add some missing quotes in debug output
[llvm/avr.git] / lib / Transforms / Scalar / GVN.cpp
blob36c90f519f2fb57e19406209e1827c2a7ce4246f
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/BasicBlock.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/LLVMContext.h"
26 #include "llvm/Value.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/Dominators.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
36 #include "llvm/Support/CFG.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cstdio>
44 using namespace llvm;
46 STATISTIC(NumGVNInstr, "Number of instructions deleted");
47 STATISTIC(NumGVNLoad, "Number of loads deleted");
48 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
49 STATISTIC(NumGVNBlocks, "Number of blocks merged");
50 STATISTIC(NumPRELoad, "Number of loads PRE'd");
52 static cl::opt<bool> EnablePRE("enable-pre",
53 cl::init(true), cl::Hidden);
54 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
56 //===----------------------------------------------------------------------===//
57 // ValueTable Class
58 //===----------------------------------------------------------------------===//
60 /// This class holds the mapping between values and value numbers. It is used
61 /// as an efficient mechanism to determine the expression-wise equivalence of
62 /// two values.
63 namespace {
64 struct Expression {
65 enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
66 UDIV, SDIV, FDIV, UREM, SREM,
67 FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
68 ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
69 ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
70 FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
71 FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
72 FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
73 SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
74 FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
75 PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
76 EMPTY, TOMBSTONE };
78 ExpressionOpcode opcode;
79 const Type* type;
80 uint32_t firstVN;
81 uint32_t secondVN;
82 uint32_t thirdVN;
83 SmallVector<uint32_t, 4> varargs;
84 Value* function;
86 Expression() { }
87 Expression(ExpressionOpcode o) : opcode(o) { }
89 bool operator==(const Expression &other) const {
90 if (opcode != other.opcode)
91 return false;
92 else if (opcode == EMPTY || opcode == TOMBSTONE)
93 return true;
94 else if (type != other.type)
95 return false;
96 else if (function != other.function)
97 return false;
98 else if (firstVN != other.firstVN)
99 return false;
100 else if (secondVN != other.secondVN)
101 return false;
102 else if (thirdVN != other.thirdVN)
103 return false;
104 else {
105 if (varargs.size() != other.varargs.size())
106 return false;
108 for (size_t i = 0; i < varargs.size(); ++i)
109 if (varargs[i] != other.varargs[i])
110 return false;
112 return true;
116 bool operator!=(const Expression &other) const {
117 return !(*this == other);
121 class ValueTable {
122 private:
123 DenseMap<Value*, uint32_t> valueNumbering;
124 DenseMap<Expression, uint32_t> expressionNumbering;
125 AliasAnalysis* AA;
126 MemoryDependenceAnalysis* MD;
127 DominatorTree* DT;
129 uint32_t nextValueNumber;
131 Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
132 Expression::ExpressionOpcode getOpcode(CmpInst* C);
133 Expression::ExpressionOpcode getOpcode(CastInst* C);
134 Expression create_expression(BinaryOperator* BO);
135 Expression create_expression(CmpInst* C);
136 Expression create_expression(ShuffleVectorInst* V);
137 Expression create_expression(ExtractElementInst* C);
138 Expression create_expression(InsertElementInst* V);
139 Expression create_expression(SelectInst* V);
140 Expression create_expression(CastInst* C);
141 Expression create_expression(GetElementPtrInst* G);
142 Expression create_expression(CallInst* C);
143 Expression create_expression(Constant* C);
144 public:
145 ValueTable() : nextValueNumber(1) { }
146 uint32_t lookup_or_add(Value* V);
147 uint32_t lookup(Value* V) const;
148 void add(Value* V, uint32_t num);
149 void clear();
150 void erase(Value* v);
151 unsigned size();
152 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
153 AliasAnalysis *getAliasAnalysis() const { return AA; }
154 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
155 void setDomTree(DominatorTree* D) { DT = D; }
156 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
157 void verifyRemoved(const Value *) const;
161 namespace llvm {
162 template <> struct DenseMapInfo<Expression> {
163 static inline Expression getEmptyKey() {
164 return Expression(Expression::EMPTY);
167 static inline Expression getTombstoneKey() {
168 return Expression(Expression::TOMBSTONE);
171 static unsigned getHashValue(const Expression e) {
172 unsigned hash = e.opcode;
174 hash = e.firstVN + hash * 37;
175 hash = e.secondVN + hash * 37;
176 hash = e.thirdVN + hash * 37;
178 hash = ((unsigned)((uintptr_t)e.type >> 4) ^
179 (unsigned)((uintptr_t)e.type >> 9)) +
180 hash * 37;
182 for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
183 E = e.varargs.end(); I != E; ++I)
184 hash = *I + hash * 37;
186 hash = ((unsigned)((uintptr_t)e.function >> 4) ^
187 (unsigned)((uintptr_t)e.function >> 9)) +
188 hash * 37;
190 return hash;
192 static bool isEqual(const Expression &LHS, const Expression &RHS) {
193 return LHS == RHS;
195 static bool isPod() { return true; }
199 //===----------------------------------------------------------------------===//
200 // ValueTable Internal Functions
201 //===----------------------------------------------------------------------===//
202 Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
203 switch(BO->getOpcode()) {
204 default: // THIS SHOULD NEVER HAPPEN
205 llvm_unreachable("Binary operator with unknown opcode?");
206 case Instruction::Add: return Expression::ADD;
207 case Instruction::FAdd: return Expression::FADD;
208 case Instruction::Sub: return Expression::SUB;
209 case Instruction::FSub: return Expression::FSUB;
210 case Instruction::Mul: return Expression::MUL;
211 case Instruction::FMul: return Expression::FMUL;
212 case Instruction::UDiv: return Expression::UDIV;
213 case Instruction::SDiv: return Expression::SDIV;
214 case Instruction::FDiv: return Expression::FDIV;
215 case Instruction::URem: return Expression::UREM;
216 case Instruction::SRem: return Expression::SREM;
217 case Instruction::FRem: return Expression::FREM;
218 case Instruction::Shl: return Expression::SHL;
219 case Instruction::LShr: return Expression::LSHR;
220 case Instruction::AShr: return Expression::ASHR;
221 case Instruction::And: return Expression::AND;
222 case Instruction::Or: return Expression::OR;
223 case Instruction::Xor: return Expression::XOR;
227 Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
228 if (isa<ICmpInst>(C)) {
229 switch (C->getPredicate()) {
230 default: // THIS SHOULD NEVER HAPPEN
231 llvm_unreachable("Comparison with unknown predicate?");
232 case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
233 case ICmpInst::ICMP_NE: return Expression::ICMPNE;
234 case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
235 case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
236 case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
237 case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
