add some missing quotes in debug output
[llvm/avr.git] / lib / Transforms / Scalar / SimplifyLibCalls.cpp
blob419d66f7af4b60ff28831d9bb8bd9a0668fba37a
1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple pass that applies a variety of small
11 // optimizations for calls to specific well-known function calls (e.g. runtime
12 // library functions). Any optimization that takes the very simple form
13 // "replace call to library function with simpler code that provides the same
14 // result" belongs in this file.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "simplify-libcalls"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/IRBuilder.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Config/config.h"
34 using namespace llvm;
36 STATISTIC(NumSimplified, "Number of library calls simplified");
37 STATISTIC(NumAnnotated, "Number of attributes added to library functions");
39 //===----------------------------------------------------------------------===//
40 // Optimizer Base Class
41 //===----------------------------------------------------------------------===//
43 /// This class is the abstract base class for the set of optimizations that
44 /// corresponds to one library call.
45 namespace {
46 class LibCallOptimization {
47 protected:
48 Function *Caller;
49 const TargetData *TD;
50 LLVMContext* Context;
51 public:
52 LibCallOptimization() { }
53 virtual ~LibCallOptimization() {}
55 /// CallOptimizer - This pure virtual method is implemented by base classes to
56 /// do various optimizations. If this returns null then no transformation was
57 /// performed. If it returns CI, then it transformed the call and CI is to be
58 /// deleted. If it returns something else, replace CI with the new value and
59 /// delete CI.
60 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
61 =0;
63 Value *OptimizeCall(CallInst *CI, const TargetData *TD, IRBuilder<> &B) {
64 Caller = CI->getParent()->getParent();
65 this->TD = TD;
66 if (CI->getCalledFunction())
67 Context = &CI->getCalledFunction()->getContext();
68 return CallOptimizer(CI->getCalledFunction(), CI, B);
71 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
72 Value *CastToCStr(Value *V, IRBuilder<> &B);
74 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
75 /// specified pointer. Ptr is required to be some pointer type, and the
76 /// return value has 'intptr_t' type.
77 Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
79 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This
80 /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
81 Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
82 unsigned Align, IRBuilder<> &B);
84 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
85 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
86 Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
88 /// EmitMemCmp - Emit a call to the memcmp function.
89 Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B);
91 /// EmitMemSet - Emit a call to the memset function
92 Value *EmitMemSet(Value *Dst, Value *Val, Value *Len, IRBuilder<> &B);
94 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
95 /// 'floor'). This function is known to take a single of type matching 'Op'
96 /// and returns one value with the same type. If 'Op' is a long double, 'l'
97 /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
98 Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B);
100 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
101 /// is an integer.
102 void EmitPutChar(Value *Char, IRBuilder<> &B);
104 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
105 /// some pointer.
106 void EmitPutS(Value *Str, IRBuilder<> &B);
108 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
109 /// an i32, and File is a pointer to FILE.
110 void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
112 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
113 /// pointer and File is a pointer to FILE.
114 void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
116 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
117 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
118 void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
121 } // End anonymous namespace.
123 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
124 Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) {
125 return
126 B.CreateBitCast(V, PointerType::getUnqual(Type::getInt8Ty(*Context)), "cstr");
129 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
130 /// specified pointer. This always returns an integer value of size intptr_t.
131 Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) {
132 Module *M = Caller->getParent();
133 AttributeWithIndex AWI[2];
134 AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
135 AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
136 Attribute::NoUnwind);
138 Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2),
139 TD->getIntPtrType(*Context),
140 PointerType::getUnqual(Type::getInt8Ty(*Context)),
141 NULL);
142 CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
143 if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
144 CI->setCallingConv(F->getCallingConv());
146 return CI;
149 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
150 /// expects that the size has type 'intptr_t' and Dst/Src are pointers.
151 Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
152 unsigned Align, IRBuilder<> &B) {
153 Module *M = Caller->getParent();
154 Intrinsic::ID IID = Intrinsic::memcpy;
155 const Type *Tys[1];
156 Tys[0] = Len->getType();
157 Value *MemCpy = Intrinsic::getDeclaration(M, IID, Tys, 1);
158 return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
159 ConstantInt::get(Type::getInt32Ty(*Context), Align));
162 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
163 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
164 Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
165 Value *Len, IRBuilder<> &B) {
166 Module *M = Caller->getParent();
167 AttributeWithIndex AWI;
168 AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
170 Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1),
171 PointerType::getUnqual(Type::getInt8Ty(*Context)),
172 PointerType::getUnqual(Type::getInt8Ty(*Context)),
173 Type::getInt32Ty(*Context), TD->getIntPtrType(*Context),
174 NULL);
175 CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
177 if (const Function *F = dyn_cast<Function>(MemChr->stripPointerCasts()))
178 CI->setCallingConv(F->getCallingConv());
180 return CI;
183 /// EmitMemCmp - Emit a call to the memcmp function.
184 Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2,
185 Value *Len, IRBuilder<> &B) {
186 Module *M = Caller->getParent();
187 AttributeWithIndex AWI[3];
188 AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
189 AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
190 AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
191 Attribute::NoUnwind);
193 Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3),
194 Type::getInt32Ty(*Context),
195 PointerType::getUnqual(Type::getInt8Ty(*Context)),
196 PointerType::getUnqual(Type::getInt8Ty(*Context)),
197 TD->getIntPtrType(*Context), NULL);
198 CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
199 Len, "memcmp");
201 if (const Function *F = dyn_cast<Function>(MemCmp->stripPointerCasts()))
202 CI->setCallingConv(F->getCallingConv());
204 return CI;
207 /// EmitMemSet - Emit a call to the memset function
208 Value *LibCallOptimization::EmitMemSet(Value *Dst, Value *Val,
209 Value *Len, IRBuilder<> &B) {
210 Module *M = Caller->getParent();
211 Intrinsic::ID IID = Intrinsic::memset;
212 const Type *Tys[1];
213 Tys[0] = Len->getType();
214 Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
215 Value *Align = ConstantInt::get(Type::getInt32Ty(*Context), 1);
216 return B.CreateCall4(MemSet, CastToCStr(Dst, B), Val, Len, Align);
219 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
220 /// 'floor'). This function is known to take a single of type matching 'Op' and
221 /// returns one value with the same type. If 'Op' is a long double, 'l' is
222 /// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
223 Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
224 IRBuilder<> &B) {
225 char NameBuffer[20];
226 if (Op->getType() != Type::getDoubleTy(*Context)) {
227 // If we need to add a suffix, copy into NameBuffer.
228 unsigned NameLen = strlen(Name);
229 assert(NameLen < sizeof(NameBuffer)-2);
230 memcpy(NameBuffer, Name, NameLen);
231 if (Op->getType() == Type::getFloatTy(*Context))
232 NameBuffer[NameLen] = 'f'; // floorf
233 else
234 NameBuffer[NameLen] = 'l'; // floorl
235 NameBuffer[NameLen+1] = 0;
236 Name = NameBuffer;
239 Module *M = Caller->getParent();
240 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
241 Op->getType(), NULL);
242 CallInst *CI = B.CreateCall(Callee, Op, Name);
244 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
245 CI->setCallingConv(F->getCallingConv());
247 return CI;
250 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
251 /// is an integer.
252 void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) {
253 Module *M = Caller->getParent();
254 Value *PutChar = M->getOrInsertFunction("putchar", Type::getInt32Ty(*Context),
255 Type::getInt32Ty(*Context), NULL);
256 CallInst *CI = B.CreateCall(PutChar,
257 B.CreateIntCast(Char, Type::getInt32Ty(*Context), "chari"),
258 "putchar");
260 if (const Function *F = dyn_cast<Function>(PutChar->stripPointerCasts()))
261 CI->setCallingConv(F->getCallingConv());
264 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
265 /// some pointer.
266 void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) {
267 Module *M = Caller->getParent();
268 AttributeWithIndex AWI[2];
269 AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
270 AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
272 Value *PutS = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2),
273 Type::getInt32Ty(*Context),
274 PointerType::getUnqual(Type::getInt8Ty(*Context)),
275 NULL);
276 CallInst *CI = B.CreateCall(PutS, CastToCStr(Str, B), "puts");
277 if (const Function *F = dyn_cast<Function>(PutS->stripPointerCasts()))
278 CI->setCallingConv(F->getCallingConv());
282 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
283 /// an integer and File is a pointer to FILE.
284 void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) {
285 Module *M = Caller->getParent();
286 AttributeWithIndex AWI[2];
287 AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
288 AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
289 Constant *F;
290 if (isa<PointerType>(File->getType()))
291 F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2), Type::getInt32Ty(*Context),
292 Type::getInt32Ty(*Context), File->getType(), NULL);
293 else
294 F = M->getOrInsertFunction("fputc", Type::getInt32Ty(*Context), Type::getInt32Ty(*Context),
295 File->getType(), NULL);
296 Char = B.CreateIntCast(Char, Type::getInt32Ty(*Context), "chari");
297 CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
299 if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
300 CI->setCallingConv(Fn->getCallingConv());
303 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
304 /// pointer and File is a pointer to FILE.
305 void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) {
306 Module *M = Caller->getParent();
307 AttributeWithIndex AWI[3];
308 AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
309 AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
310 AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
311 Constant *F;
312 if (isa<PointerType>(File->getType()))
313 F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3), Type::getInt32Ty(*Context),
314 PointerType::getUnqual(Type::getInt8Ty(*Context)),
315 File->getType(), NULL);
316 else
317 F = M->getOrInsertFunction("fputs", Type::getInt32Ty(*Context),
318 PointerType::getUnqual(Type::getInt8Ty(*Context)),
319 File->getType(), NULL);
320 CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
322 if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
323 CI->setCallingConv(Fn->getCallingConv());
326 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
327 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
328 void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
329 IRBuilder<> &B) {
330 Module *M = Caller->getParent();
331 AttributeWithIndex AWI[3];
332 AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
333 AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture);
334 AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
335 Constant *F;
336 if (isa<PointerType>(File->getType()))
337 F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3),
338 TD->getIntPtrType(*Context),
339 PointerType::getUnqual(Type::getInt8Ty(*Context)),
340 TD->getIntPtrType(*Context), TD->getIntPtrType(*Context),
341 File->getType(), NULL);
342 else
343 F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(*Context),
344 PointerType::getUnqual(Type::getInt8Ty(*Context)),
345 TD->getIntPtrType(*Context), TD->getIntPtrType(*Context),
346 File->getType(), NULL);
347 CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
348 ConstantInt::get(TD->getIntPtrType(*Context), 1), File);
350 if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
351 CI->setCallingConv(Fn->getCallingConv());
354 //===----------------------------------------------------------------------===//
355 // Helper Functions
356 //===----------------------------------------------------------------------===//
358 /// GetStringLengthH - If we can compute the length of the string pointed to by
359 /// the specified pointer, return 'len+1'. If we can't, return 0.
