1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Type.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/Statistic.h"
37 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
39 /// SafeToMergeTerminators - Return true if it is safe to merge these two
40 /// terminator instructions together.
42 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
43 if (SI1
== SI2
) return false; // Can't merge with self!
45 // It is not safe to merge these two switch instructions if they have a common
46 // successor, and if that successor has a PHI node, and if *that* PHI node has
47 // conflicting incoming values from the two switch blocks.
48 BasicBlock
*SI1BB
= SI1
->getParent();
49 BasicBlock
*SI2BB
= SI2
->getParent();
50 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
52 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
53 if (SI1Succs
.count(*I
))
54 for (BasicBlock::iterator BBI
= (*I
)->begin();
55 isa
<PHINode
>(BBI
); ++BBI
) {
56 PHINode
*PN
= cast
<PHINode
>(BBI
);
57 if (PN
->getIncomingValueForBlock(SI1BB
) !=
58 PN
->getIncomingValueForBlock(SI2BB
))
65 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
66 /// now be entries in it from the 'NewPred' block. The values that will be
67 /// flowing into the PHI nodes will be the same as those coming in from
68 /// ExistPred, an existing predecessor of Succ.
69 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
70 BasicBlock
*ExistPred
) {
71 assert(std::find(succ_begin(ExistPred
), succ_end(ExistPred
), Succ
) !=
72 succ_end(ExistPred
) && "ExistPred is not a predecessor of Succ!");
73 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
76 for (BasicBlock::iterator I
= Succ
->begin();
77 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
78 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
81 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
82 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
84 /// Assumption: Succ is the single successor for BB.
86 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
87 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
89 DEBUG(errs() << "Looking to fold " << BB
->getName() << " into "
90 << Succ
->getName() << "\n");
91 // Shortcut, if there is only a single predecessor it must be BB and merging
93 if (Succ
->getSinglePredecessor()) return true;
95 // Make a list of the predecessors of BB
96 typedef SmallPtrSet
<BasicBlock
*, 16> BlockSet
;
97 BlockSet
BBPreds(pred_begin(BB
), pred_end(BB
));
99 // Use that list to make another list of common predecessors of BB and Succ
100 BlockSet CommonPreds
;
101 for (pred_iterator PI
= pred_begin(Succ
), PE
= pred_end(Succ
);
103 if (BBPreds
.count(*PI
))
104 CommonPreds
.insert(*PI
);
106 // Shortcut, if there are no common predecessors, merging is always safe
107 if (CommonPreds
.empty())
110 // Look at all the phi nodes in Succ, to see if they present a conflict when
111 // merging these blocks
112 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
113 PHINode
*PN
= cast
<PHINode
>(I
);
115 // If the incoming value from BB is again a PHINode in
116 // BB which has the same incoming value for *PI as PN does, we can
117 // merge the phi nodes and then the blocks can still be merged
118 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
119 if (BBPN
&& BBPN
->getParent() == BB
) {
120 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
122 if (BBPN
->getIncomingValueForBlock(*PI
)
123 != PN
->getIncomingValueForBlock(*PI
)) {
124 DEBUG(errs() << "Can't fold, phi node " << PN
->getName() << " in "
125 << Succ
->getName() << " is conflicting with "
126 << BBPN
->getName() << " with regard to common predecessor "
127 << (*PI
)->getName() << "\n");
132 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
133 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
135 // See if the incoming value for the common predecessor is equal to the
136 // one for BB, in which case this phi node will not prevent the merging
138 if (Val
!= PN
->getIncomingValueForBlock(*PI
)) {
139 DEBUG(errs() << "Can't fold, phi node " << PN
->getName() << " in "
140 << Succ
->getName() << " is conflicting with regard to common "
141 << "predecessor " << (*PI
)->getName() << "\n");
151 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
152 /// branch to Succ, and contains no instructions other than PHI nodes and the
153 /// branch. If possible, eliminate BB.
154 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
156 // Check to see if merging these blocks would cause conflicts for any of the
157 // phi nodes in BB or Succ. If not, we can safely merge.
158 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
160 // Check for cases where Succ has multiple predecessors and a PHI node in BB
161 // has uses which will not disappear when the PHI nodes are merged. It is
162 // possible to handle such cases, but difficult: it requires checking whether
163 // BB dominates Succ, which is non-trivial to calculate in the case where
164 // Succ has multiple predecessors. Also, it requires checking whether
165 // constructing the necessary self-referential PHI node doesn't intoduce any
166 // conflicts; this isn't too difficult, but the previous code for doing this
169 // Note that if this check finds a live use, BB dominates Succ, so BB is
170 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
171 // folding the branch isn't profitable in that case anyway.
172 if (!Succ
->getSinglePredecessor()) {
173 BasicBlock::iterator BBI
= BB
->begin();
174 while (isa
<PHINode
>(*BBI
)) {
175 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
177 if (PHINode
* PN
= dyn_cast
<PHINode
>(*UI
)) {
178 if (PN
->getIncomingBlock(UI
) != BB
)
188 DEBUG(errs() << "Killing Trivial BB: \n" << *BB
);
190 if (isa
<PHINode
>(Succ
->begin())) {
191 // If there is more than one pred of succ, and there are PHI nodes in
192 // the successor, then we need to add incoming edges for the PHI nodes
194 const SmallVector
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
196 // Loop over all of the PHI nodes in the successor of BB.
197 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
198 PHINode
*PN
= cast
<PHINode
>(I
);
199 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
200 assert(OldVal
&& "No entry in PHI for Pred BB!");
202 // If this incoming value is one of the PHI nodes in BB, the new entries
203 // in the PHI node are the entries from the old PHI.
204 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
205 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
206 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
)
207 // Note that, since we are merging phi nodes and BB and Succ might
208 // have common predecessors, we could end up with a phi node with
209 // identical incoming branches. This will be cleaned up later (and
210 // will trigger asserts if we try to clean it up now, without also
211 // simplifying the corresponding conditional branch).
212 PN
->addIncoming(OldValPN
->getIncomingValue(i
),
213 OldValPN
->getIncomingBlock(i
));
215 // Add an incoming value for each of the new incoming values.
216 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
)
217 PN
->addIncoming(OldVal
, BBPreds
[i
]);
222 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
223 if (Succ
->getSinglePredecessor()) {
224 // BB is the only predecessor of Succ, so Succ will end up with exactly
225 // the same predecessors BB had.
226 Succ
->getInstList().splice(Succ
->begin(),
227 BB
->getInstList(), BB
->begin());
229 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
230 assert(PN
->use_empty() && "There shouldn't be any uses here!");
231 PN
->eraseFromParent();
235 // Everything that jumped to BB now goes to Succ.
236 BB
->replaceAllUsesWith(Succ
);
237 if (!Succ
->hasName()) Succ
->takeName(BB
);
238 BB
->eraseFromParent(); // Delete the old basic block.
242 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
243 /// presumably PHI nodes in it), check to see if the merge at this block is due
244 /// to an "if condition". If so, return the boolean condition that determines
245 /// which entry into BB will be taken. Also, return by references the block
246 /// that will be entered from if the condition is true, and the block that will
247 /// be entered if the condition is false.
250 static Value
*GetIfCondition(BasicBlock
*BB
,
251 BasicBlock
*&IfTrue
, BasicBlock
*&IfFalse
) {
252 assert(std::distance(pred_begin(BB
), pred_end(BB
)) == 2 &&
253 "Function can only handle blocks with 2 predecessors!");
254 BasicBlock
*Pred1
= *pred_begin(BB
);
255 BasicBlock
*Pred2
= *++pred_begin(BB
);
257 // We can only handle branches. Other control flow will be lowered to
258 // branches if possible anyway.
259 if (!isa
<BranchInst
>(Pred1
->getTerminator()) ||
260 !isa
<BranchInst
>(Pred2
->getTerminator()))
262 BranchInst
*Pred1Br
= cast
<BranchInst
>(Pred1
->getTerminator());
263 BranchInst
*Pred2Br
= cast
<BranchInst
>(Pred2
->getTerminator());
265 // Eliminate code duplication by ensuring that Pred1Br is conditional if
267 if (Pred2Br
->isConditional()) {
268 // If both branches are conditional, we don't have an "if statement". In
269 // reality, we could transform this case, but since the condition will be
270 // required anyway, we stand no chance of eliminating it, so the xform is
271 // probably not profitable.
272 if (Pred1Br
->isConditional())
275 std::swap(Pred1
, Pred2
);
276 std::swap(Pred1Br
, Pred2Br
);
279 if (Pred1Br
->isConditional()) {
280 // If we found a conditional branch predecessor, make sure that it branches
281 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
282 if (Pred1Br
->getSuccessor(0) == BB
&&
283 Pred1Br
->getSuccessor(1) == Pred2
) {
286 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
287 Pred1Br
->getSuccessor(1) == BB
) {
291 // We know that one arm of the conditional goes to BB, so the other must
292 // go somewhere unrelated, and this must not be an "if statement".