238 case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
239 case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
240 case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
241 case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
243 } else {
244 switch (C->getPredicate()) {
245 default: // THIS SHOULD NEVER HAPPEN
246 llvm_unreachable("Comparison with unknown predicate?");
247 case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
248 case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
249 case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
250 case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
251 case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
252 case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
253 case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
254 case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
255 case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
256 case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
257 case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
258 case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
259 case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
260 case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
265 Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
266 switch(C->getOpcode()) {
267 default: // THIS SHOULD NEVER HAPPEN
268 llvm_unreachable("Cast operator with unknown opcode?");
269 case Instruction::Trunc: return Expression::TRUNC;
270 case Instruction::ZExt: return Expression::ZEXT;
271 case Instruction::SExt: return Expression::SEXT;
272 case Instruction::FPToUI: return Expression::FPTOUI;
273 case Instruction::FPToSI: return Expression::FPTOSI;
274 case Instruction::UIToFP: return Expression::UITOFP;
275 case Instruction::SIToFP: return Expression::SITOFP;
276 case Instruction::FPTrunc: return Expression::FPTRUNC;
277 case Instruction::FPExt: return Expression::FPEXT;
278 case Instruction::PtrToInt: return Expression::PTRTOINT;
279 case Instruction::IntToPtr: return Expression::INTTOPTR;
280 case Instruction::BitCast: return Expression::BITCAST;
284 Expression ValueTable::create_expression(CallInst* C) {
285 Expression e;
287 e.type = C->getType();
288 e.firstVN = 0;
289 e.secondVN = 0;
290 e.thirdVN = 0;
291 e.function = C->getCalledFunction();
292 e.opcode = Expression::CALL;
294 for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
295 I != E; ++I)
296 e.varargs.push_back(lookup_or_add(*I));
298 return e;
301 Expression ValueTable::create_expression(BinaryOperator* BO) {
302 Expression e;
304 e.firstVN = lookup_or_add(BO->getOperand(0));
305 e.secondVN = lookup_or_add(BO->getOperand(1));
306 e.thirdVN = 0;
307 e.function = 0;
308 e.type = BO->getType();
309 e.opcode = getOpcode(BO);
311 return e;
314 Expression ValueTable::create_expression(CmpInst* C) {
315 Expression e;
317 e.firstVN = lookup_or_add(C->getOperand(0));
318 e.secondVN = lookup_or_add(C->getOperand(1));
319 e.thirdVN = 0;
320 e.function = 0;
321 e.type = C->getType();
322 e.opcode = getOpcode(C);
324 return e;
327 Expression ValueTable::create_expression(CastInst* C) {
328 Expression e;
330 e.firstVN = lookup_or_add(C->getOperand(0));
331 e.secondVN = 0;
332 e.thirdVN = 0;
333 e.function = 0;
334 e.type = C->getType();
335 e.opcode = getOpcode(C);
337 return e;
340 Expression ValueTable::create_expression(ShuffleVectorInst* S) {
341 Expression e;
343 e.firstVN = lookup_or_add(S->getOperand(0));
344 e.secondVN = lookup_or_add(S->getOperand(1));
345 e.thirdVN = lookup_or_add(S->getOperand(2));
346 e.function = 0;
347 e.type = S->getType();
348 e.opcode = Expression::SHUFFLE;
350 return e;
353 Expression ValueTable::create_expression(ExtractElementInst* E) {
354 Expression e;
356 e.firstVN = lookup_or_add(E->getOperand(0));
357 e.secondVN = lookup_or_add(E->getOperand(1));
358 e.thirdVN = 0;
359 e.function = 0;
360 e.type = E->getType();
361 e.opcode = Expression::EXTRACT;
363 return e;
366 Expression ValueTable::create_expression(InsertElementInst* I) {
367 Expression e;
369 e.firstVN = lookup_or_add(I->getOperand(0));
370 e.secondVN = lookup_or_add(I->getOperand(1));
371 e.thirdVN = lookup_or_add(I->getOperand(2));
372 e.function = 0;
373 e.type = I->getType();
374 e.opcode = Expression::INSERT;
376 return e;
379 Expression ValueTable::create_expression(SelectInst* I) {
380 Expression e;
382 e.firstVN = lookup_or_add(I->getCondition());
383 e.secondVN = lookup_or_add(I->getTrueValue());
384 e.thirdVN = lookup_or_add(I->getFalseValue());
385 e.function = 0;
386 e.type = I->getType();
387 e.opcode = Expression::SELECT;
389 return e;
392 Expression ValueTable::create_expression(GetElementPtrInst* G) {
393 Expression e;
395 e.firstVN = lookup_or_add(G->getPointerOperand());
396 e.secondVN = 0;
397 e.thirdVN = 0;
398 e.function = 0;
399 e.type = G->getType();
400 e.opcode = Expression::GEP;
402 for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
403 I != E; ++I)
404 e.varargs.push_back(lookup_or_add(*I));
406 return e;
409 //===----------------------------------------------------------------------===//
410 // ValueTable External Functions
411 //===----------------------------------------------------------------------===//
413 /// add - Insert a value into the table with a specified value number.
414 void ValueTable::add(Value* V, uint32_t num) {
415 valueNumbering.insert(std::make_pair(V, num));
418 /// lookup_or_add - Returns the value number for the specified value, assigning
419 /// it a new number if it did not have one before.
420 uint32_t ValueTable::lookup_or_add(Value* V) {
421 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
422 if (VI != valueNumbering.end())
423 return VI->second;
425 if (CallInst* C = dyn_cast<CallInst>(V)) {
426 if (AA->doesNotAccessMemory(C)) {
427 Expression e = create_expression(C);
429 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
430 if (EI != expressionNumbering.end()) {
431 valueNumbering.insert(std::make_pair(V, EI->second));
432 return EI->second;
433 } else {
434 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
435 valueNumbering.insert(std::make_pair(V, nextValueNumber));
437 return nextValueNumber++;
439 } else if (AA->onlyReadsMemory(C)) {
440 Expression e = create_expression(C);
442 if (expressionNumbering.find(e) == expressionNumbering.end()) {
443 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
444 valueNumbering.insert(std::make_pair(V, nextValueNumber));
445 return nextValueNumber++;
448 MemDepResult local_dep = MD->getDependency(C);
450 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
451 valueNumbering.insert(std::make_pair(V, nextValueNumber));
452 return nextValueNumber++;
455 if (local_dep.isDef()) {
456 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
458 if (local_cdep->getNumOperands() != C->getNumOperands()) {
459 valueNumbering.insert(std::make_pair(V, nextValueNumber));
460 return nextValueNumber++;
463 for (unsigned i = 1; i < C->getNumOperands(); ++i) {
464 uint32_t c_vn = lookup_or_add(C->getOperand(i));
465 uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
466 if (c_vn != cd_vn) {
467 valueNumbering.insert(std::make_pair(V, nextValueNumber));
468 return nextValueNumber++;
472 uint32_t v = lookup_or_add(local_cdep);
473 valueNumbering.insert(std::make_pair(V, v));
474 return v;
477 // Non-local case.