360 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
361 // Look through noop bitcast instructions.
362 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
363 return GetStringLengthH(BCI->getOperand(0), PHIs);
365 // If this is a PHI node, there are two cases: either we have already seen it
366 // or we haven't.
367 if (PHINode *PN = dyn_cast<PHINode>(V)) {
368 if (!PHIs.insert(PN))
369 return ~0ULL; // already in the set.
371 // If it was new, see if all the input strings are the same length.
372 uint64_t LenSoFar = ~0ULL;
373 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
374 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
375 if (Len == 0) return 0; // Unknown length -> unknown.
377 if (Len == ~0ULL) continue;
379 if (Len != LenSoFar && LenSoFar != ~0ULL)
380 return 0; // Disagree -> unknown.
381 LenSoFar = Len;
384 // Success, all agree.
385 return LenSoFar;
388 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
389 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
390 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
391 if (Len1 == 0) return 0;
392 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
393 if (Len2 == 0) return 0;
394 if (Len1 == ~0ULL) return Len2;
395 if (Len2 == ~0ULL) return Len1;
396 if (Len1 != Len2) return 0;
397 return Len1;
400 // If the value is not a GEP instruction nor a constant expression with a
401 // GEP instruction, then return unknown.
402 User *GEP = 0;
403 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
404 GEP = GEPI;
405 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
406 if (CE->getOpcode() != Instruction::GetElementPtr)
407 return 0;
408 GEP = CE;
409 } else {
410 return 0;
413 // Make sure the GEP has exactly three arguments.
414 if (GEP->getNumOperands() != 3)
415 return 0;
417 // Check to make sure that the first operand of the GEP is an integer and
418 // has value 0 so that we are sure we're indexing into the initializer.
419 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
420 if (!Idx->isZero())
421 return 0;
422 } else
423 return 0;
425 // If the second index isn't a ConstantInt, then this is a variable index
426 // into the array. If this occurs, we can't say anything meaningful about
427 // the string.
428 uint64_t StartIdx = 0;
429 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
430 StartIdx = CI->getZExtValue();
431 else
432 return 0;
434 // The GEP instruction, constant or instruction, must reference a global
435 // variable that is a constant and is initialized. The referenced constant
436 // initializer is the array that we'll use for optimization.
437 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
438 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
439 GV->mayBeOverridden())
440 return 0;
441 Constant *GlobalInit = GV->getInitializer();
443 // Handle the ConstantAggregateZero case, which is a degenerate case. The
444 // initializer is constant zero so the length of the string must be zero.
445 if (isa<ConstantAggregateZero>(GlobalInit))
446 return 1; // Len = 0 offset by 1.
448 // Must be a Constant Array
449 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
450 if (!Array ||
451 Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
452 return false;
454 // Get the number of elements in the array
455 uint64_t NumElts = Array->getType()->getNumElements();
457 // Traverse the constant array from StartIdx (derived above) which is
458 // the place the GEP refers to in the array.
459 for (unsigned i = StartIdx; i != NumElts; ++i) {
460 Constant *Elt = Array->getOperand(i);
461 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
462 if (!CI) // This array isn't suitable, non-int initializer.
463 return 0;
464 if (CI->isZero())
465 return i-StartIdx+1; // We found end of string, success!
468 return 0; // The array isn't null terminated, conservatively return 'unknown'.
471 /// GetStringLength - If we can compute the length of the string pointed to by
472 /// the specified pointer, return 'len+1'. If we can't, return 0.
473 static uint64_t GetStringLength(Value *V) {
474 if (!isa<PointerType>(V->getType())) return 0;
476 SmallPtrSet<PHINode*, 32> PHIs;
477 uint64_t Len = GetStringLengthH(V, PHIs);
478 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
479 // an empty string as a length.
480 return Len == ~0ULL ? 1 : Len;
483 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
484 /// value is equal or not-equal to zero.
485 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
486 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
487 UI != E; ++UI) {
488 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
489 if (IC->isEquality())
490 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
491 if (C->isNullValue())
492 continue;
493 // Unknown instruction.
494 return false;
496 return true;
499 //===----------------------------------------------------------------------===//
500 // String and Memory LibCall Optimizations
501 //===----------------------------------------------------------------------===//
503 //===---------------------------------------===//
504 // 'strcat' Optimizations
505 namespace {
506 struct StrCatOpt : public LibCallOptimization {
507 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
508 // Verify the "strcat" function prototype.
509 const FunctionType *FT = Callee->getFunctionType();
510 if (FT->getNumParams() != 2 ||
511 FT->getReturnType() != PointerType::getUnqual(Type::getInt8Ty(*Context)) ||
512 FT->getParamType(0) != FT->getReturnType() ||
513 FT->getParamType(1) != FT->getReturnType())
514 return 0;
516 // Extract some information from the instruction
517 Value *Dst = CI->getOperand(1);
518 Value *Src = CI->getOperand(2);
520 // See if we can get the length of the input string.
521 uint64_t Len = GetStringLength(Src);
522 if (Len == 0) return 0;
523 --Len; // Unbias length.
525 // Handle the simple, do-nothing case: strcat(x, "") -> x
526 if (Len == 0)
527 return Dst;
529 // These optimizations require TargetData.
530 if (!TD) return 0;
532 EmitStrLenMemCpy(Src, Dst, Len, B);
533 return Dst;
536 void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
537 // We need to find the end of the destination string. That's where the
538 // memory is to be moved to. We just generate a call to strlen.
539 Value *DstLen = EmitStrLen(Dst, B);
541 // Now that we have the destination's length, we must index into the
542 // destination's pointer to get the actual memcpy destination (end of
543 // the string .. we're concatenating).
544 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
546 // We have enough information to now generate the memcpy call to do the
547 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
548 EmitMemCpy(CpyDst, Src,
549 ConstantInt::get(TD->getIntPtrType(*Context), Len+1), 1, B);
553 //===---------------------------------------===//
554 // 'strncat' Optimizations
556 struct StrNCatOpt : public StrCatOpt {
557 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
558 // Verify the "strncat" function prototype.
559 const FunctionType *FT = Callee->getFunctionType();
560 if (FT->getNumParams() != 3 ||
561 FT->getReturnType() != PointerType::getUnqual(Type::getInt8Ty(*Context)) ||
562 FT->getParamType(0) != FT->getReturnType() ||
563 FT->getParamType(1) != FT->getReturnType() ||
564 !isa<IntegerType>(FT->getParamType(2)))
565 return 0;
567 // Extract some information from the instruction
568 Value *Dst = CI->getOperand(1);
569 Value *Src = CI->getOperand(2);
570 uint64_t Len;
572 // We don't do anything if length is not constant
573 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
574 Len = LengthArg->getZExtValue();
575 else
576 return 0;
578 // See if we can get the length of the input string.
579 uint64_t SrcLen = GetStringLength(Src);
580 if (SrcLen == 0) return 0;
581 --SrcLen; // Unbias length.
583 // Handle the simple, do-nothing cases:
584 // strncat(x, "", c) -> x
585 // strncat(x, c, 0) -> x
586 if (SrcLen == 0 || Len == 0) return Dst;
588 // These optimizations require TargetData.
589 if (!TD) return 0;
591 // We don't optimize this case
592 if (Len < SrcLen) return 0;
594 // strncat(x, s, c) -> strcat(x, s)
595 // s is constant so the strcat can be optimized further
596 EmitStrLenMemCpy(Src, Dst, SrcLen, B);
597 return Dst;
601 //===---------------------------------------===//
602 // 'strchr' Optimizations
604 struct StrChrOpt : public LibCallOptimization {
605 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
606 // Verify the "strchr" function prototype.
607 const FunctionType *FT = Callee->getFunctionType();
608 if (FT->getNumParams() != 2 ||
609 FT->getReturnType() != PointerType::getUnqual(Type::getInt8Ty(*Context)) ||
610 FT->getParamType(0) != FT->getReturnType())
611 return 0;
613 Value *SrcStr = CI->getOperand(1);
615 // If the second operand is non-constant, see if we can compute the length
616 // of the input string and turn this into memchr.
617 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
618 if (CharC == 0) {
619 // These optimizations require TargetData.
620 if (!TD) return 0;
622 uint64_t Len = GetStringLength(SrcStr);
623 if (Len == 0 || FT->getParamType(1) != Type::getInt32Ty(*Context)) // memchr needs i32.
624 return 0;
626 return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
627 ConstantInt::get(TD->getIntPtrType(*Context), Len), B);
630 // Otherwise, the character is a constant, see if the first argument is
631 // a string literal. If so, we can constant fold.
632 std::string Str;
633 if (!GetConstantStringInfo(SrcStr, Str))
634 return 0;
636 // strchr can find the nul character.
637 Str += '\0';
638 char CharValue = CharC->getSExtValue();
640 // Compute the offset.
641 uint64_t i = 0;
642 while (1) {
643 if (i == Str.size()) // Didn't find the char. strchr returns null.
644 return Constant::getNullValue(CI->getType());
645 // Did we find our match?
646 if (Str[i] == CharValue)
647 break;
648 ++i;
651 // strchr(s+n,c) -> gep(s+n+i,c)
652 Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), i);
653 return B.CreateGEP(SrcStr, Idx, "strchr");
657 //===---------------------------------------===//
658 // 'strcmp' Optimizations
660 struct StrCmpOpt : public LibCallOptimization {
661 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
662 // Verify the "strcmp" function prototype.
663 const FunctionType *FT = Callee->getFunctionType();
664 if (FT->getNumParams() != 2 || FT->getReturnType() != Type::getInt32Ty(*Context) ||
665 FT->getParamType(0) != FT->getParamType(1) ||
666 FT->getParamType(0) != PointerType::getUnqual(Type::getInt8Ty(*Context)))
667 return 0;
669 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
670 if (Str1P == Str2P) // strcmp(x,x) -> 0
671 return ConstantInt::get(CI->getType(), 0);
673 std::string Str1, Str2;
674 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
675 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
677 if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
678 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
680 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
681 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
683 // strcmp(x, y) -> cnst (if both x and y are constant strings)
684 if (HasStr1 && HasStr2)
685 return ConstantInt::get(CI->getType(),
686 strcmp(Str1.c_str(),Str2.c_str()));
688 // strcmp(P, "x") -> memcmp(P, "x", 2)
689 uint64_t Len1 = GetStringLength(Str1P);
690 uint64_t Len2 = GetStringLength(Str2P);
691 if (Len1 && Len2) {
692 // These optimizations require TargetData.