296 // The only thing we have to watch out for here is to make sure that Pred2
297 // doesn't have incoming edges from other blocks. If it does, the condition
298 // doesn't dominate BB.
299 if (++pred_begin(Pred2
) != pred_end(Pred2
))
302 return Pred1Br
->getCondition();
305 // Ok, if we got here, both predecessors end with an unconditional branch to
306 // BB. Don't panic! If both blocks only have a single (identical)
307 // predecessor, and THAT is a conditional branch, then we're all ok!
308 if (pred_begin(Pred1
) == pred_end(Pred1
) ||
309 ++pred_begin(Pred1
) != pred_end(Pred1
) ||
310 pred_begin(Pred2
) == pred_end(Pred2
) ||
311 ++pred_begin(Pred2
) != pred_end(Pred2
) ||
312 *pred_begin(Pred1
) != *pred_begin(Pred2
))
315 // Otherwise, if this is a conditional branch, then we can use it!
316 BasicBlock
*CommonPred
= *pred_begin(Pred1
);
317 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator())) {
318 assert(BI
->isConditional() && "Two successors but not conditional?");
319 if (BI
->getSuccessor(0) == Pred1
) {
326 return BI
->getCondition();
331 /// DominatesMergePoint - If we have a merge point of an "if condition" as
332 /// accepted above, return true if the specified value dominates the block. We
333 /// don't handle the true generality of domination here, just a special case
334 /// which works well enough for us.
336 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
337 /// see if V (which must be an instruction) is cheap to compute and is
338 /// non-trapping. If both are true, the instruction is inserted into the set
339 /// and true is returned.
340 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
341 std::set
<Instruction
*> *AggressiveInsts
) {
342 Instruction
*I
= dyn_cast
<Instruction
>(V
);
344 // Non-instructions all dominate instructions, but not all constantexprs
345 // can be executed unconditionally.
346 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
351 BasicBlock
*PBB
= I
->getParent();
353 // We don't want to allow weird loops that might have the "if condition" in
354 // the bottom of this block.
355 if (PBB
== BB
) return false;
357 // If this instruction is defined in a block that contains an unconditional
358 // branch to BB, then it must be in the 'conditional' part of the "if
360 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator()))
361 if (BI
->isUnconditional() && BI
->getSuccessor(0) == BB
) {
362 if (!AggressiveInsts
) return false;
363 // Okay, it looks like the instruction IS in the "condition". Check to
364 // see if its a cheap instruction to unconditionally compute, and if it
365 // only uses stuff defined outside of the condition. If so, hoist it out.
366 if (!I
->isSafeToSpeculativelyExecute())
369 switch (I
->getOpcode()) {
370 default: return false; // Cannot hoist this out safely.
371 case Instruction::Load
: {
372 // We have to check to make sure there are no instructions before the
373 // load in its basic block, as we are going to hoist the loop out to
375 BasicBlock::iterator IP
= PBB
->begin();
376 while (isa
<DbgInfoIntrinsic
>(IP
))
378 if (IP
!= BasicBlock::iterator(I
))
382 case Instruction::Add
:
383 case Instruction::Sub
:
384 case Instruction::And
:
385 case Instruction::Or
:
386 case Instruction::Xor
:
387 case Instruction::Shl
:
388 case Instruction::LShr
:
389 case Instruction::AShr
:
390 case Instruction::ICmp
:
391 break; // These are all cheap and non-trapping instructions.
394 // Okay, we can only really hoist these out if their operands are not
395 // defined in the conditional region.
396 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
397 if (!DominatesMergePoint(*i
, BB
, 0))
399 // Okay, it's safe to do this! Remember this instruction.
400 AggressiveInsts
->insert(I
);
406 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
407 /// icmp_eq instructions that compare a value against a constant, return the
408 /// value being compared, and stick the constant into the Values vector.
409 static Value
*GatherConstantSetEQs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
410 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
411 if (Inst
->getOpcode() == Instruction::ICmp
&&
412 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_EQ
) {
413 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
415 return Inst
->getOperand(0);
416 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
418 return Inst
->getOperand(1);
420 } else if (Inst
->getOpcode() == Instruction::Or
) {
421 if (Value
*LHS
= GatherConstantSetEQs(Inst
->getOperand(0), Values
))
422 if (Value
*RHS
= GatherConstantSetEQs(Inst
->getOperand(1), Values
))
430 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
431 /// setne instructions that compare a value against a constant, return the value
432 /// being compared, and stick the constant into the Values vector.
433 static Value
*GatherConstantSetNEs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
434 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
435 if (Inst
->getOpcode() == Instruction::ICmp
&&
436 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_NE
) {
437 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
439 return Inst
->getOperand(0);
440 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
442 return Inst
->getOperand(1);
444 } else if (Inst
->getOpcode() == Instruction::And
) {
445 if (Value
*LHS
= GatherConstantSetNEs(Inst
->getOperand(0), Values
))
446 if (Value
*RHS
= GatherConstantSetNEs(Inst
->getOperand(1), Values
))
454 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
455 /// bunch of comparisons of one value against constants, return the value and
456 /// the constants being compared.
457 static bool GatherValueComparisons(Instruction
*Cond
, Value
*&CompVal
,
458 std::vector
<ConstantInt
*> &Values
) {
459 if (Cond
->getOpcode() == Instruction::Or
) {
460 CompVal
= GatherConstantSetEQs(Cond
, Values
);
462 // Return true to indicate that the condition is true if the CompVal is
463 // equal to one of the constants.
465 } else if (Cond
->getOpcode() == Instruction::And
) {
466 CompVal
= GatherConstantSetNEs(Cond
, Values
);
468 // Return false to indicate that the condition is false if the CompVal is
469 // equal to one of the constants.
475 static void EraseTerminatorInstAndDCECond(TerminatorInst
*TI
) {
476 Instruction
* Cond
= 0;
477 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
478 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
479 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
480 if (BI
->isConditional())
481 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
484 TI
->eraseFromParent();
485 if (Cond
) RecursivelyDeleteTriviallyDeadInstructions(Cond
);
488 /// isValueEqualityComparison - Return true if the specified terminator checks
489 /// to see if a value is equal to constant integer value.
490 static Value
*isValueEqualityComparison(TerminatorInst
*TI
) {
491 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
492 // Do not permit merging of large switch instructions into their
493 // predecessors unless there is only one predecessor.
494 if (SI
->getNumSuccessors() * std::distance(pred_begin(SI
->getParent()),
495 pred_end(SI
->getParent())) > 128)
498 return SI
->getCondition();
500 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
501 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
502 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
503 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
504 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
505 isa
<ConstantInt
>(ICI
->getOperand(1)))
506 return ICI
->getOperand(0);
510 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
511 /// decode all of the 'cases' that it represents and return the 'default' block.
513 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
514 std::vector
<std::pair
<ConstantInt
*,
515 BasicBlock
*> > &Cases
) {
516 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
517 Cases
.reserve(SI
->getNumCases());
518 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
519 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
520 return SI
->getDefaultDest();
523 BranchInst
*BI
= cast
<BranchInst
>(TI
);
524 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
525 Cases
.push_back(std::make_pair(cast
<ConstantInt
>(ICI
->getOperand(1)),
526 BI
->getSuccessor(ICI
->getPredicate() ==
527 ICmpInst::ICMP_NE
)));
528 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
532 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
533 /// in the list that match the specified block.
534 static void EliminateBlockCases(BasicBlock
*BB
,
535 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
536 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
537 if (Cases
[i
].second
== BB
) {
538 Cases
.erase(Cases
.begin()+i
);
543 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
546 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
547 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
548 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
550 // Make V1 be smaller than V2.
551 if (V1
->size() > V2
->size())
554 if (V1
->size() == 0) return false;
555 if (V1
->size() == 1) {
557 ConstantInt
*TheVal
= (*V1
)[0].first
;
558 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
559 if (TheVal
== (*V2
)[i
].first
)
563 // Otherwise, just sort both lists and compare element by element.
564 std::sort(V1
->begin(), V1
->end());
565 std::sort(V2
->begin(), V2
->end());
566 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
567 while (i1
!= e1
&& i2
!= e2
) {
568 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
570 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
578 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
579 /// terminator instruction and its block is known to only have a single
580 /// predecessor block, check to see if that predecessor is also a value
581 /// comparison with the same value, and if that comparison determines the
582 /// outcome of this comparison. If so, simplify TI. This does a very limited
583 /// form of jump threading.