478 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
479 MD->getNonLocalCallDependency(CallSite(C));
480 // FIXME: call/call dependencies for readonly calls should return def, not
481 // clobber! Move the checking logic to MemDep!
482 CallInst* cdep = 0;
484 // Check to see if we have a single dominating call instruction that is
485 // identical to C.
486 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
487 const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
488 // Ignore non-local dependencies.
489 if (I->second.isNonLocal())
490 continue;
492 // We don't handle non-depedencies. If we already have a call, reject
493 // instruction dependencies.
494 if (I->second.isClobber() || cdep != 0) {
495 cdep = 0;
496 break;
499 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
500 // FIXME: All duplicated with non-local case.
501 if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
502 cdep = NonLocalDepCall;
503 continue;
506 cdep = 0;
507 break;
510 if (!cdep) {
511 valueNumbering.insert(std::make_pair(V, nextValueNumber));
512 return nextValueNumber++;
515 if (cdep->getNumOperands() != C->getNumOperands()) {
516 valueNumbering.insert(std::make_pair(V, nextValueNumber));
517 return nextValueNumber++;
519 for (unsigned i = 1; i < C->getNumOperands(); ++i) {
520 uint32_t c_vn = lookup_or_add(C->getOperand(i));
521 uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
522 if (c_vn != cd_vn) {
523 valueNumbering.insert(std::make_pair(V, nextValueNumber));
524 return nextValueNumber++;
528 uint32_t v = lookup_or_add(cdep);
529 valueNumbering.insert(std::make_pair(V, v));
530 return v;
532 } else {
533 valueNumbering.insert(std::make_pair(V, nextValueNumber));
534 return nextValueNumber++;
536 } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
537 Expression e = create_expression(BO);
539 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
540 if (EI != expressionNumbering.end()) {
541 valueNumbering.insert(std::make_pair(V, EI->second));
542 return EI->second;
543 } else {
544 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
545 valueNumbering.insert(std::make_pair(V, nextValueNumber));
547 return nextValueNumber++;
549 } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
550 Expression e = create_expression(C);
552 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
553 if (EI != expressionNumbering.end()) {
554 valueNumbering.insert(std::make_pair(V, EI->second));
555 return EI->second;
556 } else {
557 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
558 valueNumbering.insert(std::make_pair(V, nextValueNumber));
560 return nextValueNumber++;
562 } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
563 Expression e = create_expression(U);
565 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
566 if (EI != expressionNumbering.end()) {
567 valueNumbering.insert(std::make_pair(V, EI->second));
568 return EI->second;
569 } else {
570 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
571 valueNumbering.insert(std::make_pair(V, nextValueNumber));
573 return nextValueNumber++;
575 } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
576 Expression e = create_expression(U);
578 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
579 if (EI != expressionNumbering.end()) {
580 valueNumbering.insert(std::make_pair(V, EI->second));
581 return EI->second;
582 } else {
583 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
584 valueNumbering.insert(std::make_pair(V, nextValueNumber));
586 return nextValueNumber++;
588 } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
589 Expression e = create_expression(U);
591 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
592 if (EI != expressionNumbering.end()) {
593 valueNumbering.insert(std::make_pair(V, EI->second));
594 return EI->second;
595 } else {
596 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
597 valueNumbering.insert(std::make_pair(V, nextValueNumber));
599 return nextValueNumber++;
601 } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
602 Expression e = create_expression(U);
604 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
605 if (EI != expressionNumbering.end()) {
606 valueNumbering.insert(std::make_pair(V, EI->second));
607 return EI->second;
608 } else {
609 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
610 valueNumbering.insert(std::make_pair(V, nextValueNumber));
612 return nextValueNumber++;
614 } else if (CastInst* U = dyn_cast<CastInst>(V)) {
615 Expression e = create_expression(U);
617 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
618 if (EI != expressionNumbering.end()) {
619 valueNumbering.insert(std::make_pair(V, EI->second));
620 return EI->second;
621 } else {
622 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
623 valueNumbering.insert(std::make_pair(V, nextValueNumber));
625 return nextValueNumber++;
627 } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
628 Expression e = create_expression(U);
630 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
631 if (EI != expressionNumbering.end()) {
632 valueNumbering.insert(std::make_pair(V, EI->second));
633 return EI->second;
634 } else {
635 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
636 valueNumbering.insert(std::make_pair(V, nextValueNumber));
638 return nextValueNumber++;
640 } else {
641 valueNumbering.insert(std::make_pair(V, nextValueNumber));
642 return nextValueNumber++;
646 /// lookup - Returns the value number of the specified value. Fails if
647 /// the value has not yet been numbered.
648 uint32_t ValueTable::lookup(Value* V) const {
649 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
650 assert(VI != valueNumbering.end() && "Value not numbered?");
651 return VI->second;
654 /// clear - Remove all entries from the ValueTable
655 void ValueTable::clear() {
656 valueNumbering.clear();
657 expressionNumbering.clear();
658 nextValueNumber = 1;
661 /// erase - Remove a value from the value numbering
662 void ValueTable::erase(Value* V) {
663 valueNumbering.erase(V);
666 /// verifyRemoved - Verify that the value is removed from all internal data
667 /// structures.