693 if (!TD) return 0;
695 return EmitMemCmp(Str1P, Str2P,
696 ConstantInt::get(TD->getIntPtrType(*Context),
697 std::min(Len1, Len2)), B);
700 return 0;
704 //===---------------------------------------===//
705 // 'strncmp' Optimizations
707 struct StrNCmpOpt : public LibCallOptimization {
708 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
709 // Verify the "strncmp" function prototype.
710 const FunctionType *FT = Callee->getFunctionType();
711 if (FT->getNumParams() != 3 || FT->getReturnType() != Type::getInt32Ty(*Context) ||
712 FT->getParamType(0) != FT->getParamType(1) ||
713 FT->getParamType(0) != PointerType::getUnqual(Type::getInt8Ty(*Context)) ||
714 !isa<IntegerType>(FT->getParamType(2)))
715 return 0;
717 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
718 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
719 return ConstantInt::get(CI->getType(), 0);
721 // Get the length argument if it is constant.
722 uint64_t Length;
723 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
724 Length = LengthArg->getZExtValue();
725 else
726 return 0;
728 if (Length == 0) // strncmp(x,y,0) -> 0
729 return ConstantInt::get(CI->getType(), 0);
731 std::string Str1, Str2;
732 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
733 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
735 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
736 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
738 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
739 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
741 // strncmp(x, y) -> cnst (if both x and y are constant strings)
742 if (HasStr1 && HasStr2)
743 return ConstantInt::get(CI->getType(),
744 strncmp(Str1.c_str(), Str2.c_str(), Length));
745 return 0;
750 //===---------------------------------------===//
751 // 'strcpy' Optimizations
753 struct StrCpyOpt : public LibCallOptimization {
754 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
755 // Verify the "strcpy" function prototype.
756 const FunctionType *FT = Callee->getFunctionType();
757 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
758 FT->getParamType(0) != FT->getParamType(1) ||
759 FT->getParamType(0) != PointerType::getUnqual(Type::getInt8Ty(*Context)))
760 return 0;
762 Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
763 if (Dst == Src) // strcpy(x,x) -> x
764 return Src;
766 // These optimizations require TargetData.
767 if (!TD) return 0;
769 // See if we can get the length of the input string.
770 uint64_t Len = GetStringLength(Src);
771 if (Len == 0) return 0;
773 // We have enough information to now generate the memcpy call to do the
774 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
775 EmitMemCpy(Dst, Src,
776 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B);
777 return Dst;
781 //===---------------------------------------===//
782 // 'strncpy' Optimizations
784 struct StrNCpyOpt : public LibCallOptimization {
785 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
786 const FunctionType *FT = Callee->getFunctionType();
787 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
788 FT->getParamType(0) != FT->getParamType(1) ||
789 FT->getParamType(0) != PointerType::getUnqual(Type::getInt8Ty(*Context)) ||
790 !isa<IntegerType>(FT->getParamType(2)))
791 return 0;
793 Value *Dst = CI->getOperand(1);
794 Value *Src = CI->getOperand(2);
795 Value *LenOp = CI->getOperand(3);
797 // See if we can get the length of the input string.
798 uint64_t SrcLen = GetStringLength(Src);
799 if (SrcLen == 0) return 0;
800 --SrcLen;
802 if (SrcLen == 0) {
803 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
804 EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'), LenOp, B);
805 return Dst;
808 uint64_t Len;
809 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
810 Len = LengthArg->getZExtValue();
811 else
812 return 0;
814 if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
816 // These optimizations require TargetData.
817 if (!TD) return 0;
819 // Let strncpy handle the zero padding
820 if (Len > SrcLen+1) return 0;
822 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
823 EmitMemCpy(Dst, Src,
824 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B);
826 return Dst;
830 //===---------------------------------------===//
831 // 'strlen' Optimizations
833 struct StrLenOpt : public LibCallOptimization {
834 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
835 const FunctionType *FT = Callee->getFunctionType();
836 if (FT->getNumParams() != 1 ||
837 FT->getParamType(0) != PointerType::getUnqual(Type::getInt8Ty(*Context)) ||
838 !isa<IntegerType>(FT->getReturnType()))
839 return 0;
841 Value *Src = CI->getOperand(1);
843 // Constant folding: strlen("xyz") -> 3
844 if (uint64_t Len = GetStringLength(Src))
845 return ConstantInt::get(CI->getType(), Len-1);
847 // Handle strlen(p) != 0.
848 if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
850 // strlen(x) != 0 --> *x != 0
851 // strlen(x) == 0 --> *x == 0
852 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
856 //===---------------------------------------===//
857 // 'strto*' Optimizations
859 struct StrToOpt : public LibCallOptimization {
860 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
861 const FunctionType *FT = Callee->getFunctionType();
862 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
863 !isa<PointerType>(FT->getParamType(0)) ||
864 !isa<PointerType>(FT->getParamType(1)))
865 return 0;
867 Value *EndPtr = CI->getOperand(2);
868 if (isa<ConstantPointerNull>(EndPtr)) {
869 CI->setOnlyReadsMemory();
870 CI->addAttribute(1, Attribute::NoCapture);
873 return 0;
878 //===---------------------------------------===//
879 // 'memcmp' Optimizations
881 struct MemCmpOpt : public LibCallOptimization {
882 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
883 const FunctionType *FT = Callee->getFunctionType();
884 if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
885 !isa<PointerType>(FT->getParamType(1)) ||
886 FT->getReturnType() != Type::getInt32Ty(*Context))
887 return 0;
889 Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
891 if (LHS == RHS) // memcmp(s,s,x) -> 0
892 return Constant::getNullValue(CI->getType());
894 // Make sure we have a constant length.
895 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
896 if (!LenC) return 0;
897 uint64_t Len = LenC->getZExtValue();
899 if (Len == 0) // memcmp(s1,s2,0) -> 0
900 return Constant::getNullValue(CI->getType());
902 if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
903 Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
904 Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
905 return B.CreateSExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
908 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
909 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
910 if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
911 const Type *PTy = PointerType::getUnqual(Len == 2 ?
912 Type::getInt16Ty(*Context) : Type::getInt32Ty(*Context));
913 LHS = B.CreateBitCast(LHS, PTy, "tmp");
914 RHS = B.CreateBitCast(RHS, PTy, "tmp");
915 LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
916 LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
917 LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads.
918 return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
921 return 0;
925 //===---------------------------------------===//
926 // 'memcpy' Optimizations
928 struct MemCpyOpt : public LibCallOptimization {
929 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
930 // These optimizations require TargetData.
931 if (!TD) return 0;
933 const FunctionType *FT = Callee->getFunctionType();
934 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
935 !isa<PointerType>(FT->getParamType(0)) ||
936 !isa<PointerType>(FT->getParamType(1)) ||
937 FT->getParamType(2) != TD->getIntPtrType(*Context))
938 return 0;
940 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
941 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
942 return CI->getOperand(1);
946 //===---------------------------------------===//
947 // 'memmove' Optimizations
949 struct MemMoveOpt : public LibCallOptimization {
950 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
951 // These optimizations require TargetData.
952 if (!TD) return 0;
954 const FunctionType *FT = Callee->getFunctionType();
955 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
956 !isa<PointerType>(FT->getParamType(0)) ||
957 !isa<PointerType>(FT->getParamType(1)) ||
958 FT->getParamType(2) != TD->getIntPtrType(*Context))
959 return 0;
961 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
962 Module *M = Caller->getParent();
963 Intrinsic::ID IID = Intrinsic::memmove;
964 const Type *Tys[1];
965 Tys[0] = TD->getIntPtrType(*Context);
966 Value *MemMove = Intrinsic::getDeclaration(M, IID, Tys, 1);
967 Value *Dst = CastToCStr(CI->getOperand(1), B);
968 Value *Src = CastToCStr(CI->getOperand(2), B);
969 Value *Size = CI->getOperand(3);
970 Value *Align = ConstantInt::get(Type::getInt32Ty(*Context), 1);
971 B.CreateCall4(MemMove, Dst, Src, Size, Align);
972 return CI->getOperand(1);
976 //===---------------------------------------===//
977 // 'memset' Optimizations
979 struct MemSetOpt : public LibCallOptimization {
980 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
981 // These optimizations require TargetData.
982 if (!TD) return 0;
984 const FunctionType *FT = Callee->getFunctionType();
985 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
986 !isa<PointerType>(FT->getParamType(0)) ||
987 !isa<IntegerType>(FT->getParamType(1)) ||
988 FT->getParamType(2) != TD->getIntPtrType(*Context))
989 return 0;
991 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
992 Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context), false);
993 EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B);
994 return CI->getOperand(1);
998 //===----------------------------------------------------------------------===//
999 // Math Library Optimizations
1000 //===----------------------------------------------------------------------===//
1002 //===---------------------------------------===//
1003 // 'pow*' Optimizations
1005 struct PowOpt : public LibCallOptimization {
1006 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1007 const FunctionType *FT = Callee->getFunctionType();
1008 // Just make sure this has 2 arguments of the same FP type, which match the
1009 // result type.
1010 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1011 FT->getParamType(0) != FT->getParamType(1) ||
1012 !FT->getParamType(0)->isFloatingPoint())
1013 return 0;
1015 Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
1016 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1017 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
1018 return Op1C;
1019 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
1020 return EmitUnaryFloatFnCall(Op2, "exp2", B);
1023 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1024 if (Op2C == 0) return 0;
1026 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1027 return ConstantFP::get(CI->getType(), 1.0);
1029 if (Op2C->isExactlyValue(0.5)) {
1030 // FIXME: This is not safe for -0.0 and -inf. This can only be done when
1031 // 'unsafe' math optimizations are allowed.
1032 // x pow(x, 0.5) sqrt(x)
1033 // ---------------------------------------------
1034 // -0.0 +0.0 -0.0
1035 // -inf +inf NaN
1036 #if 0
1037 // pow(x, 0.5) -> sqrt(x)
1038 return B.CreateCall(get_sqrt(), Op1, "sqrt");
1039 #endif
1042 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1043 return Op1;
1044 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1045 return B.CreateFMul(Op1, Op1, "pow2");
1046 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1047 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
1048 Op1, "powrecip");
1049 return 0;
1053 //===---------------------------------------===//
1054 // 'exp2' Optimizations
1056 struct Exp2Opt : public LibCallOptimization {
1057 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1058 const FunctionType *FT = Callee->getFunctionType();
1059 // Just make sure this has 1 argument of FP type, which matches the
1060 // result type.