584 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
586 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
587 if (!PredVal
) return false; // Not a value comparison in predecessor.
589 Value
*ThisVal
= isValueEqualityComparison(TI
);
590 assert(ThisVal
&& "This isn't a value comparison!!");
591 if (ThisVal
!= PredVal
) return false; // Different predicates.
593 // Find out information about when control will move from Pred to TI's block.
594 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
595 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
597 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
599 // Find information about how control leaves this block.
600 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
601 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
602 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
604 // If TI's block is the default block from Pred's comparison, potentially
605 // simplify TI based on this knowledge.
606 if (PredDef
== TI
->getParent()) {
607 // If we are here, we know that the value is none of those cases listed in
608 // PredCases. If there are any cases in ThisCases that are in PredCases, we
610 if (ValuesOverlap(PredCases
, ThisCases
)) {
611 if (isa
<BranchInst
>(TI
)) {
612 // Okay, one of the successors of this condbr is dead. Convert it to a
614 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
615 // Insert the new branch.
616 Instruction
*NI
= BranchInst::Create(ThisDef
, TI
);
619 // Remove PHI node entries for the dead edge.
620 ThisCases
[0].second
->removePredecessor(TI
->getParent());
622 DEBUG(errs() << "Threading pred instr: " << *Pred
->getTerminator()
623 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n");
625 EraseTerminatorInstAndDCECond(TI
);
629 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
630 // Okay, TI has cases that are statically dead, prune them away.
631 SmallPtrSet
<Constant
*, 16> DeadCases
;
632 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
633 DeadCases
.insert(PredCases
[i
].first
);
635 DEBUG(errs() << "Threading pred instr: " << *Pred
->getTerminator()
636 << "Through successor TI: " << *TI
);
638 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
639 if (DeadCases
.count(SI
->getCaseValue(i
))) {
640 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
644 DEBUG(errs() << "Leaving: " << *TI
<< "\n");
650 // Otherwise, TI's block must correspond to some matched value. Find out
651 // which value (or set of values) this is.
652 ConstantInt
*TIV
= 0;
653 BasicBlock
*TIBB
= TI
->getParent();
654 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
655 if (PredCases
[i
].second
== TIBB
) {
657 TIV
= PredCases
[i
].first
;
659 return false; // Cannot handle multiple values coming to this block.
661 assert(TIV
&& "No edge from pred to succ?");
663 // Okay, we found the one constant that our value can be if we get into TI's
664 // BB. Find out which successor will unconditionally be branched to.
665 BasicBlock
*TheRealDest
= 0;
666 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
667 if (ThisCases
[i
].first
== TIV
) {
668 TheRealDest
= ThisCases
[i
].second
;
672 // If not handled by any explicit cases, it is handled by the default case.
673 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
675 // Remove PHI node entries for dead edges.
676 BasicBlock
*CheckEdge
= TheRealDest
;
677 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
678 if (*SI
!= CheckEdge
)
679 (*SI
)->removePredecessor(TIBB
);
683 // Insert the new branch.
684 Instruction
*NI
= BranchInst::Create(TheRealDest
, TI
);
687 DEBUG(errs() << "Threading pred instr: " << *Pred
->getTerminator()
688 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n");
690 EraseTerminatorInstAndDCECond(TI
);
697 /// ConstantIntOrdering - This class implements a stable ordering of constant
698 /// integers that does not depend on their address. This is important for
699 /// applications that sort ConstantInt's to ensure uniqueness.
700 struct ConstantIntOrdering
{
701 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
702 return LHS
->getValue().ult(RHS
->getValue());
707 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
708 /// equality comparison instruction (either a switch or a branch on "X == c").
709 /// See if any of the predecessors of the terminator block are value comparisons
710 /// on the same value. If so, and if safe to do so, fold them together.
711 static bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
) {
712 BasicBlock
*BB
= TI
->getParent();
713 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
714 assert(CV
&& "Not a comparison?");
715 bool Changed
= false;
717 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
718 while (!Preds
.empty()) {
719 BasicBlock
*Pred
= Preds
.pop_back_val();
721 // See if the predecessor is a comparison with the same value.
722 TerminatorInst
*PTI
= Pred
->getTerminator();
723 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
725 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
726 // Figure out which 'cases' to copy from SI to PSI.
727 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
728 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
730 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
731 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
733 // Based on whether the default edge from PTI goes to BB or not, fill in
734 // PredCases and PredDefault with the new switch cases we would like to
736 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
738 if (PredDefault
== BB
) {
739 // If this is the default destination from PTI, only the edges in TI
740 // that don't occur in PTI, or that branch to BB will be activated.
741 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
742 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
743 if (PredCases
[i
].second
!= BB
)
744 PTIHandled
.insert(PredCases
[i
].first
);
746 // The default destination is BB, we don't need explicit targets.
747 std::swap(PredCases
[i
], PredCases
.back());
748 PredCases
.pop_back();
752 // Reconstruct the new switch statement we will be building.
753 if (PredDefault
!= BBDefault
) {
754 PredDefault
->removePredecessor(Pred
);
755 PredDefault
= BBDefault
;
756 NewSuccessors
.push_back(BBDefault
);
758 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
759 if (!PTIHandled
.count(BBCases
[i
].first
) &&
760 BBCases
[i
].second
!= BBDefault
) {
761 PredCases
.push_back(BBCases
[i
]);
762 NewSuccessors
.push_back(BBCases
[i
].second
);
766 // If this is not the default destination from PSI, only the edges
767 // in SI that occur in PSI with a destination of BB will be
769 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
770 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
771 if (PredCases
[i
].second
== BB
) {
772 PTIHandled
.insert(PredCases
[i
].first
);
773 std::swap(PredCases
[i
], PredCases
.back());
774 PredCases
.pop_back();
778 // Okay, now we know which constants were sent to BB from the
779 // predecessor. Figure out where they will all go now.
780 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
781 if (PTIHandled
.count(BBCases
[i
].first
)) {
782 // If this is one we are capable of getting...
783 PredCases
.push_back(BBCases
[i
]);
784 NewSuccessors
.push_back(BBCases
[i
].second
);
785 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
788 // If there are any constants vectored to BB that TI doesn't handle,
789 // they must go to the default destination of TI.
790 for (std::set
<ConstantInt
*, ConstantIntOrdering
>::iterator I
=
792 E
= PTIHandled
.end(); I
!= E
; ++I
) {
793 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
794 NewSuccessors
.push_back(BBDefault
);
798 // Okay, at this point, we know which new successor Pred will get. Make
799 // sure we update the number of entries in the PHI nodes for these
801 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
802 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
804 // Now that the successors are updated, create the new Switch instruction.
805 SwitchInst
*NewSI
= SwitchInst::Create(CV
, PredDefault
,
806 PredCases
.size(), PTI
);
807 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
808 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
810 EraseTerminatorInstAndDCECond(PTI
);
812 // Okay, last check. If BB is still a successor of PSI, then we must
813 // have an infinite loop case. If so, add an infinitely looping block
814 // to handle the case to preserve the behavior of the code.
815 BasicBlock
*InfLoopBlock
= 0;
816 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
817 if (NewSI
->getSuccessor(i
) == BB
) {
818 if (InfLoopBlock
== 0) {
819 // Insert it at the end of the function, because it's either code,
820 // or it won't matter if it's hot. :)
821 InfLoopBlock
= BasicBlock::Create(BB
->getContext(),
822 "infloop", BB
->getParent());
823 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
825 NewSI
->setSuccessor(i
, InfLoopBlock
);
834 // isSafeToHoistInvoke - If we would need to insert a select that uses the
835 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
836 // would need to do this), we can't hoist the invoke, as there is nowhere
837 // to put the select in this case.
838 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
839 Instruction
*I1
, Instruction
*I2
) {
840 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
842 for (BasicBlock::iterator BBI
= SI
->begin();
843 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
844 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
845 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
846 if (BB1V
!= BB2V
&& (BB1V
==I1
|| BB2V
==I2
)) {
854 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
855 /// BB2, hoist any common code in the two blocks up into the branch block. The
856 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
857 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
858 // This does very trivial matching, with limited scanning, to find identical
859 // instructions in the two blocks. In particular, we don't want to get into
860 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
861 // such, we currently just scan for obviously identical instructions in an
863 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
864 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
866 BasicBlock::iterator BB1_Itr
= BB1
->begin();
867 BasicBlock::iterator BB2_Itr
= BB2
->begin();
869 Instruction
*I1
= BB1_Itr
++, *I2
= BB2_Itr
++;
870 while (isa
<DbgInfoIntrinsic
>(I1
))
872 while (isa
<DbgInfoIntrinsic
>(I2
))
874 if (I1
->getOpcode() != I2
->getOpcode() || isa
<PHINode
>(I1
) ||
875 !I1
->isIdenticalToWhenDefined(I2
) ||
876 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)))
879 // If we get here, we can hoist at least one instruction.