668 void ValueTable::verifyRemoved(const Value *V) const {
669 for (DenseMap<Value*, uint32_t>::iterator
670 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
671 assert(I->first != V && "Inst still occurs in value numbering map!");
675 //===----------------------------------------------------------------------===//
676 // GVN Pass
677 //===----------------------------------------------------------------------===//
679 namespace {
680 struct ValueNumberScope {
681 ValueNumberScope* parent;
682 DenseMap<uint32_t, Value*> table;
684 ValueNumberScope(ValueNumberScope* p) : parent(p) { }
688 namespace {
690 class GVN : public FunctionPass {
691 bool runOnFunction(Function &F);
692 public:
693 static char ID; // Pass identification, replacement for typeid
694 GVN() : FunctionPass(&ID) { }
696 private:
697 MemoryDependenceAnalysis *MD;
698 DominatorTree *DT;
700 ValueTable VN;
701 DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
703 typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
704 PhiMapType phiMap;
707 // This transformation requires dominator postdominator info
708 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
709 AU.addRequired<DominatorTree>();
710 AU.addRequired<MemoryDependenceAnalysis>();
711 AU.addRequired<AliasAnalysis>();
713 AU.addPreserved<DominatorTree>();
714 AU.addPreserved<AliasAnalysis>();
717 // Helper fuctions
718 // FIXME: eliminate or document these better
719 bool processLoad(LoadInst* L,
720 SmallVectorImpl<Instruction*> &toErase);
721 bool processInstruction(Instruction* I,
722 SmallVectorImpl<Instruction*> &toErase);
723 bool processNonLocalLoad(LoadInst* L,
724 SmallVectorImpl<Instruction*> &toErase);
725 bool processBlock(BasicBlock* BB);
726 Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
727 DenseMap<BasicBlock*, Value*> &Phis,
728 bool top_level = false);
729 void dump(DenseMap<uint32_t, Value*>& d);
730 bool iterateOnFunction(Function &F);
731 Value* CollapsePhi(PHINode* p);
732 bool performPRE(Function& F);
733 Value* lookupNumber(BasicBlock* BB, uint32_t num);
734 Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
735 void cleanupGlobalSets();
736 void verifyRemoved(const Instruction *I) const;
739 char GVN::ID = 0;
742 // createGVNPass - The public interface to this file...
743 FunctionPass *llvm::createGVNPass() { return new GVN(); }
745 static RegisterPass<GVN> X("gvn",
746 "Global Value Numbering");
748 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
749 printf("{\n");
750 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
751 E = d.end(); I != E; ++I) {
752 printf("%d\n", I->first);
753 I->second->dump();
755 printf("}\n");
758 static bool isSafeReplacement(PHINode* p, Instruction* inst) {
759 if (!isa<PHINode>(inst))
760 return true;
762 for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
763 UI != E; ++UI)
764 if (PHINode* use_phi = dyn_cast<PHINode>(UI))
765 if (use_phi->getParent() == inst->getParent())
766 return false;
768 return true;
771 Value* GVN::CollapsePhi(PHINode* p) {
772 Value* constVal = p->hasConstantValue(DT);
773 if (!constVal) return 0;
775 Instruction* inst = dyn_cast<Instruction>(constVal);
776 if (!inst)
777 return constVal;
779 if (DT->dominates(inst, p))
780 if (isSafeReplacement(p, inst))
781 return inst;
782 return 0;
785 /// GetValueForBlock - Get the value to use within the specified basic block.
786 /// available values are in Phis.
787 Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
788 DenseMap<BasicBlock*, Value*> &Phis,
789 bool top_level) {
791 // If we have already computed this value, return the previously computed val.
792 DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
793 if (V != Phis.end() && !top_level) return V->second;
795 // If the block is unreachable, just return undef, since this path
796 // can't actually occur at runtime.
797 if (!DT->isReachableFromEntry(BB))
798 return Phis[BB] = UndefValue::get(orig->getType());
800 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
801 Value *ret = GetValueForBlock(Pred, orig, Phis);
802 Phis[BB] = ret;
803 return ret;
806 // Get the number of predecessors of this block so we can reserve space later.
807 // If there is already a PHI in it, use the #preds from it, otherwise count.
808 // Getting it from the PHI is constant time.
809 unsigned NumPreds;
810 if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
811 NumPreds = ExistingPN->getNumIncomingValues();
812 else
813 NumPreds = std::distance(pred_begin(BB), pred_end(BB));
815 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
816 // now, then get values to fill in the incoming values for the PHI.
817 PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
818 BB->begin());
819 PN->reserveOperandSpace(NumPreds);
821 Phis.insert(std::make_pair(BB, PN));
823 // Fill in the incoming values for the block.
824 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
825 Value* val = GetValueForBlock(*PI, orig, Phis);
826 PN->addIncoming(val, *PI);
829 VN.getAliasAnalysis()->copyValue(orig, PN);
831 // Attempt to collapse PHI nodes that are trivially redundant
832 Value* v = CollapsePhi(PN);
833 if (!v) {
834 // Cache our phi construction results
835 if (LoadInst* L = dyn_cast<LoadInst>(orig))
836 phiMap[L->getPointerOperand()].insert(PN);
837 else
838 phiMap[orig].insert(PN);
840 return PN;
843 PN->replaceAllUsesWith(v);
844 if (isa<PointerType>(v->getType()))
845 MD->invalidateCachedPointerInfo(v);
847 for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
848 E = Phis.end(); I != E; ++I)
849 if (I->second == PN)
850 I->second = v;
852 DEBUG(errs() << "GVN removed: " << *PN << '\n');
853 MD->removeInstruction(PN);
854 PN->eraseFromParent();
855 DEBUG(verifyRemoved(PN));
857 Phis[BB] = v;
858 return v;
861 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
862 /// we're analyzing is fully available in the specified block. As we go, keep
863 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
864 /// map is actually a tri-state map with the following values:
865 /// 0) we know the block *is not* fully available.
866 /// 1) we know the block *is* fully available.
867 /// 2) we do not know whether the block is fully available or not, but we are
868 /// currently speculating that it will be.
869 /// 3) we are speculating for this block and have used that to speculate for
870 /// other blocks.
871 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
872 DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
873 // Optimistically assume that the block is fully available and check to see
874 // if we already know about this block in one lookup.
875 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
876 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
878 // If the entry already existed for this block, return the precomputed value.
879 if (!IV.second) {
880 // If this is a speculative "available" value, mark it as being used for
881 // speculation of other blocks.
882 if (IV.first->second == 2)
883 IV.first->second = 3;
884 return IV.first->second != 0;
887 // Otherwise, see if it is fully available in all predecessors.
888 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
890 // If this block has no predecessors, it isn't live-in here.
891 if (PI == PE)
892 goto SpeculationFailure;
894 for (; PI != PE; ++PI)
895 // If the value isn't fully available in one of our predecessors, then it
896 // isn't fully available in this block either. Undo our previous
897 // optimistic assumption and bail out.
898 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
899 goto SpeculationFailure;
901 return true;
903 // SpeculationFailure - If we get here, we found out that this is not, after
904 // all, a fully-available block. We have a problem if we speculated on this and
905 // used the speculation to mark other blocks as available.