1061 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1062 !FT->getParamType(0)->isFloatingPoint())
1063 return 0;
1065 Value *Op = CI->getOperand(1);
1066 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1067 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1068 Value *LdExpArg = 0;
1069 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1070 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1071 LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::getInt32Ty(*Context), "tmp");
1072 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1073 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1074 LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::getInt32Ty(*Context), "tmp");
1077 if (LdExpArg) {
1078 const char *Name;
1079 if (Op->getType() == Type::getFloatTy(*Context))
1080 Name = "ldexpf";
1081 else if (Op->getType() == Type::getDoubleTy(*Context))
1082 Name = "ldexp";
1083 else
1084 Name = "ldexpl";
1086 Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
1087 if (Op->getType() != Type::getFloatTy(*Context))
1088 One = ConstantExpr::getFPExtend(One, Op->getType());
1090 Module *M = Caller->getParent();
1091 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
1092 Op->getType(), Type::getInt32Ty(*Context),NULL);
1093 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
1094 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1095 CI->setCallingConv(F->getCallingConv());
1097 return CI;
1099 return 0;
1103 //===---------------------------------------===//
1104 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
1106 struct UnaryDoubleFPOpt : public LibCallOptimization {
1107 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1108 const FunctionType *FT = Callee->getFunctionType();
1109 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::getDoubleTy(*Context) ||
1110 FT->getParamType(0) != Type::getDoubleTy(*Context))
1111 return 0;
1113 // If this is something like 'floor((double)floatval)', convert to floorf.
1114 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
1115 if (Cast == 0 || Cast->getOperand(0)->getType() != Type::getFloatTy(*Context))
1116 return 0;
1118 // floor((double)floatval) -> (double)floorf(floatval)
1119 Value *V = Cast->getOperand(0);
1120 V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B);
1121 return B.CreateFPExt(V, Type::getDoubleTy(*Context));
1125 //===----------------------------------------------------------------------===//
1126 // Integer Optimizations
1127 //===----------------------------------------------------------------------===//
1129 //===---------------------------------------===//
1130 // 'ffs*' Optimizations
1132 struct FFSOpt : public LibCallOptimization {
1133 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1134 const FunctionType *FT = Callee->getFunctionType();
1135 // Just make sure this has 2 arguments of the same FP type, which match the
1136 // result type.
1137 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::getInt32Ty(*Context) ||
1138 !isa<IntegerType>(FT->getParamType(0)))
1139 return 0;
1141 Value *Op = CI->getOperand(1);
1143 // Constant fold.
1144 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1145 if (CI->getValue() == 0) // ffs(0) -> 0.
1146 return Constant::getNullValue(CI->getType());
1147 return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1
1148 CI->getValue().countTrailingZeros()+1);
1151 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1152 const Type *ArgType = Op->getType();
1153 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
1154 Intrinsic::cttz, &ArgType, 1);
1155 Value *V = B.CreateCall(F, Op, "cttz");
1156 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
1157 V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp");
1159 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
1160 return B.CreateSelect(Cond, V, ConstantInt::get(Type::getInt32Ty(*Context), 0));
1164 //===---------------------------------------===//
1165 // 'isdigit' Optimizations
1167 struct IsDigitOpt : public LibCallOptimization {
1168 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1169 const FunctionType *FT = Callee->getFunctionType();
1170 // We require integer(i32)
1171 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
1172 FT->getParamType(0) != Type::getInt32Ty(*Context))
1173 return 0;
1175 // isdigit(c) -> (c-'0') <u 10
1176 Value *Op = CI->getOperand(1);
1177 Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'),
1178 "isdigittmp");
1179 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10),
1180 "isdigit");
1181 return B.CreateZExt(Op, CI->getType());
1185 //===---------------------------------------===//
1186 // 'isascii' Optimizations
1188 struct IsAsciiOpt : public LibCallOptimization {
1189 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1190 const FunctionType *FT = Callee->getFunctionType();
1191 // We require integer(i32)
1192 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
1193 FT->getParamType(0) != Type::getInt32Ty(*Context))
1194 return 0;
1196 // isascii(c) -> c <u 128
1197 Value *Op = CI->getOperand(1);
1198 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128),
1199 "isascii");
1200 return B.CreateZExt(Op, CI->getType());
1204 //===---------------------------------------===//
1205 // 'abs', 'labs', 'llabs' Optimizations
1207 struct AbsOpt : public LibCallOptimization {
1208 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1209 const FunctionType *FT = Callee->getFunctionType();
1210 // We require integer(integer) where the types agree.
1211 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
1212 FT->getParamType(0) != FT->getReturnType())
1213 return 0;
1215 // abs(x) -> x >s -1 ? x : -x
1216 Value *Op = CI->getOperand(1);
1217 Value *Pos = B.CreateICmpSGT(Op,
1218 Constant::getAllOnesValue(Op->getType()),
1219 "ispos");
1220 Value *Neg = B.CreateNeg(Op, "neg");
1221 return B.CreateSelect(Pos, Op, Neg);
1226 //===---------------------------------------===//
1227 // 'toascii' Optimizations
1229 struct ToAsciiOpt : public LibCallOptimization {
1230 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1231 const FunctionType *FT = Callee->getFunctionType();
1232 // We require i32(i32)
1233 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1234 FT->getParamType(0) != Type::getInt32Ty(*Context))
1235 return 0;
1237 // isascii(c) -> c & 0x7f
1238 return B.CreateAnd(CI->getOperand(1),
1239 ConstantInt::get(CI->getType(),0x7F));
1243 //===----------------------------------------------------------------------===//
1244 // Formatting and IO Optimizations
1245 //===----------------------------------------------------------------------===//
1247 //===---------------------------------------===//
1248 // 'printf' Optimizations
1250 struct PrintFOpt : public LibCallOptimization {
1251 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1252 // Require one fixed pointer argument and an integer/void result.
1253 const FunctionType *FT = Callee->getFunctionType();
1254 if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
1255 !(isa<IntegerType>(FT->getReturnType()) ||
1256 FT->getReturnType() == Type::getVoidTy(*Context)))
1257 return 0;
1259 // Check for a fixed format string.
1260 std::string FormatStr;
1261 if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
1262 return 0;
1264 // Empty format string -> noop.
1265 if (FormatStr.empty()) // Tolerate printf's declared void.
1266 return CI->use_empty() ? (Value*)CI :
1267 ConstantInt::get(CI->getType(), 0);
1269 // printf("x") -> putchar('x'), even for '%'.
1270 if (FormatStr.size() == 1) {
1271 EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context), FormatStr[0]), B);
1272 return CI->use_empty() ? (Value*)CI :
1273 ConstantInt::get(CI->getType(), 1);
1276 // printf("foo\n") --> puts("foo")
1277 if (FormatStr[FormatStr.size()-1] == '\n' &&
1278 FormatStr.find('%') == std::string::npos) { // no format characters.
1279 // Create a string literal with no \n on it. We expect the constant merge
1280 // pass to be run after this pass, to merge duplicate strings.
1281 FormatStr.erase(FormatStr.end()-1);
1282 Constant *C = ConstantArray::get(*Context, FormatStr, true);
1283 C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
1284 GlobalVariable::InternalLinkage, C, "str");
1285 EmitPutS(C, B);
1286 return CI->use_empty() ? (Value*)CI :
1287 ConstantInt::get(CI->getType(), FormatStr.size()+1);
1290 // Optimize specific format strings.
1291 // printf("%c", chr) --> putchar(*(i8*)dst)
1292 if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
1293 isa<IntegerType>(CI->getOperand(2)->getType())) {
1294 EmitPutChar(CI->getOperand(2), B);
1295 return CI->use_empty() ? (Value*)CI :
1296 ConstantInt::get(CI->getType(), 1);
1299 // printf("%s\n", str) --> puts(str)
1300 if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
1301 isa<PointerType>(CI->getOperand(2)->getType()) &&
1302 CI->use_empty()) {
1303 EmitPutS(CI->getOperand(2), B);
1304 return CI;
1306 return 0;
1310 //===---------------------------------------===//
1311 // 'sprintf' Optimizations
1313 struct SPrintFOpt : public LibCallOptimization {
1314 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1315 // Require two fixed pointer arguments and an integer result.
1316 const FunctionType *FT = Callee->getFunctionType();
1317 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1318 !isa<PointerType>(FT->getParamType(1)) ||
1319 !isa<IntegerType>(FT->getReturnType()))
1320 return 0;
1322 // Check for a fixed format string.
1323 std::string FormatStr;
1324 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
1325 return 0;
1327 // If we just have a format string (nothing else crazy) transform it.
1328 if (CI->getNumOperands() == 3) {
1329 // Make sure there's no % in the constant array. We could try to handle
1330 // %% -> % in the future if we cared.
1331 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1332 if (FormatStr[i] == '%')
1333 return 0; // we found a format specifier, bail out.
1335 // These optimizations require TargetData.
1336 if (!TD) return 0;
1338 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1339 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
1340 ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
1341 return ConstantInt::get(CI->getType(), FormatStr.size());
1344 // The remaining optimizations require the format string to be "%s" or "%c"
1345 // and have an extra operand.
1346 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1347 return 0;
1349 // Decode the second character of the format string.
1350 if (FormatStr[1] == 'c') {
1351 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1352 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1353 Value *V = B.CreateTrunc(CI->getOperand(3), Type::getInt8Ty(*Context), "char");
1354 Value *Ptr = CastToCStr(CI->getOperand(1), B);
1355 B.CreateStore(V, Ptr);
1356 Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1), "nul");
1357 B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr);
1359 return ConstantInt::get(CI->getType(), 1);
1362 if (FormatStr[1] == 's') {
1363 // These optimizations require TargetData.
1364 if (!TD) return 0;
1366 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1367 if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
1369 Value *Len = EmitStrLen(CI->getOperand(3), B);
1370 Value *IncLen = B.CreateAdd(Len,
1371 ConstantInt::get(Len->getType(), 1),
1372 "leninc");
1373 EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
1375 // The sprintf result is the unincremented number of bytes in the string.