880 BasicBlock
*BIParent
= BI
->getParent();
883 // If we are hoisting the terminator instruction, don't move one (making a
884 // broken BB), instead clone it, and remove BI.
885 if (isa
<TerminatorInst
>(I1
))
886 goto HoistTerminator
;
888 // For a normal instruction, we just move one to right before the branch,
889 // then replace all uses of the other with the first. Finally, we remove
890 // the now redundant second instruction.
891 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
892 if (!I2
->use_empty())
893 I2
->replaceAllUsesWith(I1
);
894 I1
->intersectOptionalDataWith(I2
);
895 BB2
->getInstList().erase(I2
);
898 while (isa
<DbgInfoIntrinsic
>(I1
))
901 while (isa
<DbgInfoIntrinsic
>(I2
))
903 } while (I1
->getOpcode() == I2
->getOpcode() &&
904 I1
->isIdenticalToWhenDefined(I2
));
909 // It may not be possible to hoist an invoke.
910 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
913 // Okay, it is safe to hoist the terminator.
914 Instruction
*NT
= I1
->clone(BB1
->getContext());
915 BIParent
->getInstList().insert(BI
, NT
);
916 if (NT
->getType() != Type::getVoidTy(BB1
->getContext())) {
917 I1
->replaceAllUsesWith(NT
);
918 I2
->replaceAllUsesWith(NT
);
922 // Hoisting one of the terminators from our successor is a great thing.
923 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
924 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
925 // nodes, so we insert select instruction to compute the final result.
926 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
927 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
929 for (BasicBlock::iterator BBI
= SI
->begin();
930 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
931 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
932 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
934 // These values do not agree. Insert a select instruction before NT
935 // that determines the right value.
936 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
938 SI
= SelectInst::Create(BI
->getCondition(), BB1V
, BB2V
,
939 BB1V
->getName()+"."+BB2V
->getName(), NT
);
940 // Make the PHI node use the select for all incoming values for BB1/BB2
941 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
942 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
943 PN
->setIncomingValue(i
, SI
);
948 // Update any PHI nodes in our new successors.
949 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
950 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
952 EraseTerminatorInstAndDCECond(BI
);
956 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
957 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
958 /// (for now, restricted to a single instruction that's side effect free) from
959 /// the BB1 into the branch block to speculatively execute it.
960 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
961 // Only speculatively execution a single instruction (not counting the
962 // terminator) for now.
963 Instruction
*HInst
= NULL
;
964 Instruction
*Term
= BB1
->getTerminator();
965 for (BasicBlock::iterator BBI
= BB1
->begin(), BBE
= BB1
->end();
967 Instruction
*I
= BBI
;
969 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
970 if (I
== Term
) break;
980 // Be conservative for now. FP select instruction can often be expensive.
981 Value
*BrCond
= BI
->getCondition();
982 if (isa
<Instruction
>(BrCond
) &&
983 cast
<Instruction
>(BrCond
)->getOpcode() == Instruction::FCmp
)
986 // If BB1 is actually on the false edge of the conditional branch, remember
987 // to swap the select operands later.
989 if (BB1
!= BI
->getSuccessor(0)) {
990 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
997 // br i1 %t1, label %BB1, label %BB2
1006 // %t3 = select i1 %t1, %t2, %t3
1007 switch (HInst
->getOpcode()) {
1008 default: return false; // Not safe / profitable to hoist.
1009 case Instruction::Add
:
1010 case Instruction::Sub
:
1011 // Not worth doing for vector ops.
1012 if (isa
<VectorType
>(HInst
->getType()))
1015 case Instruction::And
:
1016 case Instruction::Or
:
1017 case Instruction::Xor
:
1018 case Instruction::Shl
:
1019 case Instruction::LShr
:
1020 case Instruction::AShr
:
1021 // Don't mess with vector operations.
1022 if (isa
<VectorType
>(HInst
->getType()))
1024 break; // These are all cheap and non-trapping instructions.
1027 // If the instruction is obviously dead, don't try to predicate it.
1028 if (HInst
->use_empty()) {
1029 HInst
->eraseFromParent();
1033 // Can we speculatively execute the instruction? And what is the value
1034 // if the condition is false? Consider the phi uses, if the incoming value
1035 // from the "if" block are all the same V, then V is the value of the
1036 // select if the condition is false.
1037 BasicBlock
*BIParent
= BI
->getParent();
1038 SmallVector
<PHINode
*, 4> PHIUses
;
1039 Value
*FalseV
= NULL
;
1041 BasicBlock
*BB2
= BB1
->getTerminator()->getSuccessor(0);
1042 for (Value::use_iterator UI
= HInst
->use_begin(), E
= HInst
->use_end();
1044 // Ignore any user that is not a PHI node in BB2. These can only occur in
1045 // unreachable blocks, because they would not be dominated by the instr.
1046 PHINode
*PN
= dyn_cast
<PHINode
>(UI
);
1047 if (!PN
|| PN
->getParent() != BB2
)
1049 PHIUses
.push_back(PN
);
1051 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1054 else if (FalseV
!= PHIV
)
1055 return false; // Inconsistent value when condition is false.
1058 assert(FalseV
&& "Must have at least one user, and it must be a PHI");
1060 // Do not hoist the instruction if any of its operands are defined but not
1061 // used in this BB. The transformation will prevent the operand from
1062 // being sunk into the use block.
1063 for (User::op_iterator i
= HInst
->op_begin(), e
= HInst
->op_end();
1065 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1066 if (OpI
&& OpI
->getParent() == BIParent
&&
1067 !OpI
->isUsedInBasicBlock(BIParent
))
1071 // If we get here, we can hoist the instruction. Try to place it
1072 // before the icmp instruction preceding the conditional branch.
1073 BasicBlock::iterator InsertPos
= BI
;
1074 if (InsertPos
!= BIParent
->begin())
1076 // Skip debug info between condition and branch.
1077 while (InsertPos
!= BIParent
->begin() && isa
<DbgInfoIntrinsic
>(InsertPos
))
1079 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
)) {
1080 SmallPtrSet
<Instruction
*, 4> BB1Insns
;
1081 for(BasicBlock::iterator BB1I
= BB1
->begin(), BB1E
= BB1
->end();
1082 BB1I
!= BB1E
; ++BB1I
)
1083 BB1Insns
.insert(BB1I
);
1084 for(Value::use_iterator UI
= BrCond
->use_begin(), UE
= BrCond
->use_end();
1086 Instruction
*Use
= cast
<Instruction
>(*UI
);
1087 if (BB1Insns
.count(Use
)) {
1088 // If BrCond uses the instruction that place it just before
1089 // branch instruction.
1096 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), HInst
);
1098 // Create a select whose true value is the speculatively executed value and
1099 // false value is the previously determined FalseV.
1102 SI
= SelectInst::Create(BrCond
, FalseV
, HInst
,
1103 FalseV
->getName() + "." + HInst
->getName(), BI
);
1105 SI
= SelectInst::Create(BrCond
, HInst
, FalseV
,
1106 HInst
->getName() + "." + FalseV
->getName(), BI
);
1108 // Make the PHI node use the select for all incoming values for "then" and
1110 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1111 PHINode
*PN
= PHIUses
[i
];
1112 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1113 if (PN
->getIncomingBlock(j
) == BB1
||
1114 PN
->getIncomingBlock(j
) == BIParent
)
1115 PN
->setIncomingValue(j
, SI
);
1122 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1123 /// across this block.
1124 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1125 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1128 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1129 if (isa
<DbgInfoIntrinsic
>(BBI
))
1131 if (Size
> 10) return false; // Don't clone large BB's.
1134 // We can only support instructions that do not define values that are
1135 // live outside of the current basic block.
1136 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1138 Instruction
*U
= cast
<Instruction
>(*UI
);
1139 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1142 // Looks ok, continue checking.
1148 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1149 /// that is defined in the same block as the branch and if any PHI entries are
1150 /// constants, thread edges corresponding to that entry to be branches to their
1151 /// ultimate destination.
1152 static bool FoldCondBranchOnPHI(BranchInst
*BI
) {
1153 BasicBlock
*BB
= BI
->getParent();
1154 LLVMContext
&Context
= BB
->getContext();
1155 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1156 // NOTE: we currently cannot transform this case if the PHI node is used
1157 // outside of the block.
1158 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1161 // Degenerate case of a single entry PHI.
1162 if (PN
->getNumIncomingValues() == 1) {
1163 FoldSingleEntryPHINodes(PN
->getParent());
1167 // Now we know that this block has multiple preds and two succs.
