: determine better conditions for this xform.
409 assert(UnsafeFPMath
);
411 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
412 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
413 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
414 GetNegatedExpression(Op
.getOperand(0), DAG
,
415 LegalOperations
, Depth
+1),
417 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
418 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
419 GetNegatedExpression(Op
.getOperand(1), DAG
,
420 LegalOperations
, Depth
+1),
423 // We can't turn -(A-B) into B-A when we honor signed zeros.
424 assert(UnsafeFPMath
);
426 // fold (fneg (fsub 0, B)) -> B
427 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
428 if (N0CFP
->getValueAPF().isZero())
429 return Op
.getOperand(1);
431 // fold (fneg (fsub A, B)) -> (fsub B, A)
432 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
433 Op
.getOperand(1), Op
.getOperand(0));
437 assert(!HonorSignDependentRoundingFPMath());
439 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
440 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
441 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
442 GetNegatedExpression(Op
.getOperand(0), DAG
,
443 LegalOperations
, Depth
+1),
446 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
447 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
449 GetNegatedExpression(Op
.getOperand(1), DAG
,
450 LegalOperations
, Depth
+1));
454 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
455 GetNegatedExpression(Op
.getOperand(0), DAG
,
456 LegalOperations
, Depth
+1));
458 return DAG
.getNode(ISD::FP_ROUND
, Op
.getDebugLoc(), Op
.getValueType(),
459 GetNegatedExpression(Op
.getOperand(0), DAG
,
460 LegalOperations
, Depth
+1),
466 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
467 // that selects between the values 1 and 0, making it equivalent to a setcc.
468 // Also, set the incoming LHS, RHS, and CC references to the appropriate
469 // nodes based on the type of node we are checking. This simplifies life a
470 // bit for the callers.
471 static bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
473 if (N
.getOpcode() == ISD::SETCC
) {
474 LHS
= N
.getOperand(0);
475 RHS
= N
.getOperand(1);
476 CC
= N
.getOperand(2);
479 if (N
.getOpcode() == ISD::SELECT_CC
&&
480 N
.getOperand(2).getOpcode() == ISD::Constant
&&
481 N
.getOperand(3).getOpcode() == ISD::Constant
&&
482 cast
<ConstantSDNode
>(N
.getOperand(2))->getAPIntValue() == 1 &&
483 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
484 LHS
= N
.getOperand(0);
485 RHS
= N
.getOperand(1);
486 CC
= N
.getOperand(4);
492 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
493 // one use. If this is true, it allows the users to invert the operation for
494 // free when it is profitable to do so.
495 static bool isOneUseSetCC(SDValue N
) {
497 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
502 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, DebugLoc DL
,
503 SDValue N0
, SDValue N1
) {
504 EVT VT
= N0
.getValueType();
505 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
506 if (isa
<ConstantSDNode
>(N1
)) {
507 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
509 DAG
.FoldConstantArithmetic(Opc
, VT
,
510 cast
<ConstantSDNode
>(N0
.getOperand(1)),
511 cast
<ConstantSDNode
>(N1
));
512 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
513 } else if (N0
.hasOneUse()) {
514 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
515 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
516 N0
.getOperand(0), N1
);
517 AddToWorkList(OpNode
.getNode());
518 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
522 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
523 if (isa
<ConstantSDNode
>(N0
)) {
524 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
526 DAG
.FoldConstantArithmetic(Opc
, VT
,
527 cast
<ConstantSDNode
>(N1
.getOperand(1)),
528 cast
<ConstantSDNode
>(N0
));
529 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
530 } else if (N1
.hasOneUse()) {
531 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
532 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
533 N1
.getOperand(0), N0
);
534 AddToWorkList(OpNode
.getNode());
535 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
542 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
544 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
546 DEBUG(errs() << "\nReplacing.1 ";
548 errs() << "\nWith: ";
549 To
[0].getNode()->dump(&DAG
);
550 errs() << " and " << NumTo
-1 << " other values\n";
551 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
552 assert(N
->getValueType(i
) == To
[i
].getValueType() &&
553 "Cannot combine value to value of different type!"));
554 WorkListRemover
DeadNodes(*this);
555 DAG
.ReplaceAllUsesWith(N
, To
, &DeadNodes
);
558 // Push the new nodes and any users onto the worklist
559 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
560 if (To
[i
].getNode()) {
561 AddToWorkList(To
[i
].getNode());
562 AddUsersToWorkList(To
[i
].getNode());
567 // Finally, if the node is now dead, remove it from the graph. The node
568 // may not be dead if the replacement process recursively simplified to
569 // something else needing this node.
570 if (N
->use_empty()) {
571 // Nodes can be reintroduced into the worklist. Make sure we do not
572 // process a node that has been replaced.
573 removeFromWorkList(N
);
575 // Finally, since the node is now dead, remove it from the graph.
578 return SDValue(N
, 0);
582 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&
584 // Replace all uses. If any nodes become isomorphic to other nodes and
585 // are deleted, make sure to remove them from our worklist.
586 WorkListRemover
DeadNodes(*this);
587 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, &DeadNodes
);
589 // Push the new node and any (possibly new) users onto the worklist.
590 AddToWorkList(TLO
.New
.getNode());
591 AddUsersToWorkList(TLO
.New
.getNode());
593 // Finally, if the node is now dead, remove it from the graph. The node
594 // may not be dead if the replacement process recursively simplified to
595 // something else needing this node.
596 if (TLO
.Old
.getNode()->use_empty()) {
597 removeFromWorkList(TLO
.Old
.getNode());
599 // If the operands of this node are only used by the node, they will now
600 // be dead. Make sure to visit them first to delete dead nodes early.
601 for (unsigned i
= 0, e
= TLO
.Old
.getNode()->getNumOperands(); i
!= e
; ++i
)
602 if (TLO
.Old
.getNode()->getOperand(i
).getNode()->hasOneUse())
603 AddToWorkList(TLO
.Old
.getNode()->getOperand(i
).getNode());
605 DAG
.DeleteNode(TLO
.Old
.getNode());
609 /// SimplifyDemandedBits - Check the specified integer node value to see if
610 /// it can be simplified or if things it uses can be simplified by bit
611 /// propagation. If so, return true.
612 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
613 TargetLowering::TargetLoweringOpt
TLO(DAG
);
614 APInt KnownZero
, KnownOne
;
615 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
619 AddToWorkList(Op
.getNode());
621 // Replace the old value with the new one.
623 DEBUG(errs() << "\nReplacing.2 ";
624 TLO
.Old
.getNode()->dump(&DAG
);
625 errs() << "\nWith: ";
626 TLO
.New
.getNode()->dump(&DAG
);
629 CommitTargetLoweringOpt(TLO
);
633 //===----------------------------------------------------------------------===//
634 // Main DAG Combiner implementation
635 //===----------------------------------------------------------------------===//
637 void DAGCombiner::Run(CombineLevel AtLevel
) {
638 // set the instance variables, so that the various visit routines may use it.
640 LegalOperations
= Level
>= NoIllegalOperations
;
641 LegalTypes
= Level
>= NoIllegalTypes
;
643 // Add all the dag nodes to the worklist.
644 WorkList
.reserve(DAG
.allnodes_size());
645 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
646 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
647 WorkList
.push_back(I
);
649 // Create a dummy node (which is not added to allnodes), that adds a reference
650 // to the root node, preventing it from being deleted, and tracking any
651 // changes of the root.
652 HandleSDNode
Dummy(DAG
.getRoot());
654 // The root of the dag may dangle to deleted nodes until the dag combiner is
655 // done. Set it to null to avoid confusion.
656 DAG
.setRoot(SDValue());
658 // while the worklist isn't empty, inspect the node on the end of it and
659 // try and combine it.
660 while (!WorkList
.empty()) {
661 SDNode
*N
= WorkList
.back();
664 // If N has no uses, it is dead. Make sure to revisit all N's operands once
665 // N is deleted from the DAG, since they too may now be dead or may have a
666 // reduced number of uses, allowing other xforms.
667 if (N
->use_empty() && N
!= &Dummy
) {
668 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
669 AddToWorkList(N
->getOperand(i
).getNode());
675 SDValue RV
= combine(N
);
677 if (RV
.getNode() == 0)
682 // If we get back the same node we passed in, rather than a new node or
683 // zero, we know that the node must have defined multiple values and
684 // CombineTo was used. Since CombineTo takes care of the worklist
685 // mechanics for us, we have no work to do in this case.
686 if (RV
.getNode() == N
)
689 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
690 RV
.getNode()->getOpcode() != ISD::DELETED_NODE
&&
691 "Node was deleted but visit returned new node!");
693 DEBUG(errs() << "\nReplacing.3 ";
695 errs() << "\nWith: ";
696 RV
.getNode()->dump(&DAG
);
698 WorkListRemover
DeadNodes(*this);
699 if (N
->getNumValues() == RV
.getNode()->getNumValues())
700 DAG
.ReplaceAllUsesWith(N
, RV
.getNode(), &DeadNodes
);
702 assert(N
->getValueType(0) == RV
.getValueType() &&
703 N
->getNumValues() == 1 && "Type mismatch");
705 DAG
.ReplaceAllUsesWith(N
, &OpV
, &DeadNodes
);
708 // Push the new node and any users onto the worklist
709 AddToWorkList(RV
.getNode());
710 AddUsersToWorkList(RV
.getNode());
712 // Add any uses of the old node to the worklist in case this node is the
713 // last one that uses them. They may become dead after this node is
715 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
716 AddToWorkList(N
->getOperand(i
).getNode());
718 // Finally, if the node is now dead, remove it from the graph. The node
719 // may not be dead if the replacement process recursively simplified to
720 // something else needing this node.
721 if (N
->use_empty()) {
722 // Nodes can be reintroduced into the worklist. Make sure we do not
723 // process a node that has been replaced.
724 removeFromWorkList(N
);
726 // Finally, since the node is now dead, remove it from the graph.
731 // If the root changed (e.g. it was a dead load, update the root).
732 DAG
.setRoot(Dummy
.getValue());
735 SDValue
DAGCombiner::visit(SDNode
*N
) {
736 switch(N
->getOpcode()) {
738 case ISD::TokenFactor
: return visitTokenFactor(N
);
739 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
740 case ISD::ADD
: return visitADD(N
);
741 case ISD::SUB
: return visitSUB(N
);
742 case ISD::ADDC
: return visitADDC(N
);
743 case ISD::ADDE
: return visitADDE(N
);
744 case ISD::MUL
: return visitMUL(N
);
745 case ISD::SDIV
: return visitSDIV(N
);
746 case ISD::UDIV
: return visitUDIV(N
);
747 case ISD::SREM
: return visitSREM(N
);
748 case ISD::UREM
: return visitUREM(N
);
749 case ISD::MULHU
: return visitMULHU(N
);
750 case ISD::MULHS
: return visitMULHS(N
);
751 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
752 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
753 case ISD::SDIVREM
: return visitSDIVREM(N
);
754 case ISD::UDIVREM
: return visitUDIVREM(N
);
755 case ISD::AND
: return visitAND(N
);
756 case ISD::OR
: return visitOR(N
);
757 case ISD::XOR
: return visitXOR(N
);
758 case ISD::SHL
: return visitSHL(N
);
759 case ISD::SRA
: return visitSRA(N
);
760 case ISD::SRL
: return visitSRL(N
);
761 case ISD::CTLZ
: return visitCTLZ(N
);
762 case ISD::CTTZ
: return visitCTTZ(N
);
763 case ISD::CTPOP
: return visitCTPOP(N
);
764 case ISD::SELECT
: return visitSELECT(N
);
765 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
766 case ISD::SETCC
: return visitSETCC(N
);
767 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
768 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
769 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
770 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
771 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
772 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
773 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
774 case ISD::FADD
: return visitFADD(N
);
775 case ISD::FSUB
: return visitFSUB(N
);
776 case ISD::FMUL
: return visitFMUL(N
);
777 case ISD::FDIV
: return visitFDIV(N
);
778 case ISD::FREM
: return visitFREM(N
);
779 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
780 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
781 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
782 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
783 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
784 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
785 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
786 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
787 case ISD::FNEG
: return visitFNEG(N
);
788 case ISD::FABS
: return visitFABS(N
);
789 case ISD::BRCOND
: return visitBRCOND(N
);
790 case ISD::BR_CC
: return visitBR_CC(N
);
791 case ISD::LOAD
: return visitLOAD(N
);
792 case ISD::STORE
: return visitSTORE(N
);
793 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
794 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
795 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
796 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
797 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
802 SDValue
DAGCombiner::combine(SDNode
*N
) {
803 SDValue RV
= visit(N
);
805 // If nothing happened, try a target-specific DAG combine.
806 if (RV
.getNode() == 0) {
807 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
808 "Node was deleted but visit returned NULL!");
810 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
811 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
813 // Expose the DAG combiner to the target combiner impls.
814 TargetLowering::DAGCombinerInfo
815 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
817 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
821 // If N is a commutative binary node, try commuting it to enable more
823 if (RV
.getNode() == 0 &&
824 SelectionDAG::isCommutativeBinOp(N
->getOpcode()) &&
825 N
->getNumValues() == 1) {
826 SDValue N0
= N
->getOperand(0);
827 SDValue N1
= N
->getOperand(1);
829 // Constant operands are canonicalized to RHS.
830 if (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
)) {
831 SDValue Ops
[] = { N1
, N0
};
832 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(),
835 return SDValue(CSENode
, 0);
842 /// getInputChainForNode - Given a node, return its input chain if it has one,
843 /// otherwise return a null sd operand.
844 static SDValue
getInputChainForNode(SDNode
*N
) {
845 if (unsigned NumOps
= N
->getNumOperands()) {
846 if (N
->getOperand(0).getValueType() == MVT::Other
)
847 return N
->getOperand(0);
848 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
849 return N
->getOperand(NumOps
-1);
850 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
851 if (N
->getOperand(i
).getValueType() == MVT::Other
)
852 return N
->getOperand(i
);
857 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
858 // If N has two operands, where one has an input chain equal to the other,
859 // the 'other' chain is redundant.
860 if (N
->getNumOperands() == 2) {
861 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
862 return N
->getOperand(0);
863 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
864 return N
->getOperand(1);
867 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
868 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
869 SmallPtrSet
<SDNode
*, 16> SeenOps
;
870 bool Changed
= false; // If we should replace this token factor.
872 // Start out with this token factor.
875 // Iterate through token factors. The TFs grows when new token factors are
877 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
880 // Check each of the operands.
881 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
882 SDValue Op
= TF
->getOperand(i
);
884 switch (Op
.getOpcode()) {
885 case ISD::EntryToken
:
886 // Entry tokens don't need to be added to the list. They are
891 case ISD::TokenFactor
:
892 if (Op
.hasOneUse() &&
893 std::find(TFs
.begin(), TFs
.end(), Op
.getNode()) == TFs
.end()) {
894 // Queue up for processing.
895 TFs
.push_back(Op
.getNode());
896 // Clean up in case the token factor is removed.
897 AddToWorkList(Op
.getNode());
904 // Only add if it isn't already in the list.
905 if (SeenOps
.insert(Op
.getNode()))
916 // If we've change things around then replace token factor.
919 // The entry token is the only possible outcome.
920 Result
= DAG
.getEntryNode();
922 // New and improved token factor.
923 Result
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
924 MVT::Other
, &Ops
[0], Ops
.size());
927 // Don't add users to work list.
928 return CombineTo(N
, Result
, false);
934 /// MERGE_VALUES can always be eliminated.
935 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
936 WorkListRemover
DeadNodes(*this);
937 // Replacing results may cause a different MERGE_VALUES to suddenly
938 // be CSE'd with N, and carry its uses with it. Iterate until no
939 // uses remain, to ensure that the node can be safely deleted.
941 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
942 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
),
944 } while (!N
->use_empty());
945 removeFromWorkList(N
);
947 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
951 SDValue
combineShlAddConstant(DebugLoc DL
, SDValue N0
, SDValue N1
,
953 EVT VT
= N0
.getValueType();
954 SDValue N00
= N0
.getOperand(0);
955 SDValue N01
= N0
.getOperand(1);
956 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
958 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.getNode()->hasOneUse() &&
959 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
960 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
961 N0
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
,
962 DAG
.getNode(ISD::SHL
, N00
.getDebugLoc(), VT
,
963 N00
.getOperand(0), N01
),
964 DAG
.getNode(ISD::SHL
, N01
.getDebugLoc(), VT
,
965 N00
.getOperand(1), N01
));
966 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
972 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
973 SDValue N0
= N
->getOperand(0);
974 SDValue N1
= N
->getOperand(1);
975 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
976 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
977 EVT VT
= N0
.getValueType();
981 SDValue FoldedVOp
= SimplifyVBinOp(N
);
982 if (FoldedVOp
.getNode()) return FoldedVOp
;
985 // fold (add x, undef) -> undef
986 if (N0
.getOpcode() == ISD::UNDEF
)
988 if (N1
.getOpcode() == ISD::UNDEF
)
990 // fold (add c1, c2) -> c1+c2
992 return DAG
.FoldConstantArithmetic(ISD::ADD
, VT
, N0C
, N1C
);
993 // canonicalize constant to RHS
995 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
);
996 // fold (add x, 0) -> x
997 if (N1C
&& N1C
->isNullValue())
999 // fold (add Sym, c) -> Sym+c
1000 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1001 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
) && N1C
&&
1002 GA
->getOpcode() == ISD::GlobalAddress
)
1003 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
1005 (uint64_t)N1C
->getSExtValue());
1006 // fold ((c1-A)+c2) -> (c1+c2)-A
1007 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
1008 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
1009 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1010 DAG
.getConstant(N1C
->getAPIntValue()+
1011 N0C
->getAPIntValue(), VT
),
1014 SDValue RADD
= ReassociateOps(ISD::ADD
, N
->getDebugLoc(), N0
, N1
);
1015 if (RADD
.getNode() != 0)
1017 // fold ((0-A) + B) -> B-A
1018 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
1019 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
1020 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
, N0
.getOperand(1));
1021 // fold (A + (0-B)) -> A-B
1022 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
1023 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
1024 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, N1
.getOperand(1));
1025 // fold (A+(B-A)) -> B
1026 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
1027 return N1
.getOperand(0);
1028 // fold ((B-A)+A) -> B
1029 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
1030 return N0
.getOperand(0);
1031 // fold (A+(B-(A+C))) to (B-C)
1032 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1033 N0
== N1
.getOperand(1).getOperand(0))
1034 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1035 N1
.getOperand(1).getOperand(1));
1036 // fold (A+(B-(C+A))) to (B-C)
1037 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1038 N0
== N1
.getOperand(1).getOperand(1))
1039 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1040 N1
.getOperand(1).getOperand(0));
1041 // fold (A+((B-A)+or-C)) to (B+or-C)
1042 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
1043 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
1044 N0
== N1
.getOperand(0).getOperand(1))
1045 return DAG
.getNode(N1
.getOpcode(), N
->getDebugLoc(), VT
,
1046 N1
.getOperand(0).getOperand(0), N1
.getOperand(1));
1048 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1049 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
1050 SDValue N00
= N0
.getOperand(0);
1051 SDValue N01
= N0
.getOperand(1);
1052 SDValue N10
= N1
.getOperand(0);
1053 SDValue N11
= N1
.getOperand(1);
1055 if (isa
<ConstantSDNode
>(N00
) || isa
<ConstantSDNode
>(N10
))
1056 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1057 DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
, N00
, N10
),
1058 DAG
.getNode(ISD::ADD
, N1
.getDebugLoc(), VT
, N01
, N11
));
1061 if (!VT
.isVector() && SimplifyDemandedBits(SDValue(N
, 0)))
1062 return SDValue(N
, 0);
1064 // fold (a+b) -> (a|b) iff a and b share no bits.
1065 if (VT
.isInteger() && !VT
.isVector()) {
1066 APInt LHSZero
, LHSOne
;
1067 APInt RHSZero
, RHSOne
;
1068 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1069 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1071 if (LHSZero
.getBoolValue()) {
1072 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1074 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1075 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1076 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1077 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1078 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
);
1082 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1083 if (N0
.getOpcode() == ISD::SHL
&& N0
.getNode()->hasOneUse()) {
1084 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N0
, N1
, DAG
);
1085 if (Result
.getNode()) return Result
;
1087 if (N1
.getOpcode() == ISD::SHL
&& N1
.getNode()->hasOneUse()) {
1088 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N1
, N0
, DAG
);
1089 if (Result
.getNode()) return Result
;
1095 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
1096 SDValue N0
= N
->getOperand(0);
1097 SDValue N1
= N
->getOperand(1);
1098 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1099 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1100 EVT VT
= N0
.getValueType();
1102 // If the flag result is dead, turn this into an ADD.
1103 if (N
->hasNUsesOfValue(0, 1))
1104 return CombineTo(N
, DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
),
1105 DAG
.getNode(ISD::CARRY_FALSE
,
1106 N
->getDebugLoc(), MVT::Flag
));
1108 // canonicalize constant to RHS.
1110 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1112 // fold (addc x, 0) -> x + no carry out
1113 if (N1C
&& N1C
->isNullValue())
1114 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
1115 N
->getDebugLoc(), MVT::Flag
));
1117 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1118 APInt LHSZero
, LHSOne
;
1119 APInt RHSZero
, RHSOne
;
1120 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1121 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1123 if (LHSZero
.getBoolValue()) {
1124 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1126 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1127 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1128 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1129 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1130 return CombineTo(N
, DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
),
1131 DAG
.getNode(ISD::CARRY_FALSE
,
1132 N
->getDebugLoc(), MVT::Flag
));
1138 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
1139 SDValue N0
= N
->getOperand(0);
1140 SDValue N1
= N
->getOperand(1);
1141 SDValue CarryIn
= N
->getOperand(2);
1142 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1143 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1145 // canonicalize constant to RHS
1147 return DAG
.getNode(ISD::ADDE
, N
->getDebugLoc(), N
->getVTList(),
1150 // fold (adde x, y, false) -> (addc x, y)
1151 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
1152 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1157 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
1158 SDValue N0
= N
->getOperand(0);
1159 SDValue N1
= N
->getOperand(1);
1160 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1161 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1162 EVT VT
= N0
.getValueType();
1165 if (VT
.isVector()) {
1166 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1167 if (FoldedVOp
.getNode()) return FoldedVOp
;
1170 // fold (sub x, x) -> 0
1172 return DAG
.getConstant(0, N
->getValueType(0));
1173 // fold (sub c1, c2) -> c1-c2
1175 return DAG
.FoldConstantArithmetic(ISD::SUB
, VT
, N0C
, N1C
);
1176 // fold (sub x, c) -> (add x, -c)
1178 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
,
1179 DAG
.getConstant(-N1C
->getAPIntValue(), VT
));
1180 // fold (A+B)-A -> B
1181 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
1182 return N0
.getOperand(1);
1183 // fold (A+B)-B -> A
1184 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
1185 return N0
.getOperand(0);
1186 // fold ((A+(B+or-C))-B) -> A+or-C
1187 if (N0
.getOpcode() == ISD::ADD
&&
1188 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
1189 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
1190 N0
.getOperand(1).getOperand(0) == N1
)
1191 return DAG
.getNode(N0
.getOperand(1).getOpcode(), N
->getDebugLoc(), VT
,
1192 N0
.getOperand(0), N0
.getOperand(1).getOperand(1));
1193 // fold ((A+(C+B))-B) -> A+C
1194 if (N0
.getOpcode() == ISD::ADD
&&
1195 N0
.getOperand(1).getOpcode() == ISD::ADD
&&
1196 N0
.getOperand(1).getOperand(1) == N1
)
1197 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1198 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1199 // fold ((A-(B-C))-C) -> A-B
1200 if (N0
.getOpcode() == ISD::SUB
&&
1201 N0
.getOperand(1).getOpcode() == ISD::SUB
&&
1202 N0
.getOperand(1).getOperand(1) == N1
)
1203 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1204 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1206 // If either operand of a sub is undef, the result is undef
1207 if (N0
.getOpcode() == ISD::UNDEF
)
1209 if (N1
.getOpcode() == ISD::UNDEF
)
1212 // If the relocation model supports it, consider symbol offsets.
1213 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1214 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
1215 // fold (sub Sym, c) -> Sym-c
1216 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
1217 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
1219 (uint64_t)N1C
->getSExtValue());
1220 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1221 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
1222 if (GA
->getGlobal() == GB
->getGlobal())
1223 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
1230 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
1231 SDValue N0
= N
->getOperand(0);
1232 SDValue N1
= N
->getOperand(1);
1233 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1234 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1235 EVT VT
= N0
.getValueType();
1238 if (VT
.isVector()) {
1239 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1240 if (FoldedVOp
.getNode()) return FoldedVOp
;
1243 // fold (mul x, undef) -> 0
1244 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1245 return DAG
.getConstant(0, VT
);
1246 // fold (mul c1, c2) -> c1*c2
1248 return DAG
.FoldConstantArithmetic(ISD::MUL
, VT
, N0C
, N1C
);
1249 // canonicalize constant to RHS
1251 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
, N1
, N0
);
1252 // fold (mul x, 0) -> 0
1253 if (N1C
&& N1C
->isNullValue())
1255 // fold (mul x, -1) -> 0-x
1256 if (N1C
&& N1C
->isAllOnesValue())
1257 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1258 DAG
.getConstant(0, VT
), N0
);
1259 // fold (mul x, (1 << c)) -> x << c
1260 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1261 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1262 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1263 getShiftAmountTy()));
1264 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1265 if (N1C
&& (-N1C
->getAPIntValue()).isPowerOf2()) {
1266 unsigned Log2Val
= (-N1C
->getAPIntValue()).logBase2();
1267 // FIXME: If the input is something that is easily negated (e.g. a
1268 // single-use add), we should put the negate there.
1269 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1270 DAG
.getConstant(0, VT
),
1271 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1272 DAG
.getConstant(Log2Val
, getShiftAmountTy())));
1274 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1275 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1276 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1277 SDValue C3
= DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1278 N1
, N0
.getOperand(1));
1279 AddToWorkList(C3
.getNode());
1280 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1281 N0
.getOperand(0), C3
);
1284 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1287 SDValue
Sh(0,0), Y(0,0);
1288 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1289 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1290 N0
.getNode()->hasOneUse()) {
1292 } else if (N1
.getOpcode() == ISD::SHL
&&
1293 isa
<ConstantSDNode
>(N1
.getOperand(1)) &&
1294 N1
.getNode()->hasOneUse()) {
1299 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1300 Sh
.getOperand(0), Y
);
1301 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1302 Mul
, Sh
.getOperand(1));
1306 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1307 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse() &&
1308 isa
<ConstantSDNode
>(N0
.getOperand(1)))
1309 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1310 DAG
.getNode(ISD::MUL
, N0
.getDebugLoc(), VT
,
1311 N0
.getOperand(0), N1
),
1312 DAG
.getNode(ISD::MUL
, N1
.getDebugLoc(), VT
,
1313 N0
.getOperand(1), N1
));
1316 SDValue RMUL
= ReassociateOps(ISD::MUL
, N
->getDebugLoc(), N0
, N1
);
1317 if (RMUL
.getNode() != 0)
1323 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
1324 SDValue N0
= N
->getOperand(0);
1325 SDValue N1
= N
->getOperand(1);
1326 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1327 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1328 EVT VT
= N
->getValueType(0);
1331 if (VT
.isVector()) {
1332 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1333 if (FoldedVOp
.getNode()) return FoldedVOp
;
1336 // fold (sdiv c1, c2) -> c1/c2
1337 if (N0C
&& N1C
&& !N1C
->isNullValue())
1338 return DAG
.FoldConstantArithmetic(ISD::SDIV
, VT
, N0C
, N1C
);
1339 // fold (sdiv X, 1) -> X
1340 if (N1C
&& N1C
->getSExtValue() == 1LL)
1342 // fold (sdiv X, -1) -> 0-X
1343 if (N1C
&& N1C
->isAllOnesValue())
1344 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1345 DAG
.getConstant(0, VT
), N0
);
1346 // If we know the sign bits of both operands are zero, strength reduce to a
1347 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1348 if (!VT
.isVector()) {
1349 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1350 return DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), N1
.getValueType(),
1353 // fold (sdiv X, pow2) -> simple ops after legalize
1354 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap() &&
1355 (isPowerOf2_64(N1C
->getSExtValue()) ||
1356 isPowerOf2_64(-N1C
->getSExtValue()))) {
1357 // If dividing by powers of two is cheap, then don't perform the following
1359 if (TLI
.isPow2DivCheap())
1362 int64_t pow2
= N1C
->getSExtValue();
1363 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1364 unsigned lg2
= Log2_64(abs2
);
1366 // Splat the sign bit into the register
1367 SDValue SGN
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
1368 DAG
.getConstant(VT
.getSizeInBits()-1,
1369 getShiftAmountTy()));
1370 AddToWorkList(SGN
.getNode());
1372 // Add (N0 < 0) ? abs2 - 1 : 0;
1373 SDValue SRL
= DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, SGN
,
1374 DAG
.getConstant(VT
.getSizeInBits() - lg2
,
1375 getShiftAmountTy()));
1376 SDValue ADD
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
, SRL
);
1377 AddToWorkList(SRL
.getNode());
1378 AddToWorkList(ADD
.getNode()); // Divide by pow2
1379 SDValue SRA
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, ADD
,
1380 DAG
.getConstant(lg2
, getShiftAmountTy()));
1382 // If we're dividing by a positive value, we're done. Otherwise, we must
1383 // negate the result.
1387 AddToWorkList(SRA
.getNode());
1388 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1389 DAG
.getConstant(0, VT
), SRA
);
1392 // if integer divide is expensive and we satisfy the requirements, emit an
1393 // alternate sequence.
1394 if (N1C
&& (N1C
->getSExtValue() < -1 || N1C
->getSExtValue() > 1) &&
1395 !TLI
.isIntDivCheap()) {
1396 SDValue Op
= BuildSDIV(N
);
1397 if (Op
.getNode()) return Op
;
1401 if (N0
.getOpcode() == ISD::UNDEF
)
1402 return DAG
.getConstant(0, VT
);
1403 // X / undef -> undef
1404 if (N1
.getOpcode() == ISD::UNDEF
)
1410 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
1411 SDValue N0
= N
->getOperand(0);
1412 SDValue N1
= N
->getOperand(1);
1413 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1414 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1415 EVT VT
= N
->getValueType(0);
1418 if (VT
.isVector()) {
1419 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1420 if (FoldedVOp
.getNode()) return FoldedVOp
;
1423 // fold (udiv c1, c2) -> c1/c2
1424 if (N0C
&& N1C
&& !N1C
->isNullValue())
1425 return DAG
.FoldConstantArithmetic(ISD::UDIV
, VT
, N0C
, N1C
);
1426 // fold (udiv x, (1 << c)) -> x >>u c
1427 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1428 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
1429 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1430 getShiftAmountTy()));
1431 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1432 if (N1
.getOpcode() == ISD::SHL
) {
1433 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1434 if (SHC
->getAPIntValue().isPowerOf2()) {
1435 EVT ADDVT
= N1
.getOperand(1).getValueType();
1436 SDValue Add
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), ADDVT
,
1438 DAG
.getConstant(SHC
->getAPIntValue()
1441 AddToWorkList(Add
.getNode());
1442 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, Add
);
1446 // fold (udiv x, c) -> alternate
1447 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap()) {
1448 SDValue Op
= BuildUDIV(N
);
1449 if (Op
.getNode()) return Op
;
1453 if (N0
.getOpcode() == ISD::UNDEF
)
1454 return DAG
.getConstant(0, VT
);
1455 // X / undef -> undef
1456 if (N1
.getOpcode() == ISD::UNDEF
)
1462 SDValue
DAGCombiner::visitSREM(SDNode
*N
) {
1463 SDValue N0
= N
->getOperand(0);
1464 SDValue N1
= N
->getOperand(1);
1465 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1466 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1467 EVT VT
= N
->getValueType(0);
1469 // fold (srem c1, c2) -> c1%c2
1470 if (N0C
&& N1C
&& !N1C
->isNullValue())
1471 return DAG
.FoldConstantArithmetic(ISD::SREM
, VT
, N0C
, N1C
);
1472 // If we know the sign bits of both operands are zero, strength reduce to a
1473 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1474 if (!VT
.isVector()) {
1475 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1476 return DAG
.getNode(ISD::UREM
, N
->getDebugLoc(), VT
, N0
, N1
);
1479 // If X/C can be simplified by the division-by-constant logic, lower
1480 // X%C to the equivalent of X-X/C*C.
1481 if (N1C
&& !N1C
->isNullValue()) {
1482 SDValue Div
= DAG
.getNode(ISD::SDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1483 AddToWorkList(Div
.getNode());
1484 SDValue OptimizedDiv
= combine(Div
.getNode());
1485 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1486 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1488 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1489 AddToWorkList(Mul
.getNode());
1495 if (N0
.getOpcode() == ISD::UNDEF
)
1496 return DAG
.getConstant(0, VT
);
1497 // X % undef -> undef
1498 if (N1
.getOpcode() == ISD::UNDEF
)
1504 SDValue
DAGCombiner::visitUREM(SDNode
*N
) {
1505 SDValue N0
= N
->getOperand(0);
1506 SDValue N1
= N
->getOperand(1);
1507 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1508 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1509 EVT VT
= N
->getValueType(0);
1511 // fold (urem c1, c2) -> c1%c2
1512 if (N0C
&& N1C
&& !N1C
->isNullValue())
1513 return DAG
.FoldConstantArithmetic(ISD::UREM
, VT
, N0C
, N1C
);
1514 // fold (urem x, pow2) -> (and x, pow2-1)
1515 if (N1C
&& !N1C
->isNullValue() && N1C
->getAPIntValue().isPowerOf2())
1516 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
,
1517 DAG
.getConstant(N1C
->getAPIntValue()-1,VT
));
1518 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1519 if (N1
.getOpcode() == ISD::SHL
) {
1520 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1521 if (SHC
->getAPIntValue().isPowerOf2()) {
1523 DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
,
1524 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()),
1526 AddToWorkList(Add
.getNode());
1527 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, Add
);
1532 // If X/C can be simplified by the division-by-constant logic, lower
1533 // X%C to the equivalent of X-X/C*C.
1534 if (N1C
&& !N1C
->isNullValue()) {
1535 SDValue Div
= DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1536 AddToWorkList(Div
.getNode());
1537 SDValue OptimizedDiv
= combine(Div
.getNode());
1538 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1539 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1541 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1542 AddToWorkList(Mul
.getNode());
1548 if (N0
.getOpcode() == ISD::UNDEF
)
1549 return DAG
.getConstant(0, VT
);
1550 // X % undef -> undef
1551 if (N1
.getOpcode() == ISD::UNDEF
)
1557 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
1558 SDValue N0
= N
->getOperand(0);
1559 SDValue N1
= N
->getOperand(1);
1560 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1561 EVT VT
= N
->getValueType(0);
1563 // fold (mulhs x, 0) -> 0
1564 if (N1C
&& N1C
->isNullValue())
1566 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1567 if (N1C
&& N1C
->getAPIntValue() == 1)
1568 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), N0
.getValueType(), N0
,
1569 DAG
.getConstant(N0
.getValueType().getSizeInBits() - 1,
1570 getShiftAmountTy()));
1571 // fold (mulhs x, undef) -> 0
1572 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1573 return DAG
.getConstant(0, VT
);
1578 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
1579 SDValue N0
= N
->getOperand(0);
1580 SDValue N1
= N
->getOperand(1);
1581 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1582 EVT VT
= N
->getValueType(0);
1584 // fold (mulhu x, 0) -> 0
1585 if (N1C
&& N1C
->isNullValue())
1587 // fold (mulhu x, 1) -> 0
1588 if (N1C
&& N1C
->getAPIntValue() == 1)
1589 return DAG
.getConstant(0, N0
.getValueType());
1590 // fold (mulhu x, undef) -> 0
1591 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1592 return DAG
.getConstant(0, VT
);
1597 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1598 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1599 /// that are being performed. Return true if a simplification was made.
1601 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
1603 // If the high half is not needed, just compute the low half.
1604 bool HiExists
= N
->hasAnyUseOfValue(1);
1606 (!LegalOperations
||
1607 TLI
.isOperationLegal(LoOp
, N
->getValueType(0)))) {
1608 SDValue Res
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1609 N
->op_begin(), N
->getNumOperands());
1610 return CombineTo(N
, Res
, Res
);
1613 // If the low half is not needed, just compute the high half.
1614 bool LoExists
= N
->hasAnyUseOfValue(0);
1616 (!LegalOperations
||
1617 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
1618 SDValue Res
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1619 N
->op_begin(), N
->getNumOperands());
1620 return CombineTo(N
, Res
, Res
);
1623 // If both halves are used, return as it is.
1624 if (LoExists
&& HiExists
)
1627 // If the two computed results can be simplified separately, separate them.
1629 SDValue Lo
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1630 N
->op_begin(), N
->getNumOperands());
1631 AddToWorkList(Lo
.getNode());
1632 SDValue LoOpt
= combine(Lo
.getNode());
1633 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
1634 (!LegalOperations
||
1635 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
1636 return CombineTo(N
, LoOpt
, LoOpt
);
1640 SDValue Hi
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1641 N
->op_begin(), N
->getNumOperands());
1642 AddToWorkList(Hi
.getNode());
1643 SDValue HiOpt
= combine(Hi
.getNode());
1644 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
1645 (!LegalOperations
||
1646 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
1647 return CombineTo(N
, HiOpt
, HiOpt
);
1653 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
1654 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
);
1655 if (Res
.getNode()) return Res
;
1660 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
1661 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
);
1662 if (Res
.getNode()) return Res
;
1667 SDValue
DAGCombiner::visitSDIVREM(SDNode
*N
) {
1668 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::SDIV
, ISD::SREM
);
1669 if (Res
.getNode()) return Res
;
1674 SDValue
DAGCombiner::visitUDIVREM(SDNode
*N
) {
1675 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::UDIV
, ISD::UREM
);
1676 if (Res
.getNode()) return Res
;
1681 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1682 /// two operands of the same opcode, try to simplify it.
1683 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
1684 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
1685 EVT VT
= N0
.getValueType();
1686 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
1688 // For each of OP in AND/OR/XOR:
1689 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1690 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1691 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1692 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
1693 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
||
1694 N0
.getOpcode() == ISD::SIGN_EXTEND
||
1695 (N0
.getOpcode() == ISD::TRUNCATE
&&
1696 !TLI
.isTruncateFree(N0
.getOperand(0).getValueType(), VT
))) &&
1697 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType() &&
1698 (!LegalOperations
||
1699 TLI
.isOperationLegal(N
->getOpcode(), N0
.getOperand(0).getValueType()))) {
1700 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1701 N0
.getOperand(0).getValueType(),
1702 N0
.getOperand(0), N1
.getOperand(0));
1703 AddToWorkList(ORNode
.getNode());
1704 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, ORNode
);
1707 // For each of OP in SHL/SRL/SRA/AND...
1708 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1709 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1710 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1711 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
1712 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
1713 N0
.getOperand(1) == N1
.getOperand(1)) {
1714 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1715 N0
.getOperand(0).getValueType(),
1716 N0
.getOperand(0), N1
.getOperand(0));
1717 AddToWorkList(ORNode
.getNode());
1718 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
1719 ORNode
, N0
.getOperand(1));
1725 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
1726 SDValue N0
= N
->getOperand(0);
1727 SDValue N1
= N
->getOperand(1);
1728 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1729 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1730 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1731 EVT VT
= N1
.getValueType();
1732 unsigned BitWidth
= VT
.getSizeInBits();
1735 if (VT
.isVector()) {
1736 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1737 if (FoldedVOp
.getNode()) return FoldedVOp
;
1740 // fold (and x, undef) -> 0
1741 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1742 return DAG
.getConstant(0, VT
);
1743 // fold (and c1, c2) -> c1&c2
1745 return DAG
.FoldConstantArithmetic(ISD::AND
, VT
, N0C
, N1C
);
1746 // canonicalize constant to RHS
1748 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N1
, N0
);
1749 // fold (and x, -1) -> x
1750 if (N1C
&& N1C
->isAllOnesValue())
1752 // if (and x, c) is known to be zero, return 0
1753 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
1754 APInt::getAllOnesValue(BitWidth
)))
1755 return DAG
.getConstant(0, VT
);
1757 SDValue RAND
= ReassociateOps(ISD::AND
, N
->getDebugLoc(), N0
, N1
);
1758 if (RAND
.getNode() != 0)
1760 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1761 if (N1C
&& N0
.getOpcode() == ISD::OR
)
1762 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
1763 if ((ORI
->getAPIntValue() & N1C
->getAPIntValue()) == N1C
->getAPIntValue())
1765 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1766 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1767 SDValue N0Op0
= N0
.getOperand(0);
1768 APInt Mask
= ~N1C
->getAPIntValue();
1769 Mask
.trunc(N0Op0
.getValueSizeInBits());
1770 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
1771 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(),
1772 N0
.getValueType(), N0Op0
);
1774 // Replace uses of the AND with uses of the Zero extend node.
1777 // We actually want to replace all uses of the any_extend with the
1778 // zero_extend, to avoid duplicating things. This will later cause this
1779 // AND to be folded.
1780 CombineTo(N0
.getNode(), Zext
);
1781 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1784 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1785 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1786 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1787 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1789 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1790 LL
.getValueType().isInteger()) {
1791 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1792 if (cast
<ConstantSDNode
>(LR
)->isNullValue() && Op1
== ISD::SETEQ
) {
1793 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1794 LR
.getValueType(), LL
, RL
);
1795 AddToWorkList(ORNode
.getNode());
1796 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1798 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1799 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
1800 SDValue ANDNode
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(),
1801 LR
.getValueType(), LL
, RL
);
1802 AddToWorkList(ANDNode
.getNode());
1803 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1805 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1806 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
1807 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1808 LR
.getValueType(), LL
, RL
);
1809 AddToWorkList(ORNode
.getNode());
1810 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1813 // canonicalize equivalent to ll == rl
1814 if (LL
== RR
&& LR
== RL
) {
1815 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1818 if (LL
== RL
&& LR
== RR
) {
1819 bool isInteger
= LL
.getValueType().isInteger();
1820 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
1821 if (Result
!= ISD::SETCC_INVALID
&&
1822 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1823 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1828 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1829 if (N0
.getOpcode() == N1
.getOpcode()) {
1830 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1831 if (Tmp
.getNode()) return Tmp
;
1834 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1835 // fold (and (sra)) -> (and (srl)) when possible.
1836 if (!VT
.isVector() &&
1837 SimplifyDemandedBits(SDValue(N
, 0)))
1838 return SDValue(N
, 0);
1839 // fold (zext_inreg (extload x)) -> (zextload x)
1840 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
1841 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1842 EVT EVT
= LN0
->getMemoryVT();
1843 // If we zero all the possible extended bits, then we can turn this into
1844 // a zextload if we are running before legalize or the operation is legal.
1845 unsigned BitWidth
= N1
.getValueSizeInBits();
1846 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1847 BitWidth
- EVT
.getSizeInBits())) &&
1848 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1849 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1850 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1851 LN0
->getChain(), LN0
->getBasePtr(),
1853 LN0
->getSrcValueOffset(), EVT
,
1854 LN0
->isVolatile(), LN0
->getAlignment());
1856 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1857 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1860 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1861 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
1863 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1864 EVT EVT
= LN0
->getMemoryVT();
1865 // If we zero all the possible extended bits, then we can turn this into
1866 // a zextload if we are running before legalize or the operation is legal.
1867 unsigned BitWidth
= N1
.getValueSizeInBits();
1868 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1869 BitWidth
- EVT
.getSizeInBits())) &&
1870 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1871 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1872 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1874 LN0
->getBasePtr(), LN0
->getSrcValue(),
1875 LN0
->getSrcValueOffset(), EVT
,
1876 LN0
->isVolatile(), LN0
->getAlignment());
1878 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1879 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1883 // fold (and (load x), 255) -> (zextload x, i8)
1884 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1885 if (N1C
&& N0
.getOpcode() == ISD::LOAD
) {
1886 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1887 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
1888 LN0
->isUnindexed() && N0
.hasOneUse() &&
1889 // Do not change the width of a volatile load.
1890 !LN0
->isVolatile()) {
1891 EVT ExtVT
= MVT::Other
;
1892 uint32_t ActiveBits
= N1C
->getAPIntValue().getActiveBits();
1893 if (ActiveBits
> 0 && APIntOps::isMask(ActiveBits
, N1C
->getAPIntValue()))
1894 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
1896 EVT LoadedVT
= LN0
->getMemoryVT();
1898 // Do not generate loads of non-round integer types since these can
1899 // be expensive (and would be wrong if the type is not byte sized).
1900 if (ExtVT
!= MVT::Other
&& LoadedVT
.bitsGT(ExtVT
) && ExtVT
.isRound() &&
1901 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
))) {
1902 EVT PtrType
= N0
.getOperand(1).getValueType();
1904 // For big endian targets, we need to add an offset to the pointer to
1905 // load the correct bytes. For little endian systems, we merely need to
1906 // read fewer bytes from the same pointer.
1907 unsigned LVTStoreBytes
= LoadedVT
.getStoreSizeInBits()/8;
1908 unsigned EVTStoreBytes
= ExtVT
.getStoreSizeInBits()/8;
1909 unsigned PtrOff
= LVTStoreBytes
- EVTStoreBytes
;
1910 unsigned Alignment
= LN0
->getAlignment();
1911 SDValue NewPtr
= LN0
->getBasePtr();
1913 if (TLI
.isBigEndian()) {
1914 NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(), PtrType
,
1915 NewPtr
, DAG
.getConstant(PtrOff
, PtrType
));
1916 Alignment
= MinAlign(Alignment
, PtrOff
);
1919 AddToWorkList(NewPtr
.getNode());
1921 DAG
.getExtLoad(ISD::ZEXTLOAD
, LN0
->getDebugLoc(), VT
, LN0
->getChain(),
1922 NewPtr
, LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
1923 ExtVT
, LN0
->isVolatile(), Alignment
);
1925 CombineTo(N0
.getNode(), Load
, Load
.getValue(1));
1926 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1934 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
1935 SDValue N0
= N
->getOperand(0);
1936 SDValue N1
= N
->getOperand(1);
1937 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1938 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1939 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1940 EVT VT
= N1
.getValueType();
1943 if (VT
.isVector()) {
1944 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1945 if (FoldedVOp
.getNode()) return FoldedVOp
;
1948 // fold (or x, undef) -> -1
1949 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1950 return DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
1951 // fold (or c1, c2) -> c1|c2
1953 return DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N0C
, N1C
);
1954 // canonicalize constant to RHS
1956 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N1
, N0
);
1957 // fold (or x, 0) -> x
1958 if (N1C
&& N1C
->isNullValue())
1960 // fold (or x, -1) -> -1
1961 if (N1C
&& N1C
->isAllOnesValue())
1963 // fold (or x, c) -> c iff (x & ~c) == 0
1964 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
1967 SDValue ROR
= ReassociateOps(ISD::OR
, N
->getDebugLoc(), N0
, N1
);
1968 if (ROR
.getNode() != 0)
1970 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1971 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
1972 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1973 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
1974 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
1975 DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
1976 N0
.getOperand(0), N1
),
1977 DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N1C
, C1
));
1979 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1980 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1981 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1982 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1984 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1985 LL
.getValueType().isInteger()) {
1986 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1987 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1988 if (cast
<ConstantSDNode
>(LR
)->isNullValue() &&
1989 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
1990 SDValue ORNode
= DAG
.getNode(ISD::OR
, LR
.getDebugLoc(),
1991 LR
.getValueType(), LL
, RL
);
1992 AddToWorkList(ORNode
.getNode());
1993 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1995 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1996 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1997 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
1998 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
1999 SDValue ANDNode
= DAG
.getNode(ISD::AND
, LR
.getDebugLoc(),
2000 LR
.getValueType(), LL
, RL
);
2001 AddToWorkList(ANDNode
.getNode());
2002 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
2005 // canonicalize equivalent to ll == rl
2006 if (LL
== RR
&& LR
== RL
) {
2007 Op1
= ISD::getSetCCSwappedOperands(Op1
);
2010 if (LL
== RL
&& LR
== RR
) {
2011 bool isInteger
= LL
.getValueType().isInteger();
2012 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
2013 if (Result
!= ISD::SETCC_INVALID
&&
2014 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
2015 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
2020 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2021 if (N0
.getOpcode() == N1
.getOpcode()) {
2022 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2023 if (Tmp
.getNode()) return Tmp
;
2026 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2027 if (N0
.getOpcode() == ISD::AND
&&
2028 N1
.getOpcode() == ISD::AND
&&
2029 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
2030 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
2031 // Don't increase # computations.
2032 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
2033 // We can only do this xform if we know that bits from X that are set in C2
2034 // but not in C1 are already zero. Likewise for Y.
2035 const APInt
&LHSMask
=
2036 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2037 const APInt
&RHSMask
=
2038 cast
<ConstantSDNode
>(N1
.getOperand(1))->getAPIntValue();
2040 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
2041 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
2042 SDValue X
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2043 N0
.getOperand(0), N1
.getOperand(0));
2044 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, X
,
2045 DAG
.getConstant(LHSMask
| RHSMask
, VT
));
2049 // See if this is some rotate idiom.
2050 if (SDNode
*Rot
= MatchRotate(N0
, N1
, N
->getDebugLoc()))
2051 return SDValue(Rot
, 0);
2056 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2057 static bool MatchRotateHalf(SDValue Op
, SDValue
&Shift
, SDValue
&Mask
) {
2058 if (Op
.getOpcode() == ISD::AND
) {
2059 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
2060 Mask
= Op
.getOperand(1);
2061 Op
= Op
.getOperand(0);
2067 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
2075 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2076 // idioms for rotate, and if the target supports rotation instructions, generate
2078 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
) {
2079 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2080 EVT VT
= LHS
.getValueType();
2081 if (!TLI
.isTypeLegal(VT
)) return 0;
2083 // The target must have at least one rotate flavor.
2084 bool HasROTL
= TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
);
2085 bool HasROTR
= TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
);
2086 if (!HasROTL
&& !HasROTR
) return 0;
2088 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2089 SDValue LHSShift
; // The shift.
2090 SDValue LHSMask
; // AND value if any.
2091 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
2092 return 0; // Not part of a rotate.
2094 SDValue RHSShift
; // The shift.
2095 SDValue RHSMask
; // AND value if any.
2096 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
2097 return 0; // Not part of a rotate.
2099 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
2100 return 0; // Not shifting the same value.
2102 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
2103 return 0; // Shifts must disagree.
2105 // Canonicalize shl to left side in a shl/srl pair.
2106 if (RHSShift
.getOpcode() == ISD::SHL
) {
2107 std::swap(LHS
, RHS
);
2108 std::swap(LHSShift
, RHSShift
);
2109 std::swap(LHSMask
, RHSMask
);
2112 unsigned OpSizeInBits
= VT
.getSizeInBits();
2113 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
2114 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
2115 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
2117 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2118 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2119 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
2120 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
2121 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getZExtValue();
2122 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getZExtValue();
2123 if ((LShVal
+ RShVal
) != OpSizeInBits
)
2128 Rot
= DAG
.getNode(ISD::ROTL
, DL
, VT
, LHSShiftArg
, LHSShiftAmt
);
2130 Rot
= DAG
.getNode(ISD::ROTR
, DL
, VT
, LHSShiftArg
, RHSShiftAmt
);
2132 // If there is an AND of either shifted operand, apply it to the result.
2133 if (LHSMask
.getNode() || RHSMask
.getNode()) {
2134 APInt Mask
= APInt::getAllOnesValue(OpSizeInBits
);
2136 if (LHSMask
.getNode()) {
2137 APInt RHSBits
= APInt::getLowBitsSet(OpSizeInBits
, LShVal
);
2138 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getAPIntValue() | RHSBits
;
2140 if (RHSMask
.getNode()) {
2141 APInt LHSBits
= APInt::getHighBitsSet(OpSizeInBits
, RShVal
);
2142 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getAPIntValue() | LHSBits
;
2145 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
2148 return Rot
.getNode();
2151 // If there is a mask here, and we have a variable shift, we can't be sure
2152 // that we're masking out the right stuff.
2153 if (LHSMask
.getNode() || RHSMask
.getNode())
2156 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2157 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2158 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
2159 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
2160 if (ConstantSDNode
*SUBC
=
2161 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
2162 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2164 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2165 LHSShiftArg
, LHSShiftAmt
).getNode();
2167 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2168 LHSShiftArg
, RHSShiftAmt
).getNode();
2173 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2174 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2175 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
2176 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
2177 if (ConstantSDNode
*SUBC
=
2178 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
2179 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2181 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2182 LHSShiftArg
, RHSShiftAmt
).getNode();
2184 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2185 LHSShiftArg
, LHSShiftAmt
).getNode();
2190 // Look for sign/zext/any-extended or truncate cases:
2191 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2192 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2193 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2194 || LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
2195 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2196 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2197 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2198 || RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
2199 SDValue LExtOp0
= LHSShiftAmt
.getOperand(0);
2200 SDValue RExtOp0
= RHSShiftAmt
.getOperand(0);
2201 if (RExtOp0
.getOpcode() == ISD::SUB
&&
2202 RExtOp0
.getOperand(1) == LExtOp0
) {
2203 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2205 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2206 // (rotr x, (sub 32, y))
2207 if (ConstantSDNode
*SUBC
=
2208 dyn_cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
2209 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2210 return DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
2212 HasROTL
? LHSShiftAmt
: RHSShiftAmt
).getNode();
2215 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
2216 RExtOp0
== LExtOp0
.getOperand(1)) {
2217 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2219 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2220 // (rotl x, (sub 32, y))
2221 if (ConstantSDNode
*SUBC
=
2222 dyn_cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
2223 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2224 return DAG
.getNode(HasROTR
? ISD::ROTR
: ISD::ROTL
, DL
, VT
,
2226 HasROTR
? RHSShiftAmt
: LHSShiftAmt
).getNode();
2235 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
2236 SDValue N0
= N
->getOperand(0);
2237 SDValue N1
= N
->getOperand(1);
2238 SDValue LHS
, RHS
, CC
;
2239 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2240 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2241 EVT VT
= N0
.getValueType();
2244 if (VT
.isVector()) {
2245 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2246 if (FoldedVOp
.getNode()) return FoldedVOp
;
2249 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2250 if (N0
.getOpcode() == ISD::UNDEF
&& N1
.getOpcode() == ISD::UNDEF
)
2251 return DAG
.getConstant(0, VT
);
2252 // fold (xor x, undef) -> undef
2253 if (N0
.getOpcode() == ISD::UNDEF
)
2255 if (N1
.getOpcode() == ISD::UNDEF
)
2257 // fold (xor c1, c2) -> c1^c2
2259 return DAG
.FoldConstantArithmetic(ISD::XOR
, VT
, N0C
, N1C
);
2260 // canonicalize constant to RHS
2262 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
2263 // fold (xor x, 0) -> x
2264 if (N1C
&& N1C
->isNullValue())
2267 SDValue RXOR
= ReassociateOps(ISD::XOR
, N
->getDebugLoc(), N0
, N1
);
2268 if (RXOR
.getNode() != 0)
2271 // fold !(x cc y) -> (x !cc y)
2272 if (N1C
&& N1C
->getAPIntValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
2273 bool isInt
= LHS
.getValueType().isInteger();
2274 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
2277 if (!LegalOperations
|| TLI
.isCondCodeLegal(NotCC
, LHS
.getValueType())) {
2278 switch (N0
.getOpcode()) {
2280 llvm_unreachable("Unhandled SetCC Equivalent!");
2282 return DAG
.getSetCC(N
->getDebugLoc(), VT
, LHS
, RHS
, NotCC
);
2283 case ISD::SELECT_CC
:
2284 return DAG
.getSelectCC(N
->getDebugLoc(), LHS
, RHS
, N0
.getOperand(2),
2285 N0
.getOperand(3), NotCC
);
2290 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2291 if (N1C
&& N1C
->getAPIntValue() == 1 && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
2292 N0
.getNode()->hasOneUse() &&
2293 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
2294 SDValue V
= N0
.getOperand(0);
2295 V
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), V
.getValueType(), V
,
2296 DAG
.getConstant(1, V
.getValueType()));
2297 AddToWorkList(V
.getNode());
2298 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, V
);
2301 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2302 if (N1C
&& N1C
->getAPIntValue() == 1 && VT
== MVT::i1
&&
2303 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2304 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2305 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
2306 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2307 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2308 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2309 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2310 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2313 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2314 if (N1C
&& N1C
->isAllOnesValue() &&
2315 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2316 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2317 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
2318 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2319 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2320 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2321 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2322 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2325 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2326 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
2327 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
2328 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2330 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(1),
2331 DAG
.getConstant(N1C
->getAPIntValue() ^
2332 N00C
->getAPIntValue(), VT
));
2334 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2335 DAG
.getConstant(N1C
->getAPIntValue() ^
2336 N01C
->getAPIntValue(), VT
));
2338 // fold (xor x, x) -> 0
2340 if (!VT
.isVector()) {
2341 return DAG
.getConstant(0, VT
);
2342 } else if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)){
2343 // Produce a vector of zeros.
2344 SDValue El
= DAG
.getConstant(0, VT
.getVectorElementType());
2345 std::vector
<SDValue
> Ops(VT
.getVectorNumElements(), El
);
2346 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
2347 &Ops
[0], Ops
.size());
2351 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2352 if (N0
.getOpcode() == N1
.getOpcode()) {
2353 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2354 if (Tmp
.getNode()) return Tmp
;
2357 // Simplify the expression using non-local knowledge.
2358 if (!VT
.isVector() &&
2359 SimplifyDemandedBits(SDValue(N
, 0)))
2360 return SDValue(N
, 0);
2365 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2366 /// the shift amount is a constant.
2367 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, unsigned Amt
) {
2368 SDNode
*LHS
= N
->getOperand(0).getNode();
2369 if (!LHS
->hasOneUse()) return SDValue();
2371 // We want to pull some binops through shifts, so that we have (and (shift))
2372 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2373 // thing happens with address calculations, so it's important to canonicalize
2375 bool HighBitSet
= false; // Can we transform this if the high bit is set?
2377 switch (LHS
->getOpcode()) {
2378 default: return SDValue();
2381 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2384 HighBitSet
= true; // We can only transform sra if the high bit is set.
2387 if (N
->getOpcode() != ISD::SHL
)
2388 return SDValue(); // only shl(add) not sr[al](add).
2389 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2393 // We require the RHS of the binop to be a constant as well.
2394 ConstantSDNode
*BinOpCst
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
2395 if (!BinOpCst
) return SDValue();
2397 // FIXME: disable this unless the input to the binop is a shift by a constant.
2398 // If it is not a shift, it pessimizes some common cases like:
2400 // void foo(int *X, int i) { X[i & 1235] = 1; }
2401 // int bar(int *X, int i) { return X[i & 255]; }
2402 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
2403 if ((BinOpLHSVal
->getOpcode() != ISD::SHL
&&
2404 BinOpLHSVal
->getOpcode() != ISD::SRA
&&
2405 BinOpLHSVal
->getOpcode() != ISD::SRL
) ||
2406 !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1)))
2409 EVT VT
= N
->getValueType(0);
2411 // If this is a signed shift right, and the high bit is modified by the
2412 // logical operation, do not perform the transformation. The highBitSet
2413 // boolean indicates the value of the high bit of the constant which would
2414 // cause it to be modified for this operation.
2415 if (N
->getOpcode() == ISD::SRA
) {
2416 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
2417 if (BinOpRHSSignSet
!= HighBitSet
)
2421 // Fold the constants, shifting the binop RHS by the shift amount.
2422 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(1).getDebugLoc(),
2424 LHS
->getOperand(1), N
->getOperand(1));
2426 // Create the new shift.
2427 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(0).getDebugLoc(),
2428 VT
, LHS
->getOperand(0), N
->getOperand(1));
2430 // Create the new binop.
2431 return DAG
.getNode(LHS
->getOpcode(), N
->getDebugLoc(), VT
, NewShift
, NewRHS
);
2434 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
2435 SDValue N0
= N
->getOperand(0);
2436 SDValue N1
= N
->getOperand(1);
2437 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2438 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2439 EVT VT
= N0
.getValueType();
2440 unsigned OpSizeInBits
= VT
.getSizeInBits();
2442 // fold (shl c1, c2) -> c1<<c2
2444 return DAG
.FoldConstantArithmetic(ISD::SHL
, VT
, N0C
, N1C
);
2445 // fold (shl 0, x) -> 0
2446 if (N0C
&& N0C
->isNullValue())
2448 // fold (shl x, c >= size(x)) -> undef
2449 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2450 return DAG
.getUNDEF(VT
);
2451 // fold (shl x, 0) -> x
2452 if (N1C
&& N1C
->isNullValue())
2454 // if (shl x, c) is known to be zero, return 0
2455 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
2456 APInt::getAllOnesValue(VT
.getSizeInBits())))
2457 return DAG
.getConstant(0, VT
);
2458 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2459 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2460 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2461 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2462 SDValue N101
= N1
.getOperand(0).getOperand(1);
2463 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2464 EVT TruncVT
= N1
.getValueType();
2465 SDValue N100
= N1
.getOperand(0).getOperand(0);
2466 APInt TruncC
= N101C
->getAPIntValue();
2467 TruncC
.trunc(TruncVT
.getSizeInBits());
2468 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
2469 DAG
.getNode(ISD::AND
, N
->getDebugLoc(), TruncVT
,
2470 DAG
.getNode(ISD::TRUNCATE
,
2473 DAG
.getConstant(TruncC
, TruncVT
)));
2477 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2478 return SDValue(N
, 0);
2480 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2481 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
2482 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2483 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2484 uint64_t c2
= N1C
->getZExtValue();
2485 if (c1
+ c2
> OpSizeInBits
)
2486 return DAG
.getConstant(0, VT
);
2487 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2488 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2490 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2491 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2492 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2493 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2494 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2495 if (c1
< VT
.getSizeInBits()) {
2496 uint64_t c2
= N1C
->getZExtValue();
2497 SDValue HiBitsMask
=
2498 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2499 VT
.getSizeInBits() - c1
),
2501 SDValue Mask
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), VT
,
2505 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, Mask
,
2506 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
2508 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, Mask
,
2509 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
2512 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2513 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1)) {
2514 SDValue HiBitsMask
=
2515 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2516 VT
.getSizeInBits() -
2517 N1C
->getZExtValue()),
2519 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2523 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2526 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
2527 SDValue N0
= N
->getOperand(0);
2528 SDValue N1
= N
->getOperand(1);
2529 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2530 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2531 EVT VT
= N0
.getValueType();
2533 // fold (sra c1, c2) -> (sra c1, c2)
2535 return DAG
.FoldConstantArithmetic(ISD::SRA
, VT
, N0C
, N1C
);
2536 // fold (sra 0, x) -> 0
2537 if (N0C
&& N0C
->isNullValue())
2539 // fold (sra -1, x) -> -1
2540 if (N0C
&& N0C
->isAllOnesValue())
2542 // fold (sra x, (setge c, size(x))) -> undef
2543 if (N1C
&& N1C
->getZExtValue() >= VT
.getSizeInBits())
2544 return DAG
.getUNDEF(VT
);
2545 // fold (sra x, 0) -> x
2546 if (N1C
&& N1C
->isNullValue())
2548 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2550 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
2551 unsigned LowBits
= VT
.getSizeInBits() - (unsigned)N1C
->getZExtValue();
2552 EVT EVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
2553 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, EVT
)))
2554 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
2555 N0
.getOperand(0), DAG
.getValueType(EVT
));
2558 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2559 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
2560 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2561 unsigned Sum
= N1C
->getZExtValue() + C1
->getZExtValue();
2562 if (Sum
>= VT
.getSizeInBits()) Sum
= VT
.getSizeInBits()-1;
2563 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2564 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
2568 // fold (sra (shl X, m), (sub result_size, n))
2569 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2570 // result_size - n != m.
2571 // If truncate is free for the target sext(shl) is likely to result in better
2573 if (N0
.getOpcode() == ISD::SHL
) {
2574 // Get the two constanst of the shifts, CN0 = m, CN = n.
2575 const ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2577 // Determine what the truncate's result bitsize and type would be.
2578 unsigned VTValSize
= VT
.getSizeInBits();
2580 EVT::getIntegerVT(*DAG
.getContext(), VTValSize
- N1C
->getZExtValue());
2581 // Determine the residual right-shift amount.
2582 signed ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
2584 // If the shift is not a no-op (in which case this should be just a sign
2585 // extend already), the truncated to type is legal, sign_extend is legal
2586 // on that type, and the the truncate to that type is both legal and free,
2587 // perform the transform.
2588 if ((ShiftAmt
> 0) &&
2589 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
2590 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
2591 TLI
.isTruncateFree(VT
, TruncVT
)) {
2593 SDValue Amt
= DAG
.getConstant(ShiftAmt
, getShiftAmountTy());
2594 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
,
2595 N0
.getOperand(0), Amt
);
2596 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), TruncVT
,
2598 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
2599 N
->getValueType(0), Trunc
);
2604 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2605 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2606 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2607 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2608 SDValue N101
= N1
.getOperand(0).getOperand(1);
2609 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2610 EVT TruncVT
= N1
.getValueType();
2611 SDValue N100
= N1
.getOperand(0).getOperand(0);
2612 APInt TruncC
= N101C
->getAPIntValue();
2613 TruncC
.trunc(TruncVT
.getSizeInBits());
2614 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
2615 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2617 DAG
.getNode(ISD::TRUNCATE
,
2620 DAG
.getConstant(TruncC
, TruncVT
)));
2624 // Simplify, based on bits shifted out of the LHS.
2625 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2626 return SDValue(N
, 0);
2629 // If the sign bit is known to be zero, switch this to a SRL.
2630 if (DAG
.SignBitIsZero(N0
))
2631 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, N1
);
2633 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2636 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
2637 SDValue N0
= N
->getOperand(0);
2638 SDValue N1
= N
->getOperand(1);
2639 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2640 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2641 EVT VT
= N0
.getValueType();
2642 unsigned OpSizeInBits
= VT
.getSizeInBits();
2644 // fold (srl c1, c2) -> c1 >>u c2
2646 return DAG
.FoldConstantArithmetic(ISD::SRL
, VT
, N0C
, N1C
);
2647 // fold (srl 0, x) -> 0
2648 if (N0C
&& N0C
->isNullValue())
2650 // fold (srl x, c >= size(x)) -> undef
2651 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2652 return DAG
.getUNDEF(VT
);
2653 // fold (srl x, 0) -> x
2654 if (N1C
&& N1C
->isNullValue())
2656 // if (srl x, c) is known to be zero, return 0
2657 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
2658 APInt::getAllOnesValue(OpSizeInBits
)))
2659 return DAG
.getConstant(0, VT
);
2661 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2662 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2663 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2664 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2665 uint64_t c2
= N1C
->getZExtValue();
2666 if (c1
+ c2
> OpSizeInBits
)
2667 return DAG
.getConstant(0, VT
);
2668 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2669 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2672 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2673 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
2674 // Shifting in all undef bits?
2675 EVT SmallVT
= N0
.getOperand(0).getValueType();
2676 if (N1C
->getZExtValue() >= SmallVT
.getSizeInBits())
2677 return DAG
.getUNDEF(VT
);
2679 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), SmallVT
,
2680 N0
.getOperand(0), N1
);
2681 AddToWorkList(SmallShift
.getNode());
2682 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, SmallShift
);
2685 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2686 // bit, which is unmodified by sra.
2687 if (N1C
&& N1C
->getZExtValue() + 1 == VT
.getSizeInBits()) {
2688 if (N0
.getOpcode() == ISD::SRA
)
2689 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0), N1
);
2692 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2693 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
2694 N1C
->getAPIntValue() == Log2_32(VT
.getSizeInBits())) {
2695 APInt KnownZero
, KnownOne
;
2696 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
2697 DAG
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
2699 // If any of the input bits are KnownOne, then the input couldn't be all
2700 // zeros, thus the result of the srl will always be zero.
2701 if (KnownOne
.getBoolValue()) return DAG
.getConstant(0, VT
);
2703 // If all of the bits input the to ctlz node are known to be zero, then
2704 // the result of the ctlz is "32" and the result of the shift is one.
2705 APInt UnknownBits
= ~KnownZero
& Mask
;
2706 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
2708 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2709 if ((UnknownBits
& (UnknownBits
- 1)) == 0) {
2710 // Okay, we know that only that the single bit specified by UnknownBits
2711 // could be set on input to the CTLZ node. If this bit is set, the SRL
2712 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2713 // to an SRL/XOR pair, which is likely to simplify more.
2714 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
2715 SDValue Op
= N0
.getOperand(0);
2718 Op
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
, Op
,
2719 DAG
.getConstant(ShAmt
, getShiftAmountTy()));
2720 AddToWorkList(Op
.getNode());
2723 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
2724 Op
, DAG
.getConstant(1, VT
));
2728 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2729 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2730 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2731 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2732 SDValue N101
= N1
.getOperand(0).getOperand(1);
2733 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2734 EVT TruncVT
= N1
.getValueType();
2735 SDValue N100
= N1
.getOperand(0).getOperand(0);
2736 APInt TruncC
= N101C
->getAPIntValue();
2737 TruncC
.trunc(TruncVT
.getSizeInBits());
2738 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
2739 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2741 DAG
.getNode(ISD::TRUNCATE
,
2744 DAG
.getConstant(TruncC
, TruncVT
)));
2748 // fold operands of srl based on knowledge that the low bits are not
2750 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2751 return SDValue(N
, 0);
2753 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2756 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
2757 SDValue N0
= N
->getOperand(0);
2758 EVT VT
= N
->getValueType(0);
2760 // fold (ctlz c1) -> c2
2761 if (isa
<ConstantSDNode
>(N0
))
2762 return DAG
.getNode(ISD::CTLZ
, N
->getDebugLoc(), VT
, N0
);
2766 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
2767 SDValue N0
= N
->getOperand(0);
2768 EVT VT
= N
->getValueType(0);
2770 // fold (cttz c1) -> c2
2771 if (isa
<ConstantSDNode
>(N0
))
2772 return DAG
.getNode(ISD::CTTZ
, N
->getDebugLoc(), VT
, N0
);
2776 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
2777 SDValue N0
= N
->getOperand(0);
2778 EVT VT
= N
->getValueType(0);
2780 // fold (ctpop c1) -> c2
2781 if (isa
<ConstantSDNode
>(N0
))
2782 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), VT
, N0
);
2786 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
2787 SDValue N0
= N
->getOperand(0);
2788 SDValue N1
= N
->getOperand(1);
2789 SDValue N2
= N
->getOperand(2);
2790 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2791 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2792 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2793 EVT VT
= N
->getValueType(0);
2794 EVT VT0
= N0
.getValueType();
2796 // fold (select C, X, X) -> X
2799 // fold (select true, X, Y) -> X
2800 if (N0C
&& !N0C
->isNullValue())
2802 // fold (select false, X, Y) -> Y
2803 if (N0C
&& N0C
->isNullValue())
2805 // fold (select C, 1, X) -> (or C, X)
2806 if (VT
== MVT::i1
&& N1C
&& N1C
->getAPIntValue() == 1)
2807 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2808 // fold (select C, 0, 1) -> (xor C, 1)
2809 if (VT
.isInteger() &&
2812 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
)) &&
2813 N1C
&& N2C
&& N1C
->isNullValue() && N2C
->getAPIntValue() == 1) {
2816 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT0
,
2817 N0
, DAG
.getConstant(1, VT0
));
2818 XORNode
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), VT0
,
2819 N0
, DAG
.getConstant(1, VT0
));
2820 AddToWorkList(XORNode
.getNode());
2822 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, XORNode
);
2823 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, XORNode
);
2825 // fold (select C, 0, X) -> (and (not C), X)
2826 if (VT
== VT0
&& VT
== MVT::i1
&& N1C
&& N1C
->isNullValue()) {
2827 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2828 AddToWorkList(NOTNode
.getNode());
2829 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, NOTNode
, N2
);
2831 // fold (select C, X, 1) -> (or (not C), X)
2832 if (VT
== VT0
&& VT
== MVT::i1
&& N2C
&& N2C
->getAPIntValue() == 1) {
2833 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2834 AddToWorkList(NOTNode
.getNode());
2835 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, NOTNode
, N1
);
2837 // fold (select C, X, 0) -> (and C, X)
2838 if (VT
== MVT::i1
&& N2C
&& N2C
->isNullValue())
2839 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2840 // fold (select X, X, Y) -> (or X, Y)
2841 // fold (select X, 1, Y) -> (or X, Y)
2842 if (VT
== MVT::i1
&& (N0
== N1
|| (N1C
&& N1C
->getAPIntValue() == 1)))
2843 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2844 // fold (select X, Y, X) -> (and X, Y)
2845 // fold (select X, Y, 0) -> (and X, Y)
2846 if (VT
== MVT::i1
&& (N0
== N2
|| (N2C
&& N2C
->getAPIntValue() == 0)))
2847 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2849 // If we can fold this based on the true/false value, do so.
2850 if (SimplifySelectOps(N
, N1
, N2
))
2851 return SDValue(N
, 0); // Don't revisit N.
2853 // fold selects based on a setcc into other things, such as min/max/abs
2854 if (N0
.getOpcode() == ISD::SETCC
) {
2856 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2857 // having to say they don't support SELECT_CC on every type the DAG knows
2858 // about, since there is no way to mark an opcode illegal at all value types
2859 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, MVT::Other
) &&
2860 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))
2861 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), VT
,
2862 N0
.getOperand(0), N0
.getOperand(1),
2863 N1
, N2
, N0
.getOperand(2));
2864 return SimplifySelect(N
->getDebugLoc(), N0
, N1
, N2
);
2870 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
2871 SDValue N0
= N
->getOperand(0);
2872 SDValue N1
= N
->getOperand(1);
2873 SDValue N2
= N
->getOperand(2);
2874 SDValue N3
= N
->getOperand(3);
2875 SDValue N4
= N
->getOperand(4);
2876 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
2878 // fold select_cc lhs, rhs, x, x, cc -> x
2882 // Determine if the condition we're dealing with is constant
2883 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
2884 N0
, N1
, CC
, N
->getDebugLoc(), false);
2885 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
2887 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
2888 if (!SCCC
->isNullValue())
2889 return N2
; // cond always true -> true val
2891 return N3
; // cond always false -> false val
2894 // Fold to a simpler select_cc
2895 if (SCC
.getNode() && SCC
.getOpcode() == ISD::SETCC
)
2896 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), N2
.getValueType(),
2897 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
2900 // If we can fold this based on the true/false value, do so.
2901 if (SimplifySelectOps(N
, N2
, N3
))
2902 return SDValue(N
, 0); // Don't revisit N.
2904 // fold select_cc into other things, such as min/max/abs
2905 return SimplifySelectCC(N
->getDebugLoc(), N0
, N1
, N2
, N3
, CC
);
2908 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
2909 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
2910 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(),
2914 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2915 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
2916 // transformation. Returns true if extension are possible and the above
2917 // mentioned transformation is profitable.
2918 static bool ExtendUsesToFormExtLoad(SDNode
*N
, SDValue N0
,
2920 SmallVector
<SDNode
*, 4> &ExtendNodes
,
2921 const TargetLowering
&TLI
) {
2922 bool HasCopyToRegUses
= false;
2923 bool isTruncFree
= TLI
.isTruncateFree(N
->getValueType(0), N0
.getValueType());
2924 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
2925 UE
= N0
.getNode()->use_end();
2930 if (UI
.getUse().getResNo() != N0
.getResNo())
2932 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2933 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
2934 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
2935 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
2936 // Sign bits will be lost after a zext.
2939 for (unsigned i
= 0; i
!= 2; ++i
) {
2940 SDValue UseOp
= User
->getOperand(i
);
2943 if (!isa
<ConstantSDNode
>(UseOp
))
2948 ExtendNodes
.push_back(User
);
2951 // If truncates aren't free and there are users we can't
2952 // extend, it isn't worthwhile.
2955 // Remember if this value is live-out.
2956 if (User
->getOpcode() == ISD::CopyToReg
)
2957 HasCopyToRegUses
= true;
2960 if (HasCopyToRegUses
) {
2961 bool BothLiveOut
= false;
2962 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
2964 SDUse
&Use
= UI
.getUse();
2965 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
2971 // Both unextended and extended values are live out. There had better be
2972 // good a reason for the transformation.
2973 return ExtendNodes
.size();
2978 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
2979 SDValue N0
= N
->getOperand(0);
2980 EVT VT
= N
->getValueType(0);
2982 // fold (sext c1) -> c1
2983 if (isa
<ConstantSDNode
>(N0
))
2984 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N0
);
2986 // fold (sext (sext x)) -> (sext x)
2987 // fold (sext (aext x)) -> (sext x)
2988 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2989 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
,
2992 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2993 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2994 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2995 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
2996 if (NarrowLoad
.getNode()) {
2997 if (NarrowLoad
.getNode() != N0
.getNode())
2998 CombineTo(N0
.getNode(), NarrowLoad
);
2999 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3002 // See if the value being truncated is already sign extended. If so, just
3003 // eliminate the trunc/sext pair.
3004 SDValue Op
= N0
.getOperand(0);
3005 unsigned OpBits
= Op
.getValueType().getSizeInBits();
3006 unsigned MidBits
= N0
.getValueType().getSizeInBits();
3007 unsigned DestBits
= VT
.getSizeInBits();
3008 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
3010 if (OpBits
== DestBits
) {
3011 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
3012 // bits, it is already ready.
3013 if (NumSignBits
> DestBits
-MidBits
)
3015 } else if (OpBits
< DestBits
) {
3016 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
3017 // bits, just sext from i32.
3018 if (NumSignBits
> OpBits
-MidBits
)
3019 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3021 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
3022 // bits, just truncate to i32.
3023 if (NumSignBits
> OpBits
-MidBits
)
3024 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3027 // fold (sext (truncate x)) -> (sextinreg x).
3028 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
3029 N0
.getValueType())) {
3030 if (Op
.getValueType().bitsLT(VT
))
3031 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N0
.getDebugLoc(), VT
, Op
);
3032 else if (Op
.getValueType().bitsGT(VT
))
3033 Op
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), VT
, Op
);
3034 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, Op
,
3035 DAG
.getValueType(N0
.getValueType()));
3039 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3040 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3041 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3042 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, N0
.getValueType()))) {
3043 bool DoXform
= true;
3044 SmallVector
<SDNode
*, 4> SetCCs
;
3045 if (!N0
.hasOneUse())
3046 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::SIGN_EXTEND
, SetCCs
, TLI
);
3048 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3049 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3051 LN0
->getBasePtr(), LN0
->getSrcValue(),
3052 LN0
->getSrcValueOffset(),
3054 LN0
->isVolatile(), LN0
->getAlignment());
3055 CombineTo(N
, ExtLoad
);
3056 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3057 N0
.getValueType(), ExtLoad
);
3058 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3060 // Extend SetCC uses if necessary.
3061 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3062 SDNode
*SetCC
= SetCCs
[i
];
3063 SmallVector
<SDValue
, 4> Ops
;
3065 for (unsigned j
= 0; j
!= 2; ++j
) {
3066 SDValue SOp
= SetCC
->getOperand(j
);
3068 Ops
.push_back(ExtLoad
);
3070 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
,
3071 N
->getDebugLoc(), VT
, SOp
));
3074 Ops
.push_back(SetCC
->getOperand(2));
3075 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3076 SetCC
->getValueType(0),
3077 &Ops
[0], Ops
.size()));
3080 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3084 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3085 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3086 if ((ISD::isSEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3087 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3088 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3089 EVT EVT
= LN0
->getMemoryVT();
3090 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3091 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
)) {
3092 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3094 LN0
->getBasePtr(), LN0
->getSrcValue(),
3095 LN0
->getSrcValueOffset(), EVT
,
3096 LN0
->isVolatile(), LN0
->getAlignment());
3097 CombineTo(N
, ExtLoad
);
3098 CombineTo(N0
.getNode(),
3099 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3100 N0
.getValueType(), ExtLoad
),
3101 ExtLoad
.getValue(1));
3102 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3106 if (N0
.getOpcode() == ISD::SETCC
) {
3107 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
3108 if (VT
.isVector() &&
3109 // We know that the # elements of the results is the same as the
3110 // # elements of the compare (and the # elements of the compare result
3111 // for that matter). Check to see that they are the same size. If so,
3112 // we know that the element size of the sext'd result matches the
3113 // element size of the compare operands.
3114 VT
.getSizeInBits() == N0
.getOperand(0).getValueType().getSizeInBits() &&
3116 // Only do this before legalize for now.
3118 return DAG
.getVSetCC(N
->getDebugLoc(), VT
, N0
.getOperand(0),
3120 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3123 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3125 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
3127 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3128 NegOne
, DAG
.getConstant(0, VT
),
3129 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3130 if (SCC
.getNode()) return SCC
;
3135 // fold (sext x) -> (zext x) if the sign bit is known zero.
3136 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
3137 DAG
.SignBitIsZero(N0
))
3138 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3143 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
3144 SDValue N0
= N
->getOperand(0);
3145 EVT VT
= N
->getValueType(0);
3147 // fold (zext c1) -> c1
3148 if (isa
<ConstantSDNode
>(N0
))
3149 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3150 // fold (zext (zext x)) -> (zext x)
3151 // fold (zext (aext x)) -> (zext x)
3152 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3153 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
,
3156 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3157 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3158 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3159 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3160 if (NarrowLoad
.getNode()) {
3161 if (NarrowLoad
.getNode() != N0
.getNode())
3162 CombineTo(N0
.getNode(), NarrowLoad
);
3163 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3167 // fold (zext (truncate x)) -> (and x, mask)
3168 if (N0
.getOpcode() == ISD::TRUNCATE
&&
3169 (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
3170 SDValue Op
= N0
.getOperand(0);
3171 if (Op
.getValueType().bitsLT(VT
)) {
3172 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3173 } else if (Op
.getValueType().bitsGT(VT
)) {
3174 Op
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3176 return DAG
.getZeroExtendInReg(Op
, N
->getDebugLoc(), N0
.getValueType());
3179 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3180 // if either of the casts is not free.
3181 if (N0
.getOpcode() == ISD::AND
&&
3182 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3183 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3184 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3185 N0
.getValueType()) ||
3186 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
3187 SDValue X
= N0
.getOperand(0).getOperand(0);
3188 if (X
.getValueType().bitsLT(VT
)) {
3189 X
= DAG
.getNode(ISD::ANY_EXTEND
, X
.getDebugLoc(), VT
, X
);
3190 } else if (X
.getValueType().bitsGT(VT
)) {
3191 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3193 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3194 Mask
.zext(VT
.getSizeInBits());
3195 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3196 X
, DAG
.getConstant(Mask
, VT
));
3199 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3200 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3201 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3202 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
3203 bool DoXform
= true;
3204 SmallVector
<SDNode
*, 4> SetCCs
;
3205 if (!N0
.hasOneUse())
3206 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ZERO_EXTEND
, SetCCs
, TLI
);
3208 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3209 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3211 LN0
->getBasePtr(), LN0
->getSrcValue(),
3212 LN0
->getSrcValueOffset(),
3214 LN0
->isVolatile(), LN0
->getAlignment());
3215 CombineTo(N
, ExtLoad
);
3216 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3217 N0
.getValueType(), ExtLoad
);
3218 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3220 // Extend SetCC uses if necessary.
3221 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3222 SDNode
*SetCC
= SetCCs
[i
];
3223 SmallVector
<SDValue
, 4> Ops
;
3225 for (unsigned j
= 0; j
!= 2; ++j
) {
3226 SDValue SOp
= SetCC
->getOperand(j
);
3228 Ops
.push_back(ExtLoad
);
3230 Ops
.push_back(DAG
.getNode(ISD::ZERO_EXTEND
,
3231 N
->getDebugLoc(), VT
, SOp
));
3234 Ops
.push_back(SetCC
->getOperand(2));
3235 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3236 SetCC
->getValueType(0),
3237 &Ops
[0], Ops
.size()));
3240 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3244 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3245 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3246 if ((ISD::isZEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3247 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3248 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3249 EVT EVT
= LN0
->getMemoryVT();
3250 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3251 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
)) {
3252 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3254 LN0
->getBasePtr(), LN0
->getSrcValue(),
3255 LN0
->getSrcValueOffset(), EVT
,
3256 LN0
->isVolatile(), LN0
->getAlignment());
3257 CombineTo(N
, ExtLoad
);
3258 CombineTo(N0
.getNode(),
3259 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), N0
.getValueType(),
3261 ExtLoad
.getValue(1));
3262 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3266 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3267 if (N0
.getOpcode() == ISD::SETCC
) {
3269 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3270 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3271 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3272 if (SCC
.getNode()) return SCC
;
3278 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
3279 SDValue N0
= N
->getOperand(0);
3280 EVT VT
= N
->getValueType(0);
3282 // fold (aext c1) -> c1
3283 if (isa
<ConstantSDNode
>(N0
))
3284 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3285 // fold (aext (aext x)) -> (aext x)
3286 // fold (aext (zext x)) -> (zext x)
3287 // fold (aext (sext x)) -> (sext x)
3288 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
3289 N0
.getOpcode() == ISD::ZERO_EXTEND
||
3290 N0
.getOpcode() == ISD::SIGN_EXTEND
)
3291 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, N0
.getOperand(0));
3293 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3294 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3295 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3296 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3297 if (NarrowLoad
.getNode()) {
3298 if (NarrowLoad
.getNode() != N0
.getNode())
3299 CombineTo(N0
.getNode(), NarrowLoad
);
3300 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3304 // fold (aext (truncate x))
3305 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3306 SDValue TruncOp
= N0
.getOperand(0);
3307 if (TruncOp
.getValueType() == VT
)
3308 return TruncOp
; // x iff x size == zext size.
3309 if (TruncOp
.getValueType().bitsGT(VT
))
3310 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, TruncOp
);
3311 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, TruncOp
);
3314 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3315 // if the trunc is not free.
3316 if (N0
.getOpcode() == ISD::AND
&&
3317 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3318 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3319 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3320 N0
.getValueType())) {
3321 SDValue X
= N0
.getOperand(0).getOperand(0);
3322 if (X
.getValueType().bitsLT(VT
)) {
3323 X
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, X
);
3324 } else if (X
.getValueType().bitsGT(VT
)) {
3325 X
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, X
);
3327 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3328 Mask
.zext(VT
.getSizeInBits());
3329 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3330 X
, DAG
.getConstant(Mask
, VT
));
3333 // fold (aext (load x)) -> (aext (truncate (extload x)))
3334 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3335 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3336 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3337 bool DoXform
= true;
3338 SmallVector
<SDNode
*, 4> SetCCs
;
3339 if (!N0
.hasOneUse())
3340 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
3342 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3343 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
3345 LN0
->getBasePtr(), LN0
->getSrcValue(),
3346 LN0
->getSrcValueOffset(),
3348 LN0
->isVolatile(), LN0
->getAlignment());
3349 CombineTo(N
, ExtLoad
);
3350 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3351 N0
.getValueType(), ExtLoad
);
3352 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3354 // Extend SetCC uses if necessary.
3355 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3356 SDNode
*SetCC
= SetCCs
[i
];
3357 SmallVector
<SDValue
, 4> Ops
;
3359 for (unsigned j
= 0; j
!= 2; ++j
) {
3360 SDValue SOp
= SetCC
->getOperand(j
);
3362 Ops
.push_back(ExtLoad
);
3364 Ops
.push_back(DAG
.getNode(ISD::ANY_EXTEND
,
3365 N
->getDebugLoc(), VT
, SOp
));
3368 Ops
.push_back(SetCC
->getOperand(2));
3369 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3370 SetCC
->getValueType(0),
3371 &Ops
[0], Ops
.size()));
3374 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3378 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3379 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3380 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3381 if (N0
.getOpcode() == ISD::LOAD
&&
3382 !ISD::isNON_EXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3384 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3385 EVT EVT
= LN0
->getMemoryVT();
3386 SDValue ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), N
->getDebugLoc(),
3387 VT
, LN0
->getChain(), LN0
->getBasePtr(),
3389 LN0
->getSrcValueOffset(), EVT
,
3390 LN0
->isVolatile(), LN0
->getAlignment());
3391 CombineTo(N
, ExtLoad
);
3392 CombineTo(N0
.getNode(),
3393 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3394 N0
.getValueType(), ExtLoad
),
3395 ExtLoad
.getValue(1));
3396 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3399 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3400 if (N0
.getOpcode() == ISD::SETCC
) {
3402 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3403 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3404 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3412 /// GetDemandedBits - See if the specified operand can be simplified with the
3413 /// knowledge that only the bits specified by Mask are used. If so, return the
3414 /// simpler operand, otherwise return a null SDValue.
3415 SDValue
DAGCombiner::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
3416 switch (V
.getOpcode()) {
3420 // If the LHS or RHS don't contribute bits to the or, drop them.
3421 if (DAG
.MaskedValueIsZero(V
.getOperand(0), Mask
))
3422 return V
.getOperand(1);
3423 if (DAG
.MaskedValueIsZero(V
.getOperand(1), Mask
))
3424 return V
.getOperand(0);
3427 // Only look at single-use SRLs.
3428 if (!V
.getNode()->hasOneUse())
3430 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
3431 // See if we can recursively simplify the LHS.
3432 unsigned Amt
= RHSC
->getZExtValue();
3434 // Watch out for shift count overflow though.
3435 if (Amt
>= Mask
.getBitWidth()) break;
3436 APInt NewMask
= Mask
<< Amt
;
3437 SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
);
3438 if (SimplifyLHS
.getNode())
3439 return DAG
.getNode(ISD::SRL
, V
.getDebugLoc(), V
.getValueType(),
3440 SimplifyLHS
, V
.getOperand(1));
3446 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3447 /// bits and then truncated to a narrower type and where N is a multiple
3448 /// of number of bits of the narrower type, transform it to a narrower load
3449 /// from address + N / num of bits of new type. If the result is to be
3450 /// extended, also fold the extension to form a extending load.
3451 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
3452 unsigned Opc
= N
->getOpcode();
3453 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3454 SDValue N0
= N
->getOperand(0);
3455 EVT VT
= N
->getValueType(0);
3458 // This transformation isn't valid for vector loads.
3462 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3464 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
3465 ExtType
= ISD::SEXTLOAD
;
3466 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
3467 if (LegalOperations
&& !TLI
.isLoadExtLegal(ISD::SEXTLOAD
, ExtVT
))
3471 unsigned EVTBits
= ExtVT
.getSizeInBits();
3473 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() && ExtVT
.isRound()) {
3474 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3475 ShAmt
= N01
->getZExtValue();
3476 // Is the shift amount a multiple of size of VT?
3477 if ((ShAmt
& (EVTBits
-1)) == 0) {
3478 N0
= N0
.getOperand(0);
3479 // Is the load width a multiple of size of VT?
3480 if ((N0
.getValueType().getSizeInBits() & (EVTBits
-1)) != 0)
3486 // Do not generate loads of non-round integer types since these can
3487 // be expensive (and would be wrong if the type is not byte sized).
3488 if (isa
<LoadSDNode
>(N0
) && N0
.hasOneUse() && ExtVT
.isRound() &&
3489 cast
<LoadSDNode
>(N0
)->getMemoryVT().getSizeInBits() > EVTBits
&&
3490 // Do not change the width of a volatile load.
3491 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
3492 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3493 EVT PtrType
= N0
.getOperand(1).getValueType();
3495 // For big endian targets, we need to adjust the offset to the pointer to
3496 // load the correct bytes.
3497 if (TLI
.isBigEndian()) {
3498 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
3499 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
3500 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
3503 uint64_t PtrOff
= ShAmt
/ 8;
3504 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
3505 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(),
3506 PtrType
, LN0
->getBasePtr(),
3507 DAG
.getConstant(PtrOff
, PtrType
));
3508 AddToWorkList(NewPtr
.getNode());
3510 SDValue Load
= (ExtType
== ISD::NON_EXTLOAD
)
3511 ? DAG
.getLoad(VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
3512 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3513 LN0
->isVolatile(), NewAlign
)
3514 : DAG
.getExtLoad(ExtType
, N0
.getDebugLoc(), VT
, LN0
->getChain(), NewPtr
,
3515 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3516 ExtVT
, LN0
->isVolatile(), NewAlign
);
3518 // Replace the old load's chain with the new load's chain.
3519 WorkListRemover
DeadNodes(*this);
3520 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1),
3523 // Return the new loaded value.
3530 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
3531 SDValue N0
= N
->getOperand(0);
3532 SDValue N1
= N
->getOperand(1);
3533 EVT VT
= N
->getValueType(0);
3534 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
3535 unsigned VTBits
= VT
.getSizeInBits();
3536 unsigned EVTBits
= EVT
.getSizeInBits();
3538 // fold (sext_in_reg c1) -> c1
3539 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
3540 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, N0
, N1
);
3542 // If the input is already sign extended, just drop the extension.
3543 if (DAG
.ComputeNumSignBits(N0
) >= VT
.getSizeInBits()-EVTBits
+1)
3546 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3547 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3548 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT())) {
3549 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
3550 N0
.getOperand(0), N1
);
3553 // fold (sext_in_reg (sext x)) -> (sext x)
3554 // fold (sext_in_reg (aext x)) -> (sext x)
3555 // if x is small enough.
3556 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
3557 SDValue N00
= N0
.getOperand(0);
3558 if (N00
.getValueType().getSizeInBits() < EVTBits
)
3559 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N00
, N1
);
3562 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3563 if (DAG
.MaskedValueIsZero(N0
, APInt::getBitsSet(VTBits
, EVTBits
-1, EVTBits
)))
3564 return DAG
.getZeroExtendInReg(N0
, N
->getDebugLoc(), EVT
);
3566 // fold operands of sext_in_reg based on knowledge that the top bits are not
3568 if (SimplifyDemandedBits(SDValue(N
, 0)))
3569 return SDValue(N
, 0);
3571 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3572 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3573 SDValue NarrowLoad
= ReduceLoadWidth(N
);
3574 if (NarrowLoad
.getNode())
3577 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3578 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3579 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3580 if (N0
.getOpcode() == ISD::SRL
) {
3581 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
3582 if (ShAmt
->getZExtValue()+EVTBits
<= VT
.getSizeInBits()) {
3583 // We can turn this into an SRA iff the input to the SRL is already sign
3585 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
3586 if (VT
.getSizeInBits()-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
3587 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
,
3588 N0
.getOperand(0), N0
.getOperand(1));
3592 // fold (sext_inreg (extload x)) -> (sextload x)
3593 if (ISD::isEXTLoad(N0
.getNode()) &&
3594 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3595 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3596 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3597 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3598 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3599 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3601 LN0
->getBasePtr(), LN0
->getSrcValue(),
3602 LN0
->getSrcValueOffset(), EVT
,
3603 LN0
->isVolatile(), LN0
->getAlignment());
3604 CombineTo(N
, ExtLoad
);
3605 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3606 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3608 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3609 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3611 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3612 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3613 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3614 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3615 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3617 LN0
->getBasePtr(), LN0
->getSrcValue(),
3618 LN0
->getSrcValueOffset(), EVT
,
3619 LN0
->isVolatile(), LN0
->getAlignment());
3620 CombineTo(N
, ExtLoad
);
3621 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3622 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3627 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
3628 SDValue N0
= N
->getOperand(0);
3629 EVT VT
= N
->getValueType(0);
3632 if (N0
.getValueType() == N
->getValueType(0))
3634 // fold (truncate c1) -> c1
3635 if (isa
<ConstantSDNode
>(N0
))
3636 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
);
3637 // fold (truncate (truncate x)) -> (truncate x)
3638 if (N0
.getOpcode() == ISD::TRUNCATE
)
3639 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3640 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3641 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::SIGN_EXTEND
||
3642 N0
.getOpcode() == ISD::ANY_EXTEND
) {
3643 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
3644 // if the source is smaller than the dest, we still need an extend
3645 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
3647 else if (N0
.getOperand(0).getValueType().bitsGT(VT
))
3648 // if the source is larger than the dest, than we just need the truncate
3649 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3651 // if the source and dest are the same type, we can drop both the extend
3653 return N0
.getOperand(0);
3656 // See if we can simplify the input to this truncate through knowledge that
3657 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3660 GetDemandedBits(N0
, APInt::getLowBitsSet(N0
.getValueSizeInBits(),
3661 VT
.getSizeInBits()));
3662 if (Shorter
.getNode())
3663 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Shorter
);
3665 // fold (truncate (load x)) -> (smaller load x)
3666 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3667 return ReduceLoadWidth(N
);
3670 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
3671 SDValue Elt
= N
->getOperand(i
);
3672 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
3673 return Elt
.getNode();
3674 return Elt
.getOperand(Elt
.getResNo()).getNode();
3677 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3678 /// if load locations are consecutive.
3679 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
3680 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
3682 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
3683 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
3684 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse())
3686 EVT LD1VT
= LD1
->getValueType(0);
3687 const MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3689 if (ISD::isNON_EXTLoad(LD2
) &&
3691 // If both are volatile this would reduce the number of volatile loads.
3692 // If one is volatile it might be ok, but play conservative and bail out.
3693 !LD1
->isVolatile() &&
3694 !LD2
->isVolatile() &&
3695 TLI
.isConsecutiveLoad(LD2
, LD1
, LD1VT
.getSizeInBits()/8, 1, MFI
)) {
3696 unsigned Align
= LD1
->getAlignment();
3697 unsigned NewAlign
= TLI
.getTargetData()->
3698 getABITypeAlignment(VT
.getTypeForEVT(*DAG
.getContext()));
3700 if (NewAlign
<= Align
&&
3701 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
3702 return DAG
.getLoad(VT
, N
->getDebugLoc(), LD1
->getChain(),
3703 LD1
->getBasePtr(), LD1
->getSrcValue(),
3704 LD1
->getSrcValueOffset(), false, Align
);
3710 SDValue
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
3711 SDValue N0
= N
->getOperand(0);
3712 EVT VT
= N
->getValueType(0);
3714 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3715 // Only do this before legalize, since afterward the target may be depending
3716 // on the bitconvert.
3717 // First check to see if this is all constant.
3719 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
3721 bool isSimple
= true;
3722 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
)
3723 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3724 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
3725 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
3730 EVT DestEltVT
= N
->getValueType(0).getVectorElementType();
3731 assert(!DestEltVT
.isVector() &&
3732 "Element type of vector ValueType must not be vector!");
3734 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
3737 // If the input is a constant, let getNode fold it.
3738 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
3739 SDValue Res
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, N0
);
3740 if (Res
.getNode() != N
) {
3741 if (!LegalOperations
||
3742 TLI
.isOperationLegal(Res
.getNode()->getOpcode(), VT
))
3745 // Folding it resulted in an illegal node, and it's too late to
3746 // do that. Clean up the old node and forego the transformation.
3747 // Ideally this won't happen very often, because instcombine
3748 // and the earlier dagcombine runs (where illegal nodes are
3749 // permitted) should have folded most of them already.
3750 DAG
.DeleteNode(Res
.getNode());
3754 // (conv (conv x, t1), t2) -> (conv x, t2)
3755 if (N0
.getOpcode() == ISD::BIT_CONVERT
)
3756 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
,
3759 // fold (conv (load x)) -> (load (conv*)x)
3760 // If the resultant load doesn't need a higher alignment than the original!
3761 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
3762 // Do not change the width of a volatile load.
3763 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
3764 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
3765 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3766 unsigned Align
= TLI
.getTargetData()->
3767 getABITypeAlignment(VT
.getTypeForEVT(*DAG
.getContext()));
3768 unsigned OrigAlign
= LN0
->getAlignment();
3770 if (Align
<= OrigAlign
) {
3771 SDValue Load
= DAG
.getLoad(VT
, N
->getDebugLoc(), LN0
->getChain(),
3773 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
3774 LN0
->isVolatile(), OrigAlign
);
3776 CombineTo(N0
.getNode(),
3777 DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3778 N0
.getValueType(), Load
),
3784 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3785 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3786 // This often reduces constant pool loads.
3787 if ((N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FABS
) &&
3788 N0
.getNode()->hasOneUse() && VT
.isInteger() && !VT
.isVector()) {
3789 SDValue NewConv
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(), VT
,
3791 AddToWorkList(NewConv
.getNode());
3793 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3794 if (N0
.getOpcode() == ISD::FNEG
)
3795 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
3796 NewConv
, DAG
.getConstant(SignBit
, VT
));
3797 assert(N0
.getOpcode() == ISD::FABS
);
3798 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3799 NewConv
, DAG
.getConstant(~SignBit
, VT
));
3802 // fold (bitconvert (fcopysign cst, x)) ->
3803 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3804 // Note that we don't handle (copysign x, cst) because this can always be
3805 // folded to an fneg or fabs.
3806 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
3807 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
3808 VT
.isInteger() && !VT
.isVector()) {
3809 unsigned OrigXWidth
= N0
.getOperand(1).getValueType().getSizeInBits();
3810 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
3811 if (TLI
.isTypeLegal(IntXVT
) || !LegalTypes
) {
3812 SDValue X
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3813 IntXVT
, N0
.getOperand(1));
3814 AddToWorkList(X
.getNode());
3816 // If X has a different width than the result/lhs, sext it or truncate it.
3817 unsigned VTWidth
= VT
.getSizeInBits();
3818 if (OrigXWidth
< VTWidth
) {
3819 X
= DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, X
);
3820 AddToWorkList(X
.getNode());
3821 } else if (OrigXWidth
> VTWidth
) {
3822 // To get the sign bit in the right place, we have to shift it right
3823 // before truncating.
3824 X
= DAG
.getNode(ISD::SRL
, X
.getDebugLoc(),
3825 X
.getValueType(), X
,
3826 DAG
.getConstant(OrigXWidth
-VTWidth
, X
.getValueType()));
3827 AddToWorkList(X
.getNode());
3828 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3829 AddToWorkList(X
.getNode());
3832 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3833 X
= DAG
.getNode(ISD::AND
, X
.getDebugLoc(), VT
,
3834 X
, DAG
.getConstant(SignBit
, VT
));
3835 AddToWorkList(X
.getNode());
3837 SDValue Cst
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3838 VT
, N0
.getOperand(0));
3839 Cst
= DAG
.getNode(ISD::AND
, Cst
.getDebugLoc(), VT
,
3840 Cst
, DAG
.getConstant(~SignBit
, VT
));
3841 AddToWorkList(Cst
.getNode());
3843 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, X
, Cst
);
3847 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3848 if (N0
.getOpcode() == ISD::BUILD_PAIR
) {
3849 SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
);
3850 if (CombineLD
.getNode())
3857 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
3858 EVT VT
= N
->getValueType(0);
3859 return CombineConsecutiveLoads(N
, VT
);
3862 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3863 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3864 /// destination element value type.
3865 SDValue
DAGCombiner::
3866 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
3867 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
3869 // If this is already the right type, we're done.
3870 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
3872 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
3873 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
3875 // If this is a conversion of N elements of one type to N elements of another
3876 // type, convert each element. This handles FP<->INT cases.
3877 if (SrcBitSize
== DstBitSize
) {
3878 SmallVector
<SDValue
, 8> Ops
;
3879 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3880 SDValue Op
= BV
->getOperand(i
);
3881 // If the vector element type is not legal, the BUILD_VECTOR operands
3882 // are promoted and implicitly truncated. Make that explicit here.
3883 if (Op
.getValueType() != SrcEltVT
)
3884 Op
= DAG
.getNode(ISD::TRUNCATE
, BV
->getDebugLoc(), SrcEltVT
, Op
);
3885 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
3887 AddToWorkList(Ops
.back().getNode());
3889 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
3890 BV
->getValueType(0).getVectorNumElements());
3891 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3892 &Ops
[0], Ops
.size());
3895 // Otherwise, we're growing or shrinking the elements. To avoid having to
3896 // handle annoying details of growing/shrinking FP values, we convert them to
3898 if (SrcEltVT
.isFloatingPoint()) {
3899 // Convert the input float vector to a int vector where the elements are the
3901 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
3902 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
3903 BV
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, IntVT
).getNode();
3907 // Now we know the input is an integer vector. If the output is a FP type,
3908 // convert to integer first, then to FP of the right size.
3909 if (DstEltVT
.isFloatingPoint()) {
3910 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
3911 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
3912 SDNode
*Tmp
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, TmpVT
).getNode();
3914 // Next, convert to FP elements of the same size.
3915 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp
, DstEltVT
);
3918 // Okay, we know the src/dst types are both integers of differing types.
3919 // Handling growing first.
3920 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
3921 if (SrcBitSize
< DstBitSize
) {
3922 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
3924 SmallVector
<SDValue
, 8> Ops
;
3925 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
3926 i
+= NumInputsPerOutput
) {
3927 bool isLE
= TLI
.isLittleEndian();
3928 APInt NewBits
= APInt(DstBitSize
, 0);
3929 bool EltIsUndef
= true;
3930 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
3931 // Shift the previously computed bits over.
3932 NewBits
<<= SrcBitSize
;
3933 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
3934 if (Op
.getOpcode() == ISD::UNDEF
) continue;
3937 NewBits
|= (APInt(cast
<ConstantSDNode
>(Op
)->getAPIntValue()).
3938 zextOrTrunc(SrcBitSize
).zext(DstBitSize
));
3942 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3944 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
3947 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
3948 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3949 &Ops
[0], Ops
.size());
3952 // Finally, this must be the case where we are shrinking elements: each input
3953 // turns into multiple outputs.
3954 bool isS2V
= ISD::isScalarToVector(BV
);
3955 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
3956 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
3957 NumOutputsPerInput
*BV
->getNumOperands());
3958 SmallVector
<SDValue
, 8> Ops
;
3960 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3961 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
3962 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
3963 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3967 APInt OpVal
= APInt(cast
<ConstantSDNode
>(BV
->getOperand(i
))->
3968 getAPIntValue()).zextOrTrunc(SrcBitSize
);
3970 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
3971 APInt ThisVal
= APInt(OpVal
).trunc(DstBitSize
);
3972 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
3973 if (isS2V
&& i
== 0 && j
== 0 && APInt(ThisVal
).zext(SrcBitSize
) == OpVal
)
3974 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3975 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
3977 OpVal
= OpVal
.lshr(DstBitSize
);
3980 // For big endian targets, swap the order of the pieces of each element.
3981 if (TLI
.isBigEndian())
3982 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
3985 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3986 &Ops
[0], Ops
.size());
3989 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
3990 SDValue N0
= N
->getOperand(0);
3991 SDValue N1
= N
->getOperand(1);
3992 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3993 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3994 EVT VT
= N
->getValueType(0);
3997 if (VT
.isVector()) {
3998 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3999 if (FoldedVOp
.getNode()) return FoldedVOp
;
4002 // fold (fadd c1, c2) -> (fadd c1, c2)
4003 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4004 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N1
);
4005 // canonicalize constant to RHS
4006 if (N0CFP
&& !N1CFP
)
4007 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N1
, N0
);
4008 // fold (fadd A, 0) -> A
4009 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4011 // fold (fadd A, (fneg B)) -> (fsub A, B)
4012 if (isNegatibleForFree(N1
, LegalOperations
) == 2)
4013 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
,
4014 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4015 // fold (fadd (fneg A), B) -> (fsub B, A)
4016 if (isNegatibleForFree(N0
, LegalOperations
) == 2)
4017 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N1
,
4018 GetNegatedExpression(N0
, DAG
, LegalOperations
));
4020 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
4021 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
4022 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4023 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4024 DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
,
4025 N0
.getOperand(1), N1
));
4030 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
4031 SDValue N0
= N
->getOperand(0);
4032 SDValue N1
= N
->getOperand(1);
4033 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4034 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4035 EVT VT
= N
->getValueType(0);
4038 if (VT
.isVector()) {
4039 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4040 if (FoldedVOp
.getNode()) return FoldedVOp
;
4043 // fold (fsub c1, c2) -> c1-c2
4044 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4045 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
, N1
);
4046 // fold (fsub A, 0) -> A
4047 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4049 // fold (fsub 0, B) -> -B
4050 if (UnsafeFPMath
&& N0CFP
&& N0CFP
->getValueAPF().isZero()) {
4051 if (isNegatibleForFree(N1
, LegalOperations
))
4052 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
4053 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4054 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N1
);
4056 // fold (fsub A, (fneg B)) -> (fadd A, B)
4057 if (isNegatibleForFree(N1
, LegalOperations
))
4058 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
,
4059 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4064 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
4065 SDValue N0
= N
->getOperand(0);
4066 SDValue N1
= N
->getOperand(1);
4067 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4068 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4069 EVT VT
= N
->getValueType(0);
4072 if (VT
.isVector()) {
4073 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4074 if (FoldedVOp
.getNode()) return FoldedVOp
;
4077 // fold (fmul c1, c2) -> c1*c2
4078 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4079 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
, N1
);
4080 // canonicalize constant to RHS
4081 if (N0CFP
&& !N1CFP
)
4082 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N1
, N0
);
4083 // fold (fmul A, 0) -> 0
4084 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4086 // fold (fmul A, 0) -> 0, vector edition.
4087 if (UnsafeFPMath
&& ISD::isBuildVectorAllZeros(N1
.getNode()))
4089 // fold (fmul X, 2.0) -> (fadd X, X)
4090 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
4091 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N0
);
4092 // fold (fmul X, -1.0) -> (fneg X)
4093 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
4094 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4095 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N0
);
4097 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4098 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4099 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4100 // Both can be negated for free, check to see if at least one is cheaper
4102 if (LHSNeg
== 2 || RHSNeg
== 2)
4103 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4104 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4105 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4109 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4110 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
4111 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4112 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4113 DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4114 N0
.getOperand(1), N1
));
4119 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
4120 SDValue N0
= N
->getOperand(0);
4121 SDValue N1
= N
->getOperand(1);
4122 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4123 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4124 EVT VT
= N
->getValueType(0);
4127 if (VT
.isVector()) {
4128 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4129 if (FoldedVOp
.getNode()) return FoldedVOp
;
4132 // fold (fdiv c1, c2) -> c1/c2
4133 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4134 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
4137 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4138 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4139 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4140 // Both can be negated for free, check to see if at least one is cheaper
4142 if (LHSNeg
== 2 || RHSNeg
== 2)
4143 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
,
4144 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4145 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4152 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
4153 SDValue N0
= N
->getOperand(0);
4154 SDValue N1
= N
->getOperand(1);
4155 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4156 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4157 EVT VT
= N
->getValueType(0);
4159 // fold (frem c1, c2) -> fmod(c1,c2)
4160 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4161 return DAG
.getNode(ISD::FREM
, N
->getDebugLoc(), VT
, N0
, N1
);
4166 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
4167 SDValue N0
= N
->getOperand(0);
4168 SDValue N1
= N
->getOperand(1);
4169 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4170 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4171 EVT VT
= N
->getValueType(0);
4173 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
) // Constant fold
4174 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
, N0
, N1
);
4177 const APFloat
& V
= N1CFP
->getValueAPF();
4178 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4179 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4180 if (!V
.isNegative()) {
4181 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
4182 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4184 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4185 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
,
4186 DAG
.getNode(ISD::FABS
, N0
.getDebugLoc(), VT
, N0
));
4190 // copysign(fabs(x), y) -> copysign(x, y)
4191 // copysign(fneg(x), y) -> copysign(x, y)
4192 // copysign(copysign(x,z), y) -> copysign(x, y)
4193 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
4194 N0
.getOpcode() == ISD::FCOPYSIGN
)
4195 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4196 N0
.getOperand(0), N1
);
4198 // copysign(x, abs(y)) -> abs(x)
4199 if (N1
.getOpcode() == ISD::FABS
)
4200 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4202 // copysign(x, copysign(y,z)) -> copysign(x, z)
4203 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
4204 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4205 N0
, N1
.getOperand(1));
4207 // copysign(x, fp_extend(y)) -> copysign(x, y)
4208 // copysign(x, fp_round(y)) -> copysign(x, y)
4209 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
4210 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4211 N0
, N1
.getOperand(0));
4216 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
4217 SDValue N0
= N
->getOperand(0);
4218 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4219 EVT VT
= N
->getValueType(0);
4220 EVT OpVT
= N0
.getValueType();
4222 // fold (sint_to_fp c1) -> c1fp
4223 if (N0C
&& OpVT
!= MVT::ppcf128
)
4224 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4226 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4227 // but UINT_TO_FP is legal on this target, try to convert.
4228 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
4229 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
4230 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4231 if (DAG
.SignBitIsZero(N0
))
4232 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4238 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
4239 SDValue N0
= N
->getOperand(0);
4240 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4241 EVT VT
= N
->getValueType(0);
4242 EVT OpVT
= N0
.getValueType();
4244 // fold (uint_to_fp c1) -> c1fp
4245 if (N0C
&& OpVT
!= MVT::ppcf128
)
4246 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4248 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4249 // but SINT_TO_FP is legal on this target, try to convert.
4250 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
4251 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
4252 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4253 if (DAG
.SignBitIsZero(N0
))
4254 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4260 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
4261 SDValue N0
= N
->getOperand(0);
4262 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4263 EVT VT
= N
->getValueType(0);
4265 // fold (fp_to_sint c1fp) -> c1
4267 return DAG
.getNode(ISD::FP_TO_SINT
, N
->getDebugLoc(), VT
, N0
);
4272 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
4273 SDValue N0
= N
->getOperand(0);
4274 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4275 EVT VT
= N
->getValueType(0);
4277 // fold (fp_to_uint c1fp) -> c1
4278 if (N0CFP
&& VT
!= MVT::ppcf128
)
4279 return DAG
.getNode(ISD::FP_TO_UINT
, N
->getDebugLoc(), VT
, N0
);
4284 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
4285 SDValue N0
= N
->getOperand(0);
4286 SDValue N1
= N
->getOperand(1);
4287 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4288 EVT VT
= N
->getValueType(0);
4290 // fold (fp_round c1fp) -> c1fp
4291 if (N0CFP
&& N0
.getValueType() != MVT::ppcf128
)
4292 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
, N1
);
4294 // fold (fp_round (fp_extend x)) -> x
4295 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
4296 return N0
.getOperand(0);
4298 // fold (fp_round (fp_round x)) -> (fp_round x)
4299 if (N0
.getOpcode() == ISD::FP_ROUND
) {
4300 // This is a value preserving truncation if both round's are.
4301 bool IsTrunc
= N
->getConstantOperandVal(1) == 1 &&
4302 N0
.getNode()->getConstantOperandVal(1) == 1;
4303 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4304 DAG
.getIntPtrConstant(IsTrunc
));
4307 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4308 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
4309 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(), VT
,
4310 N0
.getOperand(0), N1
);
4311 AddToWorkList(Tmp
.getNode());
4312 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4313 Tmp
, N0
.getOperand(1));
4319 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
4320 SDValue N0
= N
->getOperand(0);
4321 EVT VT
= N
->getValueType(0);
4322 EVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
4323 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4325 // fold (fp_round_inreg c1fp) -> c1fp
4326 if (N0CFP
&& (TLI
.isTypeLegal(EVT
) || !LegalTypes
)) {
4327 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), EVT
);
4328 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, Round
);
4334 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
4335 SDValue N0
= N
->getOperand(0);
4336 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4337 EVT VT
= N
->getValueType(0);
4339 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4340 if (N
->hasOneUse() &&
4341 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
4344 // fold (fp_extend c1fp) -> c1fp
4345 if (N0CFP
&& VT
!= MVT::ppcf128
)
4346 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, N0
);
4348 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4350 if (N0
.getOpcode() == ISD::FP_ROUND
4351 && N0
.getNode()->getConstantOperandVal(1) == 1) {
4352 SDValue In
= N0
.getOperand(0);
4353 if (In
.getValueType() == VT
) return In
;
4354 if (VT
.bitsLT(In
.getValueType()))
4355 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
,
4356 In
, N0
.getOperand(1));
4357 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, In
);
4360 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4361 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
4362 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4363 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
4364 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4365 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
4367 LN0
->getBasePtr(), LN0
->getSrcValue(),
4368 LN0
->getSrcValueOffset(),
4370 LN0
->isVolatile(), LN0
->getAlignment());
4371 CombineTo(N
, ExtLoad
);
4372 CombineTo(N0
.getNode(),
4373 DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(),
4374 N0
.getValueType(), ExtLoad
, DAG
.getIntPtrConstant(1)),
4375 ExtLoad
.getValue(1));
4376 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4382 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
4383 SDValue N0
= N
->getOperand(0);
4385 if (isNegatibleForFree(N0
, LegalOperations
))
4386 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
4388 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4389 // constant pool values.
4390 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4391 N0
.getOperand(0).getValueType().isInteger() &&
4392 !N0
.getOperand(0).getValueType().isVector()) {
4393 SDValue Int
= N0
.getOperand(0);
4394 EVT IntVT
= Int
.getValueType();
4395 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4396 Int
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), IntVT
, Int
,
4397 DAG
.getConstant(APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4398 AddToWorkList(Int
.getNode());
4399 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4400 N
->getValueType(0), Int
);
4407 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
4408 SDValue N0
= N
->getOperand(0);
4409 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4410 EVT VT
= N
->getValueType(0);
4412 // fold (fabs c1) -> fabs(c1)
4413 if (N0CFP
&& VT
!= MVT::ppcf128
)
4414 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4415 // fold (fabs (fabs x)) -> (fabs x)
4416 if (N0
.getOpcode() == ISD::FABS
)
4417 return N
->getOperand(0);
4418 // fold (fabs (fneg x)) -> (fabs x)
4419 // fold (fabs (fcopysign x, y)) -> (fabs x)
4420 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
4421 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4423 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4424 // constant pool values.
4425 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4426 N0
.getOperand(0).getValueType().isInteger() &&
4427 !N0
.getOperand(0).getValueType().isVector()) {
4428 SDValue Int
= N0
.getOperand(0);
4429 EVT IntVT
= Int
.getValueType();
4430 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4431 Int
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), IntVT
, Int
,
4432 DAG
.getConstant(~APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4433 AddToWorkList(Int
.getNode());
4434 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4435 N
->getValueType(0), Int
);
4442 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
4443 SDValue Chain
= N
->getOperand(0);
4444 SDValue N1
= N
->getOperand(1);
4445 SDValue N2
= N
->getOperand(2);
4446 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
4448 // never taken branch, fold to chain
4449 if (N1C
&& N1C
->isNullValue())
4451 // unconditional branch
4452 if (N1C
&& N1C
->getAPIntValue() == 1)
4453 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
, Chain
, N2
);
4454 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4456 if (N1
.getOpcode() == ISD::SETCC
&&
4457 TLI
.isOperationLegalOrCustom(ISD::BR_CC
, MVT::Other
)) {
4458 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4459 Chain
, N1
.getOperand(2),
4460 N1
.getOperand(0), N1
.getOperand(1), N2
);
4463 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::SRL
) {
4464 // Match this pattern so that we can generate simpler code:
4467 // %b = and i32 %a, 2
4468 // %c = srl i32 %b, 1
4469 // brcond i32 %c ...
4475 // %c = setcc eq %b, 0
4478 // This applies only when the AND constant value has one bit set and the
4479 // SRL constant is equal to the log2 of the AND constant. The back-end is
4480 // smart enough to convert the result into a TEST/JMP sequence.
4481 SDValue Op0
= N1
.getOperand(0);
4482 SDValue Op1
= N1
.getOperand(1);
4484 if (Op0
.getOpcode() == ISD::AND
&&
4486 Op1
.getOpcode() == ISD::Constant
) {
4487 SDValue AndOp1
= Op0
.getOperand(1);
4489 if (AndOp1
.getOpcode() == ISD::Constant
) {
4490 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
4492 if (AndConst
.isPowerOf2() &&
4493 cast
<ConstantSDNode
>(Op1
)->getAPIntValue()==AndConst
.logBase2()) {
4495 DAG
.getSetCC(N
->getDebugLoc(),
4496 TLI
.getSetCCResultType(Op0
.getValueType()),
4497 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
4500 // Replace the uses of SRL with SETCC
4501 DAG
.ReplaceAllUsesOfValueWith(N1
, SetCC
);
4502 removeFromWorkList(N1
.getNode());
4503 DAG
.DeleteNode(N1
.getNode());
4504 return DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
4505 MVT::Other
, Chain
, SetCC
, N2
);
4514 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4516 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
4517 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
4518 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
4520 // Use SimplifySetCC to simplify SETCC's.
4521 SDValue Simp
= SimplifySetCC(TLI
.getSetCCResultType(CondLHS
.getValueType()),
4522 CondLHS
, CondRHS
, CC
->get(), N
->getDebugLoc(),
4524 if (Simp
.getNode()) AddToWorkList(Simp
.getNode());
4526 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(Simp
.getNode());
4528 // fold br_cc true, dest -> br dest (unconditional branch)
4529 if (SCCC
&& !SCCC
->isNullValue())
4530 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
,
4531 N
->getOperand(0), N
->getOperand(4));
4532 // fold br_cc false, dest -> unconditional fall through
4533 if (SCCC
&& SCCC
->isNullValue())
4534 return N
->getOperand(0);
4536 // fold to a simpler setcc
4537 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
4538 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4539 N
->getOperand(0), Simp
.getOperand(2),
4540 Simp
.getOperand(0), Simp
.getOperand(1),
4546 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4547 /// pre-indexed load / store when the base pointer is an add or subtract
4548 /// and it has other uses besides the load / store. After the
4549 /// transformation, the new indexed load / store has effectively folded
4550 /// the add / subtract in and all of its other uses are redirected to the
4551 /// new load / store.
4552 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
4553 if (!LegalOperations
)
4559 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4560 if (LD
->isIndexed())
4562 VT
= LD
->getMemoryVT();
4563 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
4564 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
4566 Ptr
= LD
->getBasePtr();
4567 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4568 if (ST
->isIndexed())
4570 VT
= ST
->getMemoryVT();
4571 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
4572 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
4574 Ptr
= ST
->getBasePtr();
4580 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4581 // out. There is no reason to make this a preinc/predec.
4582 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
4583 Ptr
.getNode()->hasOneUse())
4586 // Ask the target to do addressing mode selection.
4589 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4590 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
4592 // Don't create a indexed load / store with zero offset.
4593 if (isa
<ConstantSDNode
>(Offset
) &&
4594 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4597 // Try turning it into a pre-indexed load / store except when:
4598 // 1) The new base ptr is a frame index.
4599 // 2) If N is a store and the new base ptr is either the same as or is a
4600 // predecessor of the value being stored.
4601 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4602 // that would create a cycle.
4603 // 4) All uses are load / store ops that use it as old base ptr.
4605 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4606 // (plus the implicit offset) to a register to preinc anyway.
4607 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
4612 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
4613 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
4617 // Now check for #3 and #4.
4618 bool RealUse
= false;
4619 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4620 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4624 if (Use
->isPredecessorOf(N
))
4627 if (!((Use
->getOpcode() == ISD::LOAD
&&
4628 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
4629 (Use
->getOpcode() == ISD::STORE
&&
4630 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
)))
4639 Result
= DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4640 BasePtr
, Offset
, AM
);
4642 Result
= DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4643 BasePtr
, Offset
, AM
);
4646 DEBUG(errs() << "\nReplacing.4 ";
4648 errs() << "\nWith: ";
4649 Result
.getNode()->dump(&DAG
);
4651 WorkListRemover
DeadNodes(*this);
4653 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4655 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4658 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4662 // Finally, since the node is now dead, remove it from the graph.
4665 // Replace the uses of Ptr with uses of the updated base value.
4666 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
4668 removeFromWorkList(Ptr
.getNode());
4669 DAG
.DeleteNode(Ptr
.getNode());
4674 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4675 /// add / sub of the base pointer node into a post-indexed load / store.
4676 /// The transformation folded the add / subtract into the new indexed
4677 /// load / store effectively and all of its uses are redirected to the
4678 /// new load / store.
4679 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
4680 if (!LegalOperations
)
4686 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4687 if (LD
->isIndexed())
4689 VT
= LD
->getMemoryVT();
4690 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
4691 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
4693 Ptr
= LD
->getBasePtr();
4694 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4695 if (ST
->isIndexed())
4697 VT
= ST
->getMemoryVT();
4698 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
4699 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
4701 Ptr
= ST
->getBasePtr();
4707 if (Ptr
.getNode()->hasOneUse())
4710 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4711 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4714 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
4719 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4720 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
4721 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
)
4722 std::swap(BasePtr
, Offset
);
4725 // Don't create a indexed load / store with zero offset.
4726 if (isa
<ConstantSDNode
>(Offset
) &&
4727 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4730 // Try turning it into a post-indexed load / store except when
4731 // 1) All uses are load / store ops that use it as base ptr.
4732 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4733 // nor a successor of N. Otherwise, if Op is folded that would
4736 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
4740 bool TryNext
= false;
4741 for (SDNode::use_iterator II
= BasePtr
.getNode()->use_begin(),
4742 EE
= BasePtr
.getNode()->use_end(); II
!= EE
; ++II
) {
4744 if (Use
== Ptr
.getNode())
4747 // If all the uses are load / store addresses, then don't do the
4749 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
4750 bool RealUse
= false;
4751 for (SDNode::use_iterator III
= Use
->use_begin(),
4752 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
4753 SDNode
*UseUse
= *III
;
4754 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
4755 cast
<LoadSDNode
>(UseUse
)->getBasePtr().getNode() == Use
) ||
4756 (UseUse
->getOpcode() == ISD::STORE
&&
4757 cast
<StoreSDNode
>(UseUse
)->getBasePtr().getNode() == Use
)))
4772 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
4773 SDValue Result
= isLoad
4774 ? DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4775 BasePtr
, Offset
, AM
)
4776 : DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4777 BasePtr
, Offset
, AM
);
4780 DEBUG(errs() << "\nReplacing.5 ";
4782 errs() << "\nWith: ";
4783 Result
.getNode()->dump(&DAG
);
4785 WorkListRemover
DeadNodes(*this);
4787 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4789 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4792 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4796 // Finally, since the node is now dead, remove it from the graph.
4799 // Replace the uses of Use with uses of the updated base value.
4800 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
4801 Result
.getValue(isLoad
? 1 : 0),
4803 removeFromWorkList(Op
);
4813 /// InferAlignment - If we can infer some alignment information from this
4814 /// pointer, return it.
4815 static unsigned InferAlignment(SDValue Ptr
, SelectionDAG
&DAG
) {
4816 // If this is a direct reference to a stack slot, use information about the
4817 // stack slot's alignment.
4818 int FrameIdx
= 1 << 31;
4819 int64_t FrameOffset
= 0;
4820 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
4821 FrameIdx
= FI
->getIndex();
4822 } else if (Ptr
.getOpcode() == ISD::ADD
&&
4823 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
4824 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
4825 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
4826 FrameOffset
= Ptr
.getConstantOperandVal(1);
4829 if (FrameIdx
!= (1 << 31)) {
4830 // FIXME: Handle FI+CST.
4831 const MachineFrameInfo
&MFI
= *DAG
.getMachineFunction().getFrameInfo();
4832 if (MFI
.isFixedObjectIndex(FrameIdx
)) {
4833 int64_t ObjectOffset
= MFI
.getObjectOffset(FrameIdx
) + FrameOffset
;
4835 // The alignment of the frame index can be determined from its offset from
4836 // the incoming frame position. If the frame object is at offset 32 and
4837 // the stack is guaranteed to be 16-byte aligned, then we know that the
4838 // object is 16-byte aligned.
4839 unsigned StackAlign
= DAG
.getTarget().getFrameInfo()->getStackAlignment();
4840 unsigned Align
= MinAlign(ObjectOffset
, StackAlign
);
4842 // Finally, the frame object itself may have a known alignment. Factor
4843 // the alignment + offset into a new alignment. For example, if we know
4844 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4845 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4846 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4847 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
4849 return std::max(Align
, FIInfoAlign
);
4856 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
4857 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
4858 SDValue Chain
= LD
->getChain();
4859 SDValue Ptr
= LD
->getBasePtr();
4861 // Try to infer better alignment information than the load already has.
4862 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
4863 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4864 if (Align
> LD
->getAlignment())
4865 return DAG
.getExtLoad(LD
->getExtensionType(), N
->getDebugLoc(),
4866 LD
->getValueType(0),
4867 Chain
, Ptr
, LD
->getSrcValue(),
4868 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
4869 LD
->isVolatile(), Align
);
4873 // If load is not volatile and there are no uses of the loaded value (and
4874 // the updated indexed value in case of indexed loads), change uses of the
4875 // chain value into uses of the chain input (i.e. delete the dead load).
4876 if (!LD
->isVolatile()) {
4877 if (N
->getValueType(1) == MVT::Other
) {
4879 if (N
->hasNUsesOfValue(0, 0)) {
4880 // It's not safe to use the two value CombineTo variant here. e.g.
4881 // v1, chain2 = load chain1, loc
4882 // v2, chain3 = load chain2, loc
4884 // Now we replace use of chain2 with chain1. This makes the second load
4885 // isomorphic to the one we are deleting, and thus makes this load live.
4886 DEBUG(errs() << "\nReplacing.6 ";
4888 errs() << "\nWith chain: ";
4889 Chain
.getNode()->dump(&DAG
);
4891 WorkListRemover
DeadNodes(*this);
4892 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
, &DeadNodes
);
4894 if (N
->use_empty()) {
4895 removeFromWorkList(N
);
4899 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4903 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
4904 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
4905 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
4906 DEBUG(errs() << "\nReplacing.6 ";
4908 errs() << "\nWith: ";
4909 Undef
.getNode()->dump(&DAG
);
4910 errs() << " and 2 other values\n");
4911 WorkListRemover
DeadNodes(*this);
4912 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
, &DeadNodes
);
4913 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1),
4914 DAG
.getUNDEF(N
->getValueType(1)),
4916 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
, &DeadNodes
);
4917 removeFromWorkList(N
);
4919 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4924 // If this load is directly stored, replace the load value with the stored
4926 // TODO: Handle store large -> read small portion.
4927 // TODO: Handle TRUNCSTORE/LOADEXT
4928 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
4929 !LD
->isVolatile()) {
4930 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
4931 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
4932 if (PrevST
->getBasePtr() == Ptr
&&
4933 PrevST
->getValue().getValueType() == N
->getValueType(0))
4934 return CombineTo(N
, Chain
.getOperand(1), Chain
);
4939 // Walk up chain skipping non-aliasing memory nodes.
4940 SDValue BetterChain
= FindBetterChain(N
, Chain
);
4942 // If there is a better chain.
4943 if (Chain
!= BetterChain
) {
4946 // Replace the chain to void dependency.
4947 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
4948 ReplLoad
= DAG
.getLoad(N
->getValueType(0), LD
->getDebugLoc(),
4950 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4951 LD
->isVolatile(), LD
->getAlignment());
4953 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), LD
->getDebugLoc(),
4954 LD
->getValueType(0),
4955 BetterChain
, Ptr
, LD
->getSrcValue(),
4956 LD
->getSrcValueOffset(),
4959 LD
->getAlignment());
4962 // Create token factor to keep old chain connected.
4963 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
4964 MVT::Other
, Chain
, ReplLoad
.getValue(1));
4966 // Make sure the new and old chains are cleaned up.
4967 AddToWorkList(Token
.getNode());
4969 // Replace uses with load result and token factor. Don't add users
4971 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
4975 // Try transforming N to an indexed load.
4976 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
4977 return SDValue(N
, 0);
4983 /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
4984 /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
4985 /// of the loaded bits, try narrowing the load and store if it would end up
4986 /// being a win for performance or code size.
4987 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
4988 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
4989 if (ST
->isVolatile())
4992 SDValue Chain
= ST
->getChain();
4993 SDValue Value
= ST
->getValue();
4994 SDValue Ptr
= ST
->getBasePtr();
4995 EVT VT
= Value
.getValueType();
4997 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
5000 unsigned Opc
= Value
.getOpcode();
5001 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
5002 Value
.getOperand(1).getOpcode() != ISD::Constant
)
5005 SDValue N0
= Value
.getOperand(0);
5006 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse()) {
5007 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
5008 if (LD
->getBasePtr() != Ptr
)
5011 // Find the type to narrow it the load / op / store to.
5012 SDValue N1
= Value
.getOperand(1);
5013 unsigned BitWidth
= N1
.getValueSizeInBits();
5014 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
5015 if (Opc
== ISD::AND
)
5016 Imm
^= APInt::getAllOnesValue(BitWidth
);
5017 if (Imm
== 0 || Imm
.isAllOnesValue())
5019 unsigned ShAmt
= Imm
.countTrailingZeros();
5020 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
5021 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
5022 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
5023 while (NewBW
< BitWidth
&&
5024 !(TLI
.isOperationLegalOrCustom(Opc
, NewVT
) &&
5025 TLI
.isNarrowingProfitable(VT
, NewVT
))) {
5026 NewBW
= NextPowerOf2(NewBW
);
5027 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
5029 if (NewBW
>= BitWidth
)
5032 // If the lsb changed does not start at the type bitwidth boundary,
5033 // start at the previous one.
5035 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
5036 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
, ShAmt
+ NewBW
);
5037 if ((Imm
& Mask
) == Imm
) {
5038 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
5039 if (Opc
== ISD::AND
)
5040 NewImm
^= APInt::getAllOnesValue(NewBW
);
5041 uint64_t PtrOff
= ShAmt
/ 8;
5042 // For big endian targets, we need to adjust the offset to the pointer to
5043 // load the correct bytes.
5044 if (TLI
.isBigEndian())
5045 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
5047 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
5049 TLI
.getTargetData()->getABITypeAlignment(NewVT
.getTypeForEVT(*DAG
.getContext())))
5052 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LD
->getDebugLoc(),
5053 Ptr
.getValueType(), Ptr
,
5054 DAG
.getConstant(PtrOff
, Ptr
.getValueType()));
5055 SDValue NewLD
= DAG
.getLoad(NewVT
, N0
.getDebugLoc(),
5056 LD
->getChain(), NewPtr
,
5057 LD
->getSrcValue(), LD
->getSrcValueOffset(),
5058 LD
->isVolatile(), NewAlign
);
5059 SDValue NewVal
= DAG
.getNode(Opc
, Value
.getDebugLoc(), NewVT
, NewLD
,
5060 DAG
.getConstant(NewImm
, NewVT
));
5061 SDValue NewST
= DAG
.getStore(Chain
, N
->getDebugLoc(),
5063 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5066 AddToWorkList(NewPtr
.getNode());
5067 AddToWorkList(NewLD
.getNode());
5068 AddToWorkList(NewVal
.getNode());
5069 WorkListRemover
DeadNodes(*this);
5070 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1),
5080 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
5081 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
5082 SDValue Chain
= ST
->getChain();
5083 SDValue Value
= ST
->getValue();
5084 SDValue Ptr
= ST
->getBasePtr();
5086 // Try to infer better alignment information than the store already has.
5087 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
5088 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
5089 if (Align
> ST
->getAlignment())
5090 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
,
5091 Ptr
, ST
->getSrcValue(),
5092 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5093 ST
->isVolatile(), Align
);
5097 // If this is a store of a bit convert, store the input value if the
5098 // resultant store does not need a higher alignment than the original.
5099 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
5100 ST
->isUnindexed()) {
5101 unsigned OrigAlign
= ST
->getAlignment();
5102 EVT SVT
= Value
.getOperand(0).getValueType();
5103 unsigned Align
= TLI
.getTargetData()->
5104 getABITypeAlignment(SVT
.getTypeForEVT(*DAG
.getContext()));
5105 if (Align
<= OrigAlign
&&
5106 ((!LegalOperations
&& !ST
->isVolatile()) ||
5107 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)))
5108 return DAG
.getStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5109 Ptr
, ST
->getSrcValue(),
5110 ST
->getSrcValueOffset(), ST
->isVolatile(), OrigAlign
);
5113 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
5114 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
5115 // NOTE: If the original store is volatile, this transform must not increase
5116 // the number of stores. For example, on x86-32 an f64 can be stored in one
5117 // processor operation but an i64 (which is not legal) requires two. So the
5118 // transform should not be done in this case.
5119 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
5121 switch (CFP
->getValueType(0).getSimpleVT().SimpleTy
) {
5122 default: llvm_unreachable("Unknown FP type");
5123 case MVT::f80
: // We don't do this for these yet.
5128 if (((TLI
.isTypeLegal(MVT::i32
) || !LegalTypes
) && !LegalOperations
&&
5129 !ST
->isVolatile()) ||
5130 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5131 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
5132 bitcastToAPInt().getZExtValue(), MVT::i32
);
5133 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5134 Ptr
, ST
->getSrcValue(),
5135 ST
->getSrcValueOffset(), ST
->isVolatile(),
5136 ST
->getAlignment());
5140 if (((TLI
.isTypeLegal(MVT::i64
) || !LegalTypes
) && !LegalOperations
&&
5141 !ST
->isVolatile()) ||
5142 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
5143 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
5144 getZExtValue(), MVT::i64
);
5145 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5146 Ptr
, ST
->getSrcValue(),
5147 ST
->getSrcValueOffset(), ST
->isVolatile(),
5148 ST
->getAlignment());
5149 } else if (!ST
->isVolatile() &&
5150 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5151 // Many FP stores are not made apparent until after legalize, e.g. for
5152 // argument passing. Since this is so common, custom legalize the
5153 // 64-bit integer store into two 32-bit stores.
5154 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
5155 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
5156 SDValue Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
5157 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
5159 int SVOffset
= ST
->getSrcValueOffset();
5160 unsigned Alignment
= ST
->getAlignment();
5161 bool isVolatile
= ST
->isVolatile();
5163 SDValue St0
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Lo
,
5164 Ptr
, ST
->getSrcValue(),
5165 ST
->getSrcValueOffset(),
5166 isVolatile
, ST
->getAlignment());
5167 Ptr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), Ptr
.getValueType(), Ptr
,
5168 DAG
.getConstant(4, Ptr
.getValueType()));
5170 Alignment
= MinAlign(Alignment
, 4U);
5171 SDValue St1
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Hi
,
5172 Ptr
, ST
->getSrcValue(),
5173 SVOffset
, isVolatile
, Alignment
);
5174 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
5184 // Walk up chain skipping non-aliasing memory nodes.
5185 SDValue BetterChain
= FindBetterChain(N
, Chain
);
5187 // If there is a better chain.
5188 if (Chain
!= BetterChain
) {
5191 // Replace the chain to avoid dependency.
5192 if (ST
->isTruncatingStore()) {
5193 ReplStore
= DAG
.getTruncStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5194 ST
->getSrcValue(),ST
->getSrcValueOffset(),
5196 ST
->isVolatile(), ST
->getAlignment());
5198 ReplStore
= DAG
.getStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5199 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5200 ST
->isVolatile(), ST
->getAlignment());
5203 // Create token to keep both nodes around.
5204 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
5205 MVT::Other
, Chain
, ReplStore
);
5207 // Make sure the new and old chains are cleaned up.
5208 AddToWorkList(Token
.getNode());
5210 // Don't add users to work list.
5211 return CombineTo(N
, Token
, false);
5215 // Try transforming N to an indexed store.
5216 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
5217 return SDValue(N
, 0);
5219 // FIXME: is there such a thing as a truncating indexed store?
5220 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
5221 Value
.getValueType().isInteger()) {
5222 // See if we can simplify the input to this truncstore with knowledge that
5223 // only the low bits are being used. For example:
5224 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
5226 GetDemandedBits(Value
,
5227 APInt::getLowBitsSet(Value
.getValueSizeInBits(),
5228 ST
->getMemoryVT().getSizeInBits()));
5229 AddToWorkList(Value
.getNode());
5230 if (Shorter
.getNode())
5231 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Shorter
,
5232 Ptr
, ST
->getSrcValue(),
5233 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5234 ST
->isVolatile(), ST
->getAlignment());
5236 // Otherwise, see if we can simplify the operation with
5237 // SimplifyDemandedBits, which only works if the value has a single use.
5238 if (SimplifyDemandedBits(Value
,
5239 APInt::getLowBitsSet(
5240 Value
.getValueSizeInBits(),
5241 ST
->getMemoryVT().getSizeInBits())))
5242 return SDValue(N
, 0);
5245 // If this is a load followed by a store to the same location, then the store
5247 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
5248 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
5249 ST
->isUnindexed() && !ST
->isVolatile() &&
5250 // There can't be any side effects between the load and store, such as
5252 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
5253 // The store is dead, remove it.
5258 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
5259 // truncating store. We can do this even if this is already a truncstore.
5260 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
5261 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
5262 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
5263 ST
->getMemoryVT())) {
5264 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5265 Ptr
, ST
->getSrcValue(),
5266 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5267 ST
->isVolatile(), ST
->getAlignment());
5270 return ReduceLoadOpStoreWidth(N
);
5273 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
5274 SDValue InVec
= N
->getOperand(0);
5275 SDValue InVal
= N
->getOperand(1);
5276 SDValue EltNo
= N
->getOperand(2);
5278 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5279 // vector with the inserted element.
5280 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
5281 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5282 SmallVector
<SDValue
, 8> Ops(InVec
.getNode()->op_begin(),
5283 InVec
.getNode()->op_end());
5284 if (Elt
< Ops
.size())
5286 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5287 InVec
.getValueType(), &Ops
[0], Ops
.size());
5289 // If the invec is an UNDEF and if EltNo is a constant, create a new
5290 // BUILD_VECTOR with undef elements and the inserted element.
5291 if (!LegalOperations
&& InVec
.getOpcode() == ISD::UNDEF
&&
5292 isa
<ConstantSDNode
>(EltNo
)) {
5293 EVT VT
= InVec
.getValueType();
5294 EVT EVT
= VT
.getVectorElementType();
5295 unsigned NElts
= VT
.getVectorNumElements();
5296 SmallVector
<SDValue
, 8> Ops(NElts
, DAG
.getUNDEF(EVT
));
5298 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5299 if (Elt
< Ops
.size())
5301 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5302 InVec
.getValueType(), &Ops
[0], Ops
.size());
5307 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
5308 // (vextract (scalar_to_vector val, 0) -> val
5309 SDValue InVec
= N
->getOperand(0);
5311 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
5312 // If the operand is wider than the vector element type then it is implicitly
5313 // truncated. Make that explicit here.
5314 EVT EltVT
= InVec
.getValueType().getVectorElementType();
5315 SDValue InOp
= InVec
.getOperand(0);
5316 if (InOp
.getValueType() != EltVT
)
5317 return DAG
.getNode(ISD::TRUNCATE
, InVec
.getDebugLoc(), EltVT
, InOp
);
5321 // Perform only after legalization to ensure build_vector / vector_shuffle
5322 // optimizations have already been done.
5323 if (!LegalOperations
) return SDValue();
5325 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5326 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5327 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5328 SDValue EltNo
= N
->getOperand(1);
5330 if (isa
<ConstantSDNode
>(EltNo
)) {
5331 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5332 bool NewLoad
= false;
5333 bool BCNumEltsChanged
= false;
5334 EVT VT
= InVec
.getValueType();
5335 EVT ExtVT
= VT
.getVectorElementType();
5338 if (InVec
.getOpcode() == ISD::BIT_CONVERT
) {
5339 EVT BCVT
= InVec
.getOperand(0).getValueType();
5340 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
5342 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
5343 BCNumEltsChanged
= true;
5344 InVec
= InVec
.getOperand(0);
5345 ExtVT
= BCVT
.getVectorElementType();
5349 LoadSDNode
*LN0
= NULL
;
5350 const ShuffleVectorSDNode
*SVN
= NULL
;
5351 if (ISD::isNormalLoad(InVec
.getNode())) {
5352 LN0
= cast
<LoadSDNode
>(InVec
);
5353 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
5354 InVec
.getOperand(0).getValueType() == ExtVT
&&
5355 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
5356 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
5357 } else if ((SVN
= dyn_cast
<ShuffleVectorSDNode
>(InVec
))) {
5358 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5360 // (load $addr+1*size)
5362 // If the bit convert changed the number of elements, it is unsafe
5363 // to examine the mask.
5364 if (BCNumEltsChanged
)
5367 // Select the input vector, guarding against out of range extract vector.
5368 unsigned NumElems
= VT
.getVectorNumElements();
5369 int Idx
= (Elt
> NumElems
) ? -1 : SVN
->getMaskElt(Elt
);
5370 InVec
= (Idx
< (int)NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
5372 if (InVec
.getOpcode() == ISD::BIT_CONVERT
)
5373 InVec
= InVec
.getOperand(0);
5374 if (ISD::isNormalLoad(InVec
.getNode())) {
5375 LN0
= cast
<LoadSDNode
>(InVec
);
5376 Elt
= (Idx
< (int)NumElems
) ? Idx
: Idx
- NumElems
;
5380 if (!LN0
|| !LN0
->hasOneUse() || LN0
->isVolatile())
5383 unsigned Align
= LN0
->getAlignment();
5385 // Check the resultant load doesn't need a higher alignment than the
5388 TLI
.getTargetData()->getABITypeAlignment(LVT
.getTypeForEVT(*DAG
.getContext()));
5390 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, LVT
))
5396 SDValue NewPtr
= LN0
->getBasePtr();
5398 unsigned PtrOff
= LVT
.getSizeInBits() * Elt
/ 8;
5399 EVT PtrType
= NewPtr
.getValueType();
5400 if (TLI
.isBigEndian())
5401 PtrOff
= VT
.getSizeInBits() / 8 - PtrOff
;
5402 NewPtr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), PtrType
, NewPtr
,
5403 DAG
.getConstant(PtrOff
, PtrType
));
5406 return DAG
.getLoad(LVT
, N
->getDebugLoc(), LN0
->getChain(), NewPtr
,
5407 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
5408 LN0
->isVolatile(), Align
);
5414 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
5415 unsigned NumInScalars
= N
->getNumOperands();
5416 EVT VT
= N
->getValueType(0);
5418 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5419 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5420 // at most two distinct vectors, turn this into a shuffle node.
5421 SDValue VecIn1
, VecIn2
;
5422 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5423 // Ignore undef inputs.
5424 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5426 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5427 // constant index, bail out.
5428 if (N
->getOperand(i
).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5429 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
5430 VecIn1
= VecIn2
= SDValue(0, 0);
5434 // If the input vector type disagrees with the result of the build_vector,
5435 // we can't make a shuffle.
5436 SDValue ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
5437 if (ExtractedFromVec
.getValueType() != VT
) {
5438 VecIn1
= VecIn2
= SDValue(0, 0);
5442 // Otherwise, remember this. We allow up to two distinct input vectors.
5443 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
5446 if (VecIn1
.getNode() == 0) {
5447 VecIn1
= ExtractedFromVec
;
5448 } else if (VecIn2
.getNode() == 0) {
5449 VecIn2
= ExtractedFromVec
;
5452 VecIn1
= VecIn2
= SDValue(0, 0);
5457 // If everything is good, we can make a shuffle operation.
5458 if (VecIn1
.getNode()) {
5459 SmallVector
<int, 8> Mask
;
5460 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5461 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
5466 // If extracting from the first vector, just use the index directly.
5467 SDValue Extract
= N
->getOperand(i
);
5468 SDValue ExtVal
= Extract
.getOperand(1);
5469 if (Extract
.getOperand(0) == VecIn1
) {
5470 unsigned ExtIndex
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5471 if (ExtIndex
> VT
.getVectorNumElements())
5474 Mask
.push_back(ExtIndex
);
5478 // Otherwise, use InIdx + VecSize
5479 unsigned Idx
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5480 Mask
.push_back(Idx
+NumInScalars
);
5483 // Add count and size info.
5484 if (!TLI
.isTypeLegal(VT
) && LegalTypes
)
5487 // Return the new VECTOR_SHUFFLE node.
5490 Ops
[1] = VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(VT
);
5491 return DAG
.getVectorShuffle(VT
, N
->getDebugLoc(), Ops
[0], Ops
[1], &Mask
[0]);
5497 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
5498 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5499 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5500 // inputs come from at most two distinct vectors, turn this into a shuffle
5503 // If we only have one input vector, we don't need to do any concatenation.
5504 if (N
->getNumOperands() == 1)
5505 return N
->getOperand(0);
5510 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
5513 EVT VT
= N
->getValueType(0);
5514 unsigned NumElts
= VT
.getVectorNumElements();
5516 SDValue N0
= N
->getOperand(0);
5518 assert(N0
.getValueType().getVectorNumElements() == NumElts
&&
5519 "Vector shuffle must be normalized in DAG");
5521 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
5523 // If it is a splat, check if the argument vector is a build_vector with
5524 // all scalar elements the same.
5525 if (cast
<ShuffleVectorSDNode
>(N
)->isSplat()) {
5526 SDNode
*V
= N0
.getNode();
5529 // If this is a bit convert that changes the element type of the vector but
5530 // not the number of vector elements, look through it. Be careful not to
5531 // look though conversions that change things like v4f32 to v2f64.
5532 if (V
->getOpcode() == ISD::BIT_CONVERT
) {
5533 SDValue ConvInput
= V
->getOperand(0);
5534 if (ConvInput
.getValueType().isVector() &&
5535 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
5536 V
= ConvInput
.getNode();
5539 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
5540 unsigned NumElems
= V
->getNumOperands();
5541 unsigned BaseIdx
= cast
<ShuffleVectorSDNode
>(N
)->getSplatIndex();
5542 if (NumElems
> BaseIdx
) {
5544 bool AllSame
= true;
5545 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5546 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
5547 Base
= V
->getOperand(i
);
5551 // Splat of <u, u, u, u>, return <u, u, u, u>
5552 if (!Base
.getNode())
5554 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5555 if (V
->getOperand(i
) != Base
) {
5560 // Splat of <x, x, x, x>, return <x, x, x, x>
5569 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5570 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5571 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5572 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5573 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
5574 EVT VT
= N
->getValueType(0);
5575 DebugLoc dl
= N
->getDebugLoc();
5576 SDValue LHS
= N
->getOperand(0);
5577 SDValue RHS
= N
->getOperand(1);
5578 if (N
->getOpcode() == ISD::AND
) {
5579 if (RHS
.getOpcode() == ISD::BIT_CONVERT
)
5580 RHS
= RHS
.getOperand(0);
5581 if (RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5582 SmallVector
<int, 8> Indices
;
5583 unsigned NumElts
= RHS
.getNumOperands();
5584 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5585 SDValue Elt
= RHS
.getOperand(i
);
5586 if (!isa
<ConstantSDNode
>(Elt
))
5588 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
5589 Indices
.push_back(i
);
5590 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
5591 Indices
.push_back(NumElts
);
5596 // Let's see if the target supports this vector_shuffle.
5597 EVT RVT
= RHS
.getValueType();
5598 if (!TLI
.isVectorClearMaskLegal(Indices
, RVT
))
5601 // Return the new VECTOR_SHUFFLE node.
5602 EVT EVT
= RVT
.getVectorElementType();
5603 SmallVector
<SDValue
,8> ZeroOps(RVT
.getVectorNumElements(),
5604 DAG
.getConstant(0, EVT
));
5605 SDValue Zero
= DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5606 RVT
, &ZeroOps
[0], ZeroOps
.size());
5607 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RVT
, LHS
);
5608 SDValue Shuf
= DAG
.getVectorShuffle(RVT
, dl
, LHS
, Zero
, &Indices
[0]);
5609 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Shuf
);
5616 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5617 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
5618 // After legalize, the target may be depending on adds and other
5619 // binary ops to provide legal ways to construct constants or other
5620 // things. Simplifying them may result in a loss of legality.
5621 if (LegalOperations
) return SDValue();
5623 EVT VT
= N
->getValueType(0);
5624 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
5626 EVT EltType
= VT
.getVectorElementType();
5627 SDValue LHS
= N
->getOperand(0);
5628 SDValue RHS
= N
->getOperand(1);
5629 SDValue Shuffle
= XformToShuffleWithZero(N
);
5630 if (Shuffle
.getNode()) return Shuffle
;
5632 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5634 if (LHS
.getOpcode() == ISD::BUILD_VECTOR
&&
5635 RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5636 SmallVector
<SDValue
, 8> Ops
;
5637 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
5638 SDValue LHSOp
= LHS
.getOperand(i
);
5639 SDValue RHSOp
= RHS
.getOperand(i
);
5640 // If these two elements can't be folded, bail out.
5641 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
5642 LHSOp
.getOpcode() != ISD::Constant
&&
5643 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
5644 (RHSOp
.getOpcode() != ISD::UNDEF
&&
5645 RHSOp
.getOpcode() != ISD::Constant
&&
5646 RHSOp
.getOpcode() != ISD::ConstantFP
))
5649 // Can't fold divide by zero.
5650 if (N
->getOpcode() == ISD::SDIV
|| N
->getOpcode() == ISD::UDIV
||
5651 N
->getOpcode() == ISD::FDIV
) {
5652 if ((RHSOp
.getOpcode() == ISD::Constant
&&
5653 cast
<ConstantSDNode
>(RHSOp
.getNode())->isNullValue()) ||
5654 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
5655 cast
<ConstantFPSDNode
>(RHSOp
.getNode())->getValueAPF().isZero()))
5659 Ops
.push_back(DAG
.getNode(N
->getOpcode(), LHS
.getDebugLoc(),
5660 EltType
, LHSOp
, RHSOp
));
5661 AddToWorkList(Ops
.back().getNode());
5662 assert((Ops
.back().getOpcode() == ISD::UNDEF
||
5663 Ops
.back().getOpcode() == ISD::Constant
||
5664 Ops
.back().getOpcode() == ISD::ConstantFP
) &&
5665 "Scalar binop didn't fold!");
5668 if (Ops
.size() == LHS
.getNumOperands()) {
5669 EVT VT
= LHS
.getValueType();
5670 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
5671 &Ops
[0], Ops
.size());
5678 SDValue
DAGCombiner::SimplifySelect(DebugLoc DL
, SDValue N0
,
5679 SDValue N1
, SDValue N2
){
5680 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
5682 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
5683 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
5685 // If we got a simplified select_cc node back from SimplifySelectCC, then
5686 // break it down into a new SETCC node, and a new SELECT node, and then return
5687 // the SELECT node, since we were called with a SELECT node.
5688 if (SCC
.getNode()) {
5689 // Check to see if we got a select_cc back (to turn into setcc/select).
5690 // Otherwise, just return whatever node we got back, like fabs.
5691 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
5692 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getDebugLoc(),
5694 SCC
.getOperand(0), SCC
.getOperand(1),
5696 AddToWorkList(SETCC
.getNode());
5697 return DAG
.getNode(ISD::SELECT
, SCC
.getDebugLoc(), SCC
.getValueType(),
5698 SCC
.getOperand(2), SCC
.getOperand(3), SETCC
);
5706 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5707 /// are the two values being selected between, see if we can simplify the
5708 /// select. Callers of this should assume that TheSelect is deleted if this
5709 /// returns true. As such, they should return the appropriate thing (e.g. the
5710 /// node) back to the top-level of the DAG combiner loop to avoid it being
5712 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
5715 // If this is a select from two identical things, try to pull the operation
5716 // through the select.
5717 if (LHS
.getOpcode() == RHS
.getOpcode() && LHS
.hasOneUse() && RHS
.hasOneUse()){
5718 // If this is a load and the token chain is identical, replace the select
5719 // of two loads with a load through a select of the address to load from.
5720 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5721 // constants have been dropped into the constant pool.
5722 if (LHS
.getOpcode() == ISD::LOAD
&&
5723 // Do not let this transformation reduce the number of volatile loads.
5724 !cast
<LoadSDNode
>(LHS
)->isVolatile() &&
5725 !cast
<LoadSDNode
>(RHS
)->isVolatile() &&
5726 // Token chains must be identical.
5727 LHS
.getOperand(0) == RHS
.getOperand(0)) {
5728 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
5729 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
5731 // If this is an EXTLOAD, the VT's must match.
5732 if (LLD
->getMemoryVT() == RLD
->getMemoryVT()) {
5733 // FIXME: this conflates two src values, discarding one. This is not
5734 // the right thing to do, but nothing uses srcvalues now. When they do,
5735 // turn SrcValue into a list of locations.
5737 if (TheSelect
->getOpcode() == ISD::SELECT
) {
5738 // Check that the condition doesn't reach either load. If so, folding
5739 // this will induce a cycle into the DAG.
5740 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5741 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode())) {
5742 Addr
= DAG
.getNode(ISD::SELECT
, TheSelect
->getDebugLoc(),
5743 LLD
->getBasePtr().getValueType(),
5744 TheSelect
->getOperand(0), LLD
->getBasePtr(),
5748 // Check that the condition doesn't reach either load. If so, folding
5749 // this will induce a cycle into the DAG.
5750 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5751 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5752 !LLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode()) &&
5753 !RLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode())) {
5754 Addr
= DAG
.getNode(ISD::SELECT_CC
, TheSelect
->getDebugLoc(),
5755 LLD
->getBasePtr().getValueType(),
5756 TheSelect
->getOperand(0),
5757 TheSelect
->getOperand(1),
5758 LLD
->getBasePtr(), RLD
->getBasePtr(),
5759 TheSelect
->getOperand(4));
5763 if (Addr
.getNode()) {
5765 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
5766 Load
= DAG
.getLoad(TheSelect
->getValueType(0),
5767 TheSelect
->getDebugLoc(),
5769 Addr
,LLD
->getSrcValue(),
5770 LLD
->getSrcValueOffset(),
5772 LLD
->getAlignment());
5774 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
5775 TheSelect
->getDebugLoc(),
5776 TheSelect
->getValueType(0),
5777 LLD
->getChain(), Addr
, LLD
->getSrcValue(),
5778 LLD
->getSrcValueOffset(),
5781 LLD
->getAlignment());
5784 // Users of the select now use the result of the load.
5785 CombineTo(TheSelect
, Load
);
5787 // Users of the old loads now use the new load's chain. We know the
5788 // old-load value is dead now.
5789 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5790 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5800 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5801 /// where 'cond' is the comparison specified by CC.
5802 SDValue
DAGCombiner::SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
,
5803 SDValue N2
, SDValue N3
,
5804 ISD::CondCode CC
, bool NotExtCompare
) {
5805 // (x ? y : y) -> y.
5806 if (N2
== N3
) return N2
;
5808 EVT VT
= N2
.getValueType();
5809 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
5810 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
5811 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
5813 // Determine if the condition we're dealing with is constant
5814 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
5815 N0
, N1
, CC
, DL
, false);
5816 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
5817 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode());
5819 // fold select_cc true, x, y -> x
5820 if (SCCC
&& !SCCC
->isNullValue())
5822 // fold select_cc false, x, y -> y
5823 if (SCCC
&& SCCC
->isNullValue())
5826 // Check to see if we can simplify the select into an fabs node
5827 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
5828 // Allow either -0.0 or 0.0
5829 if (CFP
->getValueAPF().isZero()) {
5830 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5831 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
5832 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
5833 N2
== N3
.getOperand(0))
5834 return DAG
.getNode(ISD::FABS
, DL
, VT
, N0
);
5836 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5837 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5838 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
5839 N2
.getOperand(0) == N3
)
5840 return DAG
.getNode(ISD::FABS
, DL
, VT
, N3
);
5844 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5845 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5846 // in it. This is a win when the constant is not otherwise available because
5847 // it replaces two constant pool loads with one. We only do this if the FP
5848 // type is known to be legal, because if it isn't, then we are before legalize
5849 // types an we want the other legalization to happen first (e.g. to avoid
5850 // messing with soft float) and if the ConstantFP is not legal, because if
5851 // it is legal, we may not need to store the FP constant in a constant pool.
5852 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
5853 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
5854 if (TLI
.isTypeLegal(N2
.getValueType()) &&
5855 (TLI
.getOperationAction(ISD::ConstantFP
, N2
.getValueType()) !=
5856 TargetLowering::Legal
) &&
5857 // If both constants have multiple uses, then we won't need to do an
5858 // extra load, they are likely around in registers for other users.
5859 (TV
->hasOneUse() || FV
->hasOneUse())) {
5860 Constant
*Elts
[] = {
5861 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
5862 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
5864 const Type
*FPTy
= Elts
[0]->getType();
5865 const TargetData
&TD
= *TLI
.getTargetData();
5867 // Create a ConstantArray of the two constants.
5868 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
, 2);
5869 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(),
5870 TD
.getPrefTypeAlignment(FPTy
));
5871 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5873 // Get the offsets to the 0 and 1 element of the array so that we can
5874 // select between them.
5875 SDValue Zero
= DAG
.getIntPtrConstant(0);
5876 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
5877 SDValue One
= DAG
.getIntPtrConstant(EltSize
);
5879 SDValue Cond
= DAG
.getSetCC(DL
,
5880 TLI
.getSetCCResultType(N0
.getValueType()),
5882 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, DL
, Zero
.getValueType(),
5884 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, TLI
.getPointerTy(), CPIdx
,
5886 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
5887 PseudoSourceValue::getConstantPool(), 0, false,
5893 // Check to see if we can perform the "gzip trick", transforming
5894 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5895 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
5896 N0
.getValueType().isInteger() &&
5897 N2
.getValueType().isInteger() &&
5898 (N1C
->isNullValue() || // (a < 0) ? b : 0
5899 (N1C
->getAPIntValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
5900 EVT XType
= N0
.getValueType();
5901 EVT AType
= N2
.getValueType();
5902 if (XType
.bitsGE(AType
)) {
5903 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5904 // single-bit constant.
5905 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue()-1)) == 0)) {
5906 unsigned ShCtV
= N2C
->getAPIntValue().logBase2();
5907 ShCtV
= XType
.getSizeInBits()-ShCtV
-1;
5908 SDValue ShCt
= DAG
.getConstant(ShCtV
, getShiftAmountTy());
5909 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(),
5911 AddToWorkList(Shift
.getNode());
5913 if (XType
.bitsGT(AType
)) {
5914 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5915 AddToWorkList(Shift
.getNode());
5918 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5921 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(),
5923 DAG
.getConstant(XType
.getSizeInBits()-1,
5924 getShiftAmountTy()));
5925 AddToWorkList(Shift
.getNode());
5927 if (XType
.bitsGT(AType
)) {
5928 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5929 AddToWorkList(Shift
.getNode());
5932 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5936 // fold select C, 16, 0 -> shl C, 4
5937 if (N2C
&& N3C
&& N3C
->isNullValue() && N2C
->getAPIntValue().isPowerOf2() &&
5938 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
) {
5940 // If the caller doesn't want us to simplify this into a zext of a compare,
5942 if (NotExtCompare
&& N2C
->getAPIntValue() == 1)
5945 // Get a SetCC of the condition
5946 // FIXME: Should probably make sure that setcc is legal if we ever have a
5947 // target where it isn't.
5949 // cast from setcc result type to select result type
5951 SCC
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(N0
.getValueType()),
5953 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
5954 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getDebugLoc(), N2
.getValueType());
5956 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5957 N2
.getValueType(), SCC
);
5959 SCC
= DAG
.getSetCC(N0
.getDebugLoc(), MVT::i1
, N0
, N1
, CC
);
5960 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5961 N2
.getValueType(), SCC
);
5964 AddToWorkList(SCC
.getNode());
5965 AddToWorkList(Temp
.getNode());
5967 if (N2C
->getAPIntValue() == 1)
5970 // shl setcc result by log2 n2c
5971 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
5972 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
5973 getShiftAmountTy()));
5976 // Check to see if this is the equivalent of setcc
5977 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5978 // otherwise, go ahead with the folds.
5979 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getAPIntValue() == 1ULL)) {
5980 EVT XType
= N0
.getValueType();
5981 if (!LegalOperations
||
5982 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(XType
))) {
5983 SDValue Res
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(XType
), N0
, N1
, CC
);
5984 if (Res
.getValueType() != VT
)
5985 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Res
);
5989 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5990 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
5991 (!LegalOperations
||
5992 TLI
.isOperationLegal(ISD::CTLZ
, XType
))) {
5993 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, N0
.getDebugLoc(), XType
, N0
);
5994 return DAG
.getNode(ISD::SRL
, DL
, XType
, Ctlz
,
5995 DAG
.getConstant(Log2_32(XType
.getSizeInBits()),
5996 getShiftAmountTy()));
5998 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5999 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
6000 SDValue NegN0
= DAG
.getNode(ISD::SUB
, N0
.getDebugLoc(),
6001 XType
, DAG
.getConstant(0, XType
), N0
);
6002 SDValue NotN0
= DAG
.getNOT(N0
.getDebugLoc(), N0
, XType
);
6003 return DAG
.getNode(ISD::SRL
, DL
, XType
,
6004 DAG
.getNode(ISD::AND
, DL
, XType
, NegN0
, NotN0
),
6005 DAG
.getConstant(XType
.getSizeInBits()-1,
6006 getShiftAmountTy()));
6008 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
6009 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
6010 SDValue Sign
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), XType
, N0
,
6011 DAG
.getConstant(XType
.getSizeInBits()-1,
6012 getShiftAmountTy()));
6013 return DAG
.getNode(ISD::XOR
, DL
, XType
, Sign
, DAG
.getConstant(1, XType
));
6017 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
6018 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
6019 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
6020 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1) &&
6021 N2
.getOperand(0) == N1
&& N0
.getValueType().isInteger()) {
6022 EVT XType
= N0
.getValueType();
6023 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
, N0
,
6024 DAG
.getConstant(XType
.getSizeInBits()-1,
6025 getShiftAmountTy()));
6026 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), XType
,
6028 AddToWorkList(Shift
.getNode());
6029 AddToWorkList(Add
.getNode());
6030 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
6032 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
6033 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
6034 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
&&
6035 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1)) {
6036 if (ConstantSDNode
*SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0))) {
6037 EVT XType
= N0
.getValueType();
6038 if (SubC
->isNullValue() && XType
.isInteger()) {
6039 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
,
6041 DAG
.getConstant(XType
.getSizeInBits()-1,
6042 getShiftAmountTy()));
6043 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(),
6045 AddToWorkList(Shift
.getNode());
6046 AddToWorkList(Add
.getNode());
6047 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
6055 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
6056 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
,
6057 SDValue N1
, ISD::CondCode Cond
,
6058 DebugLoc DL
, bool foldBooleans
) {
6059 TargetLowering::DAGCombinerInfo
6060 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
6061 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
6064 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
6065 /// return a DAG expression to select that will generate the same value by
6066 /// multiplying by a magic number. See:
6067 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6068 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
6069 std::vector
<SDNode
*> Built
;
6070 SDValue S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
6072 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
6078 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
6079 /// return a DAG expression to select that will generate the same value by
6080 /// multiplying by a magic number. See:
6081 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6082 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
6083 std::vector
<SDNode
*> Built
;
6084 SDValue S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
6086 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
6092 /// FindBaseOffset - Return true if base is known not to alias with anything
6093 /// but itself. Provides base object and offset as results.
6094 static bool FindBaseOffset(SDValue Ptr
, SDValue
&Base
, int64_t &Offset
) {
6095 // Assume it is a primitive operation.
6096 Base
= Ptr
; Offset
= 0;
6098 // If it's an adding a simple constant then integrate the offset.
6099 if (Base
.getOpcode() == ISD::ADD
) {
6100 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
6101 Base
= Base
.getOperand(0);
6102 Offset
+= C
->getZExtValue();
6106 // If it's any of the following then it can't alias with anything but itself.
6107 return isa
<FrameIndexSDNode
>(Base
) ||
6108 isa
<ConstantPoolSDNode
>(Base
) ||
6109 isa
<GlobalAddressSDNode
>(Base
);
6112 /// isAlias - Return true if there is any possibility that the two addresses
6114 bool DAGCombiner::isAlias(SDValue Ptr1
, int64_t Size1
,
6115 const Value
*SrcValue1
, int SrcValueOffset1
,
6116 unsigned SrcValueAlign1
,
6117 SDValue Ptr2
, int64_t Size2
,
6118 const Value
*SrcValue2
, int SrcValueOffset2
,
6119 unsigned SrcValueAlign2
) const {
6120 // If they are the same then they must be aliases.
6121 if (Ptr1
== Ptr2
) return true;
6123 // Gather base node and offset information.
6124 SDValue Base1
, Base2
;
6125 int64_t Offset1
, Offset2
;
6126 bool KnownBase1
= FindBaseOffset(Ptr1
, Base1
, Offset1
);
6127 bool KnownBase2
= FindBaseOffset(Ptr2
, Base2
, Offset2
);
6129 // If they have a same base address then...
6131 // Check to see if the addresses overlap.
6132 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
6134 // If we know both bases then they can't alias.
6135 if (KnownBase1
&& KnownBase2
) return false;
6137 // If we know required SrcValue1 and SrcValue2 have relatively large alignment
6138 // compared to the size and offset of the access, we may be able to prove they
6139 // do not alias. This check is conservative for now to catch cases created by
6140 // splitting vector types.
6141 if ((SrcValueAlign1
== SrcValueAlign2
) &&
6142 (SrcValueOffset1
!= SrcValueOffset2
) &&
6143 (Size1
== Size2
) && (SrcValueAlign1
> Size1
)) {
6144 int64_t OffAlign1
= SrcValueOffset1
% SrcValueAlign1
;
6145 int64_t OffAlign2
= SrcValueOffset2
% SrcValueAlign1
;
6147 // There is no overlap between these relatively aligned accesses of similar
6148 // size, return no alias.
6149 if ((OffAlign1
+ Size1
) <= OffAlign2
|| (OffAlign2
+ Size2
) <= OffAlign1
)
6153 if (CombinerGlobalAA
) {
6154 // Use alias analysis information.
6155 int64_t MinOffset
= std::min(SrcValueOffset1
, SrcValueOffset2
);
6156 int64_t Overlap1
= Size1
+ SrcValueOffset1
- MinOffset
;
6157 int64_t Overlap2
= Size2
+ SrcValueOffset2
- MinOffset
;
6158 AliasAnalysis::AliasResult AAResult
=
6159 AA
.alias(SrcValue1
, Overlap1
, SrcValue2
, Overlap2
);
6160 if (AAResult
== AliasAnalysis::NoAlias
)
6164 // Otherwise we have to assume they alias.
6168 /// FindAliasInfo - Extracts the relevant alias information from the memory
6169 /// node. Returns true if the operand was a load.
6170 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
6171 SDValue
&Ptr
, int64_t &Size
,
6172 const Value
*&SrcValue
,
6173 int &SrcValueOffset
,
6174 unsigned &SrcValueAlign
) const {
6175 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
6176 Ptr
= LD
->getBasePtr();
6177 Size
= LD
->getMemoryVT().getSizeInBits() >> 3;
6178 SrcValue
= LD
->getSrcValue();
6179 SrcValueOffset
= LD
->getSrcValueOffset();
6180 SrcValueAlign
= LD
->getOriginalAlignment();
6182 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
6183 Ptr
= ST
->getBasePtr();
6184 Size
= ST
->getMemoryVT().getSizeInBits() >> 3;
6185 SrcValue
= ST
->getSrcValue();
6186 SrcValueOffset
= ST
->getSrcValueOffset();
6187 SrcValueAlign
= ST
->getOriginalAlignment();
6189 llvm_unreachable("FindAliasInfo expected a memory operand");
6195 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
6196 /// looking for aliasing nodes and adding them to the Aliases vector.
6197 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
6198 SmallVector
<SDValue
, 8> &Aliases
) {
6199 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
6200 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
6202 // Get alias information for node.
6205 const Value
*SrcValue
;
6207 unsigned SrcValueAlign
;
6208 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
,
6212 Chains
.push_back(OriginalChain
);
6214 // Look at each chain and determine if it is an alias. If so, add it to the
6215 // aliases list. If not, then continue up the chain looking for the next
6217 while (!Chains
.empty()) {
6218 SDValue Chain
= Chains
.back();
6221 // Don't bother if we've been before.
6222 if (!Visited
.insert(Chain
.getNode()))
6225 switch (Chain
.getOpcode()) {
6226 case ISD::EntryToken
:
6227 // Entry token is ideal chain operand, but handled in FindBetterChain.
6232 // Get alias information for Chain.
6235 const Value
*OpSrcValue
;
6236 int OpSrcValueOffset
;
6237 unsigned OpSrcValueAlign
;
6238 bool IsOpLoad
= FindAliasInfo(Chain
.getNode(), OpPtr
, OpSize
,
6239 OpSrcValue
, OpSrcValueOffset
,
6242 // If chain is alias then stop here.
6243 if (!(IsLoad
&& IsOpLoad
) &&
6244 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
, SrcValueAlign
,
6245 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
,
6247 Aliases
.push_back(Chain
);
6249 // Look further up the chain.
6250 Chains
.push_back(Chain
.getOperand(0));
6251 // Clean up old chain.
6252 AddToWorkList(Chain
.getNode());
6257 case ISD::TokenFactor
:
6258 // We have to check each of the operands of the token factor for "small"
6259 // token factors, so we queue them up. Adding the operands to the queue
6260 // (stack) in reverse order maintains the original order and increases the
6261 // likelihood that getNode will find a matching token factor (CSE.)
6262 if (Chain
.getNumOperands() > 16) {
6263 Aliases
.push_back(Chain
);
6266 for (unsigned n
= Chain
.getNumOperands(); n
;)
6267 Chains
.push_back(Chain
.getOperand(--n
));
6268 // Eliminate the token factor if we can.
6269 AddToWorkList(Chain
.getNode());
6273 // For all other instructions we will just have to take what we can get.
6274 Aliases
.push_back(Chain
);
6280 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6281 /// for a better chain (aliasing node.)
6282 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
6283 SmallVector
<SDValue
, 8> Aliases
; // Ops for replacing token factor.
6285 // Accumulate all the aliases to this node.
6286 GatherAllAliases(N
, OldChain
, Aliases
);
6288 if (Aliases
.size() == 0) {
6289 // If no operands then chain to entry token.
6290 return DAG
.getEntryNode();
6291 } else if (Aliases
.size() == 1) {
6292 // If a single operand then chain to it. We don't need to revisit it.
6296 // Construct a custom tailored token factor.
6297 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
6298 &Aliases
[0], Aliases
.size());
6301 // SelectionDAG::Combine - This is the entry point for the file.
6303 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
&AA
,
6304 CodeGenOpt::Level OptLevel
) {
6305 /// run - This is the main entry point to this class.
6307 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);