1376 return B.CreateIntCast(Len, CI->getType(), false);
1378 return 0;
1382 //===---------------------------------------===//
1383 // 'fwrite' Optimizations
1385 struct FWriteOpt : public LibCallOptimization {
1386 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1387 // Require a pointer, an integer, an integer, a pointer, returning integer.
1388 const FunctionType *FT = Callee->getFunctionType();
1389 if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) ||
1390 !isa<IntegerType>(FT->getParamType(1)) ||
1391 !isa<IntegerType>(FT->getParamType(2)) ||
1392 !isa<PointerType>(FT->getParamType(3)) ||
1393 !isa<IntegerType>(FT->getReturnType()))
1394 return 0;
1396 // Get the element size and count.
1397 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
1398 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
1399 if (!SizeC || !CountC) return 0;
1400 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1402 // If this is writing zero records, remove the call (it's a noop).
1403 if (Bytes == 0)
1404 return ConstantInt::get(CI->getType(), 0);
1406 // If this is writing one byte, turn it into fputc.
1407 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1408 Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
1409 EmitFPutC(Char, CI->getOperand(4), B);
1410 return ConstantInt::get(CI->getType(), 1);
1413 return 0;
1417 //===---------------------------------------===//
1418 // 'fputs' Optimizations
1420 struct FPutsOpt : public LibCallOptimization {
1421 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1422 // These optimizations require TargetData.
1423 if (!TD) return 0;
1425 // Require two pointers. Also, we can't optimize if return value is used.
1426 const FunctionType *FT = Callee->getFunctionType();
1427 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1428 !isa<PointerType>(FT->getParamType(1)) ||
1429 !CI->use_empty())
1430 return 0;
1432 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1433 uint64_t Len = GetStringLength(CI->getOperand(1));
1434 if (!Len) return 0;
1435 EmitFWrite(CI->getOperand(1),
1436 ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
1437 CI->getOperand(2), B);
1438 return CI; // Known to have no uses (see above).
1442 //===---------------------------------------===//
1443 // 'fprintf' Optimizations
1445 struct FPrintFOpt : public LibCallOptimization {
1446 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1447 // Require two fixed paramters as pointers and integer result.
1448 const FunctionType *FT = Callee->getFunctionType();
1449 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1450 !isa<PointerType>(FT->getParamType(1)) ||
1451 !isa<IntegerType>(FT->getReturnType()))
1452 return 0;
1454 // All the optimizations depend on the format string.
1455 std::string FormatStr;
1456 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
1457 return 0;
1459 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1460 if (CI->getNumOperands() == 3) {
1461 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1462 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1463 return 0; // We found a format specifier.
1465 // These optimizations require TargetData.
1466 if (!TD) return 0;
1468 EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(*Context),
1469 FormatStr.size()),
1470 CI->getOperand(1), B);
1471 return ConstantInt::get(CI->getType(), FormatStr.size());
1474 // The remaining optimizations require the format string to be "%s" or "%c"
1475 // and have an extra operand.
1476 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1477 return 0;
1479 // Decode the second character of the format string.
1480 if (FormatStr[1] == 'c') {
1481 // fprintf(F, "%c", chr) --> *(i8*)dst = chr
1482 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1483 EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
1484 return ConstantInt::get(CI->getType(), 1);
1487 if (FormatStr[1] == 's') {
1488 // fprintf(F, "%s", str) -> fputs(str, F)
1489 if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
1490 return 0;
1491 EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
1492 return CI;
1494 return 0;
1498 } // end anonymous namespace.
1500 //===----------------------------------------------------------------------===//
1501 // SimplifyLibCalls Pass Implementation
1502 //===----------------------------------------------------------------------===//
1504 namespace {
1505 /// This pass optimizes well known library functions from libc and libm.
1507 class SimplifyLibCalls : public FunctionPass {
1508 StringMap<LibCallOptimization*> Optimizations;
1509 // String and Memory LibCall Optimizations
1510 StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrCmpOpt StrCmp;
1511 StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrNCpyOpt StrNCpy; StrLenOpt StrLen;
1512 StrToOpt StrTo; MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove;
1513 MemSetOpt MemSet;
1514 // Math Library Optimizations
1515 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
1516 // Integer Optimizations
1517 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
1518 ToAsciiOpt ToAscii;
1519 // Formatting and IO Optimizations
1520 SPrintFOpt SPrintF; PrintFOpt PrintF;
1521 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1523 bool Modified; // This is only used by doInitialization.
1524 public:
1525 static char ID; // Pass identification
1526 SimplifyLibCalls() : FunctionPass(&ID) {}
1528 void InitOptimizations();
1529 bool runOnFunction(Function &F);
1531 void setDoesNotAccessMemory(Function &F);
1532 void setOnlyReadsMemory(Function &F);
1533 void setDoesNotThrow(Function &F);
1534 void setDoesNotCapture(Function &F, unsigned n);
1535 void setDoesNotAlias(Function &F, unsigned n);
1536 bool doInitialization(Module &M);
1538 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1541 char SimplifyLibCalls::ID = 0;
1542 } // end anonymous namespace.
1544 static RegisterPass<SimplifyLibCalls>
1545 X("simplify-libcalls", "Simplify well-known library calls");
1547 // Public interface to the Simplify LibCalls pass.
1548 FunctionPass *llvm::createSimplifyLibCallsPass() {
1549 return new SimplifyLibCalls();
1552 /// Optimizations - Populate the Optimizations map with all the optimizations
1553 /// we know.
1554 void SimplifyLibCalls::InitOptimizations() {
1555 // String and Memory LibCall Optimizations
1556 Optimizations["strcat"] = &StrCat;
1557 Optimizations["strncat"] = &StrNCat;
1558 Optimizations["strchr"] = &StrChr;
1559 Optimizations["strcmp"] = &StrCmp;
1560 Optimizations["strncmp"] = &StrNCmp;
1561 Optimizations["strcpy"] = &StrCpy;
1562 Optimizations["strncpy"] = &StrNCpy;
1563 Optimizations["strlen"] = &StrLen;
1564 Optimizations["strtol"] = &StrTo;
1565 Optimizations["strtod"] = &StrTo;
1566 Optimizations["strtof"] = &StrTo;
1567 Optimizations["strtoul"] = &StrTo;
1568 Optimizations["strtoll"] = &StrTo;
1569 Optimizations["strtold"] = &StrTo;
1570 Optimizations["strtoull"] = &StrTo;
1571 Optimizations["memcmp"] = &MemCmp;
1572 Optimizations["memcpy"] = &MemCpy;
1573 Optimizations["memmove"] = &MemMove;
1574 Optimizations["memset"] = &MemSet;
1576 // Math Library Optimizations
1577 Optimizations["powf"] = &Pow;
1578 Optimizations["pow"] = &Pow;
1579 Optimizations["powl"] = &Pow;
1580 Optimizations["llvm.pow.f32"] = &Pow;
1581 Optimizations["llvm.pow.f64"] = &Pow;
1582 Optimizations["llvm.pow.f80"] = &Pow;
1583 Optimizations["llvm.pow.f128"] = &Pow;
1584 Optimizations["llvm.pow.ppcf128"] = &Pow;
1585 Optimizations["exp2l"] = &Exp2;
1586 Optimizations["exp2"] = &Exp2;
1587 Optimizations["exp2f"] = &Exp2;
1588 Optimizations["llvm.exp2.ppcf128"] = &Exp2;
1589 Optimizations["llvm.exp2.f128"] = &Exp2;
1590 Optimizations["llvm.exp2.f80"] = &Exp2;
1591 Optimizations["llvm.exp2.f64"] = &Exp2;
1592 Optimizations["llvm.exp2.f32"] = &Exp2;
1594 #ifdef HAVE_FLOORF
1595 Optimizations["floor"] = &UnaryDoubleFP;
1596 #endif
1597 #ifdef HAVE_CEILF
1598 Optimizations["ceil"] = &UnaryDoubleFP;
1599 #endif
1600 #ifdef HAVE_ROUNDF
1601 Optimizations["round"] = &UnaryDoubleFP;
1602 #endif
1603 #ifdef HAVE_RINTF
1604 Optimizations["rint"] = &UnaryDoubleFP;
1605 #endif
1606 #ifdef HAVE_NEARBYINTF
1607 Optimizations["nearbyint"] = &UnaryDoubleFP;
1608 #endif
1610 // Integer Optimizations
1611 Optimizations["ffs"] = &FFS;
1612 Optimizations["ffsl"] = &FFS;
1613 Optimizations["ffsll"] = &FFS;
1614 Optimizations["abs"] = &Abs;
1615 Optimizations["labs"] = &Abs;
1616 Optimizations["llabs"] = &Abs;
1617 Optimizations["isdigit"] = &IsDigit;
1618 Optimizations["isascii"] = &IsAscii;
1619 Optimizations["toascii"] = &ToAscii;
1621 // Formatting and IO Optimizations
1622 Optimizations["sprintf"] = &SPrintF;
1623 Optimizations["printf"] = &PrintF;
1624 Optimizations["fwrite"] = &FWrite;
1625 Optimizations["fputs"] = &FPuts;
1626 Optimizations["fprintf"] = &FPrintF;
1630 /// runOnFunction - Top level algorithm.
1632 bool SimplifyLibCalls::runOnFunction(Function &F) {
1633 if (Optimizations.empty())
1634 InitOptimizations();
1636 const TargetData *TD = getAnalysisIfAvailable<TargetData>();
1638 IRBuilder<> Builder(F.getContext());
1640 bool Changed = false;
1641 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1642 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1643 // Ignore non-calls.
1644 CallInst *CI = dyn_cast<CallInst>(I++);
1645 if (!CI) continue;
1647 // Ignore indirect calls and calls to non-external functions.
1648 Function *Callee = CI->getCalledFunction();
1649 if (Callee == 0 || !Callee->isDeclaration() ||
1650 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1651 continue;
1653 // Ignore unknown calls.
1654 LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
1655 if (!LCO) continue;
1657 // Set the builder to the instruction after the call.
1658 Builder.SetInsertPoint(BB, I);
1660 // Try to optimize this call.
1661 Value *Result = LCO->OptimizeCall(CI, TD, Builder);
1662 if (Result == 0) continue;
1664 DEBUG(errs() << "SimplifyLibCalls simplified: " << *CI;
1665 errs() << " into: " << *Result << "\n");
1667 // Something changed!
1668 Changed = true;
1669 ++NumSimplified;
1671 // Inspect the instruction after the call (which was potentially just
1672 // added) next.