1168 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1170 // Okay, this is a simple enough basic block. See if any phi values are
1172 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1174 if ((CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
))) &&
1175 CB
->getType() == Type::getInt1Ty(BB
->getContext())) {
1176 // Okay, we now know that all edges from PredBB should be revectored to
1177 // branch to RealDest.
1178 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1179 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1181 if (RealDest
== BB
) continue; // Skip self loops.
1183 // The dest block might have PHI nodes, other predecessors and other
1184 // difficult cases. Instead of being smart about this, just insert a new
1185 // block that jumps to the destination block, effectively splitting
1186 // the edge we are about to create.
1187 BasicBlock
*EdgeBB
= BasicBlock::Create(BB
->getContext(),
1188 RealDest
->getName()+".critedge",
1189 RealDest
->getParent(), RealDest
);
1190 BranchInst::Create(RealDest
, EdgeBB
);
1192 for (BasicBlock::iterator BBI
= RealDest
->begin();
1193 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
1194 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1195 PN
->addIncoming(V
, EdgeBB
);
1198 // BB may have instructions that are being threaded over. Clone these
1199 // instructions into EdgeBB. We know that there will be no uses of the
1200 // cloned instructions outside of EdgeBB.
1201 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1202 std::map
<Value
*, Value
*> TranslateMap
; // Track translated values.
1203 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1204 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1205 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1207 // Clone the instruction.
1208 Instruction
*N
= BBI
->clone(Context
);
1209 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1211 // Update operands due to translation.
1212 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1214 std::map
<Value
*, Value
*>::iterator PI
=
1215 TranslateMap
.find(*i
);
1216 if (PI
!= TranslateMap
.end())
1220 // Check for trivial simplification.
1221 if (Constant
*C
= ConstantFoldInstruction(N
, Context
)) {
1222 TranslateMap
[BBI
] = C
;
1223 delete N
; // Constant folded away, don't need actual inst
1225 // Insert the new instruction into its new home.
1226 EdgeBB
->getInstList().insert(InsertPt
, N
);
1227 if (!BBI
->use_empty())
1228 TranslateMap
[BBI
] = N
;
1233 // Loop over all of the edges from PredBB to BB, changing them to branch
1234 // to EdgeBB instead.
1235 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1236 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1237 if (PredBBTI
->getSuccessor(i
) == BB
) {
1238 BB
->removePredecessor(PredBB
);
1239 PredBBTI
->setSuccessor(i
, EdgeBB
);
1242 // Recurse, simplifying any other constants.
1243 return FoldCondBranchOnPHI(BI
) | true;
1250 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1251 /// PHI node, see if we can eliminate it.
1252 static bool FoldTwoEntryPHINode(PHINode
*PN
) {
1253 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1254 // statement", which has a very simple dominance structure. Basically, we
1255 // are trying to find the condition that is being branched on, which
1256 // subsequently causes this merge to happen. We really want control
1257 // dependence information for this check, but simplifycfg can't keep it up
1258 // to date, and this catches most of the cases we care about anyway.
1260 BasicBlock
*BB
= PN
->getParent();
1261 BasicBlock
*IfTrue
, *IfFalse
;
1262 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1263 if (!IfCond
) return false;
1265 // Okay, we found that we can merge this two-entry phi node into a select.
1266 // Doing so would require us to fold *all* two entry phi nodes in this block.
1267 // At some point this becomes non-profitable (particularly if the target
1268 // doesn't support cmov's). Only do this transformation if there are two or
1269 // fewer PHI nodes in this block.
1270 unsigned NumPhis
= 0;
1271 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1275 DEBUG(errs() << "FOUND IF CONDITION! " << *IfCond
<< " T: "
1276 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n");
1278 // Loop over the PHI's seeing if we can promote them all to select
1279 // instructions. While we are at it, keep track of the instructions
1280 // that need to be moved to the dominating block.
1281 std::set
<Instruction
*> AggressiveInsts
;
1283 BasicBlock::iterator AfterPHIIt
= BB
->begin();
1284 while (isa
<PHINode
>(AfterPHIIt
)) {
1285 PHINode
*PN
= cast
<PHINode
>(AfterPHIIt
++);
1286 if (PN
->getIncomingValue(0) == PN
->getIncomingValue(1)) {
1287 if (PN
->getIncomingValue(0) != PN
)
1288 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
1290 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
1291 } else if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
,
1292 &AggressiveInsts
) ||
1293 !DominatesMergePoint(PN
->getIncomingValue(1), BB
,
1294 &AggressiveInsts
)) {
1299 // If we all PHI nodes are promotable, check to make sure that all
1300 // instructions in the predecessor blocks can be promoted as well. If
1301 // not, we won't be able to get rid of the control flow, so it's not
1302 // worth promoting to select instructions.
1303 BasicBlock
*DomBlock
= 0, *IfBlock1
= 0, *IfBlock2
= 0;
1304 PN
= cast
<PHINode
>(BB
->begin());
1305 BasicBlock
*Pred
= PN
->getIncomingBlock(0);
1306 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1308 DomBlock
= *pred_begin(Pred
);
1309 for (BasicBlock::iterator I
= Pred
->begin();
1310 !isa
<TerminatorInst
>(I
); ++I
)
1311 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1312 // This is not an aggressive instruction that we can promote.
1313 // Because of this, we won't be able to get rid of the control
1314 // flow, so the xform is not worth it.
1319 Pred
= PN
->getIncomingBlock(1);
1320 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1322 DomBlock
= *pred_begin(Pred
);
1323 for (BasicBlock::iterator I
= Pred
->begin();
1324 !isa
<TerminatorInst
>(I
); ++I
)
1325 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1326 // This is not an aggressive instruction that we can promote.
1327 // Because of this, we won't be able to get rid of the control
1328 // flow, so the xform is not worth it.
1333 // If we can still promote the PHI nodes after this gauntlet of tests,
1334 // do all of the PHI's now.
1336 // Move all 'aggressive' instructions, which are defined in the
1337 // conditional parts of the if's up to the dominating block.
1339 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1340 IfBlock1
->getInstList(),
1342 IfBlock1
->getTerminator());
1345 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1346 IfBlock2
->getInstList(),
1348 IfBlock2
->getTerminator());
1351 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1352 // Change the PHI node into a select instruction.
1354 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1356 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1358 Value
*NV
= SelectInst::Create(IfCond
, TrueVal
, FalseVal
, "", AfterPHIIt
);
1359 PN
->replaceAllUsesWith(NV
);
1362 BB
->getInstList().erase(PN
);
1367 /// isTerminatorFirstRelevantInsn - Return true if Term is very first
1368 /// instruction ignoring Phi nodes and dbg intrinsics.
1369 static bool isTerminatorFirstRelevantInsn(BasicBlock
*BB
, Instruction
*Term
) {
1370 BasicBlock::iterator BBI
= Term
;
1371 while (BBI
!= BB
->begin()) {
1373 if (!isa
<DbgInfoIntrinsic
>(BBI
))
1377 if (isa
<PHINode
>(BBI
) || &*BBI
== Term
|| isa
<DbgInfoIntrinsic
>(BBI
))
1382 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1383 /// to two returning blocks, try to merge them together into one return,
1384 /// introducing a select if the return values disagree.
1385 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
) {
1386 assert(BI
->isConditional() && "Must be a conditional branch");
1387 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1388 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1389 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1390 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1392 // Check to ensure both blocks are empty (just a return) or optionally empty
1393 // with PHI nodes. If there are other instructions, merging would cause extra
1394 // computation on one path or the other.
1395 if (!isTerminatorFirstRelevantInsn(TrueSucc
, TrueRet
))
1397 if (!isTerminatorFirstRelevantInsn(FalseSucc
, FalseRet
))
1400 // Okay, we found a branch that is going to two return nodes. If
1401 // there is no return value for this function, just change the
1402 // branch into a return.
1403 if (FalseRet
->getNumOperands() == 0) {
1404 TrueSucc
->removePredecessor(BI
->getParent());
1405 FalseSucc
->removePredecessor(BI
->getParent());
1406 ReturnInst::Create(BI
->getContext(), 0, BI
);
1407 EraseTerminatorInstAndDCECond(BI
);
1411 // Otherwise, figure out what the true and false return values are
1412 // so we can insert a new select instruction.
1413 Value
*TrueValue
= TrueRet
->getReturnValue();
1414 Value
*FalseValue
= FalseRet
->getReturnValue();
1416 // Unwrap any PHI nodes in the return blocks.
1417 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
1418 if (TVPN
->getParent() == TrueSucc
)
1419 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1420 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
1421 if (FVPN
->getParent() == FalseSucc
)
1422 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1424 // In order for this transformation to be safe, we must be able to
1425 // unconditionally execute both operands to the return. This is
1426 // normally the case, but we could have a potentially-trapping
1427 // constant expression that prevents this transformation from being
1429 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
1432 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
1436 // Okay, we collected all the mapped values and checked them for sanity, and
1437 // defined to really do this transformation. First, update the CFG.
1438 TrueSucc
->removePredecessor(BI
->getParent());
1439 FalseSucc
->removePredecessor(BI
->getParent());
1441 // Insert select instructions where needed.
1442 Value
*BrCond
= BI
->getCondition();
1444 // Insert a select if the results differ.
1445 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
1446 } else if (isa
<UndefValue
>(TrueValue
)) {
1447 TrueValue
= FalseValue
;
1449 TrueValue
= SelectInst::Create(BrCond
, TrueValue
,
1450 FalseValue
, "retval", BI
);
1454 Value
*RI
= !TrueValue
?
1455 ReturnInst::Create(BI
->getContext(), BI
) :
1456 ReturnInst::Create(BI
->getContext(), TrueValue
, BI
);
1459 DEBUG(errs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1460 << "\n " << *BI
<< "NewRet = " << *RI
1461 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
);
1463 EraseTerminatorInstAndDCECond(BI
);
1468 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1469 /// and if a predecessor branches to us and one of our successors, fold the
1470 /// setcc into the predecessor and use logical operations to pick the right
1472 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
) {
1473 BasicBlock
*BB
= BI
->getParent();
1474 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1475 if (Cond
== 0) return false;
1478 // Only allow this if the condition is a simple instruction that can be
1479 // executed unconditionally. It must be in the same block as the branch, and
1480 // must be at the front of the block.
1481 BasicBlock::iterator FrontIt
= BB
->front();
1482 // Ignore dbg intrinsics.
1483 while(isa
<DbgInfoIntrinsic
>(FrontIt
))
1485 if ((!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1486 Cond
->getParent() != BB
|| &*FrontIt
!= Cond
|| !Cond
->hasOneUse()) {
1490 // Make sure the instruction after the condition is the cond branch.
1491 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1492 // Ingore dbg intrinsics.
1493 while(isa
<DbgInfoIntrinsic
>(CondIt
))
1495 if (&*CondIt
!= BI
) {
1496 assert (!isa
<DbgInfoIntrinsic
>(CondIt
) && "Hey do not forget debug info!");
1500 // Cond is known to be a compare or binary operator. Check to make sure that
1501 // neither operand is a potentially-trapping constant expression.
1502 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
1505 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
1510 // Finally, don't infinitely unroll conditional loops.
1511 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1512 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1513 if (TrueDest
== BB
|| FalseDest
== BB
)
1516 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1517 BasicBlock
*PredBlock
= *PI
;
1518 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1520 // Check that we have two conditional branches. If there is a PHI node in
1521 // the common successor, verify that the same value flows in from both
1523 if (PBI
== 0 || PBI
->isUnconditional() ||
1524 !SafeToMergeTerminators(BI
, PBI
))
1527 Instruction::BinaryOps Opc
;
1528 bool InvertPredCond
= false;
1530 if (PBI
->getSuccessor(0) == TrueDest
)
1531 Opc
= Instruction::Or
;
1532 else if (PBI
->getSuccessor(1) == FalseDest
)
1533 Opc
= Instruction::And
;
1534 else if (PBI
->getSuccessor(0) == FalseDest
)
1535 Opc
= Instruction::And
, InvertPredCond
= true;
1536 else if (PBI
->getSuccessor(1) == TrueDest
)
1537 Opc
= Instruction::Or
, InvertPredCond
= true;
1541 DEBUG(errs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
1543 // If we need to invert the condition in the pred block to match, do so now.
1544 if (InvertPredCond
) {
1546 BinaryOperator::CreateNot(PBI
->getCondition(),
1547 PBI
->getCondition()->getName()+".not", PBI
);
1548 PBI
->setCondition(NewCond
);
1549 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1550 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1551 PBI
->setSuccessor(0, OldFalse
);
1552 PBI
->setSuccessor(1, OldTrue
);
1555 // Clone Cond into the predecessor basic block, and or/and the
1556 // two conditions together.
1557 Instruction
*New
= Cond
->clone(BB
->getContext());
1558 PredBlock
->getInstList().insert(PBI
, New
);
1559 New
->takeName(Cond
);
1560 Cond
->setName(New
->getName()+".old");
1562 Value
*NewCond
= BinaryOperator::Create(Opc
, PBI
->getCondition(),
1563 New
, "or.cond", PBI
);
1564 PBI
->setCondition(NewCond
);
1565 if (PBI
->getSuccessor(0) == BB
) {
1566 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1567 PBI
->setSuccessor(0, TrueDest
);
1569 if (PBI
->getSuccessor(1) == BB
) {
1570 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1571 PBI
->setSuccessor(1, FalseDest
);
1578 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1579 /// predecessor of another block, this function tries to simplify it. We know
1580 /// that PBI and BI are both conditional branches, and BI is in one of the
1581 /// successor blocks of PBI - PBI branches to BI.
1582 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1583 assert(PBI
->isConditional() && BI
->isConditional());
1584 BasicBlock
*BB
= BI
->getParent();
1586 // If this block ends with a branch instruction, and if there is a
1587 // predecessor that ends on a branch of the same condition, make
1588 // this conditional branch redundant.
1589 if (PBI
->getCondition() == BI
->getCondition() &&
1590 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1591 // Okay, the outcome of this conditional branch is statically
1592 // knowable. If this block had a single pred, handle specially.
1593 if (BB
->getSinglePredecessor()) {
1594 // Turn this into a branch on constant.
1595 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1596 BI
->setCondition(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
1598 return true; // Nuke the branch on constant.
1601 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1602 // in the constant and simplify the block result. Subsequent passes of
1603 // simplifycfg will thread the block.
1604 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1605 PHINode
*NewPN
= PHINode::Create(Type::getInt1Ty(BB
->getContext()),
1606 BI
->getCondition()->getName() + ".pr",
1608 // Okay, we're going to insert the PHI node. Since PBI is not the only
1609 // predecessor, compute the PHI'd conditional value for all of the preds.
1610 // Any predecessor where the condition is not computable we keep symbolic.
1611 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1612 if ((PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator())) &&
1613 PBI
!= BI
&& PBI
->isConditional() &&
1614 PBI
->getCondition() == BI
->getCondition() &&
1615 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1616 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1617 NewPN
->addIncoming(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
1620 NewPN
->addIncoming(BI
->getCondition(), *PI
);
1623 BI
->setCondition(NewPN
);
1628 // If this is a conditional branch in an empty block, and if any
1629 // predecessors is a conditional branch to one of our destinations,
1630 // fold the conditions into logical ops and one cond br.
1631 BasicBlock::iterator BBI
= BB
->begin();
1632 // Ignore dbg intrinsics.
1633 while (isa
<DbgInfoIntrinsic
>(BBI
))
1639 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
1644 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1646 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1647 PBIOp
= 0, BIOp
= 1;
1648 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1649 PBIOp
= 1, BIOp
= 0;
1650 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1655 // Check to make sure that the other destination of this branch
1656 // isn't BB itself. If so, this is an infinite loop that will
1657 // keep getting unwound.
1658 if (PBI
->getSuccessor(PBIOp
) == BB
)
1661 // Do not perform this transformation if it would require
1662 // insertion of a large number of select instructions. For targets
1663 // without predication/cmovs, this is a big pessimization.
1664 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1666 unsigned NumPhis
= 0;
1667 for (BasicBlock::iterator II
= CommonDest
->begin();
1668 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1669 if (NumPhis
> 2) // Disable this xform.
1672 // Finally, if everything is ok, fold the branches to logical ops.
1673 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1675 DEBUG(errs() << "FOLDING BRs:" << *PBI
->getParent()
1676 << "AND: " << *BI
->getParent());
1679 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1680 // branch in it, where one edge (OtherDest) goes back to itself but the other
1681 // exits. We don't *know* that the program avoids the infinite loop
1682 // (even though that seems likely). If we do this xform naively, we'll end up
1683 // recursively unpeeling the loop. Since we know that (after the xform is
1684 // done) that the block *is* infinite if reached, we just make it an obviously
1685 // infinite loop with no cond branch.
1686 if (OtherDest
== BB
) {
1687 // Insert it at the end of the function, because it's either code,
1688 // or it won't matter if it's hot. :)
1689 BasicBlock
*InfLoopBlock
= BasicBlock::Create(BB
->getContext(),
1690 "infloop", BB
->getParent());
1691 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1692 OtherDest
= InfLoopBlock
;
1695 DEBUG(errs() << *PBI
->getParent()->getParent());
1697 // BI may have other predecessors. Because of this, we leave
1698 // it alone, but modify PBI.