906 SpeculationFailure:
907 char &BBVal = FullyAvailableBlocks[BB];
909 // If we didn't speculate on this, just return with it set to false.
910 if (BBVal == 2) {
911 BBVal = 0;
912 return false;
915 // If we did speculate on this value, we could have blocks set to 1 that are
916 // incorrect. Walk the (transitive) successors of this block and mark them as
917 // 0 if set to one.
918 SmallVector<BasicBlock*, 32> BBWorklist;
919 BBWorklist.push_back(BB);
921 while (!BBWorklist.empty()) {
922 BasicBlock *Entry = BBWorklist.pop_back_val();
923 // Note that this sets blocks to 0 (unavailable) if they happen to not
924 // already be in FullyAvailableBlocks. This is safe.
925 char &EntryVal = FullyAvailableBlocks[Entry];
926 if (EntryVal == 0) continue; // Already unavailable.
928 // Mark as unavailable.
929 EntryVal = 0;
931 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
932 BBWorklist.push_back(*I);
935 return false;
938 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
939 /// non-local by performing PHI construction.
940 bool GVN::processNonLocalLoad(LoadInst *LI,
941 SmallVectorImpl<Instruction*> &toErase) {
942 // Find the non-local dependencies of the load.
943 SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
944 MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
945 Deps);
946 //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
947 // << Deps.size() << *LI << '\n');
949 // If we had to process more than one hundred blocks to find the
950 // dependencies, this load isn't worth worrying about. Optimizing
951 // it will be too expensive.
952 if (Deps.size() > 100)
953 return false;
955 // If we had a phi translation failure, we'll have a single entry which is a
956 // clobber in the current block. Reject this early.
957 if (Deps.size() == 1 && Deps[0].second.isClobber()) {
958 DEBUG(
959 errs() << "GVN: non-local load ";
960 WriteAsOperand(errs(), LI);
961 errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
963 return false;
966 // Filter out useless results (non-locals, etc). Keep track of the blocks
967 // where we have a value available in repl, also keep track of whether we see
968 // dependencies that produce an unknown value for the load (such as a call
969 // that could potentially clobber the load).
970 SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
971 SmallVector<BasicBlock*, 16> UnavailableBlocks;
973 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
974 BasicBlock *DepBB = Deps[i].first;
975 MemDepResult DepInfo = Deps[i].second;
977 if (DepInfo.isClobber()) {
978 UnavailableBlocks.push_back(DepBB);
979 continue;
982 Instruction *DepInst = DepInfo.getInst();
984 // Loading the allocation -> undef.
985 if (isa<AllocationInst>(DepInst)) {
986 ValuesPerBlock.push_back(std::make_pair(DepBB,
987 UndefValue::get(LI->getType())));
988 continue;
991 if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
992 // Reject loads and stores that are to the same address but are of
993 // different types.
994 // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
995 // of bitfield access, it would be interesting to optimize for it at some
996 // point.
997 if (S->getOperand(0)->getType() != LI->getType()) {
998 UnavailableBlocks.push_back(DepBB);
999 continue;
1002 ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1004 } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1005 if (LD->getType() != LI->getType()) {
1006 UnavailableBlocks.push_back(DepBB);
1007 continue;
1009 ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1010 } else {
1011 UnavailableBlocks.push_back(DepBB);
1012 continue;
1016 // If we have no predecessors that produce a known value for this load, exit
1017 // early.
1018 if (ValuesPerBlock.empty()) return false;
1020 // If all of the instructions we depend on produce a known value for this
1021 // load, then it is fully redundant and we can use PHI insertion to compute
1022 // its value. Insert PHIs and remove the fully redundant value now.
1023 if (UnavailableBlocks.empty()) {
1024 // Use cached PHI construction information from previous runs
1025 SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1026 // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1027 for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1028 I != E; ++I) {
1029 if ((*I)->getParent() == LI->getParent()) {
1030 DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1031 LI->replaceAllUsesWith(*I);
1032 if (isa<PointerType>((*I)->getType()))
1033 MD->invalidateCachedPointerInfo(*I);
1034 toErase.push_back(LI);
1035 NumGVNLoad++;
1036 return true;
1039 ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1042 DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1044 DenseMap<BasicBlock*, Value*> BlockReplValues;
1045 BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1046 // Perform PHI construction.
1047 Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1048 LI->replaceAllUsesWith(v);
1050 if (isa<PHINode>(v))
1051 v->takeName(LI);
1052 if (isa<PointerType>(v->getType()))
1053 MD->invalidateCachedPointerInfo(v);
1054 toErase.push_back(LI);
1055 NumGVNLoad++;
1056 return true;
1059 if (!EnablePRE || !EnableLoadPRE)
1060 return false;
1062 // Okay, we have *some* definitions of the value. This means that the value
1063 // is available in some of our (transitive) predecessors. Lets think about
1064 // doing PRE of this load. This will involve inserting a new load into the
1065 // predecessor when it's not available. We could do this in general, but
1066 // prefer to not increase code size. As such, we only do this when we know
1067 // that we only have to insert *one* load (which means we're basically moving
1068 // the load, not inserting a new one).
1070 SmallPtrSet<BasicBlock *, 4> Blockers;
1071 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1072 Blockers.insert(UnavailableBlocks[i]);
1074 // Lets find first basic block with more than one predecessor. Walk backwards
1075 // through predecessors if needed.
1076 BasicBlock *LoadBB = LI->getParent();
1077 BasicBlock *TmpBB = LoadBB;
1079 bool isSinglePred = false;
1080 bool allSingleSucc = true;
1081 while (TmpBB->getSinglePredecessor()) {
1082 isSinglePred = true;
1083 TmpBB = TmpBB->getSinglePredecessor();
1084 if (!TmpBB) // If haven't found any, bail now.
1085 return false;
1086 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1087 return false;
1088 if (Blockers.count(TmpBB))
1089 return false;
1090 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1091 allSingleSucc = false;
1094 assert(TmpBB);
1095 LoadBB = TmpBB;
1097 // If we have a repl set with LI itself in it, this means we have a loop where
1098 // at least one of the values is LI. Since this means that we won't be able
1099 // to eliminate LI even if we insert uses in the other predecessors, we will
1100 // end up increasing code size. Reject this by scanning for LI.
1101 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1102 if (ValuesPerBlock[i].second == LI)
1103 return false;
1105 if (isSinglePred) {
1106 bool isHot = false;
1107 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1108 if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1109 // "Hot" Instruction is in some loop (because it dominates its dep.