1673 I = CI; ++I;
1675 if (CI != Result && !CI->use_empty()) {
1676 CI->replaceAllUsesWith(Result);
1677 if (!Result->hasName())
1678 Result->takeName(CI);
1680 CI->eraseFromParent();
1683 return Changed;
1686 // Utility methods for doInitialization.
1688 void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
1689 if (!F.doesNotAccessMemory()) {
1690 F.setDoesNotAccessMemory();
1691 ++NumAnnotated;
1692 Modified = true;
1695 void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
1696 if (!F.onlyReadsMemory()) {
1697 F.setOnlyReadsMemory();
1698 ++NumAnnotated;
1699 Modified = true;
1702 void SimplifyLibCalls::setDoesNotThrow(Function &F) {
1703 if (!F.doesNotThrow()) {
1704 F.setDoesNotThrow();
1705 ++NumAnnotated;
1706 Modified = true;
1709 void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
1710 if (!F.doesNotCapture(n)) {
1711 F.setDoesNotCapture(n);
1712 ++NumAnnotated;
1713 Modified = true;
1716 void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
1717 if (!F.doesNotAlias(n)) {
1718 F.setDoesNotAlias(n);
1719 ++NumAnnotated;
1720 Modified = true;
1724 /// doInitialization - Add attributes to well-known functions.
1726 bool SimplifyLibCalls::doInitialization(Module &M) {
1727 Modified = false;
1728 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1729 Function &F = *I;
1730 if (!F.isDeclaration())
1731 continue;
1733 if (!F.hasName())
1734 continue;
1736 const FunctionType *FTy = F.getFunctionType();
1738 StringRef Name = F.getName();
1739 switch (Name[0]) {
1740 case 's':
1741 if (Name == "strlen") {
1742 if (FTy->getNumParams() != 1 ||
1743 !isa<PointerType>(FTy->getParamType(0)))
1744 continue;
1745 setOnlyReadsMemory(F);
1746 setDoesNotThrow(F);
1747 setDoesNotCapture(F, 1);
1748 } else if (Name == "strcpy" ||
1749 Name == "stpcpy" ||
1750 Name == "strcat" ||
1751 Name == "strtol" ||
1752 Name == "strtod" ||
1753 Name == "strtof" ||
1754 Name == "strtoul" ||
1755 Name == "strtoll" ||
1756 Name == "strtold" ||
1757 Name == "strncat" ||
1758 Name == "strncpy" ||
1759 Name == "strtoull") {
1760 if (FTy->getNumParams() < 2 ||
1761 !isa<PointerType>(FTy->getParamType(1)))
1762 continue;
1763 setDoesNotThrow(F);
1764 setDoesNotCapture(F, 2);
1765 } else if (Name == "strxfrm") {
1766 if (FTy->getNumParams() != 3 ||
1767 !isa<PointerType>(FTy->getParamType(0)) ||
1768 !isa<PointerType>(FTy->getParamType(1)))
1769 continue;
1770 setDoesNotThrow(F);
1771 setDoesNotCapture(F, 1);
1772 setDoesNotCapture(F, 2);
1773 } else if (Name == "strcmp" ||
1774 Name == "strspn" ||
1775 Name == "strncmp" ||
1776 Name ==" strcspn" ||
1777 Name == "strcoll" ||
1778 Name == "strcasecmp" ||
1779 Name == "strncasecmp") {
1780 if (FTy->getNumParams() < 2 ||
1781 !isa<PointerType>(FTy->getParamType(0)) ||
1782 !isa<PointerType>(FTy->getParamType(1)))
1783 continue;
1784 setOnlyReadsMemory(F);
1785 setDoesNotThrow(F);
1786 setDoesNotCapture(F, 1);
1787 setDoesNotCapture(F, 2);
1788 } else if (Name == "strstr" ||
1789 Name == "strpbrk") {
1790 if (FTy->getNumParams() != 2 ||
1791 !isa<PointerType>(FTy->getParamType(1)))
1792 continue;
1793 setOnlyReadsMemory(F);
1794 setDoesNotThrow(F);
1795 setDoesNotCapture(F, 2);
1796 } else if (Name == "strtok" ||
1797 Name == "strtok_r") {
1798 if (FTy->getNumParams() < 2 ||
1799 !isa<PointerType>(FTy->getParamType(1)))
1800 continue;
1801 setDoesNotThrow(F);
1802 setDoesNotCapture(F, 2);
1803 } else if (Name == "scanf" ||
1804 Name == "setbuf" ||
1805 Name == "setvbuf") {
1806 if (FTy->getNumParams() < 1 ||
1807 !isa<PointerType>(FTy->getParamType(0)))
1808 continue;
1809 setDoesNotThrow(F);
1810 setDoesNotCapture(F, 1);
1811 } else if (Name == "strdup" ||
1812 Name == "strndup") {
1813 if (FTy->getNumParams() < 1 ||
1814 !isa<PointerType>(FTy->getReturnType()) ||
1815 !isa<PointerType>(FTy->getParamType(0)))
1816 continue;
1817 setDoesNotThrow(F);
1818 setDoesNotAlias(F, 0);
1819 setDoesNotCapture(F, 1);
1820 } else if (Name == "stat" ||
1821 Name == "sscanf" ||
1822 Name == "sprintf" ||
1823 Name == "statvfs") {
1824 if (FTy->getNumParams() < 2 ||
1825 !isa<PointerType>(FTy->getParamType(0)) ||
1826 !isa<PointerType>(FTy->getParamType(1)))
1827 continue;
1828 setDoesNotThrow(F);
1829 setDoesNotCapture(F, 1);
1830 setDoesNotCapture(F, 2);
1831 } else if (Name == "snprintf") {
1832 if (FTy->getNumParams() != 3 ||
1833 !isa<PointerType>(FTy->getParamType(0)) ||
1834 !isa<PointerType>(FTy->getParamType(2)))
1835 continue;
1836 setDoesNotThrow(F);
1837 setDoesNotCapture(F, 1);
1838 setDoesNotCapture(F, 3);
1839 } else if (Name == "setitimer") {
1840 if (FTy->getNumParams() != 3 ||
1841 !isa<PointerType>(FTy->getParamType(1)) ||
1842 !isa<PointerType>(FTy->getParamType(2)))
1843 continue;
1844 setDoesNotThrow(F);
1845 setDoesNotCapture(F, 2);
1846 setDoesNotCapture(F, 3);
1847 } else if (Name == "system") {
1848 if (FTy->getNumParams() != 1 ||
1849 !isa<PointerType>(FTy->getParamType(0)))
1850 continue;
1851 // May throw; "system" is a valid pthread cancellation point.
1852 setDoesNotCapture(F, 1);
1854 break;
1855 case 'm':
1856 if (Name == "memcmp") {
1857 if (FTy->getNumParams() != 3 ||
1858 !isa<PointerType>(FTy->getParamType(0)) ||
1859 !isa<PointerType>(FTy->getParamType(1)))
1860 continue;
1861 setOnlyReadsMemory(F);
1862 setDoesNotThrow(F);
1863 setDoesNotCapture(F, 1);
1864 setDoesNotCapture(F, 2);
1865 } else if (Name == "memchr" ||
1866 Name == "memrchr") {
1867 if (FTy->getNumParams() != 3)
1868 continue;
1869 setOnlyReadsMemory(F);
1870 setDoesNotThrow(F);
1871 } else if (Name == "modf" ||
1872 Name == "modff" ||
1873 Name == "modfl" ||
1874 Name == "memcpy" ||
1875 Name == "memccpy" ||
1876 Name == "memmove") {
1877 if (FTy->getNumParams() < 2 ||
1878 !isa<PointerType>(FTy->getParamType(1)))
1879 continue;
1880 setDoesNotThrow(F);
1881 setDoesNotCapture(F, 2);
1882 } else if (Name == "memalign") {
1883 if (!isa<PointerType>(FTy->getReturnType()))
1884 continue;
1885 setDoesNotAlias(F, 0);
1886 } else if (Name == "mkdir" ||
1887 Name == "mktime") {
1888 if (FTy->getNumParams() == 0 ||
1889 !isa<PointerType>(FTy->getParamType(0)))
1890 continue;
1891 setDoesNotThrow(F);
1892 setDoesNotCapture(F, 1);
1894 break;
1895 case 'r':
1896 if (Name == "realloc") {
1897 if (FTy->getNumParams() != 2 ||
1898 !isa<PointerType>(FTy->getParamType(0)) ||
1899 !isa<PointerType>(FTy->getReturnType()))
1900 continue;
1901 setDoesNotThrow(F);
1902 setDoesNotAlias(F, 0);
1903 setDoesNotCapture(F, 1);
1904 } else if (Name == "read") {
1905 if (FTy->getNumParams() != 3 ||
1906 !isa<PointerType>(FTy->getParamType(1)))
1907 continue;
1908 // May throw; "read" is a valid pthread cancellation point.
1909 setDoesNotCapture(F, 2);
1910 } else if (Name == "rmdir" ||
1911 Name == "rewind" ||
1912 Name == "remove" ||
1913 Name == "realpath") {
1914 if (FTy->getNumParams() < 1 ||
1915 !isa<PointerType>(FTy->getParamType(0)))
1916 continue;
1917 setDoesNotThrow(F);
1918 setDoesNotCapture(F, 1);
1919 } else if (Name == "rename" ||
1920 Name == "readlink") {
1921 if (FTy->getNumParams() < 2 ||
1922 !isa<PointerType>(FTy->getParamType(0)) ||
1923 !isa<PointerType>(FTy->getParamType(1)))
1924 continue;
1925 setDoesNotThrow(F);
1926 setDoesNotCapture(F, 1);
1927 setDoesNotCapture(F, 2);
1929 break;
1930 case 'w':
1931 if (Name == "write") {
1932 if (FTy->getNumParams() != 3 ||
1933 !isa<PointerType>(FTy->getParamType(1)))
1934 continue;
1935 // May throw; "write" is a valid pthread cancellation point.