1700 // Make sure we get to CommonDest on True&True directions.
1701 Value
*PBICond
= PBI
->getCondition();
1703 PBICond
= BinaryOperator::CreateNot(PBICond
,
1704 PBICond
->getName()+".not",
1706 Value
*BICond
= BI
->getCondition();
1708 BICond
= BinaryOperator::CreateNot(BICond
,
1709 BICond
->getName()+".not",
1711 // Merge the conditions.
1712 Value
*Cond
= BinaryOperator::CreateOr(PBICond
, BICond
, "brmerge", PBI
);
1714 // Modify PBI to branch on the new condition to the new dests.
1715 PBI
->setCondition(Cond
);
1716 PBI
->setSuccessor(0, CommonDest
);
1717 PBI
->setSuccessor(1, OtherDest
);
1719 // OtherDest may have phi nodes. If so, add an entry from PBI's
1720 // block that are identical to the entries for BI's block.
1722 for (BasicBlock::iterator II
= OtherDest
->begin();
1723 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1724 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1725 PN
->addIncoming(V
, PBI
->getParent());
1728 // We know that the CommonDest already had an edge from PBI to
1729 // it. If it has PHIs though, the PHIs may have different
1730 // entries for BB and PBI's BB. If so, insert a select to make
1732 for (BasicBlock::iterator II
= CommonDest
->begin();
1733 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1734 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1735 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1736 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1738 // Insert a select in PBI to pick the right value.
1739 Value
*NV
= SelectInst::Create(PBICond
, PBIV
, BIV
,
1740 PBIV
->getName()+".mux", PBI
);
1741 PN
->setIncomingValue(PBBIdx
, NV
);
1745 DEBUG(errs() << "INTO: " << *PBI
->getParent());
1746 DEBUG(errs() << *PBI
->getParent()->getParent());
1748 // This basic block is probably dead. We know it has at least
1749 // one fewer predecessor.
1754 /// SimplifyCFG - This function is used to do simplification of a CFG. For
1755 /// example, it adjusts branches to branches to eliminate the extra hop, it
1756 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1757 /// of the CFG. It returns true if a modification was made.
1759 /// WARNING: The entry node of a function may not be simplified.
1761 bool llvm::SimplifyCFG(BasicBlock
*BB
) {
1762 bool Changed
= false;
1763 Function
*M
= BB
->getParent();
1765 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
1766 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
1767 assert(&BB
->getParent()->getEntryBlock() != BB
&&
1768 "Can't Simplify entry block!");
1770 // Remove basic blocks that have no predecessors... or that just have themself
1771 // as a predecessor. These are unreachable.
1772 if (pred_begin(BB
) == pred_end(BB
) || BB
->getSinglePredecessor() == BB
) {
1773 DEBUG(errs() << "Removing BB: \n" << *BB
);
1774 DeleteDeadBlock(BB
);
1778 // Check to see if we can constant propagate this terminator instruction
1780 Changed
|= ConstantFoldTerminator(BB
);
1782 // If there is a trivial two-entry PHI node in this basic block, and we can
1783 // eliminate it, do so now.
1784 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
1785 if (PN
->getNumIncomingValues() == 2)
1786 Changed
|= FoldTwoEntryPHINode(PN
);
1788 // If this is a returning block with only PHI nodes in it, fold the return
1789 // instruction into any unconditional branch predecessors.
1791 // If any predecessor is a conditional branch that just selects among
1792 // different return values, fold the replace the branch/return with a select
1794 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
1795 if (isTerminatorFirstRelevantInsn(BB
, BB
->getTerminator())) {
1796 // Find predecessors that end with branches.
1797 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
1798 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
1799 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1800 TerminatorInst
*PTI
= (*PI
)->getTerminator();
1801 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
1802 if (BI
->isUnconditional())
1803 UncondBranchPreds
.push_back(*PI
);
1805 CondBranchPreds
.push_back(BI
);
1809 // If we found some, do the transformation!
1810 if (!UncondBranchPreds
.empty()) {
1811 while (!UncondBranchPreds
.empty()) {
1812 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
1813 DEBUG(errs() << "FOLDING: " << *BB
1814 << "INTO UNCOND BRANCH PRED: " << *Pred
);
1815 Instruction
*UncondBranch
= Pred
->getTerminator();
1816 // Clone the return and add it to the end of the predecessor.
1817 Instruction
*NewRet
= RI
->clone(BB
->getContext());
1818 Pred
->getInstList().push_back(NewRet
);
1820 BasicBlock::iterator BBI
= RI
;
1821 if (BBI
!= BB
->begin()) {
1822 // Move region end info into the predecessor.
1823 if (DbgRegionEndInst
*DREI
= dyn_cast
<DbgRegionEndInst
>(--BBI
))
1824 DREI
->moveBefore(NewRet
);
1827 // If the return instruction returns a value, and if the value was a
1828 // PHI node in "BB", propagate the right value into the return.
1829 for (User::op_iterator i
= NewRet
->op_begin(), e
= NewRet
->op_end();
1831 if (PHINode
*PN
= dyn_cast
<PHINode
>(*i
))
1832 if (PN
->getParent() == BB
)
1833 *i
= PN
->getIncomingValueForBlock(Pred
);
1835 // Update any PHI nodes in the returning block to realize that we no
1836 // longer branch to them.
1837 BB
->removePredecessor(Pred
);
1838 Pred
->getInstList().erase(UncondBranch
);
1841 // If we eliminated all predecessors of the block, delete the block now.
1842 if (pred_begin(BB
) == pred_end(BB
))
1843 // We know there are no successors, so just nuke the block.
1844 M
->getBasicBlockList().erase(BB
);
1849 // Check out all of the conditional branches going to this return
1850 // instruction. If any of them just select between returns, change the
1851 // branch itself into a select/return pair.
1852 while (!CondBranchPreds
.empty()) {
1853 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
1855 // Check to see if the non-BB successor is also a return block.
1856 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
1857 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
1858 SimplifyCondBranchToTwoReturns(BI
))
1862 } else if (isa
<UnwindInst
>(BB
->begin())) {
1863 // Check to see if the first instruction in this block is just an unwind.
1864 // If so, replace any invoke instructions which use this as an exception
1865 // destination with call instructions, and any unconditional branch
1866 // predecessor with an unwind.
1868 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
1869 while (!Preds
.empty()) {
1870 BasicBlock
*Pred
= Preds
.back();
1871 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator())) {
1872 if (BI
->isUnconditional()) {
1873 Pred
->getInstList().pop_back(); // nuke uncond branch
1874 new UnwindInst(Pred
->getContext(), Pred
); // Use unwind.
1877 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator()))
1878 if (II
->getUnwindDest() == BB
) {
1879 // Insert a new branch instruction before the invoke, because this
1880 // is now a fall through...
1881 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
1882 Pred
->getInstList().remove(II
); // Take out of symbol table
1884 // Insert the call now...
1885 SmallVector
<Value
*,8> Args(II
->op_begin()+3, II
->op_end());
1886 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
1887 Args
.begin(), Args
.end(),
1889 CI
->setCallingConv(II
->getCallingConv());
1890 CI
->setAttributes(II
->getAttributes());
1891 // If the invoke produced a value, the Call now does instead
1892 II
->replaceAllUsesWith(CI
);
1900 // If this block is now dead, remove it.
1901 if (pred_begin(BB
) == pred_end(BB
)) {
1902 // We know there are no successors, so just nuke the block.
1903 M
->getBasicBlockList().erase(BB
);
1907 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1908 if (isValueEqualityComparison(SI
)) {
1909 // If we only have one predecessor, and if it is a branch on this value,
1910 // see if that predecessor totally determines the outcome of this switch.
1911 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1912 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
))
1913 return SimplifyCFG(BB
) || 1;
1915 // If the block only contains the switch, see if we can fold the block
1916 // away into any preds.
1917 BasicBlock::iterator BBI
= BB
->begin();
1918 // Ignore dbg intrinsics.
1919 while (isa
<DbgInfoIntrinsic
>(BBI
))
1922 if (FoldValueComparisonIntoPredecessors(SI
))
1923 return SimplifyCFG(BB
) || 1;
1925 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1926 if (BI
->isUnconditional()) {
1927 BasicBlock::iterator BBI
= BB
->getFirstNonPHI();
1929 BasicBlock
*Succ
= BI
->getSuccessor(0);
1930 // Ignore dbg intrinsics.
1931 while (isa
<DbgInfoIntrinsic
>(BBI
))
1933 if (BBI
->isTerminator() && // Terminator is the only non-phi instruction!
