1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures.
13 // The input to the target specific matcher is a list of literal tokens and
14 // operands. The target specific parser should generally eliminate any syntax
15 // which is not relevant for matching; for example, comma tokens should have
16 // already been consumed and eliminated by the parser. Most instructions will
17 // end up with a single literal token (the instruction name) and some number of
20 // Some example inputs, for X86:
21 // 'addl' (immediate ...) (register ...)
22 // 'add' (immediate ...) (memory ...)
25 // The assembly matcher is responsible for converting this input into a precise
26 // machine instruction (i.e., an instruction with a well defined encoding). This
27 // mapping has several properties which complicate matching:
29 // - It may be ambiguous; many architectures can legally encode particular
30 // variants of an instruction in different ways (for example, using a smaller
31 // encoding for small immediates). Such ambiguities should never be
32 // arbitrarily resolved by the assembler, the assembler is always responsible
33 // for choosing the "best" available instruction.
35 // - It may depend on the subtarget or the assembler context. Instructions
36 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
37 // an SSE instruction in a file being assembled for i486) should be accepted
38 // and rejected by the assembler front end. However, if the proper encoding
39 // for an instruction is dependent on the assembler context then the matcher
40 // is responsible for selecting the correct machine instruction for the
43 // The core matching algorithm attempts to exploit the regularity in most
44 // instruction sets to quickly determine the set of possibly matching
45 // instructions, and the simplify the generated code. Additionally, this helps
46 // to ensure that the ambiguities are intentionally resolved by the user.
48 // The matching is divided into two distinct phases:
50 // 1. Classification: Each operand is mapped to the unique set which (a)
51 // contains it, and (b) is the largest such subset for which a single
52 // instruction could match all members.
54 // For register classes, we can generate these subgroups automatically. For
55 // arbitrary operands, we expect the user to define the classes and their
56 // relations to one another (for example, 8-bit signed immediates as a
57 // subset of 32-bit immediates).
59 // By partitioning the operands in this way, we guarantee that for any
60 // tuple of classes, any single instruction must match either all or none
61 // of the sets of operands which could classify to that tuple.
63 // In addition, the subset relation amongst classes induces a partial order
64 // on such tuples, which we use to resolve ambiguities.
66 // FIXME: What do we do if a crazy case shows up where this is the wrong
69 // 2. The input can now be treated as a tuple of classes (static tokens are
70 // simple singleton sets). Each such tuple should generally map to a single
71 // instruction (we currently ignore cases where this isn't true, whee!!!),
72 // which we can emit a simple matcher for.
74 //===----------------------------------------------------------------------===//
76 #include "AsmMatcherEmitter.h"
77 #include "CodeGenTarget.h"
79 #include "llvm/ADT/OwningPtr.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/ADT/STLExtras.h"
82 #include "llvm/ADT/StringExtras.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Debug.h"
90 static cl::opt
<std::string
>
91 MatchPrefix("match-prefix", cl::init(""),
92 cl::desc("Only match instructions with the given prefix"));
94 /// FlattenVariants - Flatten an .td file assembly string by selecting the
95 /// variant at index \arg N.
96 static std::string
FlattenVariants(const std::string
&AsmString
,
98 StringRef Cur
= AsmString
;
102 // Find the start of the next variant string.
103 size_t VariantsStart
= 0;
104 for (size_t e
= Cur
.size(); VariantsStart
!= e
; ++VariantsStart
)
105 if (Cur
[VariantsStart
] == '{' &&
106 (VariantsStart
== 0 || (Cur
[VariantsStart
-1] != '$' &&
107 Cur
[VariantsStart
-1] != '\\')))
110 // Add the prefix to the result.
111 Res
+= Cur
.slice(0, VariantsStart
);
112 if (VariantsStart
== Cur
.size())
115 ++VariantsStart
; // Skip the '{'.
117 // Scan to the end of the variants string.
118 size_t VariantsEnd
= VariantsStart
;
119 unsigned NestedBraces
= 1;
120 for (size_t e
= Cur
.size(); VariantsEnd
!= e
; ++VariantsEnd
) {
121 if (Cur
[VariantsEnd
] == '}' && Cur
[VariantsEnd
-1] != '\\') {
122 if (--NestedBraces
== 0)
124 } else if (Cur
[VariantsEnd
] == '{')
128 // Select the Nth variant (or empty).
129 StringRef Selection
= Cur
.slice(VariantsStart
, VariantsEnd
);
130 for (unsigned i
= 0; i
!= N
; ++i
)
131 Selection
= Selection
.split('|').second
;
132 Res
+= Selection
.split('|').first
;
134 assert(VariantsEnd
!= Cur
.size() &&
135 "Unterminated variants in assembly string!");
136 Cur
= Cur
.substr(VariantsEnd
+ 1);
142 /// TokenizeAsmString - Tokenize a simplified assembly string.
143 static void TokenizeAsmString(const StringRef
&AsmString
,
144 SmallVectorImpl
<StringRef
> &Tokens
) {
147 for (unsigned i
= 0, e
= AsmString
.size(); i
!= e
; ++i
) {
148 switch (AsmString
[i
]) {
157 Tokens
.push_back(AsmString
.slice(Prev
, i
));
160 if (!isspace(AsmString
[i
]) && AsmString
[i
] != ',')
161 Tokens
.push_back(AsmString
.substr(i
, 1));
167 Tokens
.push_back(AsmString
.slice(Prev
, i
));
171 assert(i
!= AsmString
.size() && "Invalid quoted character");
172 Tokens
.push_back(AsmString
.substr(i
, 1));
177 // If this isn't "${", treat like a normal token.
178 if (i
+ 1 == AsmString
.size() || AsmString
[i
+ 1] != '{') {
180 Tokens
.push_back(AsmString
.slice(Prev
, i
));
188 Tokens
.push_back(AsmString
.slice(Prev
, i
));
192 StringRef::iterator End
=
193 std::find(AsmString
.begin() + i
, AsmString
.end(), '}');
194 assert(End
!= AsmString
.end() && "Missing brace in operand reference!");
195 size_t EndPos
= End
- AsmString
.begin();
196 Tokens
.push_back(AsmString
.slice(i
, EndPos
+1));
206 if (InTok
&& Prev
!= AsmString
.size())
207 Tokens
.push_back(AsmString
.substr(Prev
));
210 static bool IsAssemblerInstruction(const StringRef
&Name
,
211 const CodeGenInstruction
&CGI
,
212 const SmallVectorImpl
<StringRef
> &Tokens
) {
213 // Ignore "codegen only" instructions.