1936 setDoesNotCapture(F, 2);
1938 break;
1939 case 'b':
1940 if (Name == "bcopy") {
1941 if (FTy->getNumParams() != 3 ||
1942 !isa<PointerType>(FTy->getParamType(0)) ||
1943 !isa<PointerType>(FTy->getParamType(1)))
1944 continue;
1945 setDoesNotThrow(F);
1946 setDoesNotCapture(F, 1);
1947 setDoesNotCapture(F, 2);
1948 } else if (Name == "bcmp") {
1949 if (FTy->getNumParams() != 3 ||
1950 !isa<PointerType>(FTy->getParamType(0)) ||
1951 !isa<PointerType>(FTy->getParamType(1)))
1952 continue;
1953 setDoesNotThrow(F);
1954 setOnlyReadsMemory(F);
1955 setDoesNotCapture(F, 1);
1956 setDoesNotCapture(F, 2);
1957 } else if (Name == "bzero") {
1958 if (FTy->getNumParams() != 2 ||
1959 !isa<PointerType>(FTy->getParamType(0)))
1960 continue;
1961 setDoesNotThrow(F);
1962 setDoesNotCapture(F, 1);
1964 break;
1965 case 'c':
1966 if (Name == "calloc") {
1967 if (FTy->getNumParams() != 2 ||
1968 !isa<PointerType>(FTy->getReturnType()))
1969 continue;
1970 setDoesNotThrow(F);
1971 setDoesNotAlias(F, 0);
1972 } else if (Name == "chmod" ||
1973 Name == "chown" ||
1974 Name == "ctermid" ||
1975 Name == "clearerr" ||
1976 Name == "closedir") {
1977 if (FTy->getNumParams() == 0 ||
1978 !isa<PointerType>(FTy->getParamType(0)))
1979 continue;
1980 setDoesNotThrow(F);
1981 setDoesNotCapture(F, 1);
1983 break;
1984 case 'a':
1985 if (Name == "atoi" ||
1986 Name == "atol" ||
1987 Name == "atof" ||
1988 Name == "atoll") {
1989 if (FTy->getNumParams() != 1 ||
1990 !isa<PointerType>(FTy->getParamType(0)))
1991 continue;
1992 setDoesNotThrow(F);
1993 setOnlyReadsMemory(F);
1994 setDoesNotCapture(F, 1);
1995 } else if (Name == "access") {
1996 if (FTy->getNumParams() != 2 ||
1997 !isa<PointerType>(FTy->getParamType(0)))
1998 continue;
1999 setDoesNotThrow(F);
2000 setDoesNotCapture(F, 1);
2002 break;
2003 case 'f':
2004 if (Name == "fopen") {
2005 if (FTy->getNumParams() != 2 ||
2006 !isa<PointerType>(FTy->getReturnType()) ||
2007 !isa<PointerType>(FTy->getParamType(0)) ||
2008 !isa<PointerType>(FTy->getParamType(1)))
2009 continue;
2010 setDoesNotThrow(F);
2011 setDoesNotAlias(F, 0);
2012 setDoesNotCapture(F, 1);
2013 setDoesNotCapture(F, 2);
2014 } else if (Name == "fdopen") {
2015 if (FTy->getNumParams() != 2 ||
2016 !isa<PointerType>(FTy->getReturnType()) ||
2017 !isa<PointerType>(FTy->getParamType(1)))
2018 continue;
2019 setDoesNotThrow(F);
2020 setDoesNotAlias(F, 0);
2021 setDoesNotCapture(F, 2);
2022 } else if (Name == "feof" ||
2023 Name == "free" ||
2024 Name == "fseek" ||
2025 Name == "ftell" ||
2026 Name == "fgetc" ||
2027 Name == "fseeko" ||
2028 Name == "ftello" ||
2029 Name == "fileno" ||
2030 Name == "fflush" ||
2031 Name == "fclose" ||
2032 Name == "fsetpos" ||
2033 Name == "flockfile" ||
2034 Name == "funlockfile" ||
2035 Name == "ftrylockfile") {
2036 if (FTy->getNumParams() == 0 ||
2037 !isa<PointerType>(FTy->getParamType(0)))
2038 continue;
2039 setDoesNotThrow(F);
2040 setDoesNotCapture(F, 1);
2041 } else if (Name == "ferror") {
2042 if (FTy->getNumParams() != 1 ||
2043 !isa<PointerType>(FTy->getParamType(0)))
2044 continue;
2045 setDoesNotThrow(F);
2046 setDoesNotCapture(F, 1);
2047 setOnlyReadsMemory(F);
2048 } else if (Name == "fputc" ||
2049 Name == "fstat" ||
2050 Name == "frexp" ||
2051 Name == "frexpf" ||
2052 Name == "frexpl" ||
2053 Name == "fstatvfs") {
2054 if (FTy->getNumParams() != 2 ||
2055 !isa<PointerType>(FTy->getParamType(1)))
2056 continue;
2057 setDoesNotThrow(F);
2058 setDoesNotCapture(F, 2);
2059 } else if (Name == "fgets") {
2060 if (FTy->getNumParams() != 3 ||
2061 !isa<PointerType>(FTy->getParamType(0)) ||
2062 !isa<PointerType>(FTy->getParamType(2)))
2063 continue;
2064 setDoesNotThrow(F);
2065 setDoesNotCapture(F, 3);
2066 } else if (Name == "fread" ||
2067 Name == "fwrite") {
2068 if (FTy->getNumParams() != 4 ||
2069 !isa<PointerType>(FTy->getParamType(0)) ||
2070 !isa<PointerType>(FTy->getParamType(3)))
2071 continue;
2072 setDoesNotThrow(F);
2073 setDoesNotCapture(F, 1);
2074 setDoesNotCapture(F, 4);
2075 } else if (Name == "fputs" ||
2076 Name == "fscanf" ||
2077 Name == "fprintf" ||
2078 Name == "fgetpos") {
2079 if (FTy->getNumParams() < 2 ||
2080 !isa<PointerType>(FTy->getParamType(0)) ||
2081 !isa<PointerType>(FTy->getParamType(1)))
2082 continue;
2083 setDoesNotThrow(F);
2084 setDoesNotCapture(F, 1);
2085 setDoesNotCapture(F, 2);
2087 break;
2088 case 'g':
2089 if (Name == "getc" ||
2090 Name == "getlogin_r" ||
2091 Name == "getc_unlocked") {
2092 if (FTy->getNumParams() == 0 ||
2093 !isa<PointerType>(FTy->getParamType(0)))
2094 continue;
2095 setDoesNotThrow(F);
2096 setDoesNotCapture(F, 1);
2097 } else if (Name == "getenv") {
2098 if (FTy->getNumParams() != 1 ||
2099 !isa<PointerType>(FTy->getParamType(0)))
2100 continue;
2101 setDoesNotThrow(F);
2102 setOnlyReadsMemory(F);
2103 setDoesNotCapture(F, 1);
2104 } else if (Name == "gets" ||
2105 Name == "getchar") {
2106 setDoesNotThrow(F);
2107 } else if (Name == "getitimer") {
2108 if (FTy->getNumParams() != 2 ||
2109 !isa<PointerType>(FTy->getParamType(1)))
2110 continue;
2111 setDoesNotThrow(F);
2112 setDoesNotCapture(F, 2);
2113 } else if (Name == "getpwnam") {
2114 if (FTy->getNumParams() != 1 ||
2115 !isa<PointerType>(FTy->getParamType(0)))
2116 continue;
2117 setDoesNotThrow(F);
2118 setDoesNotCapture(F, 1);
2120 break;
2121 case 'u':
2122 if (Name == "ungetc") {
2123 if (FTy->getNumParams() != 2 ||
2124 !isa<PointerType>(FTy->getParamType(1)))
2125 continue;
2126 setDoesNotThrow(F);
2127 setDoesNotCapture(F, 2);
2128 } else if (Name == "uname" ||
2129 Name == "unlink" ||
2130 Name == "unsetenv") {
2131 if (FTy->getNumParams() != 1 ||
2132 !isa<PointerType>(FTy->getParamType(0)))
2133 continue;
2134 setDoesNotThrow(F);
2135 setDoesNotCapture(F, 1);
2136 } else if (Name == "utime" ||
2137 Name == "utimes") {
2138 if (FTy->getNumParams() != 2 ||
2139 !isa<PointerType>(FTy->getParamType(0)) ||
2140 !isa<PointerType>(FTy->getParamType(1)))
2141 continue;
2142 setDoesNotThrow(F);
2143 setDoesNotCapture(F, 1);
2144 setDoesNotCapture(F, 2);
2146 break;
2147 case 'p':
2148 if (Name == "putc") {
2149 if (FTy->getNumParams() != 2 ||
2150 !isa<PointerType>(FTy->getParamType(1)))
2151 continue;
2152 setDoesNotThrow(F);
2153 setDoesNotCapture(F, 2);
2154 } else if (Name == "puts" ||
2155 Name == "printf" ||
2156 Name == "perror") {
2157 if (FTy->getNumParams() != 1 ||
2158 !isa<PointerType>(FTy->getParamType(0)))
2159 continue;
2160 setDoesNotThrow(F);
2161 setDoesNotCapture(F, 1);
2162 } else if (Name == "pread" ||
2163 Name == "pwrite") {
2164 if (FTy->getNumParams() != 4 ||
2165 !isa<PointerType>(FTy->getParamType(1)))
2166 continue;
2167 // May throw; these are valid pthread cancellation points.
2168 setDoesNotCapture(F, 2);
2169 } else if (Name == "putchar") {
2170 setDoesNotThrow(F);
2171 } else if (Name == "popen") {
2172 if (FTy->getNumParams() != 2 ||
2173 !isa<PointerType>(FTy->getReturnType()) ||
2174 !isa<PointerType>(FTy->getParamType(0)) ||
2175 !isa<PointerType>(FTy->getParamType(1)))
2176 continue;
2177 setDoesNotThrow(F);
2178 setDoesNotAlias(F, 0);
2179 setDoesNotCapture(F, 1);
2180 setDoesNotCapture(F, 2);
2181 } else if (Name == "pclose") {
2182 if (FTy->getNumParams() != 1 ||
2183 !isa<PointerType>(FTy->getParamType(0)))
2184 continue;
2185 setDoesNotThrow(F);
2186 setDoesNotCapture(F, 1);
2188 break;
2189 case 'v':
2190 if (Name == "vscanf") {
2191 if (FTy->getNumParams() != 2 ||
2192 !isa<PointerType>(FTy->getParamType(1)))
2193 continue;
2194 setDoesNotThrow(F);
2195 setDoesNotCapture(F, 1);
2196 } else if (Name == "vsscanf" ||
2197 Name == "vfscanf") {
2198 if (FTy->getNumParams() != 3 ||
2199 !isa<PointerType>(FTy->getParamType(1)) ||
2200 !isa<PointerType>(FTy->getParamType(2)))
2201 continue;
2202 setDoesNotThrow(F);
2203 setDoesNotCapture(F, 1);
2204 setDoesNotCapture(F, 2);
2205 } else if (Name == "valloc") {
2206 if (!isa<PointerType>(FTy->getReturnType()))
2207 continue;
2208 setDoesNotThrow(F);
2209 setDoesNotAlias(F, 0);
2210 } else if (Name == "vprintf") {
2211 if (FTy->getNumParams() != 2 ||
2212 !isa<PointerType>(FTy->getParamType(0)))
2213 continue;
2214 setDoesNotThrow(F);
2215 setDoesNotCapture(F, 1);
2216 } else if (Name == "vfprintf" ||
2217 Name == "vsprintf") {
2218 if (FTy->getNumParams() != 3 ||
2219 !isa<PointerType>(FTy->getParamType(0)) ||
2220 !isa<PointerType>(FTy->getParamType(1)))
2221 continue;
2222 setDoesNotThrow(F);
2223 setDoesNotCapture(F, 1);
2224 setDoesNotCapture(F, 2);
2225 } else if (Name == "vsnprintf") {
2226 if (FTy->getNumParams() != 4 ||
2227 !isa<PointerType>(FTy->getParamType(0)) ||
2228 !isa<PointerType>(FTy->getParamType(2)))
2229 continue;
2230 setDoesNotThrow(F);
2231 setDoesNotCapture(F, 1);
2232 setDoesNotCapture(F, 3);
2234 break;
2235 case 'o':
2236 if (Name == "open") {
2237 if (FTy->getNumParams() < 2 ||
2238 !isa<PointerType>(FTy->getParamType(0)))
2239 continue;
2240 // May throw; "open" is a valid pthread cancellation point.
2241 setDoesNotCapture(F, 1);
2242 } else if (Name == "opendir") {
2243 if (FTy->getNumParams() != 1 ||
2244 !isa<PointerType>(FTy->getReturnType()) ||
2245 !isa<PointerType>(FTy->getParamType(0)))
2246 continue;
2247 setDoesNotThrow(F);
2248 setDoesNotAlias(F, 0);
2249 setDoesNotCapture(F, 1);
2251 break;
2252 case 't':
2253 if (Name == "tmpfile") {
2254 if (!isa<PointerType>(FTy->getReturnType()))
2255 continue;
2256 setDoesNotThrow(F);
2257 setDoesNotAlias(F, 0);
2258 } else if (Name == "times") {
2259 if (FTy->getNumParams() != 1 ||
2260 !isa<PointerType>(FTy->getParamType(0)))
2261 continue;
2262 setDoesNotThrow(F);
2263 setDoesNotCapture(F, 1);
2265 break;
2266 case 'h':
2267 if (Name == "htonl" ||
2268 Name == "htons") {
2269 setDoesNotThrow(F);
2270 setDoesNotAccessMemory(F);
2272 break;
2273 case 'n':
2274 if (Name == "ntohl" ||
2275 Name == "ntohs") {
2276 setDoesNotThrow(F);
2277 setDoesNotAccessMemory(F);
2279 break;
2280 case 'l':
2281 if (Name == "lstat") {
2282 if (FTy->getNumParams() != 2 ||
2283 !isa<PointerType>(FTy->getParamType(0)) ||
2284 !isa<PointerType>(FTy->getParamType(1)))
2285 continue;
2286 setDoesNotThrow(F);
2287 setDoesNotCapture(F, 1);
2288 setDoesNotCapture(F, 2);
2289 } else if (Name == "lchown") {
2290 if (FTy->getNumParams() != 3 ||
2291 !isa<PointerType>(FTy->getParamType(0)))
2292 continue;
2293 setDoesNotThrow(F);
2294 setDoesNotCapture(F, 1);
2296 break;
2297 case 'q':
2298 if (Name == "qsort") {
2299 if (FTy->getNumParams() != 4 ||
2300 !isa<PointerType>(FTy->getParamType(3)))
2301 continue;
2302 // May throw; places call through function pointer.
2303 setDoesNotCapture(F, 4);
2305 break;
2306 case '_':
2307 if (Name == "__strdup" ||
2308 Name == "__strndup") {
2309 if (FTy->getNumParams() < 1 ||
2310 !isa<PointerType>(FTy->getReturnType()) ||
2311 !isa<PointerType>(FTy->getParamType(0)))
2312 continue;
2313 setDoesNotThrow(F);
2314 setDoesNotAlias(F, 0);
2315 setDoesNotCapture(F, 1);
2316 } else if (Name == "__strtok_r") {
2317 if (FTy->getNumParams() != 3 ||
2318 !isa<PointerType>(FTy->getParamType(1)))
2319 continue;
2320 setDoesNotThrow(F);
2321 setDoesNotCapture(F, 2);
2322 } else if (Name == "_IO_getc") {
2323 if (FTy->getNumParams() != 1 ||
2324 !isa<PointerType>(FTy->getParamType(0)))
2325 continue;
2326 setDoesNotThrow(F);
2327 setDoesNotCapture(F, 1);
2328 } else if (Name == "_IO_putc") {
2329 if (FTy->getNumParams() != 2 ||
2330 !isa<PointerType>(FTy->getParamType(1)))
2331 continue;
2332 setDoesNotThrow(F);
2333 setDoesNotCapture(F, 2);
2335 break;
2336 case 1:
2337 if (Name == "\1__isoc99_scanf") {
2338 if (FTy->getNumParams() < 1 ||
2339 !isa<PointerType>(FTy->getParamType(0)))
2340 continue;
2341 setDoesNotThrow(F);
2342 setDoesNotCapture(F, 1);
2343 } else if (Name == "\1stat64" ||
2344 Name == "\1lstat64" ||
2345 Name == "\1statvfs64" ||
2346 Name == "\1__isoc99_sscanf") {
2347 if (FTy->getNumParams() < 1 ||
2348 !isa<PointerType>(FTy->getParamType(0)) ||
2349 !isa<PointerType>(FTy->getParamType(1)))
2350 continue;
2351 setDoesNotThrow(F);
2352 setDoesNotCapture(F, 1);
2353 setDoesNotCapture(F, 2);
2354 } else if (Name == "\1fopen64") {
2355 if (FTy->getNumParams() != 2 ||
2356 !isa<PointerType>(FTy->getReturnType()) ||
2357 !isa<PointerType>(FTy->getParamType(0)) ||
2358 !isa<PointerType>(FTy->getParamType(1)))
2359 continue;
2360 setDoesNotThrow(F);
2361 setDoesNotAlias(F, 0);
2362 setDoesNotCapture(F, 1);
2363 setDoesNotCapture(F, 2);
2364 } else if (Name == "\1fseeko64" ||
2365 Name == "\1ftello64") {
2366 if (FTy->getNumParams() == 0 ||
2367 !isa<PointerType>(FTy->getParamType(0)))
2368 continue;
2369 setDoesNotThrow(F);
2370 setDoesNotCapture(F, 1);
2371 } else if (Name == "\1tmpfile64") {
2372 if (!isa<PointerType>(FTy->getReturnType()))
2373 continue;
2374 setDoesNotThrow(F);
2375 setDoesNotAlias(F, 0);
2376 } else if (Name == "\1fstat64" ||
2377 Name == "\1fstatvfs64") {
2378 if (FTy->getNumParams() != 2 ||
2379 !isa<PointerType>(FTy->getParamType(1)))
2380 continue;
2381 setDoesNotThrow(F);
2382 setDoesNotCapture(F, 2);
2383 } else if (Name == "\1open64") {
2384 if (FTy->getNumParams() < 2 ||
2385 !isa<PointerType>(FTy->getParamType(0)))
2386 continue;
2387 // May throw; "open" is a valid pthread cancellation point.
2388 setDoesNotCapture(F, 1);
2390 break;
2393 return Modified;
2396 // TODO:
2397 // Additional cases that we need to add to this file:
2399 // cbrt:
2400 // * cbrt(expN(X)) -> expN(x/3)
2401 // * cbrt(sqrt(x)) -> pow(x,1/6)
2402 // * cbrt(sqrt(x)) -> pow(x,1/9)
2404 // cos, cosf, cosl:
2405 // * cos(-x) -> cos(x)
2407 // exp, expf, expl:
2408 // * exp(log(x)) -> x
2410 // log, logf, logl:
2411 // * log(exp(x)) -> x
2412 // * log(x**y) -> y*log(x)
2413 // * log(exp(y)) -> y*log(e)
2414 // * log(exp2(y)) -> y*log(2)
2415 // * log(exp10(y)) -> y*log(10)
2416 // * log(sqrt(x)) -> 0.5*log(x)
2417 // * log(pow(x,y)) -> y*log(x)
2419 // lround, lroundf, lroundl:
2420 // * lround(cnst) -> cnst'
2422 // memcmp:
2423 // * memcmp(x,y,l) -> cnst
2424 // (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
2426 // pow, powf, powl:
2427 // * pow(exp(x),y) -> exp(x*y)
2428 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2429 // * pow(pow(x,y),z)-> pow(x,y*z)
2431 // puts:
2432 // * puts("") -> putchar("\n")
2434 // round, roundf, roundl:
2435 // * round(cnst) -> cnst'
2437 // signbit:
2438 // * signbit(cnst) -> cnst'
2439 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2441 // sqrt, sqrtf, sqrtl:
2442 // * sqrt(expN(x)) -> expN(x*0.5)
2443 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2444 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2446 // stpcpy:
2447 // * stpcpy(str, "literal") ->
2448 // llvm.memcpy(str,"literal",strlen("literal")+1,1)
2449 // strrchr:
2450 // * strrchr(s,c) -> reverse_offset_of_in(c,s)
2451 // (if c is a constant integer and s is a constant string)
2452 // * strrchr(s1,0) -> strchr(s1,0)
2454 // strpbrk:
2455 // * strpbrk(s,a) -> offset_in_for(s,a)
2456 // (if s and a are both constant strings)
2457 // * strpbrk(s,"") -> 0
2458 // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
2460 // strspn, strcspn:
2461 // * strspn(s,a) -> const_int (if both args are constant)
2462 // * strspn("",a) -> 0
2463 // * strspn(s,"") -> 0
2464 // * strcspn(s,a) -> const_int (if both args are constant)
2465 // * strcspn("",a) -> 0
2466 // * strcspn(s,"") -> strlen(a)
2468 // strstr:
2469 // * strstr(x,x) -> x
2470 // * strstr(s1,s2) -> offset_of_s2_in(s1)
2471 // (if s1 and s2 are constant strings)
2473 // tan, tanf, tanl:
2474 // * tan(atan(x)) -> x
2476 // trunc, truncf, truncl:
2477 // * trunc(cnst) -> cnst'