1934 Succ
!= BB
) // Don't hurt infinite loops!
1935 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
, Succ
))
1938 } else { // Conditional branch
1939 if (isValueEqualityComparison(BI
)) {
1940 // If we only have one predecessor, and if it is a branch on this value,
1941 // see if that predecessor totally determines the outcome of this
1943 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1944 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
))
1945 return SimplifyCFG(BB
) || 1;
1947 // This block must be empty, except for the setcond inst, if it exists.
1948 // Ignore dbg intrinsics.
1949 BasicBlock::iterator I
= BB
->begin();
1950 // Ignore dbg intrinsics.
1951 while (isa
<DbgInfoIntrinsic
>(I
))
1954 if (FoldValueComparisonIntoPredecessors(BI
))
1955 return SimplifyCFG(BB
) | true;
1956 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())){
1958 // Ignore dbg intrinsics.
1959 while (isa
<DbgInfoIntrinsic
>(I
))
1962 if (FoldValueComparisonIntoPredecessors(BI
))
1963 return SimplifyCFG(BB
) | true;
1968 // If this is a branch on a phi node in the current block, thread control
1969 // through this block if any PHI node entries are constants.
1970 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
1971 if (PN
->getParent() == BI
->getParent())
1972 if (FoldCondBranchOnPHI(BI
))
1973 return SimplifyCFG(BB
) | true;
1975 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1976 // branches to us and one of our successors, fold the setcc into the
1977 // predecessor and use logical operations to pick the right destination.
1978 if (FoldBranchToCommonDest(BI
))
1979 return SimplifyCFG(BB
) | 1;
1982 // Scan predecessor blocks for conditional branches.
1983 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1984 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
1985 if (PBI
!= BI
&& PBI
->isConditional())
1986 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
1987 return SimplifyCFG(BB
) | true;
1989 } else if (isa
<UnreachableInst
>(BB
->getTerminator())) {
1990 // If there are any instructions immediately before the unreachable that can
1991 // be removed, do so.
1992 Instruction
*Unreachable
= BB
->getTerminator();
1993 while (Unreachable
!= BB
->begin()) {
1994 BasicBlock::iterator BBI
= Unreachable
;
1996 // Do not delete instructions that can have side effects, like calls
1997 // (which may never return) and volatile loads and stores.
1998 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)) break;
2000 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
2001 if (SI
->isVolatile())
2004 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
))
2005 if (LI
->isVolatile())
2008 // Delete this instruction
2009 BB
->getInstList().erase(BBI
);
2013 // If the unreachable instruction is the first in the block, take a gander
2014 // at all of the predecessors of this instruction, and simplify them.
2015 if (&BB
->front() == Unreachable
) {
2016 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2017 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
2018 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
2020 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
2021 if (BI
->isUnconditional()) {
2022 if (BI
->getSuccessor(0) == BB
) {
2023 new UnreachableInst(TI
->getContext(), TI
);
2024 TI
->eraseFromParent();
2028 if (BI
->getSuccessor(0) == BB
) {
2029 BranchInst::Create(BI
->getSuccessor(1), BI
);
2030 EraseTerminatorInstAndDCECond(BI
);
2031 } else if (BI
->getSuccessor(1) == BB
) {
2032 BranchInst::Create(BI
->getSuccessor(0), BI
);
2033 EraseTerminatorInstAndDCECond(BI
);
2037 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
2038 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2039 if (SI
->getSuccessor(i
) == BB
) {
2040 BB
->removePredecessor(SI
->getParent());
2045 // If the default value is unreachable, figure out the most popular
2046 // destination and make it the default.
2047 if (SI
->getSuccessor(0) == BB
) {
2048 std::map
<BasicBlock
*, unsigned> Popularity
;
2049 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2050 Popularity
[SI
->getSuccessor(i
)]++;
2052 // Find the most popular block.
2053 unsigned MaxPop
= 0;
2054 BasicBlock
*MaxBlock
= 0;
2055 for (std::map
<BasicBlock
*, unsigned>::iterator
2056 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
2057 if (I
->second
> MaxPop
) {
2059 MaxBlock
= I
->first
;
2063 // Make this the new default, allowing us to delete any explicit
2065 SI
->setSuccessor(0, MaxBlock
);
2068 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2070 if (isa
<PHINode
>(MaxBlock
->begin()))
2071 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
2072 MaxBlock
->removePredecessor(SI
->getParent());
2074 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2075 if (SI
->getSuccessor(i
) == MaxBlock
) {
2081 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2082 if (II
->getUnwindDest() == BB
) {
2083 // Convert the invoke to a call instruction. This would be a good
2084 // place to note that the call does not throw though.
2085 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2086 II
->removeFromParent(); // Take out of symbol table
2088 // Insert the call now...
2089 SmallVector
<Value
*, 8> Args(II
->op_begin()+3, II
->op_end());
2090 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2091 Args
.begin(), Args
.end(),
2093 CI
->setCallingConv(II
->getCallingConv());
2094 CI
->setAttributes(II
->getAttributes());
2095 // If the invoke produced a value, the Call does now instead.
2096 II
->replaceAllUsesWith(CI
);
2103 // If this block is now dead, remove it.
2104 if (pred_begin(BB
) == pred_end(BB
)) {
2105 // We know there are no successors, so just nuke the block.
2106 M
->getBasicBlockList().erase(BB
);
2112 // Merge basic blocks into their predecessor if there is only one distinct
2113 // pred, and if there is only one distinct successor of the predecessor, and
2114 // if there are no PHI nodes.
2116 if (MergeBlockIntoPredecessor(BB
))
2119 // Otherwise, if this block only has a single predecessor, and if that block
2120 // is a conditional branch, see if we can hoist any code from this block up
2121 // into our predecessor.
2122 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
2123 BasicBlock
*OnlyPred
= *PI
++;
2124 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
2125 if (*PI
!= OnlyPred
) {
2126 OnlyPred
= 0; // There are multiple different predecessors...
2131 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(OnlyPred
->getTerminator()))
2132 if (BI
->isConditional()) {
2133 // Get the other block.
2134 BasicBlock
*OtherBB
= BI
->getSuccessor(BI
->getSuccessor(0) == BB
);
2135 PI
= pred_begin(OtherBB
);
2138 if (PI
== pred_end(OtherBB
)) {
2139 // We have a conditional branch to two blocks that are only reachable
2140 // from the condbr. We know that the condbr dominates the two blocks,
2141 // so see if there is any identical code in the "then" and "else"
2142 // blocks. If so, we can hoist it up to the branching block.
2143 Changed
|= HoistThenElseCodeToIf(BI
);
2145 BasicBlock
* OnlySucc
= NULL
;
2146 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
2150 else if (*SI
!= OnlySucc
) {
2151 OnlySucc
= 0; // There are multiple distinct successors!
2156 if (OnlySucc
== OtherBB
) {
2157 // If BB's only successor is the other successor of the predecessor,
2158 // i.e. a triangle, see if we can hoist any code from this block up
2159 // to the "if" block.
2160 Changed
|= SpeculativelyExecuteBB(BI
, BB
);
2165 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2166 if (BranchInst
*BI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2167 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2168 if (BI
->isConditional() && isa
<Instruction
>(BI
->getCondition())) {
2169 Instruction
*Cond
= cast
<Instruction
>(BI
->getCondition());
2170 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2171 // 'setne's and'ed together, collect them.
2173 std::vector
<ConstantInt
*> Values
;
2174 bool TrueWhenEqual
= GatherValueComparisons(Cond
, CompVal
, Values
);
2175 if (CompVal
&& CompVal
->getType()->isInteger()) {
2176 // There might be duplicate constants in the list, which the switch
2177 // instruction can't handle, remove them now.
2178 std::sort(Values
.begin(), Values
.end(), ConstantIntOrdering());
2179 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2181 // Figure out which block is which destination.
2182 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2183 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2184 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2186 // Create the new switch instruction now.
2187 SwitchInst
*New
= SwitchInst::Create(CompVal
, DefaultBB
,
2190 // Add all of the 'cases' to the switch instruction.
2191 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2192 New
->addCase(Values
[i
], EdgeBB
);
2194 // We added edges from PI to the EdgeBB. As such, if there were any
2195 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2196 // the number of edges added.
2197 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2198 isa
<PHINode
>(BBI
); ++BBI
) {
2199 PHINode
*PN
= cast
<PHINode
>(BBI
);
2200 Value
*InVal
= PN
->getIncomingValueForBlock(*PI
);
2201 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2202 PN
->addIncoming(InVal
, *PI
);
2205 // Erase the old branch instruction.
2206 EraseTerminatorInstAndDCECond(BI
);