214 if (CGI
.TheDef
->getValueAsBit("isCodeGenOnly"))
217 // Ignore pseudo ops.
219 // FIXME: This is a hack; can we convert these instructions to set the
220 // "codegen only" bit instead?
221 if (const RecordVal
*Form
= CGI
.TheDef
->getValue("Form"))
222 if (Form
->getValue()->getAsString() == "Pseudo")
225 // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
227 // FIXME: This is a total hack.
228 if (StringRef(Name
).startswith("Int_") || StringRef(Name
).endswith("_Int"))
231 // Ignore instructions with no .s string.
233 // FIXME: What are these?
234 if (CGI
.AsmString
.empty())
237 // FIXME: Hack; ignore any instructions with a newline in them.
238 if (std::find(CGI
.AsmString
.begin(),
239 CGI
.AsmString
.end(), '\n') != CGI
.AsmString
.end())
242 // Ignore instructions with attributes, these are always fake instructions for
243 // simplifying codegen.
245 // FIXME: Is this true?
247 // Also, check for instructions which reference the operand multiple times;
248 // this implies a constraint we would not honor.
249 std::set
<std::string
> OperandNames
;
250 for (unsigned i
= 1, e
= Tokens
.size(); i
< e
; ++i
) {
251 if (Tokens
[i
][0] == '$' &&
252 std::find(Tokens
[i
].begin(),
253 Tokens
[i
].end(), ':') != Tokens
[i
].end()) {
255 errs() << "warning: '" << Name
<< "': "
256 << "ignoring instruction; operand with attribute '"
257 << Tokens
[i
] << "'\n";
262 if (Tokens
[i
][0] == '$' && !OperandNames
.insert(Tokens
[i
]).second
) {
263 std::string Err
= "'" + Name
.str() + "': " +
264 "invalid assembler instruction; tied operand '" + Tokens
[i
].str() + "'";
265 throw TGError(CGI
.TheDef
->getLoc(), Err
);
274 /// ClassInfo - Helper class for storing the information about a particular
275 /// class of operands which can be matched.
278 /// Invalid kind, for use as a sentinel value.
281 /// The class for a particular token.
284 /// The (first) register class, subsequent register classes are
285 /// RegisterClass0+1, and so on.
288 /// The (first) user defined class, subsequent user defined classes are
289 /// UserClass0+1, and so on.
293 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
294 /// N) for the Nth user defined class.
297 /// SuperClasses - The super classes of this class. Note that for simplicities
298 /// sake user operands only record their immediate super class, while register
299 /// operands include all superclasses.
300 std::vector
<ClassInfo
*> SuperClasses
;
302 /// Name - The full class name, suitable for use in an enum.
305 /// ClassName - The unadorned generic name for this class (e.g., Token).
306 std::string ClassName
;
308 /// ValueName - The name of the value this class represents; for a token this
309 /// is the literal token string, for an operand it is the TableGen class (or
310 /// empty if this is a derived class).
311 std::string ValueName
;
313 /// PredicateMethod - The name of the operand method to test whether the
314 /// operand matches this class; this is not valid for Token or register kinds.
315 std::string PredicateMethod
;
317 /// RenderMethod - The name of the operand method to add this operand to an
318 /// MCInst; this is not valid for Token or register kinds.
319 std::string RenderMethod
;
321 /// For register classes, the records for all the registers in this class.
322 std::set
<Record
*> Registers
;
325 /// isRegisterClass() - Check if this is a register class.
326 bool isRegisterClass() const {
327 return Kind
>= RegisterClass0
&& Kind
< UserClass0
;
330 /// isUserClass() - Check if this is a user defined class.
331 bool isUserClass() const {
332 return Kind
>= UserClass0
;
335 /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
336 /// are related if they are in the same class hierarchy.
337 bool isRelatedTo(const ClassInfo
&RHS
) const {
338 // Tokens are only related to tokens.
339 if (Kind
== Token
|| RHS
.Kind
== Token
)
340 return Kind
== Token
&& RHS
.Kind
== Token
;
342 // Registers classes are only related to registers classes, and only if
343 // their intersection is non-empty.
344 if (isRegisterClass() || RHS
.isRegisterClass()) {
345 if (!isRegisterClass() || !RHS
.isRegisterClass())
348 std::set
<Record
*> Tmp
;
349 std::insert_iterator
< std::set
<Record
*> > II(Tmp
, Tmp
.begin());
350 std::set_intersection(Registers
.begin(), Registers
.end(),
351 RHS
.Registers
.begin(), RHS
.Registers
.end(),
357 // Otherwise we have two users operands; they are related if they are in the
358 // same class hierarchy.
360 // FIXME: This is an oversimplification, they should only be related if they
361 // intersect, however we don't have that information.
362 assert(isUserClass() && RHS
.isUserClass() && "Unexpected class!");
363 const ClassInfo
*Root
= this;
364 while (!Root
->SuperClasses
.empty())
365 Root
= Root
->SuperClasses
.front();
367 const ClassInfo
*RHSRoot
= &RHS
;
368 while (!RHSRoot
->SuperClasses
.empty())
369 RHSRoot
= RHSRoot
->SuperClasses
.front();
371 return Root
== RHSRoot
;
374 /// isSubsetOf - Test whether this class is a subset of \arg RHS;
375 bool isSubsetOf(const ClassInfo
&RHS
) const {
376 // This is a subset of RHS if it is the same class...
380 // ... or if any of its super classes are a subset of RHS.
381 for (std::vector
<ClassInfo
*>::const_iterator it
= SuperClasses
.begin(),
382 ie
= SuperClasses
.end(); it
!= ie
; ++it
)
383 if ((*it
)->isSubsetOf(RHS
))
389 /// operator< - Compare two classes.
390 bool operator<(const ClassInfo
&RHS
) const {
391 // Unrelated classes can be ordered by kind.
392 if (!isRelatedTo(RHS
))
393 return Kind
< RHS
.Kind
;
397 assert(0 && "Invalid kind!");
399 // Tokens are comparable by value.
401 // FIXME: Compare by enum value.
402 return ValueName
< RHS
.ValueName
;
405 // This class preceeds the RHS if it is a proper subset of the RHS.
406 return this != &RHS
&& isSubsetOf(RHS
);
411 /// InstructionInfo - Helper class for storing the necessary information for an
412 /// instruction which is capable of being matched.
413 struct InstructionInfo
{
415 /// The unique class instance this operand should match.
418 /// The original operand this corresponds to, if any.
419 const CodeGenInstruction::OperandInfo
*OperandInfo
;
422 /// InstrName - The target name for this instruction.
423 std::string InstrName
;
425 /// Instr - The instruction this matches.
426 const CodeGenInstruction
*Instr
;
428 /// AsmString - The assembly string for this instruction (with variants
430 std::string AsmString
;
432 /// Tokens - The tokenized assembly pattern that this instruction matches.
433 SmallVector
<StringRef
, 4> Tokens
;
435 /// Operands - The operands that this instruction matches.
436 SmallVector
<Operand
, 4> Operands
;
438 /// ConversionFnKind - The enum value which is passed to the generated
439 /// ConvertToMCInst to convert parsed operands into an MCInst for this
441 std::string ConversionFnKind
;
443 /// operator< - Compare two instructions.
444 bool operator<(const InstructionInfo
&RHS
) const {
445 if (Operands
.size() != RHS
.Operands
.size())
446 return Operands
.size() < RHS
.Operands
.size();
448 // Compare lexicographically by operand. The matcher validates that other
449 // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
450 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
) {
451 if (*Operands
[i
].Class
< *RHS
.Operands
[i
].Class
)
453 if (*RHS
.Operands
[i
].Class
< *Operands
[i
].Class
)
460 /// CouldMatchAmiguouslyWith - Check whether this instruction could
461 /// ambiguously match the same set of operands as \arg RHS (without being a
462 /// strictly superior match).
463 bool CouldMatchAmiguouslyWith(const InstructionInfo
&RHS
) {
464 // The number of operands is unambiguous.
465 if (Operands
.size() != RHS
.Operands
.size())
468 // Tokens and operand kinds are unambiguous (assuming a correct target
470 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
471 if (Operands
[i
].Class
->Kind
!= RHS
.Operands
[i
].Class
->Kind
||
472 Operands
[i
].Class
->Kind
== ClassInfo::Token
)
473 if (*Operands
[i
].Class
< *RHS
.Operands
[i
].Class
||
474 *RHS
.Operands
[i
].Class
< *Operands
[i
].Class
)
477 // Otherwise, this operand could commute if all operands are equivalent, or
478 // there is a pair of operands that compare less than and a pair that
479 // compare greater than.
480 bool HasLT
= false, HasGT
= false;
481 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
) {
482 if (*Operands
[i
].Class
< *RHS
.Operands
[i
].Class
)
484 if (*RHS
.Operands
[i
].Class
< *Operands
[i
].Class
)
488 return !(HasLT
^ HasGT
);
495 class AsmMatcherInfo
{
497 /// The tablegen AsmParser record.
500 /// The AsmParser "CommentDelimiter" value.
501 std::string CommentDelimiter
;
503 /// The AsmParser "RegisterPrefix" value.
504 std::string RegisterPrefix
;
506 /// The classes which are needed for matching.
507 std::vector
<ClassInfo
*> Classes
;
509 /// The information on the instruction to match.
510 std::vector
<InstructionInfo
*> Instructions
;
512 /// Map of Register records to their class information.
513 std::map
<Record
*, ClassInfo
*> RegisterClasses
;
516 /// Map of token to class information which has already been constructed.
517 std::map
<std::string
, ClassInfo
*> TokenClasses
;
519 /// Map of RegisterClass records to their class information.
520 std::map
<Record
*, ClassInfo
*> RegisterClassClasses
;
522 /// Map of AsmOperandClass records to their class information.
523 std::map
<Record
*, ClassInfo
*> AsmOperandClasses
;
526 /// getTokenClass - Lookup or create the class for the given token.
527 ClassInfo
*getTokenClass(const StringRef
&Token
);
529 /// getOperandClass - Lookup or create the class for the given operand.
530 ClassInfo
*getOperandClass(const StringRef
&Token
,
531 const CodeGenInstruction::OperandInfo
&OI
);
533 /// BuildRegisterClasses - Build the ClassInfo* instances for register
535 void BuildRegisterClasses(CodeGenTarget
&Target
,
536 std::set
<std::string
> &SingletonRegisterNames
);
538 /// BuildOperandClasses - Build the ClassInfo* instances for user defined
540 void BuildOperandClasses(CodeGenTarget
&Target
);
543 AsmMatcherInfo(Record
*_AsmParser
);
545 /// BuildInfo - Construct the various tables used during matching.
546 void BuildInfo(CodeGenTarget
&Target
);
551 void InstructionInfo::dump() {
552 errs() << InstrName
<< " -- " << "flattened:\"" << AsmString
<< '\"'
554 for (unsigned i
= 0, e
= Tokens
.size(); i
!= e
; ++i
) {
561 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
) {
562 Operand
&Op
= Operands
[i
];
563 errs() << " op[" << i
<< "] = " << Op
.Class
->ClassName
<< " - ";
564 if (Op
.Class
->Kind
== ClassInfo::Token
) {
565 errs() << '\"' << Tokens
[i
] << "\"\n";
569 if (!Op
.OperandInfo
) {
570 errs() << "(singleton register)\n";
574 const CodeGenInstruction::OperandInfo
&OI
= *Op
.OperandInfo
;
575 errs() << OI
.Name
<< " " << OI
.Rec
->getName()
576 << " (" << OI
.MIOperandNo
<< ", " << OI
.MINumOperands
<< ")\n";
580 static std::string
getEnumNameForToken(const StringRef
&Str
) {
583 for (StringRef::iterator it
= Str
.begin(), ie
= Str
.end(); it
!= ie
; ++it
) {
585 case '*': Res
+= "_STAR_"; break;
586 case '%': Res
+= "_PCT_"; break;
587 case ':': Res
+= "_COLON_"; break;
593 Res
+= "_" + utostr((unsigned) *it
) + "_";
601 /// getRegisterRecord - Get the register record for \arg name, or 0.
602 static Record
*getRegisterRecord(CodeGenTarget
&Target
, const StringRef
&Name
) {
603 for (unsigned i
= 0, e
= Target
.getRegisters().size(); i
!= e
; ++i
) {
604 const CodeGenRegister
&Reg
= Target
.getRegisters()[i
];
605 if (Name
== Reg
.TheDef
->getValueAsString("AsmName"))
612 ClassInfo
*AsmMatcherInfo::getTokenClass(const StringRef
&Token
) {
613 ClassInfo
*&Entry
= TokenClasses
[Token
];
616 Entry
= new ClassInfo();
617 Entry
->Kind
= ClassInfo::Token
;
618 Entry
->ClassName
= "Token";
619 Entry
->Name
= "MCK_" + getEnumNameForToken(Token
);
620 Entry
->ValueName
= Token
;
621 Entry
->PredicateMethod
= "<invalid>";
622 Entry
->RenderMethod
= "<invalid>";
623 Classes
.push_back(Entry
);
630 AsmMatcherInfo::getOperandClass(const StringRef
&Token
,
631 const CodeGenInstruction::OperandInfo
&OI
) {
632 if (OI
.Rec
->isSubClassOf("RegisterClass")) {
633 ClassInfo
*CI
= RegisterClassClasses
[OI
.Rec
];
636 PrintError(OI
.Rec
->getLoc(), "register class has no class info!");
637 throw std::string("ERROR: Missing register class!");
643 assert(OI
.Rec
->isSubClassOf("Operand") && "Unexpected operand!");
644 Record
*MatchClass
= OI
.Rec
->getValueAsDef("ParserMatchClass");
645 ClassInfo
*CI
= AsmOperandClasses
[MatchClass
];
648 PrintError(OI
.Rec
->getLoc(), "operand has no match class!");
649 throw std::string("ERROR: Missing match class!");
655 void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget
&Target
,
656 std::set
<std::string
>
657 &SingletonRegisterNames
) {
658 std::vector
<CodeGenRegisterClass
> RegisterClasses
;
659 std::vector
<CodeGenRegister
> Registers
;
661 RegisterClasses
= Target
.getRegisterClasses();
662 Registers
= Target
.getRegisters();
664 // The register sets used for matching.
665 std::set
< std::set
<Record
*> > RegisterSets
;
667 // Gather the defined sets.
668 for (std::vector
<CodeGenRegisterClass
>::iterator it
= RegisterClasses
.begin(),
669 ie
= RegisterClasses
.end(); it
!= ie
; ++it
)
670 RegisterSets
.insert(std::set
<Record
*>(it
->Elements
.begin(),
671 it
->Elements
.end()));
673 // Add any required singleton sets.
674 for (std::set
<std::string
>::iterator it
= SingletonRegisterNames
.begin(),
675 ie
= SingletonRegisterNames
.end(); it
!= ie
; ++it
)
676 if (Record
*Rec
= getRegisterRecord(Target
, *it
))
677 RegisterSets
.insert(std::set
<Record
*>(&Rec
, &Rec
+ 1));
679 // Introduce derived sets where necessary (when a register does not determine
680 // a unique register set class), and build the mapping of registers to the set
681 // they should classify to.
682 std::map
<Record
*, std::set
<Record
*> > RegisterMap
;
683 for (std::vector
<CodeGenRegister
>::iterator it
= Registers
.begin(),
684 ie
= Registers
.end(); it
!= ie
; ++it
) {
685 CodeGenRegister
&CGR
= *it
;
686 // Compute the intersection of all sets containing this register.
687 std::set
<Record
*> ContainingSet
;
689 for (std::set
< std::set
<Record
*> >::iterator it
= RegisterSets
.begin(),
690 ie
= RegisterSets
.end(); it
!= ie
; ++it
) {
691 if (!it
->count(CGR
.TheDef
))
694 if (ContainingSet
.empty()) {
697 std::set
<Record
*> Tmp
;
698 std::swap(Tmp
, ContainingSet
);
699 std::insert_iterator
< std::set
<Record
*> > II(ContainingSet
,
700 ContainingSet
.begin());
701 std::set_intersection(Tmp
.begin(), Tmp
.end(), it
->begin(), it
->end(),
706 if (!ContainingSet
.empty()) {
707 RegisterSets
.insert(ContainingSet
);
708 RegisterMap
.insert(std::make_pair(CGR
.TheDef
, ContainingSet
));
712 // Construct the register classes.
713 std::map
<std::set
<Record
*>, ClassInfo
*> RegisterSetClasses
;
715 for (std::set
< std::set
<Record
*> >::iterator it
= RegisterSets
.begin(),
716 ie
= RegisterSets
.end(); it
!= ie
; ++it
, ++Index
) {
717 ClassInfo
*CI
= new ClassInfo();
718 CI
->Kind
= ClassInfo::RegisterClass0
+ Index
;
719 CI
->ClassName
= "Reg" + utostr(Index
);
720 CI
->Name
= "MCK_Reg" + utostr(Index
);
722 CI
->PredicateMethod
= ""; // unused
723 CI
->RenderMethod
= "addRegOperands";
725 Classes
.push_back(CI
);
726 RegisterSetClasses
.insert(std::make_pair(*it
, CI
));
729 // Find the superclasses; we could compute only the subgroup lattice edges,
730 // but there isn't really a point.
731 for (std::set
< std::set
<Record
*> >::iterator it
= RegisterSets
.begin(),
732 ie
= RegisterSets
.end(); it
!= ie
; ++it
) {
733 ClassInfo
*CI
= RegisterSetClasses
[*it
];
734 for (std::set
< std::set
<Record
*> >::iterator it2
= RegisterSets
.begin(),
735 ie2
= RegisterSets
.end(); it2
!= ie2
; ++it2
)
737 std::includes(it2
->begin(), it2
->end(), it
->begin(), it
->end()))
738 CI
->SuperClasses
.push_back(RegisterSetClasses
[*it2
]);
741 // Name the register classes which correspond to a user defined RegisterClass.
742 for (std::vector
<CodeGenRegisterClass
>::iterator it
= RegisterClasses
.begin(),
743 ie
= RegisterClasses
.end(); it
!= ie
; ++it
) {
744 ClassInfo
*CI
= RegisterSetClasses
[std::set
<Record
*>(it
->Elements
.begin(),
745 it
->Elements
.end())];
746 if (CI
->ValueName
.empty()) {
747 CI
->ClassName
= it
->getName();
748 CI
->Name
= "MCK_" + it
->getName();
749 CI
->ValueName
= it
->getName();
751 CI
->ValueName
= CI
->ValueName
+ "," + it
->getName();
753 RegisterClassClasses
.insert(std::make_pair(it
->TheDef
, CI
));
756 // Populate the map for individual registers.
757 for (std::map
<Record
*, std::set
<Record
*> >::iterator it
= RegisterMap
.begin(),
758 ie
= RegisterMap
.end(); it
!= ie
; ++it
)
759 this->RegisterClasses
[it
->first
] = RegisterSetClasses
[it
->second
];
761 // Name the register classes which correspond to singleton registers.
762 for (std::set
<std::string
>::iterator it
= SingletonRegisterNames
.begin(),
763 ie
= SingletonRegisterNames
.end(); it
!= ie
; ++it
) {
764 if (Record
*Rec
= getRegisterRecord(Target
, *it
)) {
765 ClassInfo
*CI
= this->RegisterClasses
[Rec
];
766 assert(CI
&& "Missing singleton register class info!");
768 if (CI
->ValueName
.empty()) {
769 CI
->ClassName
= Rec
->getName();
770 CI
->Name
= "MCK_" + Rec
->getName();
771 CI
->ValueName
= Rec
->getName();
773 CI
->ValueName
= CI
->ValueName
+ "," + Rec
->getName();
778 void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget
&Target
) {
779 std::vector
<Record
*> AsmOperands
;
780 AsmOperands
= Records
.getAllDerivedDefinitions("AsmOperandClass");
782 for (std::vector
<Record
*>::iterator it
= AsmOperands
.begin(),
783 ie
= AsmOperands
.end(); it
!= ie
; ++it
, ++Index
) {
784 ClassInfo
*CI
= new ClassInfo();
785 CI
->Kind
= ClassInfo::UserClass0
+ Index
;
787 Init
*Super
= (*it
)->getValueInit("SuperClass");
788 if (DefInit
*DI
= dynamic_cast<DefInit
*>(Super
)) {
789 ClassInfo
*SC
= AsmOperandClasses
[DI
->getDef()];
791 PrintError((*it
)->getLoc(), "Invalid super class reference!");
793 CI
->SuperClasses
.push_back(SC
);
795 assert(dynamic_cast<UnsetInit
*>(Super
) && "Unexpected SuperClass field!");
797 CI
->ClassName
= (*it
)->getValueAsString("Name");
798 CI
->Name
= "MCK_" + CI
->ClassName
;
799 CI
->ValueName
= (*it
)->getName();
801 // Get or construct the predicate method name.
802 Init
*PMName
= (*it
)->getValueInit("PredicateMethod");
803 if (StringInit
*SI
= dynamic_cast<StringInit
*>(PMName
)) {
804 CI
->PredicateMethod
= SI
->getValue();
806 assert(dynamic_cast<UnsetInit
*>(PMName
) &&
807 "Unexpected PredicateMethod field!");
808 CI
->PredicateMethod
= "is" + CI
->ClassName
;
811 // Get or construct the render method name.
812 Init
*RMName
= (*it
)->getValueInit("RenderMethod");
813 if (StringInit
*SI
= dynamic_cast<StringInit
*>(RMName
)) {
814 CI
->RenderMethod
= SI
->getValue();
816 assert(dynamic_cast<UnsetInit
*>(RMName
) &&
817 "Unexpected RenderMethod field!");
818 CI
->RenderMethod
= "add" + CI
->ClassName
+ "Operands";
821 AsmOperandClasses
[*it
] = CI
;
822 Classes
.push_back(CI
);
826 AsmMatcherInfo::AsmMatcherInfo(Record
*_AsmParser
)
827 : AsmParser(_AsmParser
),
828 CommentDelimiter(AsmParser
->getValueAsString("CommentDelimiter")),
829 RegisterPrefix(AsmParser
->getValueAsString("RegisterPrefix"))
833 void AsmMatcherInfo::BuildInfo(CodeGenTarget
&Target
) {
834 // Parse the instructions; we need to do this first so that we can gather the
835 // singleton register classes.
836 std::set
<std::string
> SingletonRegisterNames
;
837 for (std::map
<std::string
, CodeGenInstruction
>::const_iterator
838 it
= Target
.getInstructions().begin(),
839 ie
= Target
.getInstructions().end();
841 const CodeGenInstruction
&CGI
= it
->second
;
843 if (!StringRef(it
->first
).startswith(MatchPrefix
))
846 OwningPtr
<InstructionInfo
> II(new InstructionInfo
);
848 II
->InstrName
= it
->first
;
849 II
->Instr
= &it
->second
;
850 II
->AsmString
= FlattenVariants(CGI
.AsmString
, 0);
852 // Remove comments from the asm string.
853 if (!CommentDelimiter
.empty()) {
854 size_t Idx
= StringRef(II
->AsmString
).find(CommentDelimiter
);
855 if (Idx
!= StringRef::npos
)
856 II
->AsmString
= II
->AsmString
.substr(0, Idx
);
859 TokenizeAsmString(II
->AsmString
, II
->Tokens
);
861 // Ignore instructions which shouldn't be matched.
862 if (!IsAssemblerInstruction(it
->first
, CGI
, II
->Tokens
))
865 // Collect singleton registers, if used.
866 if (!RegisterPrefix
.empty()) {
867 for (unsigned i
= 0, e
= II
->Tokens
.size(); i
!= e
; ++i
) {
868 if (II
->Tokens
[i
].startswith(RegisterPrefix
)) {
869 StringRef RegName
= II
->Tokens
[i
].substr(RegisterPrefix
.size());
870 Record
*Rec
= getRegisterRecord(Target
, RegName
);
873 std::string Err
= "unable to find register for '" + RegName
.str() +
874 "' (which matches register prefix)";
875 throw TGError(CGI
.TheDef
->getLoc(), Err
);
878 SingletonRegisterNames
.insert(RegName
);
883 Instructions
.push_back(II
.take());
886 // Build info for the register classes.
887 BuildRegisterClasses(Target
, SingletonRegisterNames
);
889 // Build info for the user defined assembly operand classes.
890 BuildOperandClasses(Target
);
892 // Build the instruction information.
893 for (std::vector
<InstructionInfo
*>::iterator it
= Instructions
.begin(),
894 ie
= Instructions
.end(); it
!= ie
; ++it
) {
895 InstructionInfo
*II
= *it
;
897 for (unsigned i
= 0, e
= II
->Tokens
.size(); i
!= e
; ++i
) {
898 StringRef Token
= II
->Tokens
[i
];
900 // Check for singleton registers.
901 if (!RegisterPrefix
.empty() && Token
.startswith(RegisterPrefix
)) {
902 StringRef RegName
= II
->Tokens
[i
].substr(RegisterPrefix
.size());
903 InstructionInfo::Operand Op
;
904 Op
.Class
= RegisterClasses
[getRegisterRecord(Target
, RegName
)];
906 assert(Op
.Class
&& Op
.Class
->Registers
.size() == 1 &&
907 "Unexpected class for singleton register");
908 II
->Operands
.push_back(Op
);
912 // Check for simple tokens.
913 if (Token
[0] != '$') {
914 InstructionInfo::Operand Op
;
915 Op
.Class
= getTokenClass(Token
);
917 II
->Operands
.push_back(Op
);
921 // Otherwise this is an operand reference.
922 StringRef OperandName
;
924 OperandName
= Token
.substr(2, Token
.size() - 3);
926 OperandName
= Token
.substr(1);
928 // Map this token to an operand. FIXME: Move elsewhere.
931 Idx
= II
->Instr
->getOperandNamed(OperandName
);
933 throw std::string("error: unable to find operand: '" +
934 OperandName
.str() + "'");
937 const CodeGenInstruction::OperandInfo
&OI
= II
->Instr
->OperandList
[Idx
];
938 InstructionInfo::Operand Op
;
939 Op
.Class
= getOperandClass(Token
, OI
);
940 Op
.OperandInfo
= &OI
;
941 II
->Operands
.push_back(Op
);
945 // Reorder classes so that classes preceed super classes.
946 std::sort(Classes
.begin(), Classes
.end(), less_ptr
<ClassInfo
>());
949 static void EmitConvertToMCInst(CodeGenTarget
&Target
,
950 std::vector
<InstructionInfo
*> &Infos
,
952 // Write the convert function to a separate stream, so we can drop it after
954 std::string ConvertFnBody
;
955 raw_string_ostream
CvtOS(ConvertFnBody
);
957 // Function we have already generated.
958 std::set
<std::string
> GeneratedFns
;
960 // Start the unified conversion function.
962 CvtOS
<< "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
963 << "unsigned Opcode,\n"
964 << " SmallVectorImpl<"
965 << Target
.getName() << "Operand> &Operands) {\n";
966 CvtOS
<< " Inst.setOpcode(Opcode);\n";
967 CvtOS
<< " switch (Kind) {\n";
968 CvtOS
<< " default:\n";
970 // Start the enum, which we will generate inline.
972 OS
<< "// Unified function for converting operants to MCInst instances.\n\n";
973 OS
<< "enum ConversionKind {\n";
975 for (std::vector
<InstructionInfo
*>::const_iterator it
= Infos
.begin(),
976 ie
= Infos
.end(); it
!= ie
; ++it
) {
977 InstructionInfo
&II
= **it
;
979 // Order the (class) operands by the order to convert them into an MCInst.
980 SmallVector
<std::pair
<unsigned, unsigned>, 4> MIOperandList
;
981 for (unsigned i
= 0, e
= II
.Operands
.size(); i
!= e
; ++i
) {
982 InstructionInfo::Operand
&Op
= II
.Operands
[i
];
984 MIOperandList
.push_back(std::make_pair(Op
.OperandInfo
->MIOperandNo
, i
));
986 std::sort(MIOperandList
.begin(), MIOperandList
.end());
988 // Compute the total number of operands.
989 unsigned NumMIOperands
= 0;
990 for (unsigned i
= 0, e
= II
.Instr
->OperandList
.size(); i
!= e
; ++i
) {
991 const CodeGenInstruction::OperandInfo
&OI
= II
.Instr
->OperandList
[i
];
992 NumMIOperands
= std::max(NumMIOperands
,
993 OI
.MIOperandNo
+ OI
.MINumOperands
);
996 // Build the conversion function signature.
997 std::string Signature
= "Convert";
998 unsigned CurIndex
= 0;
999 for (unsigned i
= 0, e
= MIOperandList
.size(); i
!= e
; ++i
) {
1000 InstructionInfo::Operand
&Op
= II
.Operands
[MIOperandList
[i
].second
];
1001 assert(CurIndex
<= Op
.OperandInfo
->MIOperandNo
&&
1002 "Duplicate match for instruction operand!");
1006 // Skip operands which weren't matched by anything, this occurs when the
1007 // .td file encodes "implicit" operands as explicit ones.
1009 // FIXME: This should be removed from the MCInst structure.
1010 for (; CurIndex
!= Op
.OperandInfo
->MIOperandNo
; ++CurIndex
)
1013 // Registers are always converted the same, don't duplicate the conversion
1014 // function based on them.
1016 // FIXME: We could generalize this based on the render method, if it
1018 if (Op
.Class
->isRegisterClass())
1021 Signature
+= Op
.Class
->ClassName
;
1022 Signature
+= utostr(Op
.OperandInfo
->MINumOperands
);
1023 Signature
+= "_" + utostr(MIOperandList
[i
].second
);
1025 CurIndex
+= Op
.OperandInfo
->MINumOperands
;
1028 // Add any trailing implicit operands.
1029 for (; CurIndex
!= NumMIOperands
; ++CurIndex
)
1032 II
.ConversionFnKind
= Signature
;
1034 // Check if we have already generated this signature.
1035 if (!GeneratedFns
.insert(Signature
).second
)
1038 // If not, emit it now.
1040 // Add to the enum list.
1041 OS
<< " " << Signature
<< ",\n";
1043 // And to the convert function.
1044 CvtOS
<< " case " << Signature
<< ":\n";
1046 for (unsigned i
= 0, e
= MIOperandList
.size(); i
!= e
; ++i
) {
1047 InstructionInfo::Operand
&Op
= II
.Operands
[MIOperandList
[i
].second
];
1049 // Add the implicit operands.
1050 for (; CurIndex
!= Op
.OperandInfo
->MIOperandNo
; ++CurIndex
)
1051 CvtOS
<< " Inst.addOperand(MCOperand::CreateReg(0));\n";
1053 CvtOS
<< " Operands[" << MIOperandList
[i
].second
1054 << "]." << Op
.Class
->RenderMethod
1055 << "(Inst, " << Op
.OperandInfo
->MINumOperands
<< ");\n";
1056 CurIndex
+= Op
.OperandInfo
->MINumOperands
;
1059 // And add trailing implicit operands.
1060 for (; CurIndex
!= NumMIOperands
; ++CurIndex
)
1061 CvtOS
<< " Inst.addOperand(MCOperand::CreateReg(0));\n";
1062 CvtOS
<< " break;\n";
1065 // Finish the convert function.
1068 CvtOS
<< " return false;\n";
1071 // Finish the enum, and drop the convert function after it.
1073 OS
<< " NumConversionVariants\n";
1079 /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1080 static void EmitMatchClassEnumeration(CodeGenTarget
&Target
,
1081 std::vector
<ClassInfo
*> &Infos
,
1083 OS
<< "namespace {\n\n";
1085 OS
<< "/// MatchClassKind - The kinds of classes which participate in\n"
1086 << "/// instruction matching.\n";
1087 OS
<< "enum MatchClassKind {\n";
1088 OS
<< " InvalidMatchClass = 0,\n";
1089 for (std::vector
<ClassInfo
*>::iterator it
= Infos
.begin(),
1090 ie
= Infos
.end(); it
!= ie
; ++it
) {
1091 ClassInfo
&CI
= **it
;
1092 OS
<< " " << CI
.Name
<< ", // ";
1093 if (CI
.Kind
== ClassInfo::Token
) {
1094 OS
<< "'" << CI
.ValueName
<< "'\n";
1095 } else if (CI
.isRegisterClass()) {
1096 if (!CI
.ValueName
.empty())
1097 OS
<< "register class '" << CI
.ValueName
<< "'\n";
1099 OS
<< "derived register class\n";
1101 OS
<< "user defined class '" << CI
.ValueName
<< "'\n";
1104 OS
<< " NumMatchClassKinds\n";
1110 /// EmitClassifyOperand - Emit the function to classify an operand.
1111 static void EmitClassifyOperand(CodeGenTarget
&Target
,
1112 AsmMatcherInfo
&Info
,
1114 OS
<< "static MatchClassKind ClassifyOperand("
1115 << Target
.getName() << "Operand &Operand) {\n";
1118 OS
<< " if (Operand.isToken())\n";
1119 OS
<< " return MatchTokenString(Operand.getToken());\n\n";
1121 // Classify registers.
1123 // FIXME: Don't hardcode isReg, getReg.
1124 OS
<< " if (Operand.isReg()) {\n";
1125 OS
<< " switch (Operand.getReg()) {\n";
1126 OS
<< " default: return InvalidMatchClass;\n";
1127 for (std::map
<Record
*, ClassInfo
*>::iterator
1128 it
= Info
.RegisterClasses
.begin(), ie
= Info
.RegisterClasses
.end();
1130 OS
<< " case " << Target
.getName() << "::"
1131 << it
->first
->getName() << ": return " << it
->second
->Name
<< ";\n";
1135 // Classify user defined operands.
1136 for (std::vector
<ClassInfo
*>::iterator it
= Info
.Classes
.begin(),
1137 ie
= Info
.Classes
.end(); it
!= ie
; ++it
) {
1138 ClassInfo
&CI
= **it
;
1140 if (!CI
.isUserClass())
1143 OS
<< " // '" << CI
.ClassName
<< "' class";
1144 if (!CI
.SuperClasses
.empty()) {
1145 OS
<< ", subclass of ";
1146 for (unsigned i
= 0, e
= CI
.SuperClasses
.size(); i
!= e
; ++i
) {
1148 OS
<< "'" << CI
.SuperClasses
[i
]->ClassName
<< "'";
1149 assert(CI
< *CI
.SuperClasses
[i
] && "Invalid class relation!");
1154 OS
<< " if (Operand." << CI
.PredicateMethod
<< "()) {\n";
1156 // Validate subclass relationships.
1157 if (!CI
.SuperClasses
.empty()) {
1158 for (unsigned i
= 0, e
= CI
.SuperClasses
.size(); i
!= e
; ++i
)
1159 OS
<< " assert(Operand." << CI
.SuperClasses
[i
]->PredicateMethod
1160 << "() && \"Invalid class relationship!\");\n";
1163 OS
<< " return " << CI
.Name
<< ";\n";
1166 OS
<< " return InvalidMatchClass;\n";
1170 /// EmitIsSubclass - Emit the subclass predicate function.
1171 static void EmitIsSubclass(CodeGenTarget
&Target
,
1172 std::vector
<ClassInfo
*> &Infos
,
1174 OS
<< "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1175 OS
<< "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1176 OS
<< " if (A == B)\n";
1177 OS
<< " return true;\n\n";
1179 OS
<< " switch (A) {\n";
1180 OS
<< " default:\n";
1181 OS
<< " return false;\n";
1182 for (std::vector
<ClassInfo
*>::iterator it
= Infos
.begin(),
1183 ie
= Infos
.end(); it
!= ie
; ++it
) {
1184 ClassInfo
&A
= **it
;
1186 if (A
.Kind
!= ClassInfo::Token
) {
1187 std::vector
<StringRef
> SuperClasses
;
1188 for (std::vector
<ClassInfo
*>::iterator it
= Infos
.begin(),
1189 ie
= Infos
.end(); it
!= ie
; ++it
) {
1190 ClassInfo
&B
= **it
;
1192 if (&A
!= &B
&& A
.isSubsetOf(B
))
1193 SuperClasses
.push_back(B
.Name
);
1196 if (SuperClasses
.empty())
1199 OS
<< "\n case " << A
.Name
<< ":\n";
1201 if (SuperClasses
.size() == 1) {
1202 OS
<< " return B == " << SuperClasses
.back() << ";\n";
1206 OS
<< " switch (B) {\n";
1207 OS
<< " default: return false;\n";
1208 for (unsigned i
= 0, e
= SuperClasses
.size(); i
!= e
; ++i
)
1209 OS
<< " case " << SuperClasses
[i
] << ": return true;\n";
1217 typedef std::pair
<std::string
, std::string
> StringPair
;
1219 /// FindFirstNonCommonLetter - Find the first character in the keys of the
1220 /// string pairs that is not shared across the whole set of strings. All
1221 /// strings are assumed to have the same length.
1223 FindFirstNonCommonLetter(const std::vector
<const StringPair
*> &Matches
) {
1224 assert(!Matches
.empty());
1225 for (unsigned i
= 0, e
= Matches
[0]->first
.size(); i
!= e
; ++i
) {
1226 // Check to see if letter i is the same across the set.
1227 char Letter
= Matches
[0]->first
[i
];
1229 for (unsigned str
= 0, e
= Matches
.size(); str
!= e
; ++str
)
1230 if (Matches
[str
]->first
[i
] != Letter
)
1234 return Matches
[0]->first
.size();
1237 /// EmitStringMatcherForChar - Given a set of strings that are known to be the
1238 /// same length and whose characters leading up to CharNo are the same, emit
1239 /// code to verify that CharNo and later are the same.
1241 /// \return - True if control can leave the emitted code fragment.
1242 static bool EmitStringMatcherForChar(const std::string
&StrVariableName
,
1243 const std::vector
<const StringPair
*> &Matches
,
1244 unsigned CharNo
, unsigned IndentCount
,
1246 assert(!Matches
.empty() && "Must have at least one string to match!");
1247 std::string
Indent(IndentCount
*2+4, ' ');
1249 // If we have verified that the entire string matches, we're done: output the
1251 if (CharNo
== Matches
[0]->first
.size()) {
1252 assert(Matches
.size() == 1 && "Had duplicate keys to match on");
1254 // FIXME: If Matches[0].first has embeded \n, this will be bad.
1255 OS
<< Indent
<< Matches
[0]->second
<< "\t // \"" << Matches
[0]->first
1260 // Bucket the matches by the character we are comparing.
1261 std::map
<char, std::vector
<const StringPair
*> > MatchesByLetter
;
1263 for (unsigned i
= 0, e
= Matches
.size(); i
!= e
; ++i
)
1264 MatchesByLetter
[Matches
[i
]->first
[CharNo
]].push_back(Matches
[i
]);
1267 // If we have exactly one bucket to match, see how many characters are common
1268 // across the whole set and match all of them at once.
1269 if (MatchesByLetter
.size() == 1) {
1270 unsigned FirstNonCommonLetter
= FindFirstNonCommonLetter(Matches
);
1271 unsigned NumChars
= FirstNonCommonLetter
-CharNo
;
1273 // Emit code to break out if the prefix doesn't match.
1274 if (NumChars
== 1) {
1275 // Do the comparison with if (Str[1] != 'f')
1276 // FIXME: Need to escape general characters.
1277 OS
<< Indent
<< "if (" << StrVariableName
<< "[" << CharNo
<< "] != '"
1278 << Matches
[0]->first
[CharNo
] << "')\n";
1279 OS
<< Indent
<< " break;\n";
1281 // Do the comparison with if (Str.substr(1,3) != "foo").
1282 // FIXME: Need to escape general strings.
1283 OS
<< Indent
<< "if (" << StrVariableName
<< ".substr(" << CharNo
<< ","
1284 << NumChars
<< ") != \"";
1285 OS
<< Matches
[0]->first
.substr(CharNo
, NumChars
) << "\")\n";
1286 OS
<< Indent
<< " break;\n";
1289 return EmitStringMatcherForChar(StrVariableName
, Matches
,
1290 FirstNonCommonLetter
, IndentCount
, OS
);
1293 // Otherwise, we have multiple possible things, emit a switch on the
1295 OS
<< Indent
<< "switch (" << StrVariableName
<< "[" << CharNo
<< "]) {\n";
1296 OS
<< Indent
<< "default: break;\n";
1298 for (std::map
<char, std::vector
<const StringPair
*> >::iterator LI
=
1299 MatchesByLetter
.begin(), E
= MatchesByLetter
.end(); LI
!= E
; ++LI
) {
1300 // TODO: escape hard stuff (like \n) if we ever care about it.
1301 OS
<< Indent
<< "case '" << LI
->first
<< "':\t // "
1302 << LI
->second
.size() << " strings to match.\n";
1303 if (EmitStringMatcherForChar(StrVariableName
, LI
->second
, CharNo
+1,
1305 OS
<< Indent
<< " break;\n";
1308 OS
<< Indent
<< "}\n";
1313 /// EmitStringMatcher - Given a list of strings and code to execute when they
1314 /// match, output a simple switch tree to classify the input string.
1316 /// If a match is found, the code in Vals[i].second is executed; control must
1317 /// not exit this code fragment. If nothing matches, execution falls through.
1319 /// \param StrVariableName - The name of the variable to test.
1320 static void EmitStringMatcher(const std::string
&StrVariableName
,
1321 const std::vector
<StringPair
> &Matches
,
1323 // First level categorization: group strings by length.
1324 std::map
<unsigned, std::vector
<const StringPair
*> > MatchesByLength
;
1326 for (unsigned i
= 0, e
= Matches
.size(); i
!= e
; ++i
)
1327 MatchesByLength
[Matches
[i
].first
.size()].push_back(&Matches
[i
]);
1329 // Output a switch statement on length and categorize the elements within each
1331 OS
<< " switch (" << StrVariableName
<< ".size()) {\n";
1332 OS
<< " default: break;\n";
1334 for (std::map
<unsigned, std::vector
<const StringPair
*> >::iterator LI
=
1335 MatchesByLength
.begin(), E
= MatchesByLength
.end(); LI
!= E
; ++LI
) {
1336 OS
<< " case " << LI
->first
<< ":\t // " << LI
->second
.size()
1337 << " strings to match.\n";
1338 if (EmitStringMatcherForChar(StrVariableName
, LI
->second
, 0, 0, OS
))
1346 /// EmitMatchTokenString - Emit the function to match a token string to the
1347 /// appropriate match class value.
1348 static void EmitMatchTokenString(CodeGenTarget
&Target
,
1349 std::vector
<ClassInfo
*> &Infos
,
1351 // Construct the match list.
1352 std::vector
<StringPair
> Matches
;
1353 for (std::vector
<ClassInfo
*>::iterator it
= Infos
.begin(),
1354 ie
= Infos
.end(); it
!= ie
; ++it
) {
1355 ClassInfo
&CI
= **it
;
1357 if (CI
.Kind
== ClassInfo::Token
)
1358 Matches
.push_back(StringPair(CI
.ValueName
, "return " + CI
.Name
+ ";"));
1361 OS
<< "static MatchClassKind MatchTokenString(const StringRef &Name) {\n";
1363 EmitStringMatcher("Name", Matches
, OS
);
1365 OS
<< " return InvalidMatchClass;\n";
1369 /// EmitMatchRegisterName - Emit the function to match a string to the target
1370 /// specific register enum.
1371 static void EmitMatchRegisterName(CodeGenTarget
&Target
, Record
*AsmParser
,
1373 // Construct the match list.
1374 std::vector
<StringPair
> Matches
;
1375 for (unsigned i
= 0, e
= Target
.getRegisters().size(); i
!= e
; ++i
) {
1376 const CodeGenRegister
&Reg
= Target
.getRegisters()[i
];
1377 if (Reg
.TheDef
->getValueAsString("AsmName").empty())
1380 Matches
.push_back(StringPair(Reg
.TheDef
->getValueAsString("AsmName"),
1381 "return " + utostr(i
+ 1) + ";"));
1384 OS
<< "unsigned " << Target
.getName()
1385 << AsmParser
->getValueAsString("AsmParserClassName")
1386 << "::MatchRegisterName(const StringRef &Name) {\n";
1388 EmitStringMatcher("Name", Matches
, OS
);
1390 OS
<< " return 0;\n";
1394 void AsmMatcherEmitter::run(raw_ostream
&OS
) {
1395 CodeGenTarget Target
;
1396 Record
*AsmParser
= Target
.getAsmParser();
1397 std::string ClassName
= AsmParser
->getValueAsString("AsmParserClassName");
1399 // Compute the information on the instructions to match.
1400 AsmMatcherInfo
Info(AsmParser
);
1401 Info
.BuildInfo(Target
);
1403 // Sort the instruction table using the partial order on classes.
1404 std::sort(Info
.Instