1 //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuild.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Constants.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/InlineAsm.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/GCMetadata.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/CodeGen/DwarfWriter.h"
42 #include "llvm/Analysis/DebugInfo.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Target/TargetFrameInfo.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetIntrinsicInfo.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
59 /// LimitFloatPrecision - Generate low-precision inline sequences for
60 /// some float libcalls (6, 8 or 12 bits).
61 static unsigned LimitFloatPrecision
;
63 static cl::opt
<unsigned, true>
64 LimitFPPrecision("limit-float-precision",
65 cl::desc("Generate low-precision inline sequences "
66 "for some float libcalls"),
67 cl::location(LimitFloatPrecision
),
70 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
71 /// of insertvalue or extractvalue indices that identify a member, return
72 /// the linearized index of the start of the member.
74 static unsigned ComputeLinearIndex(const TargetLowering
&TLI
, const Type
*Ty
,
75 const unsigned *Indices
,
76 const unsigned *IndicesEnd
,
77 unsigned CurIndex
= 0) {
78 // Base case: We're done.
79 if (Indices
&& Indices
== IndicesEnd
)
82 // Given a struct type, recursively traverse the elements.
83 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
84 for (StructType::element_iterator EB
= STy
->element_begin(),
86 EE
= STy
->element_end();
88 if (Indices
&& *Indices
== unsigned(EI
- EB
))
89 return ComputeLinearIndex(TLI
, *EI
, Indices
+1, IndicesEnd
, CurIndex
);
90 CurIndex
= ComputeLinearIndex(TLI
, *EI
, 0, 0, CurIndex
);
94 // Given an array type, recursively traverse the elements.
95 else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
96 const Type
*EltTy
= ATy
->getElementType();
97 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
98 if (Indices
&& *Indices
== i
)
99 return ComputeLinearIndex(TLI
, EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
100 CurIndex
= ComputeLinearIndex(TLI
, EltTy
, 0, 0, CurIndex
);
104 // We haven't found the type we're looking for, so keep searching.
108 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
109 /// EVTs that represent all the individual underlying
110 /// non-aggregate types that comprise it.
112 /// If Offsets is non-null, it points to a vector to be filled in
113 /// with the in-memory offsets of each of the individual values.
115 static void ComputeValueVTs(const TargetLowering
&TLI
, const Type
*Ty
,
116 SmallVectorImpl
<EVT
> &ValueVTs
,
117 SmallVectorImpl
<uint64_t> *Offsets
= 0,
118 uint64_t StartingOffset
= 0) {
119 // Given a struct type, recursively traverse the elements.
120 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
121 const StructLayout
*SL
= TLI
.getTargetData()->getStructLayout(STy
);
122 for (StructType::element_iterator EB
= STy
->element_begin(),
124 EE
= STy
->element_end();
126 ComputeValueVTs(TLI
, *EI
, ValueVTs
, Offsets
,
127 StartingOffset
+ SL
->getElementOffset(EI
- EB
));
130 // Given an array type, recursively traverse the elements.
131 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
132 const Type
*EltTy
= ATy
->getElementType();
133 uint64_t EltSize
= TLI
.getTargetData()->getTypeAllocSize(EltTy
);
134 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
135 ComputeValueVTs(TLI
, EltTy
, ValueVTs
, Offsets
,
136 StartingOffset
+ i
* EltSize
);
139 // Interpret void as zero return values.
140 if (Ty
== Type::getVoidTy(Ty
->getContext()))
142 // Base case: we can get an EVT for this LLVM IR type.
143 ValueVTs
.push_back(TLI
.getValueType(Ty
));
145 Offsets
->push_back(StartingOffset
);
149 /// RegsForValue - This struct represents the registers (physical or virtual)
150 /// that a particular set of values is assigned, and the type information about
151 /// the value. The most common situation is to represent one value at a time,
152 /// but struct or array values are handled element-wise as multiple values.
153 /// The splitting of aggregates is performed recursively, so that we never
154 /// have aggregate-typed registers. The values at this point do not necessarily
155 /// have legal types, so each value may require one or more registers of some
158 struct VISIBILITY_HIDDEN RegsForValue
{
159 /// TLI - The TargetLowering object.
161 const TargetLowering
*TLI
;
163 /// ValueVTs - The value types of the values, which may not be legal, and
164 /// may need be promoted or synthesized from one or more registers.
166 SmallVector
<EVT
, 4> ValueVTs
;
168 /// RegVTs - The value types of the registers. This is the same size as
169 /// ValueVTs and it records, for each value, what the type of the assigned
170 /// register or registers are. (Individual values are never synthesized
171 /// from more than one type of register.)
173 /// With virtual registers, the contents of RegVTs is redundant with TLI's
174 /// getRegisterType member function, however when with physical registers
175 /// it is necessary to have a separate record of the types.
177 SmallVector
<EVT
, 4> RegVTs
;
179 /// Regs - This list holds the registers assigned to the values.
180 /// Each legal or promoted value requires one register, and each
181 /// expanded value requires multiple registers.
183 SmallVector
<unsigned, 4> Regs
;
185 RegsForValue() : TLI(0) {}
187 RegsForValue(const TargetLowering
&tli
,
188 const SmallVector
<unsigned, 4> ®s
,
189 EVT regvt
, EVT valuevt
)
190 : TLI(&tli
), ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
) {}
191 RegsForValue(const TargetLowering
&tli
,
192 const SmallVector
<unsigned, 4> ®s
,
193 const SmallVector
<EVT
, 4> ®vts
,
194 const SmallVector
<EVT
, 4> &valuevts
)
195 : TLI(&tli
), ValueVTs(valuevts
), RegVTs(regvts
), Regs(regs
) {}
196 RegsForValue(LLVMContext
&Context
, const TargetLowering
&tli
,
197 unsigned Reg
, const Type
*Ty
) : TLI(&tli
) {
198 ComputeValueVTs(tli
, Ty
, ValueVTs
);
200 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
201 EVT ValueVT
= ValueVTs
[Value
];
202 unsigned NumRegs
= TLI
->getNumRegisters(Context
, ValueVT
);
203 EVT RegisterVT
= TLI
->getRegisterType(Context
, ValueVT
);
204 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
205 Regs
.push_back(Reg
+ i
);
206 RegVTs
.push_back(RegisterVT
);
211 /// append - Add the specified values to this one.
212 void append(const RegsForValue
&RHS
) {
214 ValueVTs
.append(RHS
.ValueVTs
.begin(), RHS
.ValueVTs
.end());
215 RegVTs
.append(RHS
.RegVTs
.begin(), RHS
.RegVTs
.end());
216 Regs
.append(RHS
.Regs
.begin(), RHS
.Regs
.end());
220 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
221 /// this value and returns the result as a ValueVTs value. This uses
222 /// Chain/Flag as the input and updates them for the output Chain/Flag.
223 /// If the Flag pointer is NULL, no flag is used.
224 SDValue
getCopyFromRegs(SelectionDAG
&DAG
, DebugLoc dl
,
225 SDValue
&Chain
, SDValue
*Flag
) const;
227 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
228 /// specified value into the registers specified by this object. This uses
229 /// Chain/Flag as the input and updates them for the output Chain/Flag.
230 /// If the Flag pointer is NULL, no flag is used.
231 void getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
232 SDValue
&Chain
, SDValue
*Flag
) const;
234 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
235 /// operand list. This adds the code marker, matching input operand index
236 /// (if applicable), and includes the number of values added into it.
237 void AddInlineAsmOperands(unsigned Code
,
238 bool HasMatching
, unsigned MatchingIdx
,
239 SelectionDAG
&DAG
, std::vector
<SDValue
> &Ops
) const;
243 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
244 /// PHI nodes or outside of the basic block that defines it, or used by a
245 /// switch or atomic instruction, which may expand to multiple basic blocks.
246 static bool isUsedOutsideOfDefiningBlock(Instruction
*I
) {
247 if (isa
<PHINode
>(I
)) return true;
248 BasicBlock
*BB
= I
->getParent();
249 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
; ++UI
)
250 if (cast
<Instruction
>(*UI
)->getParent() != BB
|| isa
<PHINode
>(*UI
))
255 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
256 /// entry block, return true. This includes arguments used by switches, since
257 /// the switch may expand into multiple basic blocks.
258 static bool isOnlyUsedInEntryBlock(Argument
*A
, bool EnableFastISel
) {
259 // With FastISel active, we may be splitting blocks, so force creation
260 // of virtual registers for all non-dead arguments.
261 // Don't force virtual registers for byval arguments though, because
262 // fast-isel can't handle those in all cases.
263 if (EnableFastISel
&& !A
->hasByValAttr())
264 return A
->use_empty();
266 BasicBlock
*Entry
= A
->getParent()->begin();
267 for (Value::use_iterator UI
= A
->use_begin(), E
= A
->use_end(); UI
!= E
; ++UI
)
268 if (cast
<Instruction
>(*UI
)->getParent() != Entry
|| isa
<SwitchInst
>(*UI
))
269 return false; // Use not in entry block.
273 FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering
&tli
)
277 void FunctionLoweringInfo::set(Function
&fn
, MachineFunction
&mf
,
279 bool EnableFastISel
) {
282 RegInfo
= &MF
->getRegInfo();
284 // Create a vreg for each argument register that is not dead and is used
285 // outside of the entry block for the function.
286 for (Function::arg_iterator AI
= Fn
->arg_begin(), E
= Fn
->arg_end();
288 if (!isOnlyUsedInEntryBlock(AI
, EnableFastISel
))
289 InitializeRegForValue(AI
);
291 // Initialize the mapping of values to registers. This is only set up for
292 // instruction values that are used outside of the block that defines
294 Function::iterator BB
= Fn
->begin(), EB
= Fn
->end();
295 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
296 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
297 if (ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(AI
->getArraySize())) {
298 const Type
*Ty
= AI
->getAllocatedType();
299 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
301 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
304 TySize
*= CUI
->getZExtValue(); // Get total allocated size.
305 if (TySize
== 0) TySize
= 1; // Don't create zero-sized stack objects.
306 StaticAllocaMap
[AI
] =
307 MF
->getFrameInfo()->CreateStackObject(TySize
, Align
);
310 for (; BB
!= EB
; ++BB
)
311 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
312 if (!I
->use_empty() && isUsedOutsideOfDefiningBlock(I
))
313 if (!isa
<AllocaInst
>(I
) ||
314 !StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
315 InitializeRegForValue(I
);
317 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
318 // also creates the initial PHI MachineInstrs, though none of the input
319 // operands are populated.
320 for (BB
= Fn
->begin(), EB
= Fn
->end(); BB
!= EB
; ++BB
) {
321 MachineBasicBlock
*MBB
= mf
.CreateMachineBasicBlock(BB
);
325 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
329 for (BasicBlock::iterator
330 I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
331 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
332 if (Function
*F
= CI
->getCalledFunction()) {
333 switch (F
->getIntrinsicID()) {
335 case Intrinsic::dbg_stoppoint
: {
336 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
337 if (isValidDebugInfoIntrinsic(*SPI
, CodeGenOpt::Default
))
338 DL
= ExtractDebugLocation(*SPI
, MF
->getDebugLocInfo());
341 case Intrinsic::dbg_func_start
: {
342 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
343 if (isValidDebugInfoIntrinsic(*FSI
, CodeGenOpt::Default
))
344 DL
= ExtractDebugLocation(*FSI
, MF
->getDebugLocInfo());
351 PN
= dyn_cast
<PHINode
>(I
);
352 if (!PN
|| PN
->use_empty()) continue;
354 unsigned PHIReg
= ValueMap
[PN
];
355 assert(PHIReg
&& "PHI node does not have an assigned virtual register!");
357 SmallVector
<EVT
, 4> ValueVTs
;
358 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
359 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
360 EVT VT
= ValueVTs
[vti
];
361 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
362 const TargetInstrInfo
*TII
= MF
->getTarget().getInstrInfo();
363 for (unsigned i
= 0; i
!= NumRegisters
; ++i
)
364 BuildMI(MBB
, DL
, TII
->get(TargetInstrInfo::PHI
), PHIReg
+ i
);
365 PHIReg
+= NumRegisters
;
371 unsigned FunctionLoweringInfo::MakeReg(EVT VT
) {
372 return RegInfo
->createVirtualRegister(TLI
.getRegClassFor(VT
));
375 /// CreateRegForValue - Allocate the appropriate number of virtual registers of
376 /// the correctly promoted or expanded types. Assign these registers
377 /// consecutive vreg numbers and return the first assigned number.
379 /// In the case that the given value has struct or array type, this function
380 /// will assign registers for each member or element.
382 unsigned FunctionLoweringInfo::CreateRegForValue(const Value
*V
) {
383 SmallVector
<EVT
, 4> ValueVTs
;
384 ComputeValueVTs(TLI
, V
->getType(), ValueVTs
);
386 unsigned FirstReg
= 0;
387 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
388 EVT ValueVT
= ValueVTs
[Value
];
389 EVT RegisterVT
= TLI
.getRegisterType(V
->getContext(), ValueVT
);
391 unsigned NumRegs
= TLI
.getNumRegisters(V
->getContext(), ValueVT
);
392 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
393 unsigned R
= MakeReg(RegisterVT
);
394 if (!FirstReg
) FirstReg
= R
;
400 /// getCopyFromParts - Create a value that contains the specified legal parts
401 /// combined into the value they represent. If the parts combine to a type
402 /// larger then ValueVT then AssertOp can be used to specify whether the extra
403 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
404 /// (ISD::AssertSext).
405 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, DebugLoc dl
,
406 const SDValue
*Parts
,
407 unsigned NumParts
, EVT PartVT
, EVT ValueVT
,
408 ISD::NodeType AssertOp
= ISD::DELETED_NODE
) {
409 assert(NumParts
> 0 && "No parts to assemble!");
410 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
411 SDValue Val
= Parts
[0];
414 // Assemble the value from multiple parts.
415 if (!ValueVT
.isVector() && ValueVT
.isInteger()) {
416 unsigned PartBits
= PartVT
.getSizeInBits();
417 unsigned ValueBits
= ValueVT
.getSizeInBits();
419 // Assemble the power of 2 part.
420 unsigned RoundParts
= NumParts
& (NumParts
- 1) ?
421 1 << Log2_32(NumParts
) : NumParts
;
422 unsigned RoundBits
= PartBits
* RoundParts
;
423 EVT RoundVT
= RoundBits
== ValueBits
?
424 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
427 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
429 if (RoundParts
> 2) {
430 Lo
= getCopyFromParts(DAG
, dl
, Parts
, RoundParts
/2, PartVT
, HalfVT
);
431 Hi
= getCopyFromParts(DAG
, dl
, Parts
+RoundParts
/2, RoundParts
/2,
434 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, HalfVT
, Parts
[0]);
435 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, HalfVT
, Parts
[1]);
437 if (TLI
.isBigEndian())
439 Val
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, RoundVT
, Lo
, Hi
);
441 if (RoundParts
< NumParts
) {
442 // Assemble the trailing non-power-of-2 part.
443 unsigned OddParts
= NumParts
- RoundParts
;
444 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
445 Hi
= getCopyFromParts(DAG
, dl
,
446 Parts
+RoundParts
, OddParts
, PartVT
, OddVT
);
448 // Combine the round and odd parts.
450 if (TLI
.isBigEndian())
452 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
453 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, TotalVT
, Hi
);
454 Hi
= DAG
.getNode(ISD::SHL
, dl
, TotalVT
, Hi
,
455 DAG
.getConstant(Lo
.getValueType().getSizeInBits(),
456 TLI
.getPointerTy()));
457 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TotalVT
, Lo
);
458 Val
= DAG
.getNode(ISD::OR
, dl
, TotalVT
, Lo
, Hi
);
460 } else if (ValueVT
.isVector()) {
461 // Handle a multi-element vector.
462 EVT IntermediateVT
, RegisterVT
;
463 unsigned NumIntermediates
;
465 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
466 NumIntermediates
, RegisterVT
);
467 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
468 NumParts
= NumRegs
; // Silence a compiler warning.
469 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
470 assert(RegisterVT
== Parts
[0].getValueType() &&
471 "Part type doesn't match part!");
473 // Assemble the parts into intermediate operands.
474 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
475 if (NumIntermediates
== NumParts
) {
476 // If the register was not expanded, truncate or copy the value,
478 for (unsigned i
= 0; i
!= NumParts
; ++i
)
479 Ops
[i
] = getCopyFromParts(DAG
, dl
, &Parts
[i
], 1,
480 PartVT
, IntermediateVT
);
481 } else if (NumParts
> 0) {
482 // If the intermediate type was expanded, build the intermediate operands
484 assert(NumParts
% NumIntermediates
== 0 &&
485 "Must expand into a divisible number of parts!");
486 unsigned Factor
= NumParts
/ NumIntermediates
;
487 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
488 Ops
[i
] = getCopyFromParts(DAG
, dl
, &Parts
[i
* Factor
], Factor
,
489 PartVT
, IntermediateVT
);
492 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
494 Val
= DAG
.getNode(IntermediateVT
.isVector() ?
495 ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR
, dl
,
496 ValueVT
, &Ops
[0], NumIntermediates
);
497 } else if (PartVT
.isFloatingPoint()) {
498 // FP split into multiple FP parts (for ppcf128)
499 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== EVT(MVT::f64
) &&
502 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, EVT(MVT::f64
), Parts
[0]);
503 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, EVT(MVT::f64
), Parts
[1]);
504 if (TLI
.isBigEndian())
506 Val
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, ValueVT
, Lo
, Hi
);
508 // FP split into integer parts (soft fp)
509 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
510 !PartVT
.isVector() && "Unexpected split");
511 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
512 Val
= getCopyFromParts(DAG
, dl
, Parts
, NumParts
, PartVT
, IntVT
);
516 // There is now one part, held in Val. Correct it to match ValueVT.
517 PartVT
= Val
.getValueType();
519 if (PartVT
== ValueVT
)
522 if (PartVT
.isVector()) {
523 assert(ValueVT
.isVector() && "Unknown vector conversion!");
524 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ValueVT
, Val
);
527 if (ValueVT
.isVector()) {
528 assert(ValueVT
.getVectorElementType() == PartVT
&&
529 ValueVT
.getVectorNumElements() == 1 &&
530 "Only trivial scalar-to-vector conversions should get here!");
531 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ValueVT
, Val
);
534 if (PartVT
.isInteger() &&
535 ValueVT
.isInteger()) {
536 if (ValueVT
.bitsLT(PartVT
)) {
537 // For a truncate, see if we have any information to
538 // indicate whether the truncated bits will always be
539 // zero or sign-extension.
540 if (AssertOp
!= ISD::DELETED_NODE
)
541 Val
= DAG
.getNode(AssertOp
, dl
, PartVT
, Val
,
542 DAG
.getValueType(ValueVT
));
543 return DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
545 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, ValueVT
, Val
);
549 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
550 if (ValueVT
.bitsLT(Val
.getValueType()))
551 // FP_ROUND's are always exact here.
552 return DAG
.getNode(ISD::FP_ROUND
, dl
, ValueVT
, Val
,
553 DAG
.getIntPtrConstant(1));
554 return DAG
.getNode(ISD::FP_EXTEND
, dl
, ValueVT
, Val
);
557 if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits())
558 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ValueVT
, Val
);
560 llvm_unreachable("Unknown mismatch!");
564 /// getCopyToParts - Create a series of nodes that contain the specified value
565 /// split into legal parts. If the parts contain more bits than Val, then, for
566 /// integers, ExtendKind can be used to specify how to generate the extra bits.
567 static void getCopyToParts(SelectionDAG
&DAG
, DebugLoc dl
, SDValue Val
,
568 SDValue
*Parts
, unsigned NumParts
, EVT PartVT
,
569 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
570 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
571 EVT PtrVT
= TLI
.getPointerTy();
572 EVT ValueVT
= Val
.getValueType();
573 unsigned PartBits
= PartVT
.getSizeInBits();
574 unsigned OrigNumParts
= NumParts
;
575 assert(TLI
.isTypeLegal(PartVT
) && "Copying to an illegal type!");
580 if (!ValueVT
.isVector()) {
581 if (PartVT
== ValueVT
) {
582 assert(NumParts
== 1 && "No-op copy with multiple parts!");
587 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
588 // If the parts cover more bits than the value has, promote the value.
589 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
590 assert(NumParts
== 1 && "Do not know what to promote to!");
591 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, PartVT
, Val
);
592 } else if (PartVT
.isInteger() && ValueVT
.isInteger()) {
593 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
594 Val
= DAG
.getNode(ExtendKind
, dl
, ValueVT
, Val
);
596 llvm_unreachable("Unknown mismatch!");
598 } else if (PartBits
== ValueVT
.getSizeInBits()) {
599 // Different types of the same size.
600 assert(NumParts
== 1 && PartVT
!= ValueVT
);
601 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PartVT
, Val
);
602 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
603 // If the parts cover less bits than value has, truncate the value.
604 if (PartVT
.isInteger() && ValueVT
.isInteger()) {
605 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
606 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
608 llvm_unreachable("Unknown mismatch!");
612 // The value may have changed - recompute ValueVT.
613 ValueVT
= Val
.getValueType();
614 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
615 "Failed to tile the value with PartVT!");
618 assert(PartVT
== ValueVT
&& "Type conversion failed!");
623 // Expand the value into multiple parts.
624 if (NumParts
& (NumParts
- 1)) {
625 // The number of parts is not a power of 2. Split off and copy the tail.
626 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
627 "Do not know what to expand to!");
628 unsigned RoundParts
= 1 << Log2_32(NumParts
);
629 unsigned RoundBits
= RoundParts
* PartBits
;
630 unsigned OddParts
= NumParts
- RoundParts
;
631 SDValue OddVal
= DAG
.getNode(ISD::SRL
, dl
, ValueVT
, Val
,
632 DAG
.getConstant(RoundBits
,
633 TLI
.getPointerTy()));
634 getCopyToParts(DAG
, dl
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
);
635 if (TLI
.isBigEndian())
636 // The odd parts were reversed by getCopyToParts - unreverse them.
637 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
638 NumParts
= RoundParts
;
639 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
640 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
643 // The number of parts is a power of 2. Repeatedly bisect the value using
645 Parts
[0] = DAG
.getNode(ISD::BIT_CONVERT
, dl
,
646 EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits()),
648 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
649 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
650 unsigned ThisBits
= StepSize
* PartBits
/ 2;
651 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
652 SDValue
&Part0
= Parts
[i
];
653 SDValue
&Part1
= Parts
[i
+StepSize
/2];
655 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
657 DAG
.getConstant(1, PtrVT
));
658 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
660 DAG
.getConstant(0, PtrVT
));
662 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
663 Part0
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
665 Part1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
671 if (TLI
.isBigEndian())
672 std::reverse(Parts
, Parts
+ OrigNumParts
);
679 if (PartVT
!= ValueVT
) {
680 if (PartVT
.isVector()) {
681 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PartVT
, Val
);
683 assert(ValueVT
.getVectorElementType() == PartVT
&&
684 ValueVT
.getVectorNumElements() == 1 &&
685 "Only trivial vector-to-scalar conversions should get here!");
686 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
688 DAG
.getConstant(0, PtrVT
));
696 // Handle a multi-element vector.
697 EVT IntermediateVT
, RegisterVT
;
698 unsigned NumIntermediates
;
699 unsigned NumRegs
= TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
,
700 IntermediateVT
, NumIntermediates
, RegisterVT
);
701 unsigned NumElements
= ValueVT
.getVectorNumElements();
703 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
704 NumParts
= NumRegs
; // Silence a compiler warning.
705 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
707 // Split the vector into intermediate operands.
708 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
709 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
710 if (IntermediateVT
.isVector())
711 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
,
713 DAG
.getConstant(i
* (NumElements
/ NumIntermediates
),
716 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
718 DAG
.getConstant(i
, PtrVT
));
720 // Split the intermediate operands into legal parts.
721 if (NumParts
== NumIntermediates
) {
722 // If the register was not expanded, promote or copy the value,
724 for (unsigned i
= 0; i
!= NumParts
; ++i
)
725 getCopyToParts(DAG
, dl
, Ops
[i
], &Parts
[i
], 1, PartVT
);
726 } else if (NumParts
> 0) {
727 // If the intermediate type was expanded, split each the value into
729 assert(NumParts
% NumIntermediates
== 0 &&
730 "Must expand into a divisible number of parts!");
731 unsigned Factor
= NumParts
/ NumIntermediates
;
732 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
733 getCopyToParts(DAG
, dl
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
);
738 void SelectionDAGLowering::init(GCFunctionInfo
*gfi
, AliasAnalysis
&aa
) {
741 TD
= DAG
.getTarget().getTargetData();
744 /// clear - Clear out the curret SelectionDAG and the associated
745 /// state and prepare this SelectionDAGLowering object to be used
746 /// for a new block. This doesn't clear out information about
747 /// additional blocks that are needed to complete switch lowering
748 /// or PHI node updating; that information is cleared out as it is
750 void SelectionDAGLowering::clear() {
752 PendingLoads
.clear();
753 PendingExports
.clear();
755 CurDebugLoc
= DebugLoc::getUnknownLoc();
759 /// getRoot - Return the current virtual root of the Selection DAG,
760 /// flushing any PendingLoad items. This must be done before emitting
761 /// a store or any other node that may need to be ordered after any
762 /// prior load instructions.
764 SDValue
SelectionDAGLowering::getRoot() {
765 if (PendingLoads
.empty())
766 return DAG
.getRoot();
768 if (PendingLoads
.size() == 1) {
769 SDValue Root
= PendingLoads
[0];
771 PendingLoads
.clear();
775 // Otherwise, we have to make a token factor node.
776 SDValue Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
777 &PendingLoads
[0], PendingLoads
.size());
778 PendingLoads
.clear();
783 /// getControlRoot - Similar to getRoot, but instead of flushing all the
784 /// PendingLoad items, flush all the PendingExports items. It is necessary
785 /// to do this before emitting a terminator instruction.
787 SDValue
SelectionDAGLowering::getControlRoot() {
788 SDValue Root
= DAG
.getRoot();
790 if (PendingExports
.empty())
793 // Turn all of the CopyToReg chains into one factored node.
794 if (Root
.getOpcode() != ISD::EntryToken
) {
795 unsigned i
= 0, e
= PendingExports
.size();
796 for (; i
!= e
; ++i
) {
797 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
798 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
799 break; // Don't add the root if we already indirectly depend on it.
803 PendingExports
.push_back(Root
);
806 Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
808 PendingExports
.size());
809 PendingExports
.clear();
814 void SelectionDAGLowering::visit(Instruction
&I
) {
815 visit(I
.getOpcode(), I
);
818 void SelectionDAGLowering::visit(unsigned Opcode
, User
&I
) {
819 // Note: this doesn't use InstVisitor, because it has to work with
820 // ConstantExpr's in addition to instructions.
822 default: llvm_unreachable("Unknown instruction type encountered!");
823 // Build the switch statement using the Instruction.def file.
824 #define HANDLE_INST(NUM, OPCODE, CLASS) \
825 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
826 #include "llvm/Instruction.def"
830 SDValue
SelectionDAGLowering::getValue(const Value
*V
) {
831 SDValue
&N
= NodeMap
[V
];
832 if (N
.getNode()) return N
;
834 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(V
))) {
835 EVT VT
= TLI
.getValueType(V
->getType(), true);
837 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
838 return N
= DAG
.getConstant(*CI
, VT
);
840 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
841 return N
= DAG
.getGlobalAddress(GV
, VT
);
843 if (isa
<ConstantPointerNull
>(C
))
844 return N
= DAG
.getConstant(0, TLI
.getPointerTy());
846 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
847 return N
= DAG
.getConstantFP(*CFP
, VT
);
849 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
850 return N
= DAG
.getUNDEF(VT
);
852 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
853 visit(CE
->getOpcode(), *CE
);
854 SDValue N1
= NodeMap
[V
];
855 assert(N1
.getNode() && "visit didn't populate the ValueMap!");
859 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
860 SmallVector
<SDValue
, 4> Constants
;
861 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
863 SDNode
*Val
= getValue(*OI
).getNode();
864 // If the operand is an empty aggregate, there are no values.
866 // Add each leaf value from the operand to the Constants list
867 // to form a flattened list of all the values.
868 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
869 Constants
.push_back(SDValue(Val
, i
));
871 return DAG
.getMergeValues(&Constants
[0], Constants
.size(),
875 if (isa
<StructType
>(C
->getType()) || isa
<ArrayType
>(C
->getType())) {
876 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
877 "Unknown struct or array constant!");
879 SmallVector
<EVT
, 4> ValueVTs
;
880 ComputeValueVTs(TLI
, C
->getType(), ValueVTs
);
881 unsigned NumElts
= ValueVTs
.size();
883 return SDValue(); // empty struct
884 SmallVector
<SDValue
, 4> Constants(NumElts
);
885 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
886 EVT EltVT
= ValueVTs
[i
];
887 if (isa
<UndefValue
>(C
))
888 Constants
[i
] = DAG
.getUNDEF(EltVT
);
889 else if (EltVT
.isFloatingPoint())
890 Constants
[i
] = DAG
.getConstantFP(0, EltVT
);
892 Constants
[i
] = DAG
.getConstant(0, EltVT
);
894 return DAG
.getMergeValues(&Constants
[0], NumElts
, getCurDebugLoc());
897 const VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
898 unsigned NumElements
= VecTy
->getNumElements();
900 // Now that we know the number and type of the elements, get that number of
901 // elements into the Ops array based on what kind of constant it is.
902 SmallVector
<SDValue
, 16> Ops
;
903 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
)) {
904 for (unsigned i
= 0; i
!= NumElements
; ++i
)
905 Ops
.push_back(getValue(CP
->getOperand(i
)));
907 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
908 EVT EltVT
= TLI
.getValueType(VecTy
->getElementType());
911 if (EltVT
.isFloatingPoint())
912 Op
= DAG
.getConstantFP(0, EltVT
);
914 Op
= DAG
.getConstant(0, EltVT
);
915 Ops
.assign(NumElements
, Op
);
918 // Create a BUILD_VECTOR node.
919 return NodeMap
[V
] = DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
920 VT
, &Ops
[0], Ops
.size());
923 // If this is a static alloca, generate it as the frameindex instead of
925 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
926 DenseMap
<const AllocaInst
*, int>::iterator SI
=
927 FuncInfo
.StaticAllocaMap
.find(AI
);
928 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
929 return DAG
.getFrameIndex(SI
->second
, TLI
.getPointerTy());
932 unsigned InReg
= FuncInfo
.ValueMap
[V
];
933 assert(InReg
&& "Value not in map!");
935 RegsForValue
RFV(*DAG
.getContext(), TLI
, InReg
, V
->getType());
936 SDValue Chain
= DAG
.getEntryNode();
937 return RFV
.getCopyFromRegs(DAG
, getCurDebugLoc(), Chain
, NULL
);
941 void SelectionDAGLowering::visitRet(ReturnInst
&I
) {
942 SDValue Chain
= getControlRoot();
943 SmallVector
<ISD::OutputArg
, 8> Outs
;
944 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
945 SmallVector
<EVT
, 4> ValueVTs
;
946 ComputeValueVTs(TLI
, I
.getOperand(i
)->getType(), ValueVTs
);
947 unsigned NumValues
= ValueVTs
.size();
948 if (NumValues
== 0) continue;
950 SDValue RetOp
= getValue(I
.getOperand(i
));
951 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
952 EVT VT
= ValueVTs
[j
];
954 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
956 const Function
*F
= I
.getParent()->getParent();
957 if (F
->paramHasAttr(0, Attribute::SExt
))
958 ExtendKind
= ISD::SIGN_EXTEND
;
959 else if (F
->paramHasAttr(0, Attribute::ZExt
))
960 ExtendKind
= ISD::ZERO_EXTEND
;
962 // FIXME: C calling convention requires the return type to be promoted to
963 // at least 32-bit. But this is not necessary for non-C calling
964 // conventions. The frontend should mark functions whose return values
965 // require promoting with signext or zeroext attributes.
966 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
967 EVT MinVT
= TLI
.getRegisterType(*DAG
.getContext(), MVT::i32
);
968 if (VT
.bitsLT(MinVT
))
972 unsigned NumParts
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
973 EVT PartVT
= TLI
.getRegisterType(*DAG
.getContext(), VT
);
974 SmallVector
<SDValue
, 4> Parts(NumParts
);
975 getCopyToParts(DAG
, getCurDebugLoc(),
976 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
977 &Parts
[0], NumParts
, PartVT
, ExtendKind
);
979 // 'inreg' on function refers to return value
980 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
981 if (F
->paramHasAttr(0, Attribute::InReg
))
984 // Propagate extension type if any
985 if (F
->paramHasAttr(0, Attribute::SExt
))
987 else if (F
->paramHasAttr(0, Attribute::ZExt
))
990 for (unsigned i
= 0; i
< NumParts
; ++i
)
991 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
], /*isfixed=*/true));
995 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
996 CallingConv::ID CallConv
=
997 DAG
.getMachineFunction().getFunction()->getCallingConv();
998 Chain
= TLI
.LowerReturn(Chain
, CallConv
, isVarArg
,
999 Outs
, getCurDebugLoc(), DAG
);
1001 // Verify that the target's LowerReturn behaved as expected.
1002 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1003 "LowerReturn didn't return a valid chain!");
1005 // Update the DAG with the new chain value resulting from return lowering.
1009 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1010 /// created for it, emit nodes to copy the value into the virtual
1012 void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value
*V
) {
1013 if (!V
->use_empty()) {
1014 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1015 if (VMI
!= FuncInfo
.ValueMap
.end())
1016 CopyValueToVirtualRegister(V
, VMI
->second
);
1020 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1021 /// the current basic block, add it to ValueMap now so that we'll get a
1023 void SelectionDAGLowering::ExportFromCurrentBlock(Value
*V
) {
1024 // No need to export constants.
1025 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1027 // Already exported?
1028 if (FuncInfo
.isExportedInst(V
)) return;
1030 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1031 CopyValueToVirtualRegister(V
, Reg
);
1034 bool SelectionDAGLowering::isExportableFromCurrentBlock(Value
*V
,
1035 const BasicBlock
*FromBB
) {
1036 // The operands of the setcc have to be in this block. We don't know
1037 // how to export them from some other block.
1038 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1039 // Can export from current BB.
1040 if (VI
->getParent() == FromBB
)
1043 // Is already exported, noop.
1044 return FuncInfo
.isExportedInst(V
);
1047 // If this is an argument, we can export it if the BB is the entry block or
1048 // if it is already exported.
1049 if (isa
<Argument
>(V
)) {
1050 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1053 // Otherwise, can only export this if it is already exported.
1054 return FuncInfo
.isExportedInst(V
);
1057 // Otherwise, constants can always be exported.
1061 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
1062 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
1063 return I
->getParent() == BB
;
1067 /// getFCmpCondCode - Return the ISD condition code corresponding to
1068 /// the given LLVM IR floating-point condition code. This includes
1069 /// consideration of global floating-point math flags.
1071 static ISD::CondCode
getFCmpCondCode(FCmpInst::Predicate Pred
) {
1072 ISD::CondCode FPC
, FOC
;
1074 case FCmpInst::FCMP_FALSE
: FOC
= FPC
= ISD::SETFALSE
; break;
1075 case FCmpInst::FCMP_OEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETOEQ
; break;
1076 case FCmpInst::FCMP_OGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETOGT
; break;
1077 case FCmpInst::FCMP_OGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETOGE
; break;
1078 case FCmpInst::FCMP_OLT
: FOC
= ISD::SETLT
; FPC
= ISD::SETOLT
; break;
1079 case FCmpInst::FCMP_OLE
: FOC
= ISD::SETLE
; FPC
= ISD::SETOLE
; break;
1080 case FCmpInst::FCMP_ONE
: FOC
= ISD::SETNE
; FPC
= ISD::SETONE
; break;
1081 case FCmpInst::FCMP_ORD
: FOC
= FPC
= ISD::SETO
; break;
1082 case FCmpInst::FCMP_UNO
: FOC
= FPC
= ISD::SETUO
; break;
1083 case FCmpInst::FCMP_UEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETUEQ
; break;
1084 case FCmpInst::FCMP_UGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETUGT
; break;
1085 case FCmpInst::FCMP_UGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETUGE
; break;
1086 case FCmpInst::FCMP_ULT
: FOC
= ISD::SETLT
; FPC
= ISD::SETULT
; break;
1087 case FCmpInst::FCMP_ULE
: FOC
= ISD::SETLE
; FPC
= ISD::SETULE
; break;
1088 case FCmpInst::FCMP_UNE
: FOC
= ISD::SETNE
; FPC
= ISD::SETUNE
; break;
1089 case FCmpInst::FCMP_TRUE
: FOC
= FPC
= ISD::SETTRUE
; break;
1091 llvm_unreachable("Invalid FCmp predicate opcode!");
1092 FOC
= FPC
= ISD::SETFALSE
;
1095 if (FiniteOnlyFPMath())
1101 /// getICmpCondCode - Return the ISD condition code corresponding to
1102 /// the given LLVM IR integer condition code.
1104 static ISD::CondCode
getICmpCondCode(ICmpInst::Predicate Pred
) {
1106 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
1107 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
1108 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
1109 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
1110 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
1111 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
1112 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
1113 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
1114 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
1115 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
1117 llvm_unreachable("Invalid ICmp predicate opcode!");
1122 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1123 /// This function emits a branch and is used at the leaves of an OR or an
1124 /// AND operator tree.
1127 SelectionDAGLowering::EmitBranchForMergedCondition(Value
*Cond
,
1128 MachineBasicBlock
*TBB
,
1129 MachineBasicBlock
*FBB
,
1130 MachineBasicBlock
*CurBB
) {
1131 const BasicBlock
*BB
= CurBB
->getBasicBlock();
1133 // If the leaf of the tree is a comparison, merge the condition into
1135 if (CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
1136 // The operands of the cmp have to be in this block. We don't know
1137 // how to export them from some other block. If this is the first block
1138 // of the sequence, no exporting is needed.
1139 if (CurBB
== CurMBB
||
1140 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
1141 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
1142 ISD::CondCode Condition
;
1143 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
1144 Condition
= getICmpCondCode(IC
->getPredicate());
1145 } else if (FCmpInst
*FC
= dyn_cast
<FCmpInst
>(Cond
)) {
1146 Condition
= getFCmpCondCode(FC
->getPredicate());
1148 Condition
= ISD::SETEQ
; // silence warning.
1149 llvm_unreachable("Unknown compare instruction");
1152 CaseBlock
CB(Condition
, BOp
->getOperand(0),
1153 BOp
->getOperand(1), NULL
, TBB
, FBB
, CurBB
);
1154 SwitchCases
.push_back(CB
);
1159 // Create a CaseBlock record representing this branch.
1160 CaseBlock
CB(ISD::SETEQ
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
1161 NULL
, TBB
, FBB
, CurBB
);
1162 SwitchCases
.push_back(CB
);
1165 /// FindMergedConditions - If Cond is an expression like
1166 void SelectionDAGLowering::FindMergedConditions(Value
*Cond
,
1167 MachineBasicBlock
*TBB
,
1168 MachineBasicBlock
*FBB
,
1169 MachineBasicBlock
*CurBB
,
1171 // If this node is not part of the or/and tree, emit it as a branch.
1172 Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
1173 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
1174 (unsigned)BOp
->getOpcode() != Opc
|| !BOp
->hasOneUse() ||
1175 BOp
->getParent() != CurBB
->getBasicBlock() ||
1176 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
1177 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
1178 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
);
1182 // Create TmpBB after CurBB.
1183 MachineFunction::iterator BBI
= CurBB
;
1184 MachineFunction
&MF
= DAG
.getMachineFunction();
1185 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
1186 CurBB
->getParent()->insert(++BBI
, TmpBB
);
1188 if (Opc
== Instruction::Or
) {
1189 // Codegen X | Y as:
1197 // Emit the LHS condition.
1198 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, Opc
);
1200 // Emit the RHS condition into TmpBB.
1201 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, Opc
);
1203 assert(Opc
== Instruction::And
&& "Unknown merge op!");
1204 // Codegen X & Y as:
1211 // This requires creation of TmpBB after CurBB.
1213 // Emit the LHS condition.
1214 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, Opc
);
1216 // Emit the RHS condition into TmpBB.
1217 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, Opc
);
1221 /// If the set of cases should be emitted as a series of branches, return true.
1222 /// If we should emit this as a bunch of and/or'd together conditions, return
1225 SelectionDAGLowering::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
){
1226 if (Cases
.size() != 2) return true;
1228 // If this is two comparisons of the same values or'd or and'd together, they
1229 // will get folded into a single comparison, so don't emit two blocks.
1230 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
1231 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
1232 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
1233 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
1240 void SelectionDAGLowering::visitBr(BranchInst
&I
) {
1241 // Update machine-CFG edges.
1242 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1244 // Figure out which block is immediately after the current one.
1245 MachineBasicBlock
*NextBlock
= 0;
1246 MachineFunction::iterator BBI
= CurMBB
;
1247 if (++BBI
!= FuncInfo
.MF
->end())
1250 if (I
.isUnconditional()) {
1251 // Update machine-CFG edges.
1252 CurMBB
->addSuccessor(Succ0MBB
);
1254 // If this is not a fall-through branch, emit the branch.
1255 if (Succ0MBB
!= NextBlock
)
1256 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1257 MVT::Other
, getControlRoot(),
1258 DAG
.getBasicBlock(Succ0MBB
)));
1262 // If this condition is one of the special cases we handle, do special stuff
1264 Value
*CondVal
= I
.getCondition();
1265 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1267 // If this is a series of conditions that are or'd or and'd together, emit
1268 // this as a sequence of branches instead of setcc's with and/or operations.
1269 // For example, instead of something like:
1282 if (BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
1283 if (BOp
->hasOneUse() &&
1284 (BOp
->getOpcode() == Instruction::And
||
1285 BOp
->getOpcode() == Instruction::Or
)) {
1286 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, CurMBB
, BOp
->getOpcode());
1287 // If the compares in later blocks need to use values not currently
1288 // exported from this block, export them now. This block should always
1289 // be the first entry.
1290 assert(SwitchCases
[0].ThisBB
== CurMBB
&& "Unexpected lowering!");
1292 // Allow some cases to be rejected.
1293 if (ShouldEmitAsBranches(SwitchCases
)) {
1294 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
) {
1295 ExportFromCurrentBlock(SwitchCases
[i
].CmpLHS
);
1296 ExportFromCurrentBlock(SwitchCases
[i
].CmpRHS
);
1299 // Emit the branch for this block.
1300 visitSwitchCase(SwitchCases
[0]);
1301 SwitchCases
.erase(SwitchCases
.begin());
1305 // Okay, we decided not to do this, remove any inserted MBB's and clear
1307 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
)
1308 FuncInfo
.MF
->erase(SwitchCases
[i
].ThisBB
);
1310 SwitchCases
.clear();
1314 // Create a CaseBlock record representing this branch.
1315 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
1316 NULL
, Succ0MBB
, Succ1MBB
, CurMBB
);
1317 // Use visitSwitchCase to actually insert the fast branch sequence for this
1319 visitSwitchCase(CB
);
1322 /// visitSwitchCase - Emits the necessary code to represent a single node in
1323 /// the binary search tree resulting from lowering a switch instruction.
1324 void SelectionDAGLowering::visitSwitchCase(CaseBlock
&CB
) {
1326 SDValue CondLHS
= getValue(CB
.CmpLHS
);
1327 DebugLoc dl
= getCurDebugLoc();
1329 // Build the setcc now.
1330 if (CB
.CmpMHS
== NULL
) {
1331 // Fold "(X == true)" to X and "(X == false)" to !X to
1332 // handle common cases produced by branch lowering.
1333 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
1334 CB
.CC
== ISD::SETEQ
)
1336 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
1337 CB
.CC
== ISD::SETEQ
) {
1338 SDValue True
= DAG
.getConstant(1, CondLHS
.getValueType());
1339 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
1341 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, getValue(CB
.CmpRHS
), CB
.CC
);
1343 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
1345 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
1346 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
1348 SDValue CmpOp
= getValue(CB
.CmpMHS
);
1349 EVT VT
= CmpOp
.getValueType();
1351 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
1352 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, VT
),
1355 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
1356 VT
, CmpOp
, DAG
.getConstant(Low
, VT
));
1357 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
1358 DAG
.getConstant(High
-Low
, VT
), ISD::SETULE
);
1362 // Update successor info
1363 CurMBB
->addSuccessor(CB
.TrueBB
);
1364 CurMBB
->addSuccessor(CB
.FalseBB
);
1366 // Set NextBlock to be the MBB immediately after the current one, if any.
1367 // This is used to avoid emitting unnecessary branches to the next block.
1368 MachineBasicBlock
*NextBlock
= 0;
1369 MachineFunction::iterator BBI
= CurMBB
;
1370 if (++BBI
!= FuncInfo
.MF
->end())
1373 // If the lhs block is the next block, invert the condition so that we can
1374 // fall through to the lhs instead of the rhs block.
1375 if (CB
.TrueBB
== NextBlock
) {
1376 std::swap(CB
.TrueBB
, CB
.FalseBB
);
1377 SDValue True
= DAG
.getConstant(1, Cond
.getValueType());
1378 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
1380 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
1381 MVT::Other
, getControlRoot(), Cond
,
1382 DAG
.getBasicBlock(CB
.TrueBB
));
1384 // If the branch was constant folded, fix up the CFG.
1385 if (BrCond
.getOpcode() == ISD::BR
) {
1386 CurMBB
->removeSuccessor(CB
.FalseBB
);
1387 DAG
.setRoot(BrCond
);
1389 // Otherwise, go ahead and insert the false branch.
1390 if (BrCond
== getControlRoot())
1391 CurMBB
->removeSuccessor(CB
.TrueBB
);
1393 if (CB
.FalseBB
== NextBlock
)
1394 DAG
.setRoot(BrCond
);
1396 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
1397 DAG
.getBasicBlock(CB
.FalseBB
)));
1401 /// visitJumpTable - Emit JumpTable node in the current MBB
1402 void SelectionDAGLowering::visitJumpTable(JumpTable
&JT
) {
1403 // Emit the code for the jump table
1404 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
1405 EVT PTy
= TLI
.getPointerTy();
1406 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1408 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
1409 DAG
.setRoot(DAG
.getNode(ISD::BR_JT
, getCurDebugLoc(),
1410 MVT::Other
, Index
.getValue(1),
1414 /// visitJumpTableHeader - This function emits necessary code to produce index
1415 /// in the JumpTable from switch case.
1416 void SelectionDAGLowering::visitJumpTableHeader(JumpTable
&JT
,
1417 JumpTableHeader
&JTH
) {
1418 // Subtract the lowest switch case value from the value being switched on and
1419 // conditional branch to default mbb if the result is greater than the
1420 // difference between smallest and largest cases.
1421 SDValue SwitchOp
= getValue(JTH
.SValue
);
1422 EVT VT
= SwitchOp
.getValueType();
1423 SDValue SUB
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1424 DAG
.getConstant(JTH
.First
, VT
));
1426 // The SDNode we just created, which holds the value being switched on minus
1427 // the the smallest case value, needs to be copied to a virtual register so it
1428 // can be used as an index into the jump table in a subsequent basic block.
1429 // This value may be smaller or larger than the target's pointer type, and
1430 // therefore require extension or truncating.
1431 if (VT
.bitsGT(TLI
.getPointerTy()))
1432 SwitchOp
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
1433 TLI
.getPointerTy(), SUB
);
1435 SwitchOp
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
1436 TLI
.getPointerTy(), SUB
);
1438 unsigned JumpTableReg
= FuncInfo
.MakeReg(TLI
.getPointerTy());
1439 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1440 JumpTableReg
, SwitchOp
);
1441 JT
.Reg
= JumpTableReg
;
1443 // Emit the range check for the jump table, and branch to the default block
1444 // for the switch statement if the value being switched on exceeds the largest
1445 // case in the switch.
1446 SDValue CMP
= DAG
.getSetCC(getCurDebugLoc(),
1447 TLI
.getSetCCResultType(SUB
.getValueType()), SUB
,
1448 DAG
.getConstant(JTH
.Last
-JTH
.First
,VT
),
1451 // Set NextBlock to be the MBB immediately after the current one, if any.
1452 // This is used to avoid emitting unnecessary branches to the next block.
1453 MachineBasicBlock
*NextBlock
= 0;
1454 MachineFunction::iterator BBI
= CurMBB
;
1455 if (++BBI
!= FuncInfo
.MF
->end())
1458 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1459 MVT::Other
, CopyTo
, CMP
,
1460 DAG
.getBasicBlock(JT
.Default
));
1462 if (JT
.MBB
== NextBlock
)
1463 DAG
.setRoot(BrCond
);
1465 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrCond
,
1466 DAG
.getBasicBlock(JT
.MBB
)));
1469 /// visitBitTestHeader - This function emits necessary code to produce value
1470 /// suitable for "bit tests"
1471 void SelectionDAGLowering::visitBitTestHeader(BitTestBlock
&B
) {
1472 // Subtract the minimum value
1473 SDValue SwitchOp
= getValue(B
.SValue
);
1474 EVT VT
= SwitchOp
.getValueType();
1475 SDValue SUB
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1476 DAG
.getConstant(B
.First
, VT
));
1479 SDValue RangeCmp
= DAG
.getSetCC(getCurDebugLoc(),
1480 TLI
.getSetCCResultType(SUB
.getValueType()),
1481 SUB
, DAG
.getConstant(B
.Range
, VT
),
1485 if (VT
.bitsGT(TLI
.getPointerTy()))
1486 ShiftOp
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
1487 TLI
.getPointerTy(), SUB
);
1489 ShiftOp
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
1490 TLI
.getPointerTy(), SUB
);
1492 B
.Reg
= FuncInfo
.MakeReg(TLI
.getPointerTy());
1493 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1496 // Set NextBlock to be the MBB immediately after the current one, if any.
1497 // This is used to avoid emitting unnecessary branches to the next block.
1498 MachineBasicBlock
*NextBlock
= 0;
1499 MachineFunction::iterator BBI
= CurMBB
;
1500 if (++BBI
!= FuncInfo
.MF
->end())
1503 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
1505 CurMBB
->addSuccessor(B
.Default
);
1506 CurMBB
->addSuccessor(MBB
);
1508 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1509 MVT::Other
, CopyTo
, RangeCmp
,
1510 DAG
.getBasicBlock(B
.Default
));
1512 if (MBB
== NextBlock
)
1513 DAG
.setRoot(BrRange
);
1515 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, CopyTo
,
1516 DAG
.getBasicBlock(MBB
)));
1519 /// visitBitTestCase - this function produces one "bit test"
1520 void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock
* NextMBB
,
1523 // Make desired shift
1524 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg
,
1525 TLI
.getPointerTy());
1526 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
1528 DAG
.getConstant(1, TLI
.getPointerTy()),
1531 // Emit bit tests and jumps
1532 SDValue AndOp
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
1533 TLI
.getPointerTy(), SwitchVal
,
1534 DAG
.getConstant(B
.Mask
, TLI
.getPointerTy()));
1535 SDValue AndCmp
= DAG
.getSetCC(getCurDebugLoc(),
1536 TLI
.getSetCCResultType(AndOp
.getValueType()),
1537 AndOp
, DAG
.getConstant(0, TLI
.getPointerTy()),
1540 CurMBB
->addSuccessor(B
.TargetBB
);
1541 CurMBB
->addSuccessor(NextMBB
);
1543 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1544 MVT::Other
, getControlRoot(),
1545 AndCmp
, DAG
.getBasicBlock(B
.TargetBB
));
1547 // Set NextBlock to be the MBB immediately after the current one, if any.
1548 // This is used to avoid emitting unnecessary branches to the next block.
1549 MachineBasicBlock
*NextBlock
= 0;
1550 MachineFunction::iterator BBI
= CurMBB
;
1551 if (++BBI
!= FuncInfo
.MF
->end())
1554 if (NextMBB
== NextBlock
)
1557 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrAnd
,
1558 DAG
.getBasicBlock(NextMBB
)));
1561 void SelectionDAGLowering::visitInvoke(InvokeInst
&I
) {
1562 // Retrieve successors.
1563 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1564 MachineBasicBlock
*LandingPad
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1566 const Value
*Callee(I
.getCalledValue());
1567 if (isa
<InlineAsm
>(Callee
))
1570 LowerCallTo(&I
, getValue(Callee
), false, LandingPad
);
1572 // If the value of the invoke is used outside of its defining block, make it
1573 // available as a virtual register.
1574 CopyToExportRegsIfNeeded(&I
);
1576 // Update successor info
1577 CurMBB
->addSuccessor(Return
);
1578 CurMBB
->addSuccessor(LandingPad
);
1580 // Drop into normal successor.
1581 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1582 MVT::Other
, getControlRoot(),
1583 DAG
.getBasicBlock(Return
)));
1586 void SelectionDAGLowering::visitUnwind(UnwindInst
&I
) {
1589 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1590 /// small case ranges).
1591 bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec
& CR
,
1592 CaseRecVector
& WorkList
,
1594 MachineBasicBlock
* Default
) {
1595 Case
& BackCase
= *(CR
.Range
.second
-1);
1597 // Size is the number of Cases represented by this range.
1598 size_t Size
= CR
.Range
.second
- CR
.Range
.first
;
1602 // Get the MachineFunction which holds the current MBB. This is used when
1603 // inserting any additional MBBs necessary to represent the switch.
1604 MachineFunction
*CurMF
= FuncInfo
.MF
;
1606 // Figure out which block is immediately after the current one.
1607 MachineBasicBlock
*NextBlock
= 0;
1608 MachineFunction::iterator BBI
= CR
.CaseBB
;
1610 if (++BBI
!= FuncInfo
.MF
->end())
1613 // TODO: If any two of the cases has the same destination, and if one value
1614 // is the same as the other, but has one bit unset that the other has set,
1615 // use bit manipulation to do two compares at once. For example:
1616 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1618 // Rearrange the case blocks so that the last one falls through if possible.
1619 if (NextBlock
&& Default
!= NextBlock
&& BackCase
.BB
!= NextBlock
) {
1620 // The last case block won't fall through into 'NextBlock' if we emit the
1621 // branches in this order. See if rearranging a case value would help.
1622 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
-1; I
!= E
; ++I
) {
1623 if (I
->BB
== NextBlock
) {
1624 std::swap(*I
, BackCase
);
1630 // Create a CaseBlock record representing a conditional branch to
1631 // the Case's target mbb if the value being switched on SV is equal
1633 MachineBasicBlock
*CurBlock
= CR
.CaseBB
;
1634 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++I
) {
1635 MachineBasicBlock
*FallThrough
;
1637 FallThrough
= CurMF
->CreateMachineBasicBlock(CurBlock
->getBasicBlock());
1638 CurMF
->insert(BBI
, FallThrough
);
1640 // Put SV in a virtual register to make it available from the new blocks.
1641 ExportFromCurrentBlock(SV
);
1643 // If the last case doesn't match, go to the default block.
1644 FallThrough
= Default
;
1647 Value
*RHS
, *LHS
, *MHS
;
1649 if (I
->High
== I
->Low
) {
1650 // This is just small small case range :) containing exactly 1 case
1652 LHS
= SV
; RHS
= I
->High
; MHS
= NULL
;
1655 LHS
= I
->Low
; MHS
= SV
; RHS
= I
->High
;
1657 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->BB
, FallThrough
, CurBlock
);
1659 // If emitting the first comparison, just call visitSwitchCase to emit the
1660 // code into the current block. Otherwise, push the CaseBlock onto the
1661 // vector to be later processed by SDISel, and insert the node's MBB
1662 // before the next MBB.
1663 if (CurBlock
== CurMBB
)
1664 visitSwitchCase(CB
);
1666 SwitchCases
.push_back(CB
);
1668 CurBlock
= FallThrough
;
1674 static inline bool areJTsAllowed(const TargetLowering
&TLI
) {
1675 return !DisableJumpTables
&&
1676 (TLI
.isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
1677 TLI
.isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
));
1680 static APInt
ComputeRange(const APInt
&First
, const APInt
&Last
) {
1681 APInt
LastExt(Last
), FirstExt(First
);
1682 uint32_t BitWidth
= std::max(Last
.getBitWidth(), First
.getBitWidth()) + 1;
1683 LastExt
.sext(BitWidth
); FirstExt
.sext(BitWidth
);
1684 return (LastExt
- FirstExt
+ 1ULL);
1687 /// handleJTSwitchCase - Emit jumptable for current switch case range
1688 bool SelectionDAGLowering::handleJTSwitchCase(CaseRec
& CR
,
1689 CaseRecVector
& WorkList
,
1691 MachineBasicBlock
* Default
) {
1692 Case
& FrontCase
= *CR
.Range
.first
;
1693 Case
& BackCase
= *(CR
.Range
.second
-1);
1695 const APInt
& First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1696 const APInt
& Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1699 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1703 if (!areJTsAllowed(TLI
) || TSize
<= 3)
1706 APInt Range
= ComputeRange(First
, Last
);
1707 double Density
= (double)TSize
/ Range
.roundToDouble();
1711 DEBUG(errs() << "Lowering jump table\n"
1712 << "First entry: " << First
<< ". Last entry: " << Last
<< '\n'
1713 << "Range: " << Range
1714 << "Size: " << TSize
<< ". Density: " << Density
<< "\n\n");
1716 // Get the MachineFunction which holds the current MBB. This is used when
1717 // inserting any additional MBBs necessary to represent the switch.
1718 MachineFunction
*CurMF
= FuncInfo
.MF
;
1720 // Figure out which block is immediately after the current one.
1721 MachineFunction::iterator BBI
= CR
.CaseBB
;
1724 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1726 // Create a new basic block to hold the code for loading the address
1727 // of the jump table, and jumping to it. Update successor information;
1728 // we will either branch to the default case for the switch, or the jump
1730 MachineBasicBlock
*JumpTableBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1731 CurMF
->insert(BBI
, JumpTableBB
);
1732 CR
.CaseBB
->addSuccessor(Default
);
1733 CR
.CaseBB
->addSuccessor(JumpTableBB
);
1735 // Build a vector of destination BBs, corresponding to each target
1736 // of the jump table. If the value of the jump table slot corresponds to
1737 // a case statement, push the case's BB onto the vector, otherwise, push
1739 std::vector
<MachineBasicBlock
*> DestBBs
;
1741 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++TEI
) {
1742 const APInt
& Low
= cast
<ConstantInt
>(I
->Low
)->getValue();
1743 const APInt
& High
= cast
<ConstantInt
>(I
->High
)->getValue();
1745 if (Low
.sle(TEI
) && TEI
.sle(High
)) {
1746 DestBBs
.push_back(I
->BB
);
1750 DestBBs
.push_back(Default
);
1754 // Update successor info. Add one edge to each unique successor.
1755 BitVector
SuccsHandled(CR
.CaseBB
->getParent()->getNumBlockIDs());
1756 for (std::vector
<MachineBasicBlock
*>::iterator I
= DestBBs
.begin(),
1757 E
= DestBBs
.end(); I
!= E
; ++I
) {
1758 if (!SuccsHandled
[(*I
)->getNumber()]) {
1759 SuccsHandled
[(*I
)->getNumber()] = true;
1760 JumpTableBB
->addSuccessor(*I
);
1764 // Create a jump table index for this jump table, or return an existing
1766 unsigned JTI
= CurMF
->getJumpTableInfo()->getJumpTableIndex(DestBBs
);
1768 // Set the jump table information so that we can codegen it as a second
1769 // MachineBasicBlock
1770 JumpTable
JT(-1U, JTI
, JumpTableBB
, Default
);
1771 JumpTableHeader
JTH(First
, Last
, SV
, CR
.CaseBB
, (CR
.CaseBB
== CurMBB
));
1772 if (CR
.CaseBB
== CurMBB
)
1773 visitJumpTableHeader(JT
, JTH
);
1775 JTCases
.push_back(JumpTableBlock(JTH
, JT
));
1780 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1782 bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec
& CR
,
1783 CaseRecVector
& WorkList
,
1785 MachineBasicBlock
* Default
) {
1786 // Get the MachineFunction which holds the current MBB. This is used when
1787 // inserting any additional MBBs necessary to represent the switch.
1788 MachineFunction
*CurMF
= FuncInfo
.MF
;
1790 // Figure out which block is immediately after the current one.
1791 MachineFunction::iterator BBI
= CR
.CaseBB
;
1794 Case
& FrontCase
= *CR
.Range
.first
;
1795 Case
& BackCase
= *(CR
.Range
.second
-1);
1796 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1798 // Size is the number of Cases represented by this range.
1799 unsigned Size
= CR
.Range
.second
- CR
.Range
.first
;
1801 const APInt
& First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1802 const APInt
& Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1804 CaseItr Pivot
= CR
.Range
.first
+ Size
/2;
1806 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1807 // (heuristically) allow us to emit JumpTable's later.
1809 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1813 size_t LSize
= FrontCase
.size();
1814 size_t RSize
= TSize
-LSize
;
1815 DEBUG(errs() << "Selecting best pivot: \n"
1816 << "First: " << First
<< ", Last: " << Last
<<'\n'
1817 << "LSize: " << LSize
<< ", RSize: " << RSize
<< '\n');
1818 for (CaseItr I
= CR
.Range
.first
, J
=I
+1, E
= CR
.Range
.second
;
1820 const APInt
& LEnd
= cast
<ConstantInt
>(I
->High
)->getValue();
1821 const APInt
& RBegin
= cast
<ConstantInt
>(J
->Low
)->getValue();
1822 APInt Range
= ComputeRange(LEnd
, RBegin
);
1823 assert((Range
- 2ULL).isNonNegative() &&
1824 "Invalid case distance");
1825 double LDensity
= (double)LSize
/ (LEnd
- First
+ 1ULL).roundToDouble();
1826 double RDensity
= (double)RSize
/ (Last
- RBegin
+ 1ULL).roundToDouble();
1827 double Metric
= Range
.logBase2()*(LDensity
+RDensity
);
1828 // Should always split in some non-trivial place
1829 DEBUG(errs() <<"=>Step\n"
1830 << "LEnd: " << LEnd
<< ", RBegin: " << RBegin
<< '\n'
1831 << "LDensity: " << LDensity
1832 << ", RDensity: " << RDensity
<< '\n'
1833 << "Metric: " << Metric
<< '\n');
1834 if (FMetric
< Metric
) {
1837 DEBUG(errs() << "Current metric set to: " << FMetric
<< '\n');
1843 if (areJTsAllowed(TLI
)) {
1844 // If our case is dense we *really* should handle it earlier!
1845 assert((FMetric
> 0) && "Should handle dense range earlier!");
1847 Pivot
= CR
.Range
.first
+ Size
/2;
1850 CaseRange
LHSR(CR
.Range
.first
, Pivot
);
1851 CaseRange
RHSR(Pivot
, CR
.Range
.second
);
1852 Constant
*C
= Pivot
->Low
;
1853 MachineBasicBlock
*FalseBB
= 0, *TrueBB
= 0;
1855 // We know that we branch to the LHS if the Value being switched on is
1856 // less than the Pivot value, C. We use this to optimize our binary
1857 // tree a bit, by recognizing that if SV is greater than or equal to the
1858 // LHS's Case Value, and that Case Value is exactly one less than the
1859 // Pivot's Value, then we can branch directly to the LHS's Target,
1860 // rather than creating a leaf node for it.
1861 if ((LHSR
.second
- LHSR
.first
) == 1 &&
1862 LHSR
.first
->High
== CR
.GE
&&
1863 cast
<ConstantInt
>(C
)->getValue() ==
1864 (cast
<ConstantInt
>(CR
.GE
)->getValue() + 1LL)) {
1865 TrueBB
= LHSR
.first
->BB
;
1867 TrueBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1868 CurMF
->insert(BBI
, TrueBB
);
1869 WorkList
.push_back(CaseRec(TrueBB
, C
, CR
.GE
, LHSR
));
1871 // Put SV in a virtual register to make it available from the new blocks.
1872 ExportFromCurrentBlock(SV
);
1875 // Similar to the optimization above, if the Value being switched on is
1876 // known to be less than the Constant CR.LT, and the current Case Value
1877 // is CR.LT - 1, then we can branch directly to the target block for
1878 // the current Case Value, rather than emitting a RHS leaf node for it.
1879 if ((RHSR
.second
- RHSR
.first
) == 1 && CR
.LT
&&
1880 cast
<ConstantInt
>(RHSR
.first
->Low
)->getValue() ==
1881 (cast
<ConstantInt
>(CR
.LT
)->getValue() - 1LL)) {
1882 FalseBB
= RHSR
.first
->BB
;
1884 FalseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1885 CurMF
->insert(BBI
, FalseBB
);
1886 WorkList
.push_back(CaseRec(FalseBB
,CR
.LT
,C
,RHSR
));
1888 // Put SV in a virtual register to make it available from the new blocks.
1889 ExportFromCurrentBlock(SV
);
1892 // Create a CaseBlock record representing a conditional branch to
1893 // the LHS node if the value being switched on SV is less than C.
1894 // Otherwise, branch to LHS.
1895 CaseBlock
CB(ISD::SETLT
, SV
, C
, NULL
, TrueBB
, FalseBB
, CR
.CaseBB
);
1897 if (CR
.CaseBB
== CurMBB
)
1898 visitSwitchCase(CB
);
1900 SwitchCases
.push_back(CB
);
1905 /// handleBitTestsSwitchCase - if current case range has few destination and
1906 /// range span less, than machine word bitwidth, encode case range into series
1907 /// of masks and emit bit tests with these masks.
1908 bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec
& CR
,
1909 CaseRecVector
& WorkList
,
1911 MachineBasicBlock
* Default
){
1912 EVT PTy
= TLI
.getPointerTy();
1913 unsigned IntPtrBits
= PTy
.getSizeInBits();
1915 Case
& FrontCase
= *CR
.Range
.first
;
1916 Case
& BackCase
= *(CR
.Range
.second
-1);
1918 // Get the MachineFunction which holds the current MBB. This is used when
1919 // inserting any additional MBBs necessary to represent the switch.
1920 MachineFunction
*CurMF
= FuncInfo
.MF
;
1922 // If target does not have legal shift left, do not emit bit tests at all.
1923 if (!TLI
.isOperationLegal(ISD::SHL
, TLI
.getPointerTy()))
1927 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1929 // Single case counts one, case range - two.
1930 numCmps
+= (I
->Low
== I
->High
? 1 : 2);
1933 // Count unique destinations
1934 SmallSet
<MachineBasicBlock
*, 4> Dests
;
1935 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
1936 Dests
.insert(I
->BB
);
1937 if (Dests
.size() > 3)
1938 // Don't bother the code below, if there are too much unique destinations
1941 DEBUG(errs() << "Total number of unique destinations: " << Dests
.size() << '\n'
1942 << "Total number of comparisons: " << numCmps
<< '\n');
1944 // Compute span of values.
1945 const APInt
& minValue
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1946 const APInt
& maxValue
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1947 APInt cmpRange
= maxValue
- minValue
;
1949 DEBUG(errs() << "Compare range: " << cmpRange
<< '\n'
1950 << "Low bound: " << minValue
<< '\n'
1951 << "High bound: " << maxValue
<< '\n');
1953 if (cmpRange
.uge(APInt(cmpRange
.getBitWidth(), IntPtrBits
)) ||
1954 (!(Dests
.size() == 1 && numCmps
>= 3) &&
1955 !(Dests
.size() == 2 && numCmps
>= 5) &&
1956 !(Dests
.size() >= 3 && numCmps
>= 6)))
1959 DEBUG(errs() << "Emitting bit tests\n");
1960 APInt lowBound
= APInt::getNullValue(cmpRange
.getBitWidth());
1962 // Optimize the case where all the case values fit in a
1963 // word without having to subtract minValue. In this case,
1964 // we can optimize away the subtraction.
1965 if (minValue
.isNonNegative() &&
1966 maxValue
.slt(APInt(maxValue
.getBitWidth(), IntPtrBits
))) {
1967 cmpRange
= maxValue
;
1969 lowBound
= minValue
;
1972 CaseBitsVector CasesBits
;
1973 unsigned i
, count
= 0;
1975 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
1976 MachineBasicBlock
* Dest
= I
->BB
;
1977 for (i
= 0; i
< count
; ++i
)
1978 if (Dest
== CasesBits
[i
].BB
)
1982 assert((count
< 3) && "Too much destinations to test!");
1983 CasesBits
.push_back(CaseBits(0, Dest
, 0));
1987 const APInt
& lowValue
= cast
<ConstantInt
>(I
->Low
)->getValue();
1988 const APInt
& highValue
= cast
<ConstantInt
>(I
->High
)->getValue();
1990 uint64_t lo
= (lowValue
- lowBound
).getZExtValue();
1991 uint64_t hi
= (highValue
- lowBound
).getZExtValue();
1993 for (uint64_t j
= lo
; j
<= hi
; j
++) {
1994 CasesBits
[i
].Mask
|= 1ULL << j
;
1995 CasesBits
[i
].Bits
++;
1999 std::sort(CasesBits
.begin(), CasesBits
.end(), CaseBitsCmp());
2003 // Figure out which block is immediately after the current one.
2004 MachineFunction::iterator BBI
= CR
.CaseBB
;
2007 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
2009 DEBUG(errs() << "Cases:\n");
2010 for (unsigned i
= 0, e
= CasesBits
.size(); i
!=e
; ++i
) {
2011 DEBUG(errs() << "Mask: " << CasesBits
[i
].Mask
2012 << ", Bits: " << CasesBits
[i
].Bits
2013 << ", BB: " << CasesBits
[i
].BB
<< '\n');
2015 MachineBasicBlock
*CaseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2016 CurMF
->insert(BBI
, CaseBB
);
2017 BTC
.push_back(BitTestCase(CasesBits
[i
].Mask
,
2021 // Put SV in a virtual register to make it available from the new blocks.
2022 ExportFromCurrentBlock(SV
);
2025 BitTestBlock
BTB(lowBound
, cmpRange
, SV
,
2026 -1U, (CR
.CaseBB
== CurMBB
),
2027 CR
.CaseBB
, Default
, BTC
);
2029 if (CR
.CaseBB
== CurMBB
)
2030 visitBitTestHeader(BTB
);
2032 BitTestCases
.push_back(BTB
);
2038 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2039 size_t SelectionDAGLowering::Clusterify(CaseVector
& Cases
,
2040 const SwitchInst
& SI
) {
2043 // Start with "simple" cases
2044 for (size_t i
= 1; i
< SI
.getNumSuccessors(); ++i
) {
2045 MachineBasicBlock
*SMBB
= FuncInfo
.MBBMap
[SI
.getSuccessor(i
)];
2046 Cases
.push_back(Case(SI
.getSuccessorValue(i
),
2047 SI
.getSuccessorValue(i
),
2050 std::sort(Cases
.begin(), Cases
.end(), CaseCmp());
2052 // Merge case into clusters
2053 if (Cases
.size() >= 2)
2054 // Must recompute end() each iteration because it may be
2055 // invalidated by erase if we hold on to it
2056 for (CaseItr I
= Cases
.begin(), J
= ++(Cases
.begin()); J
!= Cases
.end(); ) {
2057 const APInt
& nextValue
= cast
<ConstantInt
>(J
->Low
)->getValue();
2058 const APInt
& currentValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2059 MachineBasicBlock
* nextBB
= J
->BB
;
2060 MachineBasicBlock
* currentBB
= I
->BB
;
2062 // If the two neighboring cases go to the same destination, merge them
2063 // into a single case.
2064 if ((nextValue
- currentValue
== 1) && (currentBB
== nextBB
)) {
2072 for (CaseItr I
=Cases
.begin(), E
=Cases
.end(); I
!=E
; ++I
, ++numCmps
) {
2073 if (I
->Low
!= I
->High
)
2074 // A range counts double, since it requires two compares.
2081 void SelectionDAGLowering::visitSwitch(SwitchInst
&SI
) {
2082 // Figure out which block is immediately after the current one.
2083 MachineBasicBlock
*NextBlock
= 0;
2085 MachineBasicBlock
*Default
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
2087 // If there is only the default destination, branch to it if it is not the
2088 // next basic block. Otherwise, just fall through.
2089 if (SI
.getNumOperands() == 2) {
2090 // Update machine-CFG edges.
2092 // If this is not a fall-through branch, emit the branch.
2093 CurMBB
->addSuccessor(Default
);
2094 if (Default
!= NextBlock
)
2095 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
2096 MVT::Other
, getControlRoot(),
2097 DAG
.getBasicBlock(Default
)));
2101 // If there are any non-default case statements, create a vector of Cases
2102 // representing each one, and sort the vector so that we can efficiently
2103 // create a binary search tree from them.
2105 size_t numCmps
= Clusterify(Cases
, SI
);
2106 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases
.size()
2107 << ". Total compares: " << numCmps
<< '\n');
2110 // Get the Value to be switched on and default basic blocks, which will be
2111 // inserted into CaseBlock records, representing basic blocks in the binary
2113 Value
*SV
= SI
.getOperand(0);
2115 // Push the initial CaseRec onto the worklist
2116 CaseRecVector WorkList
;
2117 WorkList
.push_back(CaseRec(CurMBB
,0,0,CaseRange(Cases
.begin(),Cases
.end())));
2119 while (!WorkList
.empty()) {
2120 // Grab a record representing a case range to process off the worklist
2121 CaseRec CR
= WorkList
.back();
2122 WorkList
.pop_back();
2124 if (handleBitTestsSwitchCase(CR
, WorkList
, SV
, Default
))
2127 // If the range has few cases (two or less) emit a series of specific
2129 if (handleSmallSwitchRange(CR
, WorkList
, SV
, Default
))
2132 // If the switch has more than 5 blocks, and at least 40% dense, and the
2133 // target supports indirect branches, then emit a jump table rather than
2134 // lowering the switch to a binary tree of conditional branches.
2135 if (handleJTSwitchCase(CR
, WorkList
, SV
, Default
))
2138 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2139 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2140 handleBTSplitSwitchCase(CR
, WorkList
, SV
, Default
);
2145 void SelectionDAGLowering::visitFSub(User
&I
) {
2146 // -0.0 - X --> fneg
2147 const Type
*Ty
= I
.getType();
2148 if (isa
<VectorType
>(Ty
)) {
2149 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(I
.getOperand(0))) {
2150 const VectorType
*DestTy
= cast
<VectorType
>(I
.getType());
2151 const Type
*ElTy
= DestTy
->getElementType();
2152 unsigned VL
= DestTy
->getNumElements();
2153 std::vector
<Constant
*> NZ(VL
, ConstantFP::getNegativeZero(ElTy
));
2154 Constant
*CNZ
= ConstantVector::get(&NZ
[0], NZ
.size());
2156 SDValue Op2
= getValue(I
.getOperand(1));
2157 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2158 Op2
.getValueType(), Op2
));
2163 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(I
.getOperand(0)))
2164 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero(Ty
)->getValueAPF())) {
2165 SDValue Op2
= getValue(I
.getOperand(1));
2166 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2167 Op2
.getValueType(), Op2
));
2171 visitBinary(I
, ISD::FSUB
);
2174 void SelectionDAGLowering::visitBinary(User
&I
, unsigned OpCode
) {
2175 SDValue Op1
= getValue(I
.getOperand(0));
2176 SDValue Op2
= getValue(I
.getOperand(1));
2178 setValue(&I
, DAG
.getNode(OpCode
, getCurDebugLoc(),
2179 Op1
.getValueType(), Op1
, Op2
));
2182 void SelectionDAGLowering::visitShift(User
&I
, unsigned Opcode
) {
2183 SDValue Op1
= getValue(I
.getOperand(0));
2184 SDValue Op2
= getValue(I
.getOperand(1));
2185 if (!isa
<VectorType
>(I
.getType()) &&
2186 Op2
.getValueType() != TLI
.getShiftAmountTy()) {
2187 // If the operand is smaller than the shift count type, promote it.
2188 EVT PTy
= TLI
.getPointerTy();
2189 EVT STy
= TLI
.getShiftAmountTy();
2190 if (STy
.bitsGT(Op2
.getValueType()))
2191 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2192 TLI
.getShiftAmountTy(), Op2
);
2193 // If the operand is larger than the shift count type but the shift
2194 // count type has enough bits to represent any shift value, truncate
2195 // it now. This is a common case and it exposes the truncate to
2196 // optimization early.
2197 else if (STy
.getSizeInBits() >=
2198 Log2_32_Ceil(Op2
.getValueType().getSizeInBits()))
2199 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2200 TLI
.getShiftAmountTy(), Op2
);
2201 // Otherwise we'll need to temporarily settle for some other
2202 // convenient type; type legalization will make adjustments as
2204 else if (PTy
.bitsLT(Op2
.getValueType()))
2205 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2206 TLI
.getPointerTy(), Op2
);
2207 else if (PTy
.bitsGT(Op2
.getValueType()))
2208 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2209 TLI
.getPointerTy(), Op2
);
2212 setValue(&I
, DAG
.getNode(Opcode
, getCurDebugLoc(),
2213 Op1
.getValueType(), Op1
, Op2
));
2216 void SelectionDAGLowering::visitICmp(User
&I
) {
2217 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
2218 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
2219 predicate
= IC
->getPredicate();
2220 else if (ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
2221 predicate
= ICmpInst::Predicate(IC
->getPredicate());
2222 SDValue Op1
= getValue(I
.getOperand(0));
2223 SDValue Op2
= getValue(I
.getOperand(1));
2224 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
2226 EVT DestVT
= TLI
.getValueType(I
.getType());
2227 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Opcode
));
2230 void SelectionDAGLowering::visitFCmp(User
&I
) {
2231 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
2232 if (FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
2233 predicate
= FC
->getPredicate();
2234 else if (ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
2235 predicate
= FCmpInst::Predicate(FC
->getPredicate());
2236 SDValue Op1
= getValue(I
.getOperand(0));
2237 SDValue Op2
= getValue(I
.getOperand(1));
2238 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
2239 EVT DestVT
= TLI
.getValueType(I
.getType());
2240 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Condition
));
2243 void SelectionDAGLowering::visitSelect(User
&I
) {
2244 SmallVector
<EVT
, 4> ValueVTs
;
2245 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2246 unsigned NumValues
= ValueVTs
.size();
2247 if (NumValues
!= 0) {
2248 SmallVector
<SDValue
, 4> Values(NumValues
);
2249 SDValue Cond
= getValue(I
.getOperand(0));
2250 SDValue TrueVal
= getValue(I
.getOperand(1));
2251 SDValue FalseVal
= getValue(I
.getOperand(2));
2253 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2254 Values
[i
] = DAG
.getNode(ISD::SELECT
, getCurDebugLoc(),
2255 TrueVal
.getValueType(), Cond
,
2256 SDValue(TrueVal
.getNode(), TrueVal
.getResNo() + i
),
2257 SDValue(FalseVal
.getNode(), FalseVal
.getResNo() + i
));
2259 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2260 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2261 &Values
[0], NumValues
));
2266 void SelectionDAGLowering::visitTrunc(User
&I
) {
2267 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2268 SDValue N
= getValue(I
.getOperand(0));
2269 EVT DestVT
= TLI
.getValueType(I
.getType());
2270 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2273 void SelectionDAGLowering::visitZExt(User
&I
) {
2274 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2275 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2276 SDValue N
= getValue(I
.getOperand(0));
2277 EVT DestVT
= TLI
.getValueType(I
.getType());
2278 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2281 void SelectionDAGLowering::visitSExt(User
&I
) {
2282 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2283 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2284 SDValue N
= getValue(I
.getOperand(0));
2285 EVT DestVT
= TLI
.getValueType(I
.getType());
2286 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2289 void SelectionDAGLowering::visitFPTrunc(User
&I
) {
2290 // FPTrunc is never a no-op cast, no need to check
2291 SDValue N
= getValue(I
.getOperand(0));
2292 EVT DestVT
= TLI
.getValueType(I
.getType());
2293 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, getCurDebugLoc(),
2294 DestVT
, N
, DAG
.getIntPtrConstant(0)));
2297 void SelectionDAGLowering::visitFPExt(User
&I
){
2298 // FPTrunc is never a no-op cast, no need to check
2299 SDValue N
= getValue(I
.getOperand(0));
2300 EVT DestVT
= TLI
.getValueType(I
.getType());
2301 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2304 void SelectionDAGLowering::visitFPToUI(User
&I
) {
2305 // FPToUI is never a no-op cast, no need to check
2306 SDValue N
= getValue(I
.getOperand(0));
2307 EVT DestVT
= TLI
.getValueType(I
.getType());
2308 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurDebugLoc(), DestVT
, N
));
2311 void SelectionDAGLowering::visitFPToSI(User
&I
) {
2312 // FPToSI is never a no-op cast, no need to check
2313 SDValue N
= getValue(I
.getOperand(0));
2314 EVT DestVT
= TLI
.getValueType(I
.getType());
2315 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurDebugLoc(), DestVT
, N
));
2318 void SelectionDAGLowering::visitUIToFP(User
&I
) {
2319 // UIToFP is never a no-op cast, no need to check
2320 SDValue N
= getValue(I
.getOperand(0));
2321 EVT DestVT
= TLI
.getValueType(I
.getType());
2322 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2325 void SelectionDAGLowering::visitSIToFP(User
&I
){
2326 // SIToFP is never a no-op cast, no need to check
2327 SDValue N
= getValue(I
.getOperand(0));
2328 EVT DestVT
= TLI
.getValueType(I
.getType());
2329 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2332 void SelectionDAGLowering::visitPtrToInt(User
&I
) {
2333 // What to do depends on the size of the integer and the size of the pointer.
2334 // We can either truncate, zero extend, or no-op, accordingly.
2335 SDValue N
= getValue(I
.getOperand(0));
2336 EVT SrcVT
= N
.getValueType();
2337 EVT DestVT
= TLI
.getValueType(I
.getType());
2339 if (DestVT
.bitsLT(SrcVT
))
2340 Result
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
);
2342 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2343 Result
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
);
2344 setValue(&I
, Result
);
2347 void SelectionDAGLowering::visitIntToPtr(User
&I
) {
2348 // What to do depends on the size of the integer and the size of the pointer.
2349 // We can either truncate, zero extend, or no-op, accordingly.
2350 SDValue N
= getValue(I
.getOperand(0));
2351 EVT SrcVT
= N
.getValueType();
2352 EVT DestVT
= TLI
.getValueType(I
.getType());
2353 if (DestVT
.bitsLT(SrcVT
))
2354 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2356 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2357 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2361 void SelectionDAGLowering::visitBitCast(User
&I
) {
2362 SDValue N
= getValue(I
.getOperand(0));
2363 EVT DestVT
= TLI
.getValueType(I
.getType());
2365 // BitCast assures us that source and destination are the same size so this
2366 // is either a BIT_CONVERT or a no-op.
2367 if (DestVT
!= N
.getValueType())
2368 setValue(&I
, DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
2369 DestVT
, N
)); // convert types
2371 setValue(&I
, N
); // noop cast.
2374 void SelectionDAGLowering::visitInsertElement(User
&I
) {
2375 SDValue InVec
= getValue(I
.getOperand(0));
2376 SDValue InVal
= getValue(I
.getOperand(1));
2377 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2379 getValue(I
.getOperand(2)));
2381 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurDebugLoc(),
2382 TLI
.getValueType(I
.getType()),
2383 InVec
, InVal
, InIdx
));
2386 void SelectionDAGLowering::visitExtractElement(User
&I
) {
2387 SDValue InVec
= getValue(I
.getOperand(0));
2388 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2390 getValue(I
.getOperand(1)));
2391 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2392 TLI
.getValueType(I
.getType()), InVec
, InIdx
));
2396 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2397 // from SIndx and increasing to the element length (undefs are allowed).
2398 static bool SequentialMask(SmallVectorImpl
<int> &Mask
, unsigned SIndx
) {
2399 unsigned MaskNumElts
= Mask
.size();
2400 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
)
2401 if ((Mask
[i
] >= 0) && (Mask
[i
] != (int)(i
+ SIndx
)))
2406 void SelectionDAGLowering::visitShuffleVector(User
&I
) {
2407 SmallVector
<int, 8> Mask
;
2408 SDValue Src1
= getValue(I
.getOperand(0));
2409 SDValue Src2
= getValue(I
.getOperand(1));
2411 // Convert the ConstantVector mask operand into an array of ints, with -1
2412 // representing undef values.
2413 SmallVector
<Constant
*, 8> MaskElts
;
2414 cast
<Constant
>(I
.getOperand(2))->getVectorElements(*DAG
.getContext(),
2416 unsigned MaskNumElts
= MaskElts
.size();
2417 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2418 if (isa
<UndefValue
>(MaskElts
[i
]))
2421 Mask
.push_back(cast
<ConstantInt
>(MaskElts
[i
])->getSExtValue());
2424 EVT VT
= TLI
.getValueType(I
.getType());
2425 EVT SrcVT
= Src1
.getValueType();
2426 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
2428 if (SrcNumElts
== MaskNumElts
) {
2429 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2434 // Normalize the shuffle vector since mask and vector length don't match.
2435 if (SrcNumElts
< MaskNumElts
&& MaskNumElts
% SrcNumElts
== 0) {
2436 // Mask is longer than the source vectors and is a multiple of the source
2437 // vectors. We can use concatenate vector to make the mask and vectors
2439 if (SrcNumElts
*2 == MaskNumElts
&& SequentialMask(Mask
, 0)) {
2440 // The shuffle is concatenating two vectors together.
2441 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, getCurDebugLoc(),
2446 // Pad both vectors with undefs to make them the same length as the mask.
2447 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
2448 bool Src1U
= Src1
.getOpcode() == ISD::UNDEF
;
2449 bool Src2U
= Src2
.getOpcode() == ISD::UNDEF
;
2450 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
2452 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
2453 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
2457 Src1
= Src1U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2458 getCurDebugLoc(), VT
,
2459 &MOps1
[0], NumConcat
);
2460 Src2
= Src2U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2461 getCurDebugLoc(), VT
,
2462 &MOps2
[0], NumConcat
);
2464 // Readjust mask for new input vector length.
2465 SmallVector
<int, 8> MappedOps
;
2466 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2468 if (Idx
< (int)SrcNumElts
)
2469 MappedOps
.push_back(Idx
);
2471 MappedOps
.push_back(Idx
+ MaskNumElts
- SrcNumElts
);
2473 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2478 if (SrcNumElts
> MaskNumElts
) {
2479 // Analyze the access pattern of the vector to see if we can extract
2480 // two subvectors and do the shuffle. The analysis is done by calculating
2481 // the range of elements the mask access on both vectors.
2482 int MinRange
[2] = { SrcNumElts
+1, SrcNumElts
+1};
2483 int MaxRange
[2] = {-1, -1};
2485 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2491 if (Idx
>= (int)SrcNumElts
) {
2495 if (Idx
> MaxRange
[Input
])
2496 MaxRange
[Input
] = Idx
;
2497 if (Idx
< MinRange
[Input
])
2498 MinRange
[Input
] = Idx
;
2501 // Check if the access is smaller than the vector size and can we find
2502 // a reasonable extract index.
2503 int RangeUse
[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
2504 int StartIdx
[2]; // StartIdx to extract from
2505 for (int Input
=0; Input
< 2; ++Input
) {
2506 if (MinRange
[Input
] == (int)(SrcNumElts
+1) && MaxRange
[Input
] == -1) {
2507 RangeUse
[Input
] = 0; // Unused
2508 StartIdx
[Input
] = 0;
2509 } else if (MaxRange
[Input
] - MinRange
[Input
] < (int)MaskNumElts
) {
2510 // Fits within range but we should see if we can find a good
2511 // start index that is a multiple of the mask length.
2512 if (MaxRange
[Input
] < (int)MaskNumElts
) {
2513 RangeUse
[Input
] = 1; // Extract from beginning of the vector
2514 StartIdx
[Input
] = 0;
2516 StartIdx
[Input
] = (MinRange
[Input
]/MaskNumElts
)*MaskNumElts
;
2517 if (MaxRange
[Input
] - StartIdx
[Input
] < (int)MaskNumElts
&&
2518 StartIdx
[Input
] + MaskNumElts
< SrcNumElts
)
2519 RangeUse
[Input
] = 1; // Extract from a multiple of the mask length.
2524 if (RangeUse
[0] == 0 && RangeUse
[1] == 0) {
2525 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
2528 else if (RangeUse
[0] < 2 && RangeUse
[1] < 2) {
2529 // Extract appropriate subvector and generate a vector shuffle
2530 for (int Input
=0; Input
< 2; ++Input
) {
2531 SDValue
& Src
= Input
== 0 ? Src1
: Src2
;
2532 if (RangeUse
[Input
] == 0) {
2533 Src
= DAG
.getUNDEF(VT
);
2535 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, getCurDebugLoc(), VT
,
2536 Src
, DAG
.getIntPtrConstant(StartIdx
[Input
]));
2539 // Calculate new mask.
2540 SmallVector
<int, 8> MappedOps
;
2541 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2544 MappedOps
.push_back(Idx
);
2545 else if (Idx
< (int)SrcNumElts
)
2546 MappedOps
.push_back(Idx
- StartIdx
[0]);
2548 MappedOps
.push_back(Idx
- SrcNumElts
- StartIdx
[1] + MaskNumElts
);
2550 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2556 // We can't use either concat vectors or extract subvectors so fall back to
2557 // replacing the shuffle with extract and build vector.
2558 // to insert and build vector.
2559 EVT EltVT
= VT
.getVectorElementType();
2560 EVT PtrVT
= TLI
.getPointerTy();
2561 SmallVector
<SDValue
,8> Ops
;
2562 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2564 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2567 if (Idx
< (int)SrcNumElts
)
2568 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2569 EltVT
, Src1
, DAG
.getConstant(Idx
, PtrVT
)));
2571 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2573 DAG
.getConstant(Idx
- SrcNumElts
, PtrVT
)));
2576 setValue(&I
, DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
2577 VT
, &Ops
[0], Ops
.size()));
2580 void SelectionDAGLowering::visitInsertValue(InsertValueInst
&I
) {
2581 const Value
*Op0
= I
.getOperand(0);
2582 const Value
*Op1
= I
.getOperand(1);
2583 const Type
*AggTy
= I
.getType();
2584 const Type
*ValTy
= Op1
->getType();
2585 bool IntoUndef
= isa
<UndefValue
>(Op0
);
2586 bool FromUndef
= isa
<UndefValue
>(Op1
);
2588 unsigned LinearIndex
= ComputeLinearIndex(TLI
, AggTy
,
2589 I
.idx_begin(), I
.idx_end());
2591 SmallVector
<EVT
, 4> AggValueVTs
;
2592 ComputeValueVTs(TLI
, AggTy
, AggValueVTs
);
2593 SmallVector
<EVT
, 4> ValValueVTs
;
2594 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2596 unsigned NumAggValues
= AggValueVTs
.size();
2597 unsigned NumValValues
= ValValueVTs
.size();
2598 SmallVector
<SDValue
, 4> Values(NumAggValues
);
2600 SDValue Agg
= getValue(Op0
);
2601 SDValue Val
= getValue(Op1
);
2603 // Copy the beginning value(s) from the original aggregate.
2604 for (; i
!= LinearIndex
; ++i
)
2605 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2606 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2607 // Copy values from the inserted value(s).
2608 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
2609 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2610 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
2611 // Copy remaining value(s) from the original aggregate.
2612 for (; i
!= NumAggValues
; ++i
)
2613 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2614 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2616 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2617 DAG
.getVTList(&AggValueVTs
[0], NumAggValues
),
2618 &Values
[0], NumAggValues
));
2621 void SelectionDAGLowering::visitExtractValue(ExtractValueInst
&I
) {
2622 const Value
*Op0
= I
.getOperand(0);
2623 const Type
*AggTy
= Op0
->getType();
2624 const Type
*ValTy
= I
.getType();
2625 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
2627 unsigned LinearIndex
= ComputeLinearIndex(TLI
, AggTy
,
2628 I
.idx_begin(), I
.idx_end());
2630 SmallVector
<EVT
, 4> ValValueVTs
;
2631 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2633 unsigned NumValValues
= ValValueVTs
.size();
2634 SmallVector
<SDValue
, 4> Values(NumValValues
);
2636 SDValue Agg
= getValue(Op0
);
2637 // Copy out the selected value(s).
2638 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
2639 Values
[i
- LinearIndex
] =
2641 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
2642 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2644 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2645 DAG
.getVTList(&ValValueVTs
[0], NumValValues
),
2646 &Values
[0], NumValValues
));
2650 void SelectionDAGLowering::visitGetElementPtr(User
&I
) {
2651 SDValue N
= getValue(I
.getOperand(0));
2652 const Type
*Ty
= I
.getOperand(0)->getType();
2654 for (GetElementPtrInst::op_iterator OI
= I
.op_begin()+1, E
= I
.op_end();
2657 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
2658 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
2661 uint64_t Offset
= TD
->getStructLayout(StTy
)->getElementOffset(Field
);
2662 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2663 DAG
.getIntPtrConstant(Offset
));
2665 Ty
= StTy
->getElementType(Field
);
2667 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
2669 // If this is a constant subscript, handle it quickly.
2670 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
2671 if (CI
->getZExtValue() == 0) continue;
2673 TD
->getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
2675 EVT PTy
= TLI
.getPointerTy();
2676 unsigned PtrBits
= PTy
.getSizeInBits();
2678 OffsVal
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2680 DAG
.getConstant(Offs
, MVT::i64
));
2682 OffsVal
= DAG
.getIntPtrConstant(Offs
);
2683 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2688 // N = N + Idx * ElementSize;
2689 uint64_t ElementSize
= TD
->getTypeAllocSize(Ty
);
2690 SDValue IdxN
= getValue(Idx
);
2692 // If the index is smaller or larger than intptr_t, truncate or extend
2694 if (IdxN
.getValueType().bitsLT(N
.getValueType()))
2695 IdxN
= DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(),
2696 N
.getValueType(), IdxN
);
2697 else if (IdxN
.getValueType().bitsGT(N
.getValueType()))
2698 IdxN
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2699 N
.getValueType(), IdxN
);
2701 // If this is a multiply by a power of two, turn it into a shl
2702 // immediately. This is a very common case.
2703 if (ElementSize
!= 1) {
2704 if (isPowerOf2_64(ElementSize
)) {
2705 unsigned Amt
= Log2_64(ElementSize
);
2706 IdxN
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
2707 N
.getValueType(), IdxN
,
2708 DAG
.getConstant(Amt
, TLI
.getPointerTy()));
2710 SDValue Scale
= DAG
.getIntPtrConstant(ElementSize
);
2711 IdxN
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(),
2712 N
.getValueType(), IdxN
, Scale
);
2716 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2717 N
.getValueType(), N
, IdxN
);
2723 void SelectionDAGLowering::visitAlloca(AllocaInst
&I
) {
2724 // If this is a fixed sized alloca in the entry block of the function,
2725 // allocate it statically on the stack.
2726 if (FuncInfo
.StaticAllocaMap
.count(&I
))
2727 return; // getValue will auto-populate this.
2729 const Type
*Ty
= I
.getAllocatedType();
2730 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
2732 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
2735 SDValue AllocSize
= getValue(I
.getArraySize());
2737 AllocSize
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), AllocSize
.getValueType(),
2739 DAG
.getConstant(TySize
, AllocSize
.getValueType()));
2743 EVT IntPtr
= TLI
.getPointerTy();
2744 if (IntPtr
.bitsLT(AllocSize
.getValueType()))
2745 AllocSize
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2747 else if (IntPtr
.bitsGT(AllocSize
.getValueType()))
2748 AllocSize
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2751 // Handle alignment. If the requested alignment is less than or equal to
2752 // the stack alignment, ignore it. If the size is greater than or equal to
2753 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2754 unsigned StackAlign
=
2755 TLI
.getTargetMachine().getFrameInfo()->getStackAlignment();
2756 if (Align
<= StackAlign
)
2759 // Round the size of the allocation up to the stack alignment size
2760 // by add SA-1 to the size.
2761 AllocSize
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2762 AllocSize
.getValueType(), AllocSize
,
2763 DAG
.getIntPtrConstant(StackAlign
-1));
2764 // Mask out the low bits for alignment purposes.
2765 AllocSize
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
2766 AllocSize
.getValueType(), AllocSize
,
2767 DAG
.getIntPtrConstant(~(uint64_t)(StackAlign
-1)));
2769 SDValue Ops
[] = { getRoot(), AllocSize
, DAG
.getIntPtrConstant(Align
) };
2770 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
2771 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, getCurDebugLoc(),
2774 DAG
.setRoot(DSA
.getValue(1));
2776 // Inform the Frame Information that we have just allocated a variable-sized
2778 FuncInfo
.MF
->getFrameInfo()->CreateVariableSizedObject();
2781 void SelectionDAGLowering::visitLoad(LoadInst
&I
) {
2782 const Value
*SV
= I
.getOperand(0);
2783 SDValue Ptr
= getValue(SV
);
2785 const Type
*Ty
= I
.getType();
2786 bool isVolatile
= I
.isVolatile();
2787 unsigned Alignment
= I
.getAlignment();
2789 SmallVector
<EVT
, 4> ValueVTs
;
2790 SmallVector
<uint64_t, 4> Offsets
;
2791 ComputeValueVTs(TLI
, Ty
, ValueVTs
, &Offsets
);
2792 unsigned NumValues
= ValueVTs
.size();
2797 bool ConstantMemory
= false;
2799 // Serialize volatile loads with other side effects.
2801 else if (AA
->pointsToConstantMemory(SV
)) {
2802 // Do not serialize (non-volatile) loads of constant memory with anything.
2803 Root
= DAG
.getEntryNode();
2804 ConstantMemory
= true;
2806 // Do not serialize non-volatile loads against each other.
2807 Root
= DAG
.getRoot();
2810 SmallVector
<SDValue
, 4> Values(NumValues
);
2811 SmallVector
<SDValue
, 4> Chains(NumValues
);
2812 EVT PtrVT
= Ptr
.getValueType();
2813 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
2814 SDValue L
= DAG
.getLoad(ValueVTs
[i
], getCurDebugLoc(), Root
,
2815 DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2817 DAG
.getConstant(Offsets
[i
], PtrVT
)),
2818 SV
, Offsets
[i
], isVolatile
, Alignment
, Alignment
);
2820 Chains
[i
] = L
.getValue(1);
2823 if (!ConstantMemory
) {
2824 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2826 &Chains
[0], NumValues
);
2830 PendingLoads
.push_back(Chain
);
2833 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2834 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2835 &Values
[0], NumValues
));
2839 void SelectionDAGLowering::visitStore(StoreInst
&I
) {
2840 Value
*SrcV
= I
.getOperand(0);
2841 Value
*PtrV
= I
.getOperand(1);
2843 SmallVector
<EVT
, 4> ValueVTs
;
2844 SmallVector
<uint64_t, 4> Offsets
;
2845 ComputeValueVTs(TLI
, SrcV
->getType(), ValueVTs
, &Offsets
);
2846 unsigned NumValues
= ValueVTs
.size();
2850 // Get the lowered operands. Note that we do this after
2851 // checking if NumResults is zero, because with zero results
2852 // the operands won't have values in the map.
2853 SDValue Src
= getValue(SrcV
);
2854 SDValue Ptr
= getValue(PtrV
);
2856 SDValue Root
= getRoot();
2857 SmallVector
<SDValue
, 4> Chains(NumValues
);
2858 EVT PtrVT
= Ptr
.getValueType();
2859 bool isVolatile
= I
.isVolatile();
2860 unsigned Alignment
= I
.getAlignment();
2861 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2862 Chains
[i
] = DAG
.getStore(Root
, getCurDebugLoc(),
2863 SDValue(Src
.getNode(), Src
.getResNo() + i
),
2864 DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2866 DAG
.getConstant(Offsets
[i
], PtrVT
)),
2868 isVolatile
, Alignment
, Alignment
);
2870 DAG
.setRoot(DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2871 MVT::Other
, &Chains
[0], NumValues
));
2874 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2876 void SelectionDAGLowering::visitTargetIntrinsic(CallInst
&I
,
2877 unsigned Intrinsic
) {
2878 bool HasChain
= !I
.doesNotAccessMemory();
2879 bool OnlyLoad
= HasChain
&& I
.onlyReadsMemory();
2881 // Build the operand list.
2882 SmallVector
<SDValue
, 8> Ops
;
2883 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
2885 // We don't need to serialize loads against other loads.
2886 Ops
.push_back(DAG
.getRoot());
2888 Ops
.push_back(getRoot());
2892 // Info is set by getTgtMemInstrinsic
2893 TargetLowering::IntrinsicInfo Info
;
2894 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
, Intrinsic
);
2896 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2897 if (!IsTgtIntrinsic
)
2898 Ops
.push_back(DAG
.getConstant(Intrinsic
, TLI
.getPointerTy()));
2900 // Add all operands of the call to the operand list.
2901 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
2902 SDValue Op
= getValue(I
.getOperand(i
));
2903 assert(TLI
.isTypeLegal(Op
.getValueType()) &&
2904 "Intrinsic uses a non-legal type?");
2908 SmallVector
<EVT
, 4> ValueVTs
;
2909 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2911 for (unsigned Val
= 0, E
= ValueVTs
.size(); Val
!= E
; ++Val
) {
2912 assert(TLI
.isTypeLegal(ValueVTs
[Val
]) &&
2913 "Intrinsic uses a non-legal type?");
2917 ValueVTs
.push_back(MVT::Other
);
2919 SDVTList VTs
= DAG
.getVTList(ValueVTs
.data(), ValueVTs
.size());
2923 if (IsTgtIntrinsic
) {
2924 // This is target intrinsic that touches memory
2925 Result
= DAG
.getMemIntrinsicNode(Info
.opc
, getCurDebugLoc(),
2926 VTs
, &Ops
[0], Ops
.size(),
2927 Info
.memVT
, Info
.ptrVal
, Info
.offset
,
2928 Info
.align
, Info
.vol
,
2929 Info
.readMem
, Info
.writeMem
);
2932 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurDebugLoc(),
2933 VTs
, &Ops
[0], Ops
.size());
2934 else if (I
.getType() != Type::getVoidTy(*DAG
.getContext()))
2935 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurDebugLoc(),
2936 VTs
, &Ops
[0], Ops
.size());
2938 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurDebugLoc(),
2939 VTs
, &Ops
[0], Ops
.size());
2942 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
2944 PendingLoads
.push_back(Chain
);
2948 if (I
.getType() != Type::getVoidTy(*DAG
.getContext())) {
2949 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
2950 EVT VT
= TLI
.getValueType(PTy
);
2951 Result
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(), VT
, Result
);
2953 setValue(&I
, Result
);
2957 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2958 static GlobalVariable
*ExtractTypeInfo(Value
*V
) {
2959 V
= V
->stripPointerCasts();
2960 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
);
2961 assert ((GV
|| isa
<ConstantPointerNull
>(V
)) &&
2962 "TypeInfo must be a global variable or NULL");
2968 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
2969 /// call, and add them to the specified machine basic block.
2970 void AddCatchInfo(CallInst
&I
, MachineModuleInfo
*MMI
,
2971 MachineBasicBlock
*MBB
) {
2972 // Inform the MachineModuleInfo of the personality for this landing pad.
2973 ConstantExpr
*CE
= cast
<ConstantExpr
>(I
.getOperand(2));
2974 assert(CE
->getOpcode() == Instruction::BitCast
&&
2975 isa
<Function
>(CE
->getOperand(0)) &&
2976 "Personality should be a function");
2977 MMI
->addPersonality(MBB
, cast
<Function
>(CE
->getOperand(0)));
2979 // Gather all the type infos for this landing pad and pass them along to
2980 // MachineModuleInfo.
2981 std::vector
<GlobalVariable
*> TyInfo
;
2982 unsigned N
= I
.getNumOperands();
2984 for (unsigned i
= N
- 1; i
> 2; --i
) {
2985 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand(i
))) {
2986 unsigned FilterLength
= CI
->getZExtValue();
2987 unsigned FirstCatch
= i
+ FilterLength
+ !FilterLength
;
2988 assert (FirstCatch
<= N
&& "Invalid filter length");
2990 if (FirstCatch
< N
) {
2991 TyInfo
.reserve(N
- FirstCatch
);
2992 for (unsigned j
= FirstCatch
; j
< N
; ++j
)
2993 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
2994 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
2998 if (!FilterLength
) {
3000 MMI
->addCleanup(MBB
);
3003 TyInfo
.reserve(FilterLength
- 1);
3004 for (unsigned j
= i
+ 1; j
< FirstCatch
; ++j
)
3005 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3006 MMI
->addFilterTypeInfo(MBB
, TyInfo
);
3015 TyInfo
.reserve(N
- 3);
3016 for (unsigned j
= 3; j
< N
; ++j
)
3017 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3018 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
3024 /// GetSignificand - Get the significand and build it into a floating-point
3025 /// number with exponent of 1:
3027 /// Op = (Op & 0x007fffff) | 0x3f800000;
3029 /// where Op is the hexidecimal representation of floating point value.
3031 GetSignificand(SelectionDAG
&DAG
, SDValue Op
, DebugLoc dl
) {
3032 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3033 DAG
.getConstant(0x007fffff, MVT::i32
));
3034 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
3035 DAG
.getConstant(0x3f800000, MVT::i32
));
3036 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t2
);
3039 /// GetExponent - Get the exponent:
3041 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3043 /// where Op is the hexidecimal representation of floating point value.
3045 GetExponent(SelectionDAG
&DAG
, SDValue Op
, const TargetLowering
&TLI
,
3047 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3048 DAG
.getConstant(0x7f800000, MVT::i32
));
3049 SDValue t1
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, t0
,
3050 DAG
.getConstant(23, TLI
.getPointerTy()));
3051 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
3052 DAG
.getConstant(127, MVT::i32
));
3053 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
3056 /// getF32Constant - Get 32-bit floating point constant.
3058 getF32Constant(SelectionDAG
&DAG
, unsigned Flt
) {
3059 return DAG
.getConstantFP(APFloat(APInt(32, Flt
)), MVT::f32
);
3062 /// Inlined utility function to implement binary input atomic intrinsics for
3063 /// visitIntrinsicCall: I is a call instruction
3064 /// Op is the associated NodeType for I
3066 SelectionDAGLowering::implVisitBinaryAtomic(CallInst
& I
, ISD::NodeType Op
) {
3067 SDValue Root
= getRoot();
3069 DAG
.getAtomic(Op
, getCurDebugLoc(),
3070 getValue(I
.getOperand(2)).getValueType().getSimpleVT(),
3072 getValue(I
.getOperand(1)),
3073 getValue(I
.getOperand(2)),
3076 DAG
.setRoot(L
.getValue(1));
3080 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3082 SelectionDAGLowering::implVisitAluOverflow(CallInst
&I
, ISD::NodeType Op
) {
3083 SDValue Op1
= getValue(I
.getOperand(1));
3084 SDValue Op2
= getValue(I
.getOperand(2));
3086 SDVTList VTs
= DAG
.getVTList(Op1
.getValueType(), MVT::i1
);
3087 SDValue Result
= DAG
.getNode(Op
, getCurDebugLoc(), VTs
, Op1
, Op2
);
3089 setValue(&I
, Result
);
3093 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3094 /// limited-precision mode.
3096 SelectionDAGLowering::visitExp(CallInst
&I
) {
3098 DebugLoc dl
= getCurDebugLoc();
3100 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3101 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3102 SDValue Op
= getValue(I
.getOperand(1));
3104 // Put the exponent in the right bit position for later addition to the
3107 // #define LOG2OFe 1.4426950f
3108 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3109 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3110 getF32Constant(DAG
, 0x3fb8aa3b));
3111 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3113 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3114 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3115 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3117 // IntegerPartOfX <<= 23;
3118 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3119 DAG
.getConstant(23, TLI
.getPointerTy()));
3121 if (LimitFloatPrecision
<= 6) {
3122 // For floating-point precision of 6:
3124 // TwoToFractionalPartOfX =
3126 // (0.735607626f + 0.252464424f * x) * x;
3128 // error 0.0144103317, which is 6 bits
3129 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3130 getF32Constant(DAG
, 0x3e814304));
3131 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3132 getF32Constant(DAG
, 0x3f3c50c8));
3133 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3134 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3135 getF32Constant(DAG
, 0x3f7f5e7e));
3136 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t5
);
3138 // Add the exponent into the result in integer domain.
3139 SDValue t6
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3140 TwoToFracPartOfX
, IntegerPartOfX
);
3142 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t6
);
3143 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3144 // For floating-point precision of 12:
3146 // TwoToFractionalPartOfX =
3149 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3151 // 0.000107046256 error, which is 13 to 14 bits
3152 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3153 getF32Constant(DAG
, 0x3da235e3));
3154 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3155 getF32Constant(DAG
, 0x3e65b8f3));
3156 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3157 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3158 getF32Constant(DAG
, 0x3f324b07));
3159 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3160 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3161 getF32Constant(DAG
, 0x3f7ff8fd));
3162 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t7
);
3164 // Add the exponent into the result in integer domain.
3165 SDValue t8
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3166 TwoToFracPartOfX
, IntegerPartOfX
);
3168 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t8
);
3169 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3170 // For floating-point precision of 18:
3172 // TwoToFractionalPartOfX =
3176 // (0.554906021e-1f +
3177 // (0.961591928e-2f +
3178 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3180 // error 2.47208000*10^(-7), which is better than 18 bits
3181 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3182 getF32Constant(DAG
, 0x3924b03e));
3183 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3184 getF32Constant(DAG
, 0x3ab24b87));
3185 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3186 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3187 getF32Constant(DAG
, 0x3c1d8c17));
3188 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3189 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3190 getF32Constant(DAG
, 0x3d634a1d));
3191 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3192 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3193 getF32Constant(DAG
, 0x3e75fe14));
3194 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3195 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3196 getF32Constant(DAG
, 0x3f317234));
3197 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3198 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3199 getF32Constant(DAG
, 0x3f800000));
3200 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3203 // Add the exponent into the result in integer domain.
3204 SDValue t14
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3205 TwoToFracPartOfX
, IntegerPartOfX
);
3207 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t14
);
3210 // No special expansion.
3211 result
= DAG
.getNode(ISD::FEXP
, dl
,
3212 getValue(I
.getOperand(1)).getValueType(),
3213 getValue(I
.getOperand(1)));
3216 setValue(&I
, result
);
3219 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3220 /// limited-precision mode.
3222 SelectionDAGLowering::visitLog(CallInst
&I
) {
3224 DebugLoc dl
= getCurDebugLoc();
3226 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3227 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3228 SDValue Op
= getValue(I
.getOperand(1));
3229 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3231 // Scale the exponent by log(2) [0.69314718f].
3232 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3233 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3234 getF32Constant(DAG
, 0x3f317218));
3236 // Get the significand and build it into a floating-point number with
3238 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3240 if (LimitFloatPrecision
<= 6) {
3241 // For floating-point precision of 6:
3245 // (1.4034025f - 0.23903021f * x) * x;
3247 // error 0.0034276066, which is better than 8 bits
3248 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3249 getF32Constant(DAG
, 0xbe74c456));
3250 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3251 getF32Constant(DAG
, 0x3fb3a2b1));
3252 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3253 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3254 getF32Constant(DAG
, 0x3f949a29));
3256 result
= DAG
.getNode(ISD::FADD
, dl
,
3257 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3258 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3259 // For floating-point precision of 12:
3265 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3267 // error 0.000061011436, which is 14 bits
3268 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3269 getF32Constant(DAG
, 0xbd67b6d6));
3270 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3271 getF32Constant(DAG
, 0x3ee4f4b8));
3272 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3273 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3274 getF32Constant(DAG
, 0x3fbc278b));
3275 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3276 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3277 getF32Constant(DAG
, 0x40348e95));
3278 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3279 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3280 getF32Constant(DAG
, 0x3fdef31a));
3282 result
= DAG
.getNode(ISD::FADD
, dl
,
3283 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3284 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3285 // For floating-point precision of 18:
3293 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3295 // error 0.0000023660568, which is better than 18 bits
3296 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3297 getF32Constant(DAG
, 0xbc91e5ac));
3298 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3299 getF32Constant(DAG
, 0x3e4350aa));
3300 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3301 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3302 getF32Constant(DAG
, 0x3f60d3e3));
3303 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3304 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3305 getF32Constant(DAG
, 0x4011cdf0));
3306 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3307 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3308 getF32Constant(DAG
, 0x406cfd1c));
3309 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3310 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3311 getF32Constant(DAG
, 0x408797cb));
3312 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3313 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3314 getF32Constant(DAG
, 0x4006dcab));
3316 result
= DAG
.getNode(ISD::FADD
, dl
,
3317 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3320 // No special expansion.
3321 result
= DAG
.getNode(ISD::FLOG
, dl
,
3322 getValue(I
.getOperand(1)).getValueType(),
3323 getValue(I
.getOperand(1)));
3326 setValue(&I
, result
);
3329 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3330 /// limited-precision mode.
3332 SelectionDAGLowering::visitLog2(CallInst
&I
) {
3334 DebugLoc dl
= getCurDebugLoc();
3336 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3337 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3338 SDValue Op
= getValue(I
.getOperand(1));
3339 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3341 // Get the exponent.
3342 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
3344 // Get the significand and build it into a floating-point number with
3346 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3348 // Different possible minimax approximations of significand in
3349 // floating-point for various degrees of accuracy over [1,2].
3350 if (LimitFloatPrecision
<= 6) {
3351 // For floating-point precision of 6:
3353 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3355 // error 0.0049451742, which is more than 7 bits
3356 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3357 getF32Constant(DAG
, 0xbeb08fe0));
3358 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3359 getF32Constant(DAG
, 0x40019463));
3360 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3361 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3362 getF32Constant(DAG
, 0x3fd6633d));
3364 result
= DAG
.getNode(ISD::FADD
, dl
,
3365 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3366 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3367 // For floating-point precision of 12:
3373 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3375 // error 0.0000876136000, which is better than 13 bits
3376 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3377 getF32Constant(DAG
, 0xbda7262e));
3378 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3379 getF32Constant(DAG
, 0x3f25280b));
3380 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3381 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3382 getF32Constant(DAG
, 0x4007b923));
3383 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3384 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3385 getF32Constant(DAG
, 0x40823e2f));
3386 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3387 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3388 getF32Constant(DAG
, 0x4020d29c));
3390 result
= DAG
.getNode(ISD::FADD
, dl
,
3391 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3392 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3393 // For floating-point precision of 18:
3402 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3404 // error 0.0000018516, which is better than 18 bits
3405 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3406 getF32Constant(DAG
, 0xbcd2769e));
3407 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3408 getF32Constant(DAG
, 0x3e8ce0b9));
3409 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3410 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3411 getF32Constant(DAG
, 0x3fa22ae7));
3412 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3413 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3414 getF32Constant(DAG
, 0x40525723));
3415 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3416 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3417 getF32Constant(DAG
, 0x40aaf200));
3418 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3419 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3420 getF32Constant(DAG
, 0x40c39dad));
3421 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3422 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3423 getF32Constant(DAG
, 0x4042902c));
3425 result
= DAG
.getNode(ISD::FADD
, dl
,
3426 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3429 // No special expansion.
3430 result
= DAG
.getNode(ISD::FLOG2
, dl
,
3431 getValue(I
.getOperand(1)).getValueType(),
3432 getValue(I
.getOperand(1)));
3435 setValue(&I
, result
);
3438 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3439 /// limited-precision mode.
3441 SelectionDAGLowering::visitLog10(CallInst
&I
) {
3443 DebugLoc dl
= getCurDebugLoc();
3445 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3446 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3447 SDValue Op
= getValue(I
.getOperand(1));
3448 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3450 // Scale the exponent by log10(2) [0.30102999f].
3451 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3452 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3453 getF32Constant(DAG
, 0x3e9a209a));
3455 // Get the significand and build it into a floating-point number with
3457 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3459 if (LimitFloatPrecision
<= 6) {
3460 // For floating-point precision of 6:
3462 // Log10ofMantissa =
3464 // (0.60948995f - 0.10380950f * x) * x;
3466 // error 0.0014886165, which is 6 bits
3467 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3468 getF32Constant(DAG
, 0xbdd49a13));
3469 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3470 getF32Constant(DAG
, 0x3f1c0789));
3471 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3472 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3473 getF32Constant(DAG
, 0x3f011300));
3475 result
= DAG
.getNode(ISD::FADD
, dl
,
3476 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3477 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3478 // For floating-point precision of 12:
3480 // Log10ofMantissa =
3483 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3485 // error 0.00019228036, which is better than 12 bits
3486 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3487 getF32Constant(DAG
, 0x3d431f31));
3488 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3489 getF32Constant(DAG
, 0x3ea21fb2));
3490 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3491 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3492 getF32Constant(DAG
, 0x3f6ae232));
3493 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3494 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3495 getF32Constant(DAG
, 0x3f25f7c3));
3497 result
= DAG
.getNode(ISD::FADD
, dl
,
3498 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3499 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3500 // For floating-point precision of 18:
3502 // Log10ofMantissa =
3507 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3509 // error 0.0000037995730, which is better than 18 bits
3510 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3511 getF32Constant(DAG
, 0x3c5d51ce));
3512 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3513 getF32Constant(DAG
, 0x3e00685a));
3514 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3515 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3516 getF32Constant(DAG
, 0x3efb6798));
3517 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3518 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3519 getF32Constant(DAG
, 0x3f88d192));
3520 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3521 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3522 getF32Constant(DAG
, 0x3fc4316c));
3523 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3524 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
3525 getF32Constant(DAG
, 0x3f57ce70));
3527 result
= DAG
.getNode(ISD::FADD
, dl
,
3528 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3531 // No special expansion.
3532 result
= DAG
.getNode(ISD::FLOG10
, dl
,
3533 getValue(I
.getOperand(1)).getValueType(),
3534 getValue(I
.getOperand(1)));
3537 setValue(&I
, result
);
3540 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3541 /// limited-precision mode.
3543 SelectionDAGLowering::visitExp2(CallInst
&I
) {
3545 DebugLoc dl
= getCurDebugLoc();
3547 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3548 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3549 SDValue Op
= getValue(I
.getOperand(1));
3551 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Op
);
3553 // FractionalPartOfX = x - (float)IntegerPartOfX;
3554 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3555 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, Op
, t1
);
3557 // IntegerPartOfX <<= 23;
3558 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3559 DAG
.getConstant(23, TLI
.getPointerTy()));
3561 if (LimitFloatPrecision
<= 6) {
3562 // For floating-point precision of 6:
3564 // TwoToFractionalPartOfX =
3566 // (0.735607626f + 0.252464424f * x) * x;
3568 // error 0.0144103317, which is 6 bits
3569 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3570 getF32Constant(DAG
, 0x3e814304));
3571 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3572 getF32Constant(DAG
, 0x3f3c50c8));
3573 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3574 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3575 getF32Constant(DAG
, 0x3f7f5e7e));
3576 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3577 SDValue TwoToFractionalPartOfX
=
3578 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3580 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3581 MVT::f32
, TwoToFractionalPartOfX
);
3582 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3583 // For floating-point precision of 12:
3585 // TwoToFractionalPartOfX =
3588 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3590 // error 0.000107046256, which is 13 to 14 bits
3591 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3592 getF32Constant(DAG
, 0x3da235e3));
3593 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3594 getF32Constant(DAG
, 0x3e65b8f3));
3595 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3596 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3597 getF32Constant(DAG
, 0x3f324b07));
3598 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3599 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3600 getF32Constant(DAG
, 0x3f7ff8fd));
3601 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3602 SDValue TwoToFractionalPartOfX
=
3603 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3605 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3606 MVT::f32
, TwoToFractionalPartOfX
);
3607 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3608 // For floating-point precision of 18:
3610 // TwoToFractionalPartOfX =
3614 // (0.554906021e-1f +
3615 // (0.961591928e-2f +
3616 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3617 // error 2.47208000*10^(-7), which is better than 18 bits
3618 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3619 getF32Constant(DAG
, 0x3924b03e));
3620 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3621 getF32Constant(DAG
, 0x3ab24b87));
3622 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3623 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3624 getF32Constant(DAG
, 0x3c1d8c17));
3625 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3626 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3627 getF32Constant(DAG
, 0x3d634a1d));
3628 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3629 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3630 getF32Constant(DAG
, 0x3e75fe14));
3631 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3632 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3633 getF32Constant(DAG
, 0x3f317234));
3634 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3635 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3636 getF32Constant(DAG
, 0x3f800000));
3637 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3638 SDValue TwoToFractionalPartOfX
=
3639 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3641 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3642 MVT::f32
, TwoToFractionalPartOfX
);
3645 // No special expansion.
3646 result
= DAG
.getNode(ISD::FEXP2
, dl
,
3647 getValue(I
.getOperand(1)).getValueType(),
3648 getValue(I
.getOperand(1)));
3651 setValue(&I
, result
);
3654 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3655 /// limited-precision mode with x == 10.0f.
3657 SelectionDAGLowering::visitPow(CallInst
&I
) {
3659 Value
*Val
= I
.getOperand(1);
3660 DebugLoc dl
= getCurDebugLoc();
3661 bool IsExp10
= false;
3663 if (getValue(Val
).getValueType() == MVT::f32
&&
3664 getValue(I
.getOperand(2)).getValueType() == MVT::f32
&&
3665 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3666 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(Val
))) {
3667 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
3669 IsExp10
= CFP
->getValueAPF().bitwiseIsEqual(Ten
);
3674 if (IsExp10
&& LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3675 SDValue Op
= getValue(I
.getOperand(2));
3677 // Put the exponent in the right bit position for later addition to the
3680 // #define LOG2OF10 3.3219281f
3681 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3682 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3683 getF32Constant(DAG
, 0x40549a78));
3684 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3686 // FractionalPartOfX = x - (float)IntegerPartOfX;
3687 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3688 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3690 // IntegerPartOfX <<= 23;
3691 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3692 DAG
.getConstant(23, TLI
.getPointerTy()));
3694 if (LimitFloatPrecision
<= 6) {
3695 // For floating-point precision of 6:
3697 // twoToFractionalPartOfX =
3699 // (0.735607626f + 0.252464424f * x) * x;
3701 // error 0.0144103317, which is 6 bits
3702 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3703 getF32Constant(DAG
, 0x3e814304));
3704 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3705 getF32Constant(DAG
, 0x3f3c50c8));
3706 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3707 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3708 getF32Constant(DAG
, 0x3f7f5e7e));
3709 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3710 SDValue TwoToFractionalPartOfX
=
3711 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3713 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3714 MVT::f32
, TwoToFractionalPartOfX
);
3715 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3716 // For floating-point precision of 12:
3718 // TwoToFractionalPartOfX =
3721 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3723 // error 0.000107046256, which is 13 to 14 bits
3724 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3725 getF32Constant(DAG
, 0x3da235e3));
3726 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3727 getF32Constant(DAG
, 0x3e65b8f3));
3728 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3729 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3730 getF32Constant(DAG
, 0x3f324b07));
3731 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3732 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3733 getF32Constant(DAG
, 0x3f7ff8fd));
3734 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3735 SDValue TwoToFractionalPartOfX
=
3736 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3738 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3739 MVT::f32
, TwoToFractionalPartOfX
);
3740 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3741 // For floating-point precision of 18:
3743 // TwoToFractionalPartOfX =
3747 // (0.554906021e-1f +
3748 // (0.961591928e-2f +
3749 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3750 // error 2.47208000*10^(-7), which is better than 18 bits
3751 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3752 getF32Constant(DAG
, 0x3924b03e));
3753 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3754 getF32Constant(DAG
, 0x3ab24b87));
3755 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3756 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3757 getF32Constant(DAG
, 0x3c1d8c17));
3758 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3759 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3760 getF32Constant(DAG
, 0x3d634a1d));
3761 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3762 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3763 getF32Constant(DAG
, 0x3e75fe14));
3764 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3765 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3766 getF32Constant(DAG
, 0x3f317234));
3767 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3768 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3769 getF32Constant(DAG
, 0x3f800000));
3770 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3771 SDValue TwoToFractionalPartOfX
=
3772 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3774 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3775 MVT::f32
, TwoToFractionalPartOfX
);
3778 // No special expansion.
3779 result
= DAG
.getNode(ISD::FPOW
, dl
,
3780 getValue(I
.getOperand(1)).getValueType(),
3781 getValue(I
.getOperand(1)),
3782 getValue(I
.getOperand(2)));
3785 setValue(&I
, result
);
3788 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3789 /// we want to emit this as a call to a named external function, return the name
3790 /// otherwise lower it and return null.
3792 SelectionDAGLowering::visitIntrinsicCall(CallInst
&I
, unsigned Intrinsic
) {
3793 DebugLoc dl
= getCurDebugLoc();
3794 switch (Intrinsic
) {
3796 // By default, turn this into a target intrinsic node.
3797 visitTargetIntrinsic(I
, Intrinsic
);
3799 case Intrinsic::vastart
: visitVAStart(I
); return 0;
3800 case Intrinsic::vaend
: visitVAEnd(I
); return 0;
3801 case Intrinsic::vacopy
: visitVACopy(I
); return 0;
3802 case Intrinsic::returnaddress
:
3803 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, dl
, TLI
.getPointerTy(),
3804 getValue(I
.getOperand(1))));
3806 case Intrinsic::frameaddress
:
3807 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(),
3808 getValue(I
.getOperand(1))));
3810 case Intrinsic::setjmp
:
3811 return "_setjmp"+!TLI
.usesUnderscoreSetJmp();
3813 case Intrinsic::longjmp
:
3814 return "_longjmp"+!TLI
.usesUnderscoreLongJmp();
3816 case Intrinsic::memcpy
: {
3817 SDValue Op1
= getValue(I
.getOperand(1));
3818 SDValue Op2
= getValue(I
.getOperand(2));
3819 SDValue Op3
= getValue(I
.getOperand(3));
3820 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3821 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, false,
3822 I
.getOperand(1), 0, I
.getOperand(2), 0));
3825 case Intrinsic::memset
: {
3826 SDValue Op1
= getValue(I
.getOperand(1));
3827 SDValue Op2
= getValue(I
.getOperand(2));
3828 SDValue Op3
= getValue(I
.getOperand(3));
3829 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3830 DAG
.setRoot(DAG
.getMemset(getRoot(), dl
, Op1
, Op2
, Op3
, Align
,
3831 I
.getOperand(1), 0));
3834 case Intrinsic::memmove
: {
3835 SDValue Op1
= getValue(I
.getOperand(1));
3836 SDValue Op2
= getValue(I
.getOperand(2));
3837 SDValue Op3
= getValue(I
.getOperand(3));
3838 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3840 // If the source and destination are known to not be aliases, we can
3841 // lower memmove as memcpy.
3842 uint64_t Size
= -1ULL;
3843 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op3
))
3844 Size
= C
->getZExtValue();
3845 if (AA
->alias(I
.getOperand(1), Size
, I
.getOperand(2), Size
) ==
3846 AliasAnalysis::NoAlias
) {
3847 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, false,
3848 I
.getOperand(1), 0, I
.getOperand(2), 0));
3852 DAG
.setRoot(DAG
.getMemmove(getRoot(), dl
, Op1
, Op2
, Op3
, Align
,
3853 I
.getOperand(1), 0, I
.getOperand(2), 0));
3856 case Intrinsic::dbg_stoppoint
: {
3857 DbgStopPointInst
&SPI
= cast
<DbgStopPointInst
>(I
);
3858 if (isValidDebugInfoIntrinsic(SPI
, CodeGenOpt::Default
)) {
3859 MachineFunction
&MF
= DAG
.getMachineFunction();
3860 DebugLoc Loc
= ExtractDebugLocation(SPI
, MF
.getDebugLocInfo());
3861 setCurDebugLoc(Loc
);
3863 if (OptLevel
== CodeGenOpt::None
)
3864 DAG
.setRoot(DAG
.getDbgStopPoint(Loc
, getRoot(),
3871 case Intrinsic::dbg_region_start
: {
3872 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3873 DbgRegionStartInst
&RSI
= cast
<DbgRegionStartInst
>(I
);
3874 if (isValidDebugInfoIntrinsic(RSI
, OptLevel
) && DW
3875 && DW
->ShouldEmitDwarfDebug()) {
3877 DW
->RecordRegionStart(RSI
.getContext());
3878 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3879 getRoot(), LabelID
));
3883 case Intrinsic::dbg_region_end
: {
3884 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3885 DbgRegionEndInst
&REI
= cast
<DbgRegionEndInst
>(I
);
3887 if (!isValidDebugInfoIntrinsic(REI
, OptLevel
) || !DW
3888 || !DW
->ShouldEmitDwarfDebug())
3891 MachineFunction
&MF
= DAG
.getMachineFunction();
3892 DISubprogram
Subprogram(REI
.getContext());
3894 if (isInlinedFnEnd(REI
, MF
.getFunction())) {
3895 // This is end of inlined function. Debugging information for inlined
3896 // function is not handled yet (only supported by FastISel).
3897 if (OptLevel
== CodeGenOpt::None
) {
3898 unsigned ID
= DW
->RecordInlinedFnEnd(Subprogram
);
3900 // Returned ID is 0 if this is unbalanced "end of inlined
3901 // scope". This could happen if optimizer eats dbg intrinsics or
3902 // "beginning of inlined scope" is not recoginized due to missing
3903 // location info. In such cases, do ignore this region.end.
3904 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3911 DW
->RecordRegionEnd(REI
.getContext());
3912 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3913 getRoot(), LabelID
));
3916 case Intrinsic::dbg_func_start
: {
3917 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3918 DbgFuncStartInst
&FSI
= cast
<DbgFuncStartInst
>(I
);
3919 if (!isValidDebugInfoIntrinsic(FSI
, CodeGenOpt::None
))
3922 MachineFunction
&MF
= DAG
.getMachineFunction();
3923 // This is a beginning of an inlined function.
3924 if (isInlinedFnStart(FSI
, MF
.getFunction())) {
3925 if (OptLevel
!= CodeGenOpt::None
)
3926 // FIXME: Debugging informaation for inlined function is only
3927 // supported at CodeGenOpt::Node.
3930 DebugLoc PrevLoc
= CurDebugLoc
;
3931 // If llvm.dbg.func.start is seen in a new block before any
3932 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
3933 // FIXME : Why DebugLoc is reset at the beginning of each block ?
3934 if (PrevLoc
.isUnknown())
3937 // Record the source line.
3938 setCurDebugLoc(ExtractDebugLocation(FSI
, MF
.getDebugLocInfo()));
3940 if (!DW
|| !DW
->ShouldEmitDwarfDebug())
3942 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
3943 DISubprogram
SP(FSI
.getSubprogram());
3944 DICompileUnit
CU(PrevLocTpl
.CompileUnit
);
3945 unsigned LabelID
= DW
->RecordInlinedFnStart(SP
, CU
,
3948 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3949 getRoot(), LabelID
));
3953 // This is a beginning of a new function.
3954 MF
.setDefaultDebugLoc(ExtractDebugLocation(FSI
, MF
.getDebugLocInfo()));
3956 if (!DW
|| !DW
->ShouldEmitDwarfDebug())
3958 // llvm.dbg.func_start also defines beginning of function scope.
3959 DW
->RecordRegionStart(FSI
.getSubprogram());
3962 case Intrinsic::dbg_declare
: {
3963 if (OptLevel
!= CodeGenOpt::None
)
3964 // FIXME: Variable debug info is not supported here.
3966 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3969 DbgDeclareInst
&DI
= cast
<DbgDeclareInst
>(I
);
3970 if (!isValidDebugInfoIntrinsic(DI
, CodeGenOpt::None
))
3973 Value
*Variable
= DI
.getVariable();
3974 Value
*Address
= DI
.getAddress();
3975 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
3976 Address
= BCI
->getOperand(0);
3977 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
3978 // Don't handle byval struct arguments or VLAs, for example.
3981 DenseMap
<const AllocaInst
*, int>::iterator SI
=
3982 FuncInfo
.StaticAllocaMap
.find(AI
);
3983 if (SI
== FuncInfo
.StaticAllocaMap
.end())
3985 int FI
= SI
->second
;
3986 DW
->RecordVariable(cast
<MDNode
>(Variable
), FI
);
3989 case Intrinsic::eh_exception
: {
3990 // Insert the EXCEPTIONADDR instruction.
3991 assert(CurMBB
->isLandingPad() &&"Call to eh.exception not in landing pad!");
3992 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
3994 Ops
[0] = DAG
.getRoot();
3995 SDValue Op
= DAG
.getNode(ISD::EXCEPTIONADDR
, dl
, VTs
, Ops
, 1);
3997 DAG
.setRoot(Op
.getValue(1));
4001 case Intrinsic::eh_selector_i32
:
4002 case Intrinsic::eh_selector_i64
: {
4003 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4004 EVT VT
= (Intrinsic
== Intrinsic::eh_selector_i32
? MVT::i32
: MVT::i64
);
4007 if (CurMBB
->isLandingPad())
4008 AddCatchInfo(I
, MMI
, CurMBB
);
4011 FuncInfo
.CatchInfoLost
.insert(&I
);
4013 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4014 unsigned Reg
= TLI
.getExceptionSelectorRegister();
4015 if (Reg
) CurMBB
->addLiveIn(Reg
);
4018 // Insert the EHSELECTION instruction.
4019 SDVTList VTs
= DAG
.getVTList(VT
, MVT::Other
);
4021 Ops
[0] = getValue(I
.getOperand(1));
4023 SDValue Op
= DAG
.getNode(ISD::EHSELECTION
, dl
, VTs
, Ops
, 2);
4025 DAG
.setRoot(Op
.getValue(1));
4027 setValue(&I
, DAG
.getConstant(0, VT
));
4033 case Intrinsic::eh_typeid_for_i32
:
4034 case Intrinsic::eh_typeid_for_i64
: {
4035 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4036 EVT VT
= (Intrinsic
== Intrinsic::eh_typeid_for_i32
?
4037 MVT::i32
: MVT::i64
);
4040 // Find the type id for the given typeinfo.
4041 GlobalVariable
*GV
= ExtractTypeInfo(I
.getOperand(1));
4043 unsigned TypeID
= MMI
->getTypeIDFor(GV
);
4044 setValue(&I
, DAG
.getConstant(TypeID
, VT
));
4046 // Return something different to eh_selector.
4047 setValue(&I
, DAG
.getConstant(1, VT
));
4053 case Intrinsic::eh_return_i32
:
4054 case Intrinsic::eh_return_i64
:
4055 if (MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo()) {
4056 MMI
->setCallsEHReturn(true);
4057 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, dl
,
4060 getValue(I
.getOperand(1)),
4061 getValue(I
.getOperand(2))));
4063 setValue(&I
, DAG
.getConstant(0, TLI
.getPointerTy()));
4067 case Intrinsic::eh_unwind_init
:
4068 if (MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo()) {
4069 MMI
->setCallsUnwindInit(true);
4074 case Intrinsic::eh_dwarf_cfa
: {
4075 EVT VT
= getValue(I
.getOperand(1)).getValueType();
4077 if (VT
.bitsGT(TLI
.getPointerTy()))
4078 CfaArg
= DAG
.getNode(ISD::TRUNCATE
, dl
,
4079 TLI
.getPointerTy(), getValue(I
.getOperand(1)));
4081 CfaArg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
,
4082 TLI
.getPointerTy(), getValue(I
.getOperand(1)));
4084 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
4086 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
4087 TLI
.getPointerTy()),
4089 setValue(&I
, DAG
.getNode(ISD::ADD
, dl
,
4091 DAG
.getNode(ISD::FRAMEADDR
, dl
,
4094 TLI
.getPointerTy())),
4098 case Intrinsic::convertff
:
4099 case Intrinsic::convertfsi
:
4100 case Intrinsic::convertfui
:
4101 case Intrinsic::convertsif
:
4102 case Intrinsic::convertuif
:
4103 case Intrinsic::convertss
:
4104 case Intrinsic::convertsu
:
4105 case Intrinsic::convertus
:
4106 case Intrinsic::convertuu
: {
4107 ISD::CvtCode Code
= ISD::CVT_INVALID
;
4108 switch (Intrinsic
) {
4109 case Intrinsic::convertff
: Code
= ISD::CVT_FF
; break;
4110 case Intrinsic::convertfsi
: Code
= ISD::CVT_FS
; break;
4111 case Intrinsic::convertfui
: Code
= ISD::CVT_FU
; break;
4112 case Intrinsic::convertsif
: Code
= ISD::CVT_SF
; break;
4113 case Intrinsic::convertuif
: Code
= ISD::CVT_UF
; break;
4114 case Intrinsic::convertss
: Code
= ISD::CVT_SS
; break;
4115 case Intrinsic::convertsu
: Code
= ISD::CVT_SU
; break;
4116 case Intrinsic::convertus
: Code
= ISD::CVT_US
; break;
4117 case Intrinsic::convertuu
: Code
= ISD::CVT_UU
; break;
4119 EVT DestVT
= TLI
.getValueType(I
.getType());
4120 Value
* Op1
= I
.getOperand(1);
4121 setValue(&I
, DAG
.getConvertRndSat(DestVT
, getCurDebugLoc(), getValue(Op1
),
4122 DAG
.getValueType(DestVT
),
4123 DAG
.getValueType(getValue(Op1
).getValueType()),
4124 getValue(I
.getOperand(2)),
4125 getValue(I
.getOperand(3)),
4130 case Intrinsic::sqrt
:
4131 setValue(&I
, DAG
.getNode(ISD::FSQRT
, dl
,
4132 getValue(I
.getOperand(1)).getValueType(),
4133 getValue(I
.getOperand(1))));
4135 case Intrinsic::powi
:
4136 setValue(&I
, DAG
.getNode(ISD::FPOWI
, dl
,
4137 getValue(I
.getOperand(1)).getValueType(),
4138 getValue(I
.getOperand(1)),
4139 getValue(I
.getOperand(2))));
4141 case Intrinsic::sin
:
4142 setValue(&I
, DAG
.getNode(ISD::FSIN
, dl
,
4143 getValue(I
.getOperand(1)).getValueType(),
4144 getValue(I
.getOperand(1))));
4146 case Intrinsic::cos
:
4147 setValue(&I
, DAG
.getNode(ISD::FCOS
, dl
,
4148 getValue(I
.getOperand(1)).getValueType(),
4149 getValue(I
.getOperand(1))));
4151 case Intrinsic::log
:
4154 case Intrinsic::log2
:
4157 case Intrinsic::log10
:
4160 case Intrinsic::exp
:
4163 case Intrinsic::exp2
:
4166 case Intrinsic::pow
:
4169 case Intrinsic::pcmarker
: {
4170 SDValue Tmp
= getValue(I
.getOperand(1));
4171 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, dl
, MVT::Other
, getRoot(), Tmp
));
4174 case Intrinsic::readcyclecounter
: {
4175 SDValue Op
= getRoot();
4176 SDValue Tmp
= DAG
.getNode(ISD::READCYCLECOUNTER
, dl
,
4177 DAG
.getVTList(MVT::i64
, MVT::Other
),
4180 DAG
.setRoot(Tmp
.getValue(1));
4183 case Intrinsic::bswap
:
4184 setValue(&I
, DAG
.getNode(ISD::BSWAP
, dl
,
4185 getValue(I
.getOperand(1)).getValueType(),
4186 getValue(I
.getOperand(1))));
4188 case Intrinsic::cttz
: {
4189 SDValue Arg
= getValue(I
.getOperand(1));
4190 EVT Ty
= Arg
.getValueType();
4191 SDValue result
= DAG
.getNode(ISD::CTTZ
, dl
, Ty
, Arg
);
4192 setValue(&I
, result
);
4195 case Intrinsic::ctlz
: {
4196 SDValue Arg
= getValue(I
.getOperand(1));
4197 EVT Ty
= Arg
.getValueType();
4198 SDValue result
= DAG
.getNode(ISD::CTLZ
, dl
, Ty
, Arg
);
4199 setValue(&I
, result
);
4202 case Intrinsic::ctpop
: {
4203 SDValue Arg
= getValue(I
.getOperand(1));
4204 EVT Ty
= Arg
.getValueType();
4205 SDValue result
= DAG
.getNode(ISD::CTPOP
, dl
, Ty
, Arg
);
4206 setValue(&I
, result
);
4209 case Intrinsic::stacksave
: {
4210 SDValue Op
= getRoot();
4211 SDValue Tmp
= DAG
.getNode(ISD::STACKSAVE
, dl
,
4212 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
), &Op
, 1);
4214 DAG
.setRoot(Tmp
.getValue(1));
4217 case Intrinsic::stackrestore
: {
4218 SDValue Tmp
= getValue(I
.getOperand(1));
4219 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, dl
, MVT::Other
, getRoot(), Tmp
));
4222 case Intrinsic::stackprotector
: {
4223 // Emit code into the DAG to store the stack guard onto the stack.
4224 MachineFunction
&MF
= DAG
.getMachineFunction();
4225 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
4226 EVT PtrTy
= TLI
.getPointerTy();
4228 SDValue Src
= getValue(I
.getOperand(1)); // The guard's value.
4229 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getOperand(2));
4231 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
4232 MFI
->setStackProtectorIndex(FI
);
4234 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4236 // Store the stack protector onto the stack.
4237 SDValue Result
= DAG
.getStore(getRoot(), getCurDebugLoc(), Src
, FIN
,
4238 PseudoSourceValue::getFixedStack(FI
),
4240 setValue(&I
, Result
);
4241 DAG
.setRoot(Result
);
4244 case Intrinsic::var_annotation
:
4245 // Discard annotate attributes
4248 case Intrinsic::init_trampoline
: {
4249 const Function
*F
= cast
<Function
>(I
.getOperand(2)->stripPointerCasts());
4253 Ops
[1] = getValue(I
.getOperand(1));
4254 Ops
[2] = getValue(I
.getOperand(2));
4255 Ops
[3] = getValue(I
.getOperand(3));
4256 Ops
[4] = DAG
.getSrcValue(I
.getOperand(1));
4257 Ops
[5] = DAG
.getSrcValue(F
);
4259 SDValue Tmp
= DAG
.getNode(ISD::TRAMPOLINE
, dl
,
4260 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
),
4264 DAG
.setRoot(Tmp
.getValue(1));
4268 case Intrinsic::gcroot
:
4270 Value
*Alloca
= I
.getOperand(1);
4271 Constant
*TypeMap
= cast
<Constant
>(I
.getOperand(2));
4273 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
4274 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
4278 case Intrinsic::gcread
:
4279 case Intrinsic::gcwrite
:
4280 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4283 case Intrinsic::flt_rounds
: {
4284 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, dl
, MVT::i32
));
4288 case Intrinsic::trap
: {
4289 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, dl
,MVT::Other
, getRoot()));
4293 case Intrinsic::uadd_with_overflow
:
4294 return implVisitAluOverflow(I
, ISD::UADDO
);
4295 case Intrinsic::sadd_with_overflow
:
4296 return implVisitAluOverflow(I
, ISD::SADDO
);
4297 case Intrinsic::usub_with_overflow
:
4298 return implVisitAluOverflow(I
, ISD::USUBO
);
4299 case Intrinsic::ssub_with_overflow
:
4300 return implVisitAluOverflow(I
, ISD::SSUBO
);
4301 case Intrinsic::umul_with_overflow
:
4302 return implVisitAluOverflow(I
, ISD::UMULO
);
4303 case Intrinsic::smul_with_overflow
:
4304 return implVisitAluOverflow(I
, ISD::SMULO
);
4306 case Intrinsic::prefetch
: {
4309 Ops
[1] = getValue(I
.getOperand(1));
4310 Ops
[2] = getValue(I
.getOperand(2));
4311 Ops
[3] = getValue(I
.getOperand(3));
4312 DAG
.setRoot(DAG
.getNode(ISD::PREFETCH
, dl
, MVT::Other
, &Ops
[0], 4));
4316 case Intrinsic::memory_barrier
: {
4319 for (int x
= 1; x
< 6; ++x
)
4320 Ops
[x
] = getValue(I
.getOperand(x
));
4322 DAG
.setRoot(DAG
.getNode(ISD::MEMBARRIER
, dl
, MVT::Other
, &Ops
[0], 6));
4325 case Intrinsic::atomic_cmp_swap
: {
4326 SDValue Root
= getRoot();
4328 DAG
.getAtomic(ISD::ATOMIC_CMP_SWAP
, getCurDebugLoc(),
4329 getValue(I
.getOperand(2)).getValueType().getSimpleVT(),
4331 getValue(I
.getOperand(1)),
4332 getValue(I
.getOperand(2)),
4333 getValue(I
.getOperand(3)),
4336 DAG
.setRoot(L
.getValue(1));
4339 case Intrinsic::atomic_load_add
:
4340 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_ADD
);
4341 case Intrinsic::atomic_load_sub
:
4342 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_SUB
);
4343 case Intrinsic::atomic_load_or
:
4344 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_OR
);
4345 case Intrinsic::atomic_load_xor
:
4346 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_XOR
);
4347 case Intrinsic::atomic_load_and
:
4348 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_AND
);
4349 case Intrinsic::atomic_load_nand
:
4350 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_NAND
);
4351 case Intrinsic::atomic_load_max
:
4352 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MAX
);
4353 case Intrinsic::atomic_load_min
:
4354 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MIN
);
4355 case Intrinsic::atomic_load_umin
:
4356 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMIN
);
4357 case Intrinsic::atomic_load_umax
:
4358 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMAX
);
4359 case Intrinsic::atomic_swap
:
4360 return implVisitBinaryAtomic(I
, ISD::ATOMIC_SWAP
);
4364 /// Test if the given instruction is in a position to be optimized
4365 /// with a tail-call. This roughly means that it's in a block with
4366 /// a return and there's nothing that needs to be scheduled
4367 /// between it and the return.
4369 /// This function only tests target-independent requirements.
4370 /// For target-dependent requirements, a target should override
4371 /// TargetLowering::IsEligibleForTailCallOptimization.
4374 isInTailCallPosition(const Instruction
*I
, Attributes RetAttr
,
4375 const TargetLowering
&TLI
) {
4376 const BasicBlock
*ExitBB
= I
->getParent();
4377 const TerminatorInst
*Term
= ExitBB
->getTerminator();
4378 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
4379 const Function
*F
= ExitBB
->getParent();
4381 // The block must end in a return statement or an unreachable.
4382 if (!Ret
&& !isa
<UnreachableInst
>(Term
)) return false;
4384 // If I will have a chain, make sure no other instruction that will have a
4385 // chain interposes between I and the return.
4386 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory() ||
4387 !I
->isSafeToSpeculativelyExecute())
4388 for (BasicBlock::const_iterator BBI
= prior(prior(ExitBB
->end())); ;
4392 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
4393 !BBI
->isSafeToSpeculativelyExecute())
4397 // If the block ends with a void return or unreachable, it doesn't matter
4398 // what the call's return type is.
4399 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
4401 // Conservatively require the attributes of the call to match those of
4403 if (F
->getAttributes().getRetAttributes() != RetAttr
)
4406 // Otherwise, make sure the unmodified return value of I is the return value.
4407 for (const Instruction
*U
= dyn_cast
<Instruction
>(Ret
->getOperand(0)); ;
4408 U
= dyn_cast
<Instruction
>(U
->getOperand(0))) {
4411 if (!U
->hasOneUse())
4415 // Check for a truly no-op truncate.
4416 if (isa
<TruncInst
>(U
) &&
4417 TLI
.isTruncateFree(U
->getOperand(0)->getType(), U
->getType()))
4419 // Check for a truly no-op bitcast.
4420 if (isa
<BitCastInst
>(U
) &&
4421 (U
->getOperand(0)->getType() == U
->getType() ||
4422 (isa
<PointerType
>(U
->getOperand(0)->getType()) &&
4423 isa
<PointerType
>(U
->getType()))))
4425 // Otherwise it's not a true no-op.
4432 void SelectionDAGLowering::LowerCallTo(CallSite CS
, SDValue Callee
,
4434 MachineBasicBlock
*LandingPad
) {
4435 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
4436 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
4437 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4438 unsigned BeginLabel
= 0, EndLabel
= 0;
4440 TargetLowering::ArgListTy Args
;
4441 TargetLowering::ArgListEntry Entry
;
4442 Args
.reserve(CS
.arg_size());
4444 for (CallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
4446 SDValue ArgNode
= getValue(*i
);
4447 Entry
.Node
= ArgNode
; Entry
.Ty
= (*i
)->getType();
4449 unsigned attrInd
= i
- CS
.arg_begin() + 1;
4450 Entry
.isSExt
= CS
.paramHasAttr(attrInd
, Attribute::SExt
);
4451 Entry
.isZExt
= CS
.paramHasAttr(attrInd
, Attribute::ZExt
);
4452 Entry
.isInReg
= CS
.paramHasAttr(attrInd
, Attribute::InReg
);
4453 Entry
.isSRet
= CS
.paramHasAttr(attrInd
, Attribute::StructRet
);
4454 Entry
.isNest
= CS
.paramHasAttr(attrInd
, Attribute::Nest
);
4455 Entry
.isByVal
= CS
.paramHasAttr(attrInd
, Attribute::ByVal
);
4456 Entry
.Alignment
= CS
.getParamAlignment(attrInd
);
4457 Args
.push_back(Entry
);
4460 if (LandingPad
&& MMI
) {
4461 // Insert a label before the invoke call to mark the try range. This can be
4462 // used to detect deletion of the invoke via the MachineModuleInfo.
4463 BeginLabel
= MMI
->NextLabelID();
4465 // Both PendingLoads and PendingExports must be flushed here;
4466 // this call might not return.
4468 DAG
.setRoot(DAG
.getLabel(ISD::EH_LABEL
, getCurDebugLoc(),
4469 getControlRoot(), BeginLabel
));
4472 // Check if target-independent constraints permit a tail call here.
4473 // Target-dependent constraints are checked within TLI.LowerCallTo.
4475 !isInTailCallPosition(CS
.getInstruction(),
4476 CS
.getAttributes().getRetAttributes(),
4480 std::pair
<SDValue
,SDValue
> Result
=
4481 TLI
.LowerCallTo(getRoot(), CS
.getType(),
4482 CS
.paramHasAttr(0, Attribute::SExt
),
4483 CS
.paramHasAttr(0, Attribute::ZExt
), FTy
->isVarArg(),
4484 CS
.paramHasAttr(0, Attribute::InReg
), FTy
->getNumParams(),
4485 CS
.getCallingConv(),
4487 !CS
.getInstruction()->use_empty(),
4488 Callee
, Args
, DAG
, getCurDebugLoc());
4489 assert((isTailCall
|| Result
.second
.getNode()) &&
4490 "Non-null chain expected with non-tail call!");
4491 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
4492 "Null value expected with tail call!");
4493 if (Result
.first
.getNode())
4494 setValue(CS
.getInstruction(), Result
.first
);
4495 // As a special case, a null chain means that a tail call has
4496 // been emitted and the DAG root is already updated.
4497 if (Result
.second
.getNode())
4498 DAG
.setRoot(Result
.second
);
4502 if (LandingPad
&& MMI
) {
4503 // Insert a label at the end of the invoke call to mark the try range. This
4504 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4505 EndLabel
= MMI
->NextLabelID();
4506 DAG
.setRoot(DAG
.getLabel(ISD::EH_LABEL
, getCurDebugLoc(),
4507 getRoot(), EndLabel
));
4509 // Inform MachineModuleInfo of range.
4510 MMI
->addInvoke(LandingPad
, BeginLabel
, EndLabel
);
4515 void SelectionDAGLowering::visitCall(CallInst
&I
) {
4516 const char *RenameFn
= 0;
4517 if (Function
*F
= I
.getCalledFunction()) {
4518 if (F
->isDeclaration()) {
4519 const TargetIntrinsicInfo
*II
= TLI
.getTargetMachine().getIntrinsicInfo();
4521 if (unsigned IID
= II
->getIntrinsicID(F
)) {
4522 RenameFn
= visitIntrinsicCall(I
, IID
);
4527 if (unsigned IID
= F
->getIntrinsicID()) {
4528 RenameFn
= visitIntrinsicCall(I
, IID
);
4534 // Check for well-known libc/libm calls. If the function is internal, it
4535 // can't be a library call.
4536 if (!F
->hasLocalLinkage() && F
->hasName()) {
4537 StringRef Name
= F
->getName();
4538 if (Name
== "copysign" || Name
== "copysignf") {
4539 if (I
.getNumOperands() == 3 && // Basic sanity checks.
4540 I
.getOperand(1)->getType()->isFloatingPoint() &&
4541 I
.getType() == I
.getOperand(1)->getType() &&
4542 I
.getType() == I
.getOperand(2)->getType()) {
4543 SDValue LHS
= getValue(I
.getOperand(1));
4544 SDValue RHS
= getValue(I
.getOperand(2));
4545 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurDebugLoc(),
4546 LHS
.getValueType(), LHS
, RHS
));
4549 } else if (Name
== "fabs" || Name
== "fabsf" || Name
== "fabsl") {
4550 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4551 I
.getOperand(1)->getType()->isFloatingPoint() &&
4552 I
.getType() == I
.getOperand(1)->getType()) {
4553 SDValue Tmp
= getValue(I
.getOperand(1));
4554 setValue(&I
, DAG
.getNode(ISD::FABS
, getCurDebugLoc(),
4555 Tmp
.getValueType(), Tmp
));
4558 } else if (Name
== "sin" || Name
== "sinf" || Name
== "sinl") {
4559 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4560 I
.getOperand(1)->getType()->isFloatingPoint() &&
4561 I
.getType() == I
.getOperand(1)->getType()) {
4562 SDValue Tmp
= getValue(I
.getOperand(1));
4563 setValue(&I
, DAG
.getNode(ISD::FSIN
, getCurDebugLoc(),
4564 Tmp
.getValueType(), Tmp
));
4567 } else if (Name
== "cos" || Name
== "cosf" || Name
== "cosl") {
4568 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4569 I
.getOperand(1)->getType()->isFloatingPoint() &&
4570 I
.getType() == I
.getOperand(1)->getType()) {
4571 SDValue Tmp
= getValue(I
.getOperand(1));
4572 setValue(&I
, DAG
.getNode(ISD::FCOS
, getCurDebugLoc(),
4573 Tmp
.getValueType(), Tmp
));
4578 } else if (isa
<InlineAsm
>(I
.getOperand(0))) {
4585 Callee
= getValue(I
.getOperand(0));
4587 Callee
= DAG
.getExternalSymbol(RenameFn
, TLI
.getPointerTy());
4589 // Check if we can potentially perform a tail call. More detailed
4590 // checking is be done within LowerCallTo, after more information
4591 // about the call is known.
4592 bool isTailCall
= PerformTailCallOpt
&& I
.isTailCall();
4594 LowerCallTo(&I
, Callee
, isTailCall
);
4598 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4599 /// this value and returns the result as a ValueVT value. This uses
4600 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4601 /// If the Flag pointer is NULL, no flag is used.
4602 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
, DebugLoc dl
,
4604 SDValue
*Flag
) const {
4605 // Assemble the legal parts into the final values.
4606 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
4607 SmallVector
<SDValue
, 8> Parts
;
4608 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4609 // Copy the legal parts from the registers.
4610 EVT ValueVT
= ValueVTs
[Value
];
4611 unsigned NumRegs
= TLI
->getNumRegisters(*DAG
.getContext(), ValueVT
);
4612 EVT RegisterVT
= RegVTs
[Value
];
4614 Parts
.resize(NumRegs
);
4615 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4618 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
4620 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
4621 *Flag
= P
.getValue(2);
4623 Chain
= P
.getValue(1);
4625 // If the source register was virtual and if we know something about it,
4626 // add an assert node.
4627 if (TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) &&
4628 RegisterVT
.isInteger() && !RegisterVT
.isVector()) {
4629 unsigned SlotNo
= Regs
[Part
+i
]-TargetRegisterInfo::FirstVirtualRegister
;
4630 FunctionLoweringInfo
&FLI
= DAG
.getFunctionLoweringInfo();
4631 if (FLI
.LiveOutRegInfo
.size() > SlotNo
) {
4632 FunctionLoweringInfo::LiveOutInfo
&LOI
= FLI
.LiveOutRegInfo
[SlotNo
];
4634 unsigned RegSize
= RegisterVT
.getSizeInBits();
4635 unsigned NumSignBits
= LOI
.NumSignBits
;
4636 unsigned NumZeroBits
= LOI
.KnownZero
.countLeadingOnes();
4638 // FIXME: We capture more information than the dag can represent. For
4639 // now, just use the tightest assertzext/assertsext possible.
4641 EVT
FromVT(MVT::Other
);
4642 if (NumSignBits
== RegSize
)
4643 isSExt
= true, FromVT
= MVT::i1
; // ASSERT SEXT 1
4644 else if (NumZeroBits
>= RegSize
-1)
4645 isSExt
= false, FromVT
= MVT::i1
; // ASSERT ZEXT 1
4646 else if (NumSignBits
> RegSize
-8)
4647 isSExt
= true, FromVT
= MVT::i8
; // ASSERT SEXT 8
4648 else if (NumZeroBits
>= RegSize
-8)
4649 isSExt
= false, FromVT
= MVT::i8
; // ASSERT ZEXT 8
4650 else if (NumSignBits
> RegSize
-16)
4651 isSExt
= true, FromVT
= MVT::i16
; // ASSERT SEXT 16
4652 else if (NumZeroBits
>= RegSize
-16)
4653 isSExt
= false, FromVT
= MVT::i16
; // ASSERT ZEXT 16
4654 else if (NumSignBits
> RegSize
-32)
4655 isSExt
= true, FromVT
= MVT::i32
; // ASSERT SEXT 32
4656 else if (NumZeroBits
>= RegSize
-32)
4657 isSExt
= false, FromVT
= MVT::i32
; // ASSERT ZEXT 32
4659 if (FromVT
!= MVT::Other
) {
4660 P
= DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
4661 RegisterVT
, P
, DAG
.getValueType(FromVT
));
4670 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(),
4671 NumRegs
, RegisterVT
, ValueVT
);
4676 return DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4677 DAG
.getVTList(&ValueVTs
[0], ValueVTs
.size()),
4678 &Values
[0], ValueVTs
.size());
4681 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4682 /// specified value into the registers specified by this object. This uses
4683 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4684 /// If the Flag pointer is NULL, no flag is used.
4685 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
4686 SDValue
&Chain
, SDValue
*Flag
) const {
4687 // Get the list of the values's legal parts.
4688 unsigned NumRegs
= Regs
.size();
4689 SmallVector
<SDValue
, 8> Parts(NumRegs
);
4690 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4691 EVT ValueVT
= ValueVTs
[Value
];
4692 unsigned NumParts
= TLI
->getNumRegisters(*DAG
.getContext(), ValueVT
);
4693 EVT RegisterVT
= RegVTs
[Value
];
4695 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
),
4696 &Parts
[Part
], NumParts
, RegisterVT
);
4700 // Copy the parts into the registers.
4701 SmallVector
<SDValue
, 8> Chains(NumRegs
);
4702 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4705 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
4707 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
4708 *Flag
= Part
.getValue(1);
4710 Chains
[i
] = Part
.getValue(0);
4713 if (NumRegs
== 1 || Flag
)
4714 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4715 // flagged to it. That is the CopyToReg nodes and the user are considered
4716 // a single scheduling unit. If we create a TokenFactor and return it as
4717 // chain, then the TokenFactor is both a predecessor (operand) of the
4718 // user as well as a successor (the TF operands are flagged to the user).
4719 // c1, f1 = CopyToReg
4720 // c2, f2 = CopyToReg
4721 // c3 = TokenFactor c1, c2
4724 Chain
= Chains
[NumRegs
-1];
4726 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Chains
[0], NumRegs
);
4729 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4730 /// operand list. This adds the code marker and includes the number of
4731 /// values added into it.
4732 void RegsForValue::AddInlineAsmOperands(unsigned Code
,
4733 bool HasMatching
,unsigned MatchingIdx
,
4735 std::vector
<SDValue
> &Ops
) const {
4736 EVT IntPtrTy
= DAG
.getTargetLoweringInfo().getPointerTy();
4737 assert(Regs
.size() < (1 << 13) && "Too many inline asm outputs!");
4738 unsigned Flag
= Code
| (Regs
.size() << 3);
4740 Flag
|= 0x80000000 | (MatchingIdx
<< 16);
4741 Ops
.push_back(DAG
.getTargetConstant(Flag
, IntPtrTy
));
4742 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4743 unsigned NumRegs
= TLI
->getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
4744 EVT RegisterVT
= RegVTs
[Value
];
4745 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4746 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
4747 Ops
.push_back(DAG
.getRegister(Regs
[Reg
++], RegisterVT
));
4752 /// isAllocatableRegister - If the specified register is safe to allocate,
4753 /// i.e. it isn't a stack pointer or some other special register, return the
4754 /// register class for the register. Otherwise, return null.
4755 static const TargetRegisterClass
*
4756 isAllocatableRegister(unsigned Reg
, MachineFunction
&MF
,
4757 const TargetLowering
&TLI
,
4758 const TargetRegisterInfo
*TRI
) {
4759 EVT FoundVT
= MVT::Other
;
4760 const TargetRegisterClass
*FoundRC
= 0;
4761 for (TargetRegisterInfo::regclass_iterator RCI
= TRI
->regclass_begin(),
4762 E
= TRI
->regclass_end(); RCI
!= E
; ++RCI
) {
4763 EVT ThisVT
= MVT::Other
;
4765 const TargetRegisterClass
*RC
= *RCI
;
4766 // If none of the the value types for this register class are valid, we
4767 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4768 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
4770 if (TLI
.isTypeLegal(*I
)) {
4771 // If we have already found this register in a different register class,
4772 // choose the one with the largest VT specified. For example, on
4773 // PowerPC, we favor f64 register classes over f32.
4774 if (FoundVT
== MVT::Other
|| FoundVT
.bitsLT(*I
)) {
4781 if (ThisVT
== MVT::Other
) continue;
4783 // NOTE: This isn't ideal. In particular, this might allocate the
4784 // frame pointer in functions that need it (due to them not being taken
4785 // out of allocation, because a variable sized allocation hasn't been seen
4786 // yet). This is a slight code pessimization, but should still work.
4787 for (TargetRegisterClass::iterator I
= RC
->allocation_order_begin(MF
),
4788 E
= RC
->allocation_order_end(MF
); I
!= E
; ++I
)
4790 // We found a matching register class. Keep looking at others in case
4791 // we find one with larger registers that this physreg is also in.
4802 /// AsmOperandInfo - This contains information for each constraint that we are
4804 class VISIBILITY_HIDDEN SDISelAsmOperandInfo
:
4805 public TargetLowering::AsmOperandInfo
{
4807 /// CallOperand - If this is the result output operand or a clobber
4808 /// this is null, otherwise it is the incoming operand to the CallInst.
4809 /// This gets modified as the asm is processed.
4810 SDValue CallOperand
;
4812 /// AssignedRegs - If this is a register or register class operand, this
4813 /// contains the set of register corresponding to the operand.
4814 RegsForValue AssignedRegs
;
4816 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo
&info
)
4817 : TargetLowering::AsmOperandInfo(info
), CallOperand(0,0) {
4820 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4821 /// busy in OutputRegs/InputRegs.
4822 void MarkAllocatedRegs(bool isOutReg
, bool isInReg
,
4823 std::set
<unsigned> &OutputRegs
,
4824 std::set
<unsigned> &InputRegs
,
4825 const TargetRegisterInfo
&TRI
) const {
4827 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
4828 MarkRegAndAliases(AssignedRegs
.Regs
[i
], OutputRegs
, TRI
);
4831 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
4832 MarkRegAndAliases(AssignedRegs
.Regs
[i
], InputRegs
, TRI
);
4836 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4837 /// corresponds to. If there is no Value* for this operand, it returns
4839 EVT
getCallOperandValEVT(LLVMContext
&Context
,
4840 const TargetLowering
&TLI
,
4841 const TargetData
*TD
) const {
4842 if (CallOperandVal
== 0) return MVT::Other
;
4844 if (isa
<BasicBlock
>(CallOperandVal
))
4845 return TLI
.getPointerTy();
4847 const llvm::Type
*OpTy
= CallOperandVal
->getType();
4849 // If this is an indirect operand, the operand is a pointer to the
4852 OpTy
= cast
<PointerType
>(OpTy
)->getElementType();
4854 // If OpTy is not a single value, it may be a struct/union that we
4855 // can tile with integers.
4856 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
4857 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
4866 OpTy
= IntegerType::get(Context
, BitSize
);
4871 return TLI
.getValueType(OpTy
, true);
4875 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4877 static void MarkRegAndAliases(unsigned Reg
, std::set
<unsigned> &Regs
,
4878 const TargetRegisterInfo
&TRI
) {
4879 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) && "Isn't a physreg");
4881 if (const unsigned *Aliases
= TRI
.getAliasSet(Reg
))
4882 for (; *Aliases
; ++Aliases
)
4883 Regs
.insert(*Aliases
);
4886 } // end llvm namespace.
4889 /// GetRegistersForValue - Assign registers (virtual or physical) for the
4890 /// specified operand. We prefer to assign virtual registers, to allow the
4891 /// register allocator handle the assignment process. However, if the asm uses
4892 /// features that we can't model on machineinstrs, we have SDISel do the
4893 /// allocation. This produces generally horrible, but correct, code.
4895 /// OpInfo describes the operand.
4896 /// Input and OutputRegs are the set of already allocated physical registers.
4898 void SelectionDAGLowering::
4899 GetRegistersForValue(SDISelAsmOperandInfo
&OpInfo
,
4900 std::set
<unsigned> &OutputRegs
,
4901 std::set
<unsigned> &InputRegs
) {
4902 LLVMContext
&Context
= FuncInfo
.Fn
->getContext();
4904 // Compute whether this value requires an input register, an output register,
4906 bool isOutReg
= false;
4907 bool isInReg
= false;
4908 switch (OpInfo
.Type
) {
4909 case InlineAsm::isOutput
:
4912 // If there is an input constraint that matches this, we need to reserve
4913 // the input register so no other inputs allocate to it.
4914 isInReg
= OpInfo
.hasMatchingInput();
4916 case InlineAsm::isInput
:
4920 case InlineAsm::isClobber
:
4927 MachineFunction
&MF
= DAG
.getMachineFunction();
4928 SmallVector
<unsigned, 4> Regs
;
4930 // If this is a constraint for a single physreg, or a constraint for a
4931 // register class, find it.
4932 std::pair
<unsigned, const TargetRegisterClass
*> PhysReg
=
4933 TLI
.getRegForInlineAsmConstraint(OpInfo
.ConstraintCode
,
4934 OpInfo
.ConstraintVT
);
4936 unsigned NumRegs
= 1;
4937 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
4938 // If this is a FP input in an integer register (or visa versa) insert a bit
4939 // cast of the input value. More generally, handle any case where the input
4940 // value disagrees with the register class we plan to stick this in.
4941 if (OpInfo
.Type
== InlineAsm::isInput
&&
4942 PhysReg
.second
&& !PhysReg
.second
->hasType(OpInfo
.ConstraintVT
)) {
4943 // Try to convert to the first EVT that the reg class contains. If the
4944 // types are identical size, use a bitcast to convert (e.g. two differing
4946 EVT RegVT
= *PhysReg
.second
->vt_begin();
4947 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
4948 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
4949 RegVT
, OpInfo
.CallOperand
);
4950 OpInfo
.ConstraintVT
= RegVT
;
4951 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
4952 // If the input is a FP value and we want it in FP registers, do a
4953 // bitcast to the corresponding integer type. This turns an f64 value
4954 // into i64, which can be passed with two i32 values on a 32-bit
4956 RegVT
= EVT::getIntegerVT(Context
,
4957 OpInfo
.ConstraintVT
.getSizeInBits());
4958 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
4959 RegVT
, OpInfo
.CallOperand
);
4960 OpInfo
.ConstraintVT
= RegVT
;
4964 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
4968 EVT ValueVT
= OpInfo
.ConstraintVT
;
4970 // If this is a constraint for a specific physical register, like {r17},
4972 if (unsigned AssignedReg
= PhysReg
.first
) {
4973 const TargetRegisterClass
*RC
= PhysReg
.second
;
4974 if (OpInfo
.ConstraintVT
== MVT::Other
)
4975 ValueVT
= *RC
->vt_begin();
4977 // Get the actual register value type. This is important, because the user
4978 // may have asked for (e.g.) the AX register in i32 type. We need to
4979 // remember that AX is actually i16 to get the right extension.
4980 RegVT
= *RC
->vt_begin();
4982 // This is a explicit reference to a physical register.
4983 Regs
.push_back(AssignedReg
);
4985 // If this is an expanded reference, add the rest of the regs to Regs.
4987 TargetRegisterClass::iterator I
= RC
->begin();
4988 for (; *I
!= AssignedReg
; ++I
)
4989 assert(I
!= RC
->end() && "Didn't find reg!");
4991 // Already added the first reg.
4993 for (; NumRegs
; --NumRegs
, ++I
) {
4994 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
4998 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, RegVT
, ValueVT
);
4999 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5000 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5004 // Otherwise, if this was a reference to an LLVM register class, create vregs
5005 // for this reference.
5006 if (const TargetRegisterClass
*RC
= PhysReg
.second
) {
5007 RegVT
= *RC
->vt_begin();
5008 if (OpInfo
.ConstraintVT
== MVT::Other
)
5011 // Create the appropriate number of virtual registers.
5012 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5013 for (; NumRegs
; --NumRegs
)
5014 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
5016 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, RegVT
, ValueVT
);
5020 // This is a reference to a register class that doesn't directly correspond
5021 // to an LLVM register class. Allocate NumRegs consecutive, available,
5022 // registers from the class.
5023 std::vector
<unsigned> RegClassRegs
5024 = TLI
.getRegClassForInlineAsmConstraint(OpInfo
.ConstraintCode
,
5025 OpInfo
.ConstraintVT
);
5027 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5028 unsigned NumAllocated
= 0;
5029 for (unsigned i
= 0, e
= RegClassRegs
.size(); i
!= e
; ++i
) {
5030 unsigned Reg
= RegClassRegs
[i
];
5031 // See if this register is available.
5032 if ((isOutReg
&& OutputRegs
.count(Reg
)) || // Already used.
5033 (isInReg
&& InputRegs
.count(Reg
))) { // Already used.
5034 // Make sure we find consecutive registers.
5039 // Check to see if this register is allocatable (i.e. don't give out the
5041 const TargetRegisterClass
*RC
= isAllocatableRegister(Reg
, MF
, TLI
, TRI
);
5042 if (!RC
) { // Couldn't allocate this register.
5043 // Reset NumAllocated to make sure we return consecutive registers.
5048 // Okay, this register is good, we can use it.
5051 // If we allocated enough consecutive registers, succeed.
5052 if (NumAllocated
== NumRegs
) {
5053 unsigned RegStart
= (i
-NumAllocated
)+1;
5054 unsigned RegEnd
= i
+1;
5055 // Mark all of the allocated registers used.
5056 for (unsigned i
= RegStart
; i
!= RegEnd
; ++i
)
5057 Regs
.push_back(RegClassRegs
[i
]);
5059 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, *RC
->vt_begin(),
5060 OpInfo
.ConstraintVT
);
5061 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5066 // Otherwise, we couldn't allocate enough registers for this.
5069 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5070 /// processed uses a memory 'm' constraint.
5072 hasInlineAsmMemConstraint(std::vector
<InlineAsm::ConstraintInfo
> &CInfos
,
5073 const TargetLowering
&TLI
) {
5074 for (unsigned i
= 0, e
= CInfos
.size(); i
!= e
; ++i
) {
5075 InlineAsm::ConstraintInfo
&CI
= CInfos
[i
];
5076 for (unsigned j
= 0, ee
= CI
.Codes
.size(); j
!= ee
; ++j
) {
5077 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(CI
.Codes
[j
]);
5078 if (CType
== TargetLowering::C_Memory
)
5082 // Indirect operand accesses access memory.
5090 /// visitInlineAsm - Handle a call to an InlineAsm object.
5092 void SelectionDAGLowering::visitInlineAsm(CallSite CS
) {
5093 InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
5095 /// ConstraintOperands - Information about all of the constraints.
5096 std::vector
<SDISelAsmOperandInfo
> ConstraintOperands
;
5098 std::set
<unsigned> OutputRegs
, InputRegs
;
5100 // Do a prepass over the constraints, canonicalizing them, and building up the
5101 // ConstraintOperands list.
5102 std::vector
<InlineAsm::ConstraintInfo
>
5103 ConstraintInfos
= IA
->ParseConstraints();
5105 bool hasMemory
= hasInlineAsmMemConstraint(ConstraintInfos
, TLI
);
5107 SDValue Chain
, Flag
;
5109 // We won't need to flush pending loads if this asm doesn't touch
5110 // memory and is nonvolatile.
5111 if (hasMemory
|| IA
->hasSideEffects())
5114 Chain
= DAG
.getRoot();
5116 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
5117 unsigned ResNo
= 0; // ResNo - The result number of the next output.
5118 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
5119 ConstraintOperands
.push_back(SDISelAsmOperandInfo(ConstraintInfos
[i
]));
5120 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
5122 EVT OpVT
= MVT::Other
;
5124 // Compute the value type for each operand.
5125 switch (OpInfo
.Type
) {
5126 case InlineAsm::isOutput
:
5127 // Indirect outputs just consume an argument.
5128 if (OpInfo
.isIndirect
) {
5129 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
5133 // The return value of the call is this value. As such, there is no
5134 // corresponding argument.
5135 assert(CS
.getType() != Type::getVoidTy(*DAG
.getContext()) &&
5137 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
5138 OpVT
= TLI
.getValueType(STy
->getElementType(ResNo
));
5140 assert(ResNo
== 0 && "Asm only has one result!");
5141 OpVT
= TLI
.getValueType(CS
.getType());
5145 case InlineAsm::isInput
:
5146 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
5148 case InlineAsm::isClobber
:
5153 // If this is an input or an indirect output, process the call argument.
5154 // BasicBlocks are labels, currently appearing only in asm's.
5155 if (OpInfo
.CallOperandVal
) {
5156 // Strip bitcasts, if any. This mostly comes up for functions.
5157 OpInfo
.CallOperandVal
= OpInfo
.CallOperandVal
->stripPointerCasts();
5159 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
5160 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
5162 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
5165 OpVT
= OpInfo
.getCallOperandValEVT(*DAG
.getContext(), TLI
, TD
);
5168 OpInfo
.ConstraintVT
= OpVT
;
5171 // Second pass over the constraints: compute which constraint option to use
5172 // and assign registers to constraints that want a specific physreg.
5173 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
5174 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5176 // If this is an output operand with a matching input operand, look up the
5177 // matching input. If their types mismatch, e.g. one is an integer, the
5178 // other is floating point, or their sizes are different, flag it as an
5180 if (OpInfo
.hasMatchingInput()) {
5181 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
5182 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
5183 if ((OpInfo
.ConstraintVT
.isInteger() !=
5184 Input
.ConstraintVT
.isInteger()) ||
5185 (OpInfo
.ConstraintVT
.getSizeInBits() !=
5186 Input
.ConstraintVT
.getSizeInBits())) {
5187 llvm_report_error("Unsupported asm: input constraint"
5188 " with a matching output constraint of incompatible"
5191 Input
.ConstraintVT
= OpInfo
.ConstraintVT
;
5195 // Compute the constraint code and ConstraintType to use.
5196 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, hasMemory
, &DAG
);
5198 // If this is a memory input, and if the operand is not indirect, do what we
5199 // need to to provide an address for the memory input.
5200 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5201 !OpInfo
.isIndirect
) {
5202 assert(OpInfo
.Type
== InlineAsm::isInput
&&
5203 "Can only indirectify direct input operands!");
5205 // Memory operands really want the address of the value. If we don't have
5206 // an indirect input, put it in the constpool if we can, otherwise spill
5207 // it to a stack slot.
5209 // If the operand is a float, integer, or vector constant, spill to a
5210 // constant pool entry to get its address.
5211 Value
*OpVal
= OpInfo
.CallOperandVal
;
5212 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
5213 isa
<ConstantVector
>(OpVal
)) {
5214 OpInfo
.CallOperand
= DAG
.getConstantPool(cast
<Constant
>(OpVal
),
5215 TLI
.getPointerTy());
5217 // Otherwise, create a stack slot and emit a store to it before the
5219 const Type
*Ty
= OpVal
->getType();
5220 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
5221 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(Ty
);
5222 MachineFunction
&MF
= DAG
.getMachineFunction();
5223 int SSFI
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
);
5224 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getPointerTy());
5225 Chain
= DAG
.getStore(Chain
, getCurDebugLoc(),
5226 OpInfo
.CallOperand
, StackSlot
, NULL
, 0);
5227 OpInfo
.CallOperand
= StackSlot
;
5230 // There is no longer a Value* corresponding to this operand.
5231 OpInfo
.CallOperandVal
= 0;
5232 // It is now an indirect operand.
5233 OpInfo
.isIndirect
= true;
5236 // If this constraint is for a specific register, allocate it before
5238 if (OpInfo
.ConstraintType
== TargetLowering::C_Register
)
5239 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5241 ConstraintInfos
.clear();
5244 // Second pass - Loop over all of the operands, assigning virtual or physregs
5245 // to register class operands.
5246 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5247 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5249 // C_Register operands have already been allocated, Other/Memory don't need
5251 if (OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
)
5252 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5255 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5256 std::vector
<SDValue
> AsmNodeOperands
;
5257 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
5258 AsmNodeOperands
.push_back(
5259 DAG
.getTargetExternalSymbol(IA
->getAsmString().c_str(), MVT::Other
));
5262 // Loop over all of the inputs, copying the operand values into the
5263 // appropriate registers and processing the output regs.
5264 RegsForValue RetValRegs
;
5266 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5267 std::vector
<std::pair
<RegsForValue
, Value
*> > IndirectStoresToEmit
;
5269 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5270 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5272 switch (OpInfo
.Type
) {
5273 case InlineAsm::isOutput
: {
5274 if (OpInfo
.ConstraintType
!= TargetLowering::C_RegisterClass
&&
5275 OpInfo
.ConstraintType
!= TargetLowering::C_Register
) {
5276 // Memory output, or 'other' output (e.g. 'X' constraint).
5277 assert(OpInfo
.isIndirect
&& "Memory output must be indirect operand");
5279 // Add information to the INLINEASM node to know about this output.
5280 unsigned ResOpType
= 4/*MEM*/ | (1<<3);
5281 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5282 TLI
.getPointerTy()));
5283 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
5287 // Otherwise, this is a register or register class output.
5289 // Copy the output from the appropriate register. Find a register that
5291 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
5292 llvm_report_error("Couldn't allocate output reg for"
5293 " constraint '" + OpInfo
.ConstraintCode
+ "'!");
5296 // If this is an indirect operand, store through the pointer after the
5298 if (OpInfo
.isIndirect
) {
5299 IndirectStoresToEmit
.push_back(std::make_pair(OpInfo
.AssignedRegs
,
5300 OpInfo
.CallOperandVal
));
5302 // This is the result value of the call.
5303 assert(CS
.getType() != Type::getVoidTy(*DAG
.getContext()) &&
5305 // Concatenate this output onto the outputs list.
5306 RetValRegs
.append(OpInfo
.AssignedRegs
);
5309 // Add information to the INLINEASM node to know that this register is
5311 OpInfo
.AssignedRegs
.AddInlineAsmOperands(OpInfo
.isEarlyClobber
?
5312 6 /* EARLYCLOBBER REGDEF */ :
5316 DAG
, AsmNodeOperands
);
5319 case InlineAsm::isInput
: {
5320 SDValue InOperandVal
= OpInfo
.CallOperand
;
5322 if (OpInfo
.isMatchingInputConstraint()) { // Matching constraint?
5323 // If this is required to match an output register we have already set,
5324 // just use its register.
5325 unsigned OperandNo
= OpInfo
.getMatchedOperand();
5327 // Scan until we find the definition we already emitted of this operand.
5328 // When we find it, create a RegsForValue operand.
5329 unsigned CurOp
= 2; // The first operand.
5330 for (; OperandNo
; --OperandNo
) {
5331 // Advance to the next operand.
5333 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5334 assert(((OpFlag
& 7) == 2 /*REGDEF*/ ||
5335 (OpFlag
& 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5336 (OpFlag
& 7) == 4 /*MEM*/) &&
5337 "Skipped past definitions?");
5338 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
)+1;
5342 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5343 if ((OpFlag
& 7) == 2 /*REGDEF*/
5344 || (OpFlag
& 7) == 6 /* EARLYCLOBBER REGDEF */) {
5345 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5346 if (OpInfo
.isIndirect
) {
5347 llvm_report_error("Don't know how to handle tied indirect "
5348 "register inputs yet!");
5350 RegsForValue MatchedRegs
;
5351 MatchedRegs
.TLI
= &TLI
;
5352 MatchedRegs
.ValueVTs
.push_back(InOperandVal
.getValueType());
5353 EVT RegVT
= AsmNodeOperands
[CurOp
+1].getValueType();
5354 MatchedRegs
.RegVTs
.push_back(RegVT
);
5355 MachineRegisterInfo
&RegInfo
= DAG
.getMachineFunction().getRegInfo();
5356 for (unsigned i
= 0, e
= InlineAsm::getNumOperandRegisters(OpFlag
);
5359 push_back(RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
)));
5361 // Use the produced MatchedRegs object to
5362 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5364 MatchedRegs
.AddInlineAsmOperands(1 /*REGUSE*/,
5365 true, OpInfo
.getMatchedOperand(),
5366 DAG
, AsmNodeOperands
);
5369 assert(((OpFlag
& 7) == 4) && "Unknown matching constraint!");
5370 assert((InlineAsm::getNumOperandRegisters(OpFlag
)) == 1 &&
5371 "Unexpected number of operands");
5372 // Add information to the INLINEASM node to know about this input.
5373 // See InlineAsm.h isUseOperandTiedToDef.
5374 OpFlag
|= 0x80000000 | (OpInfo
.getMatchedOperand() << 16);
5375 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlag
,
5376 TLI
.getPointerTy()));
5377 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
5382 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
5383 assert(!OpInfo
.isIndirect
&&
5384 "Don't know how to handle indirect other inputs yet!");
5386 std::vector
<SDValue
> Ops
;
5387 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
[0],
5388 hasMemory
, Ops
, DAG
);
5390 llvm_report_error("Invalid operand for inline asm"
5391 " constraint '" + OpInfo
.ConstraintCode
+ "'!");
5394 // Add information to the INLINEASM node to know about this input.
5395 unsigned ResOpType
= 3 /*IMM*/ | (Ops
.size() << 3);
5396 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5397 TLI
.getPointerTy()));
5398 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
5400 } else if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
5401 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
5402 assert(InOperandVal
.getValueType() == TLI
.getPointerTy() &&
5403 "Memory operands expect pointer values");
5405 // Add information to the INLINEASM node to know about this input.
5406 unsigned ResOpType
= 4/*MEM*/ | (1<<3);
5407 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5408 TLI
.getPointerTy()));
5409 AsmNodeOperands
.push_back(InOperandVal
);
5413 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
5414 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
5415 "Unknown constraint type!");
5416 assert(!OpInfo
.isIndirect
&&
5417 "Don't know how to handle indirect register inputs yet!");
5419 // Copy the input into the appropriate registers.
5420 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
5421 llvm_report_error("Couldn't allocate input reg for"
5422 " constraint '"+ OpInfo
.ConstraintCode
+"'!");
5425 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5428 OpInfo
.AssignedRegs
.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5429 DAG
, AsmNodeOperands
);
5432 case InlineAsm::isClobber
: {
5433 // Add the clobbered value to the operand list, so that the register
5434 // allocator is aware that the physreg got clobbered.
5435 if (!OpInfo
.AssignedRegs
.Regs
.empty())
5436 OpInfo
.AssignedRegs
.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5437 false, 0, DAG
,AsmNodeOperands
);
5443 // Finish up input operands.
5444 AsmNodeOperands
[0] = Chain
;
5445 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
5447 Chain
= DAG
.getNode(ISD::INLINEASM
, getCurDebugLoc(),
5448 DAG
.getVTList(MVT::Other
, MVT::Flag
),
5449 &AsmNodeOperands
[0], AsmNodeOperands
.size());
5450 Flag
= Chain
.getValue(1);
5452 // If this asm returns a register value, copy the result from that register
5453 // and set it as the value of the call.
5454 if (!RetValRegs
.Regs
.empty()) {
5455 SDValue Val
= RetValRegs
.getCopyFromRegs(DAG
, getCurDebugLoc(),
5458 // FIXME: Why don't we do this for inline asms with MRVs?
5459 if (CS
.getType()->isSingleValueType() && CS
.getType()->isSized()) {
5460 EVT ResultType
= TLI
.getValueType(CS
.getType());
5462 // If any of the results of the inline asm is a vector, it may have the
5463 // wrong width/num elts. This can happen for register classes that can
5464 // contain multiple different value types. The preg or vreg allocated may
5465 // not have the same VT as was expected. Convert it to the right type
5466 // with bit_convert.
5467 if (ResultType
!= Val
.getValueType() && Val
.getValueType().isVector()) {
5468 Val
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
5471 } else if (ResultType
!= Val
.getValueType() &&
5472 ResultType
.isInteger() && Val
.getValueType().isInteger()) {
5473 // If a result value was tied to an input value, the computed result may
5474 // have a wider width than the expected result. Extract the relevant
5476 Val
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), ResultType
, Val
);
5479 assert(ResultType
== Val
.getValueType() && "Asm result value mismatch!");
5482 setValue(CS
.getInstruction(), Val
);
5483 // Don't need to use this as a chain in this case.
5484 if (!IA
->hasSideEffects() && !hasMemory
&& IndirectStoresToEmit
.empty())
5488 std::vector
<std::pair
<SDValue
, Value
*> > StoresToEmit
;
5490 // Process indirect outputs, first output all of the flagged copies out of
5492 for (unsigned i
= 0, e
= IndirectStoresToEmit
.size(); i
!= e
; ++i
) {
5493 RegsForValue
&OutRegs
= IndirectStoresToEmit
[i
].first
;
5494 Value
*Ptr
= IndirectStoresToEmit
[i
].second
;
5495 SDValue OutVal
= OutRegs
.getCopyFromRegs(DAG
, getCurDebugLoc(),
5497 StoresToEmit
.push_back(std::make_pair(OutVal
, Ptr
));
5501 // Emit the non-flagged stores from the physregs.
5502 SmallVector
<SDValue
, 8> OutChains
;
5503 for (unsigned i
= 0, e
= StoresToEmit
.size(); i
!= e
; ++i
)
5504 OutChains
.push_back(DAG
.getStore(Chain
, getCurDebugLoc(),
5505 StoresToEmit
[i
].first
,
5506 getValue(StoresToEmit
[i
].second
),
5507 StoresToEmit
[i
].second
, 0));
5508 if (!OutChains
.empty())
5509 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
5510 &OutChains
[0], OutChains
.size());
5515 void SelectionDAGLowering::visitMalloc(MallocInst
&I
) {
5516 SDValue Src
= getValue(I
.getOperand(0));
5518 // Scale up by the type size in the original i32 type width. Various
5519 // mid-level optimizers may make assumptions about demanded bits etc from the
5520 // i32-ness of the optimizer: we do not want to promote to i64 and then
5521 // multiply on 64-bit targets.
5522 // FIXME: Malloc inst should go away: PR715.
5523 uint64_t ElementSize
= TD
->getTypeAllocSize(I
.getType()->getElementType());
5524 if (ElementSize
!= 1) {
5525 // Src is always 32-bits, make sure the constant fits.
5526 assert(Src
.getValueType() == MVT::i32
);
5527 ElementSize
= (uint32_t)ElementSize
;
5528 Src
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), Src
.getValueType(),
5529 Src
, DAG
.getConstant(ElementSize
, Src
.getValueType()));
5532 EVT IntPtr
= TLI
.getPointerTy();
5534 if (IntPtr
.bitsLT(Src
.getValueType()))
5535 Src
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), IntPtr
, Src
);
5536 else if (IntPtr
.bitsGT(Src
.getValueType()))
5537 Src
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), IntPtr
, Src
);
5539 TargetLowering::ArgListTy Args
;
5540 TargetLowering::ArgListEntry Entry
;
5542 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*DAG
.getContext());
5543 Args
.push_back(Entry
);
5545 bool isTailCall
= PerformTailCallOpt
&&
5546 isInTailCallPosition(&I
, Attribute::None
, TLI
);
5547 std::pair
<SDValue
,SDValue
> Result
=
5548 TLI
.LowerCallTo(getRoot(), I
.getType(), false, false, false, false,
5549 0, CallingConv::C
, isTailCall
,
5550 /*isReturnValueUsed=*/true,
5551 DAG
.getExternalSymbol("malloc", IntPtr
),
5552 Args
, DAG
, getCurDebugLoc());
5553 if (Result
.first
.getNode())
5554 setValue(&I
, Result
.first
); // Pointers always fit in registers
5555 if (Result
.second
.getNode())
5556 DAG
.setRoot(Result
.second
);
5559 void SelectionDAGLowering::visitFree(FreeInst
&I
) {
5560 TargetLowering::ArgListTy Args
;
5561 TargetLowering::ArgListEntry Entry
;
5562 Entry
.Node
= getValue(I
.getOperand(0));
5563 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*DAG
.getContext());
5564 Args
.push_back(Entry
);
5565 EVT IntPtr
= TLI
.getPointerTy();
5566 bool isTailCall
= PerformTailCallOpt
&&
5567 isInTailCallPosition(&I
, Attribute::None
, TLI
);
5568 std::pair
<SDValue
,SDValue
> Result
=
5569 TLI
.LowerCallTo(getRoot(), Type::getVoidTy(*DAG
.getContext()),
5570 false, false, false, false,
5571 0, CallingConv::C
, isTailCall
,
5572 /*isReturnValueUsed=*/true,
5573 DAG
.getExternalSymbol("free", IntPtr
), Args
, DAG
,
5575 if (Result
.second
.getNode())
5576 DAG
.setRoot(Result
.second
);
5579 void SelectionDAGLowering::visitVAStart(CallInst
&I
) {
5580 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurDebugLoc(),
5581 MVT::Other
, getRoot(),
5582 getValue(I
.getOperand(1)),
5583 DAG
.getSrcValue(I
.getOperand(1))));
5586 void SelectionDAGLowering::visitVAArg(VAArgInst
&I
) {
5587 SDValue V
= DAG
.getVAArg(TLI
.getValueType(I
.getType()), getCurDebugLoc(),
5588 getRoot(), getValue(I
.getOperand(0)),
5589 DAG
.getSrcValue(I
.getOperand(0)));
5591 DAG
.setRoot(V
.getValue(1));
5594 void SelectionDAGLowering::visitVAEnd(CallInst
&I
) {
5595 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurDebugLoc(),
5596 MVT::Other
, getRoot(),
5597 getValue(I
.getOperand(1)),
5598 DAG
.getSrcValue(I
.getOperand(1))));
5601 void SelectionDAGLowering::visitVACopy(CallInst
&I
) {
5602 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurDebugLoc(),
5603 MVT::Other
, getRoot(),
5604 getValue(I
.getOperand(1)),
5605 getValue(I
.getOperand(2)),
5606 DAG
.getSrcValue(I
.getOperand(1)),
5607 DAG
.getSrcValue(I
.getOperand(2))));
5610 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5611 /// implementation, which just calls LowerCall.
5612 /// FIXME: When all targets are
5613 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5614 std::pair
<SDValue
, SDValue
>
5615 TargetLowering::LowerCallTo(SDValue Chain
, const Type
*RetTy
,
5616 bool RetSExt
, bool RetZExt
, bool isVarArg
,
5617 bool isInreg
, unsigned NumFixedArgs
,
5618 CallingConv::ID CallConv
, bool isTailCall
,
5619 bool isReturnValueUsed
,
5621 ArgListTy
&Args
, SelectionDAG
&DAG
, DebugLoc dl
) {
5623 assert((!isTailCall
|| PerformTailCallOpt
) &&
5624 "isTailCall set when tail-call optimizations are disabled!");
5626 // Handle all of the outgoing arguments.
5627 SmallVector
<ISD::OutputArg
, 32> Outs
;
5628 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
5629 SmallVector
<EVT
, 4> ValueVTs
;
5630 ComputeValueVTs(*this, Args
[i
].Ty
, ValueVTs
);
5631 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5632 Value
!= NumValues
; ++Value
) {
5633 EVT VT
= ValueVTs
[Value
];
5634 const Type
*ArgTy
= VT
.getTypeForEVT(RetTy
->getContext());
5635 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
5636 Args
[i
].Node
.getResNo() + Value
);
5637 ISD::ArgFlagsTy Flags
;
5638 unsigned OriginalAlignment
=
5639 getTargetData()->getABITypeAlignment(ArgTy
);
5645 if (Args
[i
].isInReg
)
5649 if (Args
[i
].isByVal
) {
5651 const PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
5652 const Type
*ElementTy
= Ty
->getElementType();
5653 unsigned FrameAlign
= getByValTypeAlignment(ElementTy
);
5654 unsigned FrameSize
= getTargetData()->getTypeAllocSize(ElementTy
);
5655 // For ByVal, alignment should come from FE. BE will guess if this
5656 // info is not there but there are cases it cannot get right.
5657 if (Args
[i
].Alignment
)
5658 FrameAlign
= Args
[i
].Alignment
;
5659 Flags
.setByValAlign(FrameAlign
);
5660 Flags
.setByValSize(FrameSize
);
5664 Flags
.setOrigAlign(OriginalAlignment
);
5666 EVT PartVT
= getRegisterType(RetTy
->getContext(), VT
);
5667 unsigned NumParts
= getNumRegisters(RetTy
->getContext(), VT
);
5668 SmallVector
<SDValue
, 4> Parts(NumParts
);
5669 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
5672 ExtendKind
= ISD::SIGN_EXTEND
;
5673 else if (Args
[i
].isZExt
)
5674 ExtendKind
= ISD::ZERO_EXTEND
;
5676 getCopyToParts(DAG
, dl
, Op
, &Parts
[0], NumParts
, PartVT
, ExtendKind
);
5678 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
5679 // if it isn't first piece, alignment must be 1
5680 ISD::OutputArg
MyFlags(Flags
, Parts
[j
], i
< NumFixedArgs
);
5681 if (NumParts
> 1 && j
== 0)
5682 MyFlags
.Flags
.setSplit();
5684 MyFlags
.Flags
.setOrigAlign(1);
5686 Outs
.push_back(MyFlags
);
5691 // Handle the incoming return values from the call.
5692 SmallVector
<ISD::InputArg
, 32> Ins
;
5693 SmallVector
<EVT
, 4> RetTys
;
5694 ComputeValueVTs(*this, RetTy
, RetTys
);
5695 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5697 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
5698 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
5699 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
5700 ISD::InputArg MyFlags
;
5701 MyFlags
.VT
= RegisterVT
;
5702 MyFlags
.Used
= isReturnValueUsed
;
5704 MyFlags
.Flags
.setSExt();
5706 MyFlags
.Flags
.setZExt();
5708 MyFlags
.Flags
.setInReg();
5709 Ins
.push_back(MyFlags
);
5713 // Check if target-dependent constraints permit a tail call here.
5714 // Target-independent constraints should be checked by the caller.
5716 !IsEligibleForTailCallOptimization(Callee
, CallConv
, isVarArg
, Ins
, DAG
))
5719 SmallVector
<SDValue
, 4> InVals
;
5720 Chain
= LowerCall(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
5721 Outs
, Ins
, dl
, DAG
, InVals
);
5723 // Verify that the target's LowerCall behaved as expected.
5724 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
5725 "LowerCall didn't return a valid chain!");
5726 assert((!isTailCall
|| InVals
.empty()) &&
5727 "LowerCall emitted a return value for a tail call!");
5728 assert((isTailCall
|| InVals
.size() == Ins
.size()) &&
5729 "LowerCall didn't emit the correct number of values!");
5730 DEBUG(for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
5731 assert(InVals
[i
].getNode() &&
5732 "LowerCall emitted a null value!");
5733 assert(Ins
[i
].VT
== InVals
[i
].getValueType() &&
5734 "LowerCall emitted a value with the wrong type!");
5737 // For a tail call, the return value is merely live-out and there aren't
5738 // any nodes in the DAG representing it. Return a special value to
5739 // indicate that a tail call has been emitted and no more Instructions
5740 // should be processed in the current block.
5743 return std::make_pair(SDValue(), SDValue());
5746 // Collect the legal value parts into potentially illegal values
5747 // that correspond to the original function's return values.
5748 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5750 AssertOp
= ISD::AssertSext
;
5752 AssertOp
= ISD::AssertZext
;
5753 SmallVector
<SDValue
, 4> ReturnValues
;
5754 unsigned CurReg
= 0;
5755 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5757 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
5758 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
5760 SDValue ReturnValue
=
5761 getCopyFromParts(DAG
, dl
, &InVals
[CurReg
], NumRegs
, RegisterVT
, VT
,
5763 ReturnValues
.push_back(ReturnValue
);
5767 // For a function returning void, there is no return value. We can't create
5768 // such a node, so we just return a null return value in that case. In
5769 // that case, nothing will actualy look at the value.
5770 if (ReturnValues
.empty())
5771 return std::make_pair(SDValue(), Chain
);
5773 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
5774 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
5775 &ReturnValues
[0], ReturnValues
.size());
5777 return std::make_pair(Res
, Chain
);
5780 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
5781 SmallVectorImpl
<SDValue
> &Results
,
5782 SelectionDAG
&DAG
) {
5783 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
5785 Results
.push_back(Res
);
5788 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
5789 llvm_unreachable("LowerOperation not implemented for this target!");
5794 void SelectionDAGLowering::CopyValueToVirtualRegister(Value
*V
, unsigned Reg
) {
5795 SDValue Op
= getValue(V
);
5796 assert((Op
.getOpcode() != ISD::CopyFromReg
||
5797 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
5798 "Copy from a reg to the same reg!");
5799 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
5801 RegsForValue
RFV(V
->getContext(), TLI
, Reg
, V
->getType());
5802 SDValue Chain
= DAG
.getEntryNode();
5803 RFV
.getCopyToRegs(Op
, DAG
, getCurDebugLoc(), Chain
, 0);
5804 PendingExports
.push_back(Chain
);
5807 #include "llvm/CodeGen/SelectionDAGISel.h"
5809 void SelectionDAGISel::
5810 LowerArguments(BasicBlock
*LLVMBB
) {
5811 // If this is the entry block, emit arguments.
5812 Function
&F
= *LLVMBB
->getParent();
5813 SelectionDAG
&DAG
= SDL
->DAG
;
5814 SDValue OldRoot
= DAG
.getRoot();
5815 DebugLoc dl
= SDL
->getCurDebugLoc();
5816 const TargetData
*TD
= TLI
.getTargetData();
5818 // Set up the incoming argument description vector.
5819 SmallVector
<ISD::InputArg
, 16> Ins
;
5821 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
5822 I
!= E
; ++I
, ++Idx
) {
5823 SmallVector
<EVT
, 4> ValueVTs
;
5824 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
5825 bool isArgValueUsed
= !I
->use_empty();
5826 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5827 Value
!= NumValues
; ++Value
) {
5828 EVT VT
= ValueVTs
[Value
];
5829 const Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
5830 ISD::ArgFlagsTy Flags
;
5831 unsigned OriginalAlignment
=
5832 TD
->getABITypeAlignment(ArgTy
);
5834 if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
5836 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
5838 if (F
.paramHasAttr(Idx
, Attribute::InReg
))
5840 if (F
.paramHasAttr(Idx
, Attribute::StructRet
))
5842 if (F
.paramHasAttr(Idx
, Attribute::ByVal
)) {
5844 const PointerType
*Ty
= cast
<PointerType
>(I
->getType());
5845 const Type
*ElementTy
= Ty
->getElementType();
5846 unsigned FrameAlign
= TLI
.getByValTypeAlignment(ElementTy
);
5847 unsigned FrameSize
= TD
->getTypeAllocSize(ElementTy
);
5848 // For ByVal, alignment should be passed from FE. BE will guess if
5849 // this info is not there but there are cases it cannot get right.
5850 if (F
.getParamAlignment(Idx
))
5851 FrameAlign
= F
.getParamAlignment(Idx
);
5852 Flags
.setByValAlign(FrameAlign
);
5853 Flags
.setByValSize(FrameSize
);
5855 if (F
.paramHasAttr(Idx
, Attribute::Nest
))
5857 Flags
.setOrigAlign(OriginalAlignment
);
5859 EVT RegisterVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
5860 unsigned NumRegs
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
5861 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
5862 ISD::InputArg
MyFlags(Flags
, RegisterVT
, isArgValueUsed
);
5863 if (NumRegs
> 1 && i
== 0)
5864 MyFlags
.Flags
.setSplit();
5865 // if it isn't first piece, alignment must be 1
5867 MyFlags
.Flags
.setOrigAlign(1);
5868 Ins
.push_back(MyFlags
);
5873 // Call the target to set up the argument values.
5874 SmallVector
<SDValue
, 8> InVals
;
5875 SDValue NewRoot
= TLI
.LowerFormalArguments(DAG
.getRoot(), F
.getCallingConv(),
5879 // Verify that the target's LowerFormalArguments behaved as expected.
5880 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
5881 "LowerFormalArguments didn't return a valid chain!");
5882 assert(InVals
.size() == Ins
.size() &&
5883 "LowerFormalArguments didn't emit the correct number of values!");
5884 DEBUG(for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
5885 assert(InVals
[i
].getNode() &&
5886 "LowerFormalArguments emitted a null value!");
5887 assert(Ins
[i
].VT
== InVals
[i
].getValueType() &&
5888 "LowerFormalArguments emitted a value with the wrong type!");
5891 // Update the DAG with the new chain value resulting from argument lowering.
5892 DAG
.setRoot(NewRoot
);
5894 // Set up the argument values.
5897 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
;
5899 SmallVector
<SDValue
, 4> ArgValues
;
5900 SmallVector
<EVT
, 4> ValueVTs
;
5901 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
5902 unsigned NumValues
= ValueVTs
.size();
5903 for (unsigned Value
= 0; Value
!= NumValues
; ++Value
) {
5904 EVT VT
= ValueVTs
[Value
];
5905 EVT PartVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
5906 unsigned NumParts
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
5908 if (!I
->use_empty()) {
5909 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5910 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
5911 AssertOp
= ISD::AssertSext
;
5912 else if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
5913 AssertOp
= ISD::AssertZext
;
5915 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
5916 PartVT
, VT
, AssertOp
));
5920 if (!I
->use_empty()) {
5921 SDL
->setValue(I
, DAG
.getMergeValues(&ArgValues
[0], NumValues
,
5922 SDL
->getCurDebugLoc()));
5923 // If this argument is live outside of the entry block, insert a copy from
5924 // whereever we got it to the vreg that other BB's will reference it as.
5925 SDL
->CopyToExportRegsIfNeeded(I
);
5928 assert(i
== InVals
.size() && "Argument register count mismatch!");
5930 // Finally, if the target has anything special to do, allow it to do so.
5931 // FIXME: this should insert code into the DAG!
5932 EmitFunctionEntryCode(F
, SDL
->DAG
.getMachineFunction());
5935 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5936 /// ensure constants are generated when needed. Remember the virtual registers
5937 /// that need to be added to the Machine PHI nodes as input. We cannot just
5938 /// directly add them, because expansion might result in multiple MBB's for one
5939 /// BB. As such, the start of the BB might correspond to a different MBB than
5943 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock
*LLVMBB
) {
5944 TerminatorInst
*TI
= LLVMBB
->getTerminator();
5946 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
5948 // Check successor nodes' PHI nodes that expect a constant to be available
5950 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
5951 BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
5952 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
5953 MachineBasicBlock
*SuccMBB
= FuncInfo
->MBBMap
[SuccBB
];
5955 // If this terminator has multiple identical successors (common for
5956 // switches), only handle each succ once.
5957 if (!SuccsHandled
.insert(SuccMBB
)) continue;
5959 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
5962 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5963 // nodes and Machine PHI nodes, but the incoming operands have not been
5965 for (BasicBlock::iterator I
= SuccBB
->begin();
5966 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
5967 // Ignore dead phi's.
5968 if (PN
->use_empty()) continue;
5971 Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
5973 if (Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
5974 unsigned &RegOut
= SDL
->ConstantsOut
[C
];
5976 RegOut
= FuncInfo
->CreateRegForValue(C
);
5977 SDL
->CopyValueToVirtualRegister(C
, RegOut
);
5981 Reg
= FuncInfo
->ValueMap
[PHIOp
];
5983 assert(isa
<AllocaInst
>(PHIOp
) &&
5984 FuncInfo
->StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
5985 "Didn't codegen value into a register!??");
5986 Reg
= FuncInfo
->CreateRegForValue(PHIOp
);
5987 SDL
->CopyValueToVirtualRegister(PHIOp
, Reg
);
5991 // Remember that this register needs to added to the machine PHI node as
5992 // the input for this MBB.
5993 SmallVector
<EVT
, 4> ValueVTs
;
5994 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
5995 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
5996 EVT VT
= ValueVTs
[vti
];
5997 unsigned NumRegisters
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
5998 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
5999 SDL
->PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
+i
));
6000 Reg
+= NumRegisters
;
6004 SDL
->ConstantsOut
.clear();
6007 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6008 /// supports legal types, and it emits MachineInstrs directly instead of
6009 /// creating SelectionDAG nodes.
6012 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock
*LLVMBB
,
6014 TerminatorInst
*TI
= LLVMBB
->getTerminator();
6016 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
6017 unsigned OrigNumPHINodesToUpdate
= SDL
->PHINodesToUpdate
.size();
6019 // Check successor nodes' PHI nodes that expect a constant to be available
6021 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
6022 BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
6023 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
6024 MachineBasicBlock
*SuccMBB
= FuncInfo
->MBBMap
[SuccBB
];
6026 // If this terminator has multiple identical successors (common for
6027 // switches), only handle each succ once.
6028 if (!SuccsHandled
.insert(SuccMBB
)) continue;
6030 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
6033 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6034 // nodes and Machine PHI nodes, but the incoming operands have not been
6036 for (BasicBlock::iterator I
= SuccBB
->begin();
6037 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
6038 // Ignore dead phi's.
6039 if (PN
->use_empty()) continue;
6041 // Only handle legal types. Two interesting things to note here. First,
6042 // by bailing out early, we may leave behind some dead instructions,
6043 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6044 // own moves. Second, this check is necessary becuase FastISel doesn't
6045 // use CreateRegForValue to create registers, so it always creates
6046 // exactly one register for each non-void instruction.
6047 EVT VT
= TLI
.getValueType(PN
->getType(), /*AllowUnknown=*/true);
6048 if (VT
== MVT::Other
|| !TLI
.isTypeLegal(VT
)) {
6051 VT
= TLI
.getTypeToTransformTo(*CurDAG
->getContext(), VT
);
6053 SDL
->PHINodesToUpdate
.resize(OrigNumPHINodesToUpdate
);
6058 Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
6060 unsigned Reg
= F
->getRegForValue(PHIOp
);
6062 SDL
->PHINodesToUpdate
.resize(OrigNumPHINodesToUpdate
);
6065 SDL
->PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
));