1110 // instruction).
1111 if (DT->dominates(LI, I)) {
1112 isHot = true;
1113 break;
1116 // We are interested only in "hot" instructions. We don't want to do any
1117 // mis-optimizations here.
1118 if (!isHot)
1119 return false;
1122 // Okay, we have some hope :). Check to see if the loaded value is fully
1123 // available in all but one predecessor.
1124 // FIXME: If we could restructure the CFG, we could make a common pred with
1125 // all the preds that don't have an available LI and insert a new load into
1126 // that one block.
1127 BasicBlock *UnavailablePred = 0;
1129 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1130 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1131 FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1132 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1133 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1135 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1136 PI != E; ++PI) {
1137 if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1138 continue;
1140 // If this load is not available in multiple predecessors, reject it.
1141 if (UnavailablePred && UnavailablePred != *PI)
1142 return false;
1143 UnavailablePred = *PI;
1146 assert(UnavailablePred != 0 &&
1147 "Fully available value should be eliminated above!");
1149 // If the loaded pointer is PHI node defined in this block, do PHI translation
1150 // to get its value in the predecessor.
1151 Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1153 // Make sure the value is live in the predecessor. If it was defined by a
1154 // non-PHI instruction in this block, we don't know how to recompute it above.
1155 if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1156 if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1157 DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1158 << *LPInst << '\n' << *LI << "\n");
1159 return false;
1162 // We don't currently handle critical edges :(
1163 if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1164 DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1165 << UnavailablePred->getName() << "': " << *LI << '\n');
1166 return false;
1169 // Make sure it is valid to move this load here. We have to watch out for:
1170 // @1 = getelementptr (i8* p, ...
1171 // test p and branch if == 0
1172 // load @1
1173 // It is valid to have the getelementptr before the test, even if p can be 0,
1174 // as getelementptr only does address arithmetic.
1175 // If we are not pushing the value through any multiple-successor blocks
1176 // we do not have this case. Otherwise, check that the load is safe to
1177 // put anywhere; this can be improved, but should be conservatively safe.
1178 if (!allSingleSucc &&
1179 !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1180 return false;
1182 // Okay, we can eliminate this load by inserting a reload in the predecessor
1183 // and using PHI construction to get the value in the other predecessors, do
1184 // it.
1185 DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1187 Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1188 LI->getAlignment(),
1189 UnavailablePred->getTerminator());
1191 SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1192 for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1193 I != E; ++I)
1194 ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1196 DenseMap<BasicBlock*, Value*> BlockReplValues;
1197 BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1198 BlockReplValues[UnavailablePred] = NewLoad;
1200 // Perform PHI construction.
1201 Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1202 LI->replaceAllUsesWith(v);
1203 if (isa<PHINode>(v))
1204 v->takeName(LI);
1205 if (isa<PointerType>(v->getType()))
1206 MD->invalidateCachedPointerInfo(v);
1207 toErase.push_back(LI);
1208 NumPRELoad++;
1209 return true;
1212 /// processLoad - Attempt to eliminate a load, first by eliminating it
1213 /// locally, and then attempting non-local elimination if that fails.
1214 bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1215 if (L->isVolatile())
1216 return false;
1218 Value* pointer = L->getPointerOperand();
1220 // ... to a pointer that has been loaded from before...
1221 MemDepResult dep = MD->getDependency(L);
1223 // If the value isn't available, don't do anything!
1224 if (dep.isClobber()) {
1225 DEBUG(
1226 // fast print dep, using operator<< on instruction would be too slow
1227 errs() << "GVN: load ";
1228 WriteAsOperand(errs(), L);
1229 Instruction *I = dep.getInst();
1230 errs() << " is clobbered by " << *I << '\n';
1232 return false;
1235 // If it is defined in another block, try harder.
1236 if (dep.isNonLocal())
1237 return processNonLocalLoad(L, toErase);
1239 Instruction *DepInst = dep.getInst();
1240 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1241 // Only forward substitute stores to loads of the same type.
1242 // FIXME: Could do better!
1243 if (DepSI->getPointerOperand()->getType() != pointer->getType())
1244 return false;
1246 // Remove it!
1247 L->replaceAllUsesWith(DepSI->getOperand(0));
1248 if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1249 MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1250 toErase.push_back(L);
1251 NumGVNLoad++;
1252 return true;
1255 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1256 // Only forward substitute stores to loads of the same type.
1257 // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1258 if (DepLI->getType() != L->getType())
1259 return false;
1261 // Remove it!
1262 L->replaceAllUsesWith(DepLI);
1263 if (isa<PointerType>(DepLI->getType()))
1264 MD->invalidateCachedPointerInfo(DepLI);
1265 toErase.push_back(L);
1266 NumGVNLoad++;
1267 return true;
1270 // If this load really doesn't depend on anything, then we must be loading an
1271 // undef value. This can happen when loading for a fresh allocation with no
1272 // intervening stores, for example.
1273 if (isa<AllocationInst>(DepInst)) {
1274 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1275 toErase.push_back(L);
1276 NumGVNLoad++;
1277 return true;
1280 return false;
1283 Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1284 DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1285 if (I == localAvail.end())
1286 return 0;
1288 ValueNumberScope* locals = I->second;
1290 while (locals) {
1291 DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1292 if (I != locals->table.end())
1293 return I->second;
1294 else
1295 locals = locals->parent;
1298 return 0;
1301 /// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1302 /// by inheritance from the dominator fails, see if we can perform phi
1303 /// construction to eliminate the redundancy.
1304 Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1305 BasicBlock* BaseBlock = orig->getParent();
1307 SmallPtrSet<BasicBlock*, 4> Visited;
1308 SmallVector<BasicBlock*, 8> Stack;
1309 Stack.push_back(BaseBlock);
1311 DenseMap<BasicBlock*, Value*> Results;
1313 // Walk backwards through our predecessors, looking for instances of the
1314 // value number we're looking for. Instances are recorded in the Results
1315 // map, which is then used to perform phi construction.
1316 while (!Stack.empty()) {
1317 BasicBlock* Current = Stack.back();
1318 Stack.pop_back();
1320 // If we've walked all the way to a proper dominator, then give up. Cases
1321 // where the instance is in the dominator will have been caught by the fast
1322 // path, and any cases that require phi construction further than this are
1323 // probably not worth it anyways. Note that this is a SIGNIFICANT compile
1324 // time improvement.
1325 if (DT->properlyDominates(Current, orig->getParent())) return 0;
1327 DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1328 localAvail.find(Current);
1329 if (LA == localAvail.end()) return 0;
1330 DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1332 if (V != LA->second->table.end()) {
1333 // Found an instance, record it.
1334 Results.insert(std::make_pair(Current, V->second));
1335 continue;
1338 // If we reach the beginning of the function, then give up.
1339 if (pred_begin(Current) == pred_end(Current))
1340 return 0;
1342 for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1343 PI != PE; ++PI)
1344 if (Visited.insert(*PI))
1345 Stack.push_back(*PI);
1348 // If we didn't find instances, give up. Otherwise, perform phi construction.
1349 if (Results.size() == 0)
1350 return 0;
1351 else
1352 return GetValueForBlock(BaseBlock, orig, Results, true);
1355 /// processInstruction - When calculating availability, handle an instruction
1356 /// by inserting it into the appropriate sets
1357 bool GVN::processInstruction(Instruction *I,
1358 SmallVectorImpl<Instruction*> &toErase) {
1359 if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1360 bool changed = processLoad(L, toErase);
1362 if (!changed) {
1363 unsigned num = VN.lookup_or_add(L);
1364 localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1367 return changed;
1370 uint32_t nextNum = VN.getNextUnusedValueNumber();
1371 unsigned num = VN.lookup_or_add(I);
1373 if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1374 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1376 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1377 return false;
1379 Value* branchCond = BI->getCondition();
1380 uint32_t condVN = VN.lookup_or_add(branchCond);
1382 BasicBlock* trueSucc = BI->getSuccessor(0);
1383 BasicBlock* falseSucc = BI->getSuccessor(1);
1385 if (trueSucc->getSinglePredecessor())
1386 localAvail[trueSucc]->table[condVN] =
1387 ConstantInt::getTrue(trueSucc->getContext());
1388 if (falseSucc->getSinglePredecessor())
1389 localAvail[falseSucc]->table[condVN] =
1390 ConstantInt::getFalse(trueSucc->getContext());
1392 return false;
1394 // Allocations are always uniquely numbered, so we can save time and memory
1395 // by fast failing them.
1396 } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1397 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1398 return false;
1401 // Collapse PHI nodes
1402 if (PHINode* p = dyn_cast<PHINode>(I)) {
1403 Value* constVal = CollapsePhi(p);
1405 if (constVal) {
1406 for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1407 PI != PE; ++PI)
1408 PI->second.erase(p);
1410 p->replaceAllUsesWith(constVal);
1411 if (isa<PointerType>(constVal->getType()))
1412 MD->invalidateCachedPointerInfo(constVal);
1413 VN.erase(p);
1415 toErase.push_back(p);
1416 } else {
1417 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1420 // If the number we were assigned was a brand new VN, then we don't
1421 // need to do a lookup to see if the number already exists
1422 // somewhere in the domtree: it can't!
1423 } else if (num == nextNum) {
1424 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1426 // Perform fast-path value-number based elimination of values inherited from
1427 // dominators.
1428 } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1429 // Remove it!
1430 VN.erase(I);
1431 I->replaceAllUsesWith(repl);
1432 if (isa<PointerType>(repl->getType()))
1433 MD->invalidateCachedPointerInfo(repl);
1434 toErase.push_back(I);
1435 return true;
1437 #if 0
1438 // Perform slow-pathvalue-number based elimination with phi construction.
1439 } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1440 // Remove it!
1441 VN.erase(I);
1442 I->replaceAllUsesWith(repl);
1443 if (isa<PointerType>(repl->getType()))
1444 MD->invalidateCachedPointerInfo(repl);
1445 toErase.push_back(I);
1446 return true;
1447 #endif
1448 } else {
1449 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1452 return false;
1455 /// runOnFunction - This is the main transformation entry point for a function.
1456 bool GVN::runOnFunction(Function& F) {
1457 MD = &getAnalysis<MemoryDependenceAnalysis>();
1458 DT = &getAnalysis<DominatorTree>();
1459 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1460 VN.setMemDep(MD);
1461 VN.setDomTree(DT);
1463 bool changed = false;
1464 bool shouldContinue = true;
1466 // Merge unconditional branches, allowing PRE to catch more
1467 // optimization opportunities.
1468 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1469 BasicBlock* BB = FI;
1470 ++FI;
1471 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1472 if (removedBlock) NumGVNBlocks++;
1474 changed |= removedBlock;
1477 unsigned Iteration = 0;
1479 while (shouldContinue) {
1480 DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1481 shouldContinue = iterateOnFunction(F);
1482 changed |= shouldContinue;
1483 ++Iteration;
1486 if (EnablePRE) {
1487 bool PREChanged = true;
1488 while (PREChanged) {
1489 PREChanged = performPRE(F);
1490 changed |= PREChanged;
1493 // FIXME: Should perform GVN again after PRE does something. PRE can move
1494 // computations into blocks where they become fully redundant. Note that
1495 // we can't do this until PRE's critical edge splitting updates memdep.
1496 // Actually, when this happens, we should just fully integrate PRE into GVN.
1498 cleanupGlobalSets();
1500 return changed;
1504 bool GVN::processBlock(BasicBlock* BB) {
1505 // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1506 // incrementing BI before processing an instruction).
1507 SmallVector<Instruction*, 8> toErase;
1508 bool changed_function = false;
1510 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1511 BI != BE;) {
1512 changed_function |= processInstruction(BI, toErase);
1513 if (toErase.empty()) {
1514 ++BI;
1515 continue;
1518 // If we need some instructions deleted, do it now.
1519 NumGVNInstr += toErase.size();
1521 // Avoid iterator invalidation.
1522 bool AtStart = BI == BB->begin();
1523 if (!AtStart)
1524 --BI;
1526 for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1527 E = toErase.end(); I != E; ++I) {
1528 DEBUG(errs() << "GVN removed: " << **I << '\n');
1529 MD->removeInstruction(*I);
1530 (*I)->eraseFromParent();
1531 DEBUG(verifyRemoved(*I));
1533 toErase.clear();
1535 if (AtStart)
1536 BI = BB->begin();
1537 else
1538 ++BI;
1541 return changed_function;
1544 /// performPRE - Perform a purely local form of PRE that looks for diamond
1545 /// control flow patterns and attempts to perform simple PRE at the join point.
1546 bool GVN::performPRE(Function& F) {
1547 bool Changed = false;
1548 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1549 DenseMap<BasicBlock*, Value*> predMap;
1550 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1551 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1552 BasicBlock* CurrentBlock = *DI;
1554 // Nothing to PRE in the entry block.
1555 if (CurrentBlock == &F.getEntryBlock()) continue;
1557 for (BasicBlock::iterator BI = CurrentBlock->begin(),
1558 BE = CurrentBlock->end(); BI != BE; ) {
1559 Instruction *CurInst = BI++;
1561 if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1562 isa<PHINode>(CurInst) ||
1563 (CurInst->getType() == Type::getVoidTy(F.getContext())) ||
1564 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1565 isa<DbgInfoIntrinsic>(CurInst))
1566 continue;
1568 uint32_t valno = VN.lookup(CurInst);
1570 // Look for the predecessors for PRE opportunities. We're
1571 // only trying to solve the basic diamond case, where
1572 // a value is computed in the successor and one predecessor,
1573 // but not the other. We also explicitly disallow cases
1574 // where the successor is its own predecessor, because they're
1575 // more complicated to get right.
1576 unsigned numWith = 0;
1577 unsigned numWithout = 0;
1578 BasicBlock* PREPred = 0;
1579 predMap.clear();
1581 for (pred_iterator PI = pred_begin(CurrentBlock),
1582 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1583 // We're not interested in PRE where the block is its
1584 // own predecessor, on in blocks with predecessors
1585 // that are not reachable.
1586 if (*PI == CurrentBlock) {
1587 numWithout = 2;
1588 break;
1589 } else if (!localAvail.count(*PI)) {
1590 numWithout = 2;
1591 break;
1594 DenseMap<uint32_t, Value*>::iterator predV =
1595 localAvail[*PI]->table.find(valno);
1596 if (predV == localAvail[*PI]->table.end()) {
1597 PREPred = *PI;
1598 numWithout++;
1599 } else if (predV->second == CurInst) {
1600 numWithout = 2;
1601 } else {
1602 predMap[*PI] = predV->second;
1603 numWith++;
1607 // Don't do PRE when it might increase code size, i.e. when
1608 // we would need to insert instructions in more than one pred.
1609 if (numWithout != 1 || numWith == 0)
1610 continue;
1612 // We can't do PRE safely on a critical edge, so instead we schedule
1613 // the edge to be split and perform the PRE the next time we iterate
1614 // on the function.
1615 unsigned succNum = 0;
1616 for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1617 i != e; ++i)
1618 if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1619 succNum = i;
1620 break;
1623 if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1624 toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1625 continue;
1628 // Instantiate the expression the in predecessor that lacked it.
1629 // Because we are going top-down through the block, all value numbers
1630 // will be available in the predecessor by the time we need them. Any
1631 // that weren't original present will have been instantiated earlier
1632 // in this loop.
1633 Instruction* PREInstr = CurInst->clone(CurInst->getContext());
1634 bool success = true;
1635 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1636 Value *Op = PREInstr->getOperand(i);
1637 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1638 continue;
1640 if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1641 PREInstr->setOperand(i, V);
1642 } else {
1643 success = false;
1644 break;
1648 // Fail out if we encounter an operand that is not available in
1649 // the PRE predecessor. This is typically because of loads which
1650 // are not value numbered precisely.
1651 if (!success) {
1652 delete PREInstr;
1653 DEBUG(verifyRemoved(PREInstr));
1654 continue;
1657 PREInstr->insertBefore(PREPred->getTerminator());
1658 PREInstr->setName(CurInst->getName() + ".pre");
1659 predMap[PREPred] = PREInstr;
1660 VN.add(PREInstr, valno);
1661 NumGVNPRE++;
1663 // Update the availability map to include the new instruction.
1664 localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1666 // Create a PHI to make the value available in this block.
1667 PHINode* Phi = PHINode::Create(CurInst->getType(),
1668 CurInst->getName() + ".pre-phi",
1669 CurrentBlock->begin());
1670 for (pred_iterator PI = pred_begin(CurrentBlock),
1671 PE = pred_end(CurrentBlock); PI != PE; ++PI)
1672 Phi->addIncoming(predMap[*PI], *PI);
1674 VN.add(Phi, valno);
1675 localAvail[CurrentBlock]->table[valno] = Phi;
1677 CurInst->replaceAllUsesWith(Phi);
1678 if (isa<PointerType>(Phi->getType()))
1679 MD->invalidateCachedPointerInfo(Phi);
1680 VN.erase(CurInst);
1682 DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1683 MD->removeInstruction(CurInst);
1684 CurInst->eraseFromParent();
1685 DEBUG(verifyRemoved(CurInst));
1686 Changed = true;
1690 for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1691 I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1692 SplitCriticalEdge(I->first, I->second, this);
1694 return Changed || toSplit.size();
1697 /// iterateOnFunction - Executes one iteration of GVN
1698 bool GVN::iterateOnFunction(Function &F) {
1699 cleanupGlobalSets();
1701 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1702 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1703 if (DI->getIDom())
1704 localAvail[DI->getBlock()] =
1705 new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1706 else
1707 localAvail[DI->getBlock()] = new ValueNumberScope(0);
1710 // Top-down walk of the dominator tree
1711 bool changed = false;
1712 #if 0
1713 // Needed for value numbering with phi construction to work.
1714 ReversePostOrderTraversal<Function*> RPOT(&F);
1715 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1716 RE = RPOT.end(); RI != RE; ++RI)
1717 changed |= processBlock(*RI);
1718 #else
1719 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1720 DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1721 changed |= processBlock(DI->getBlock());
1722 #endif
1724 return changed;
1727 void GVN::cleanupGlobalSets() {
1728 VN.clear();
1729 phiMap.clear();
1731 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1732 I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1733 delete I->second;
1734 localAvail.clear();
1737 /// verifyRemoved - Verify that the specified instruction does not occur in our
1738 /// internal data structures.
1739 void GVN::verifyRemoved(const Instruction *Inst) const {
1740 VN.verifyRemoved(Inst);
1742 // Walk through the PHI map to make sure the instruction isn't hiding in there
1743 // somewhere.
1744 for (PhiMapType::iterator
1745 I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1746 assert(I->first != Inst && "Inst is still a key in PHI map!");
1748 for (SmallPtrSet<Instruction*, 4>::iterator
1749 II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1750 assert(*II != Inst && "Inst is still a value in PHI map!");
1754 // Walk through the value number scope to make sure the instruction isn't
1755 // ferreted away in it.
1756 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1757 I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1758 const ValueNumberScope *VNS = I->second;
1760 while (VNS) {
1761 for (DenseMap<uint32_t, Value*>::iterator
1762 II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1763 assert(II->second != Inst && "Inst still in value numbering scope!");
1766 VNS = VNS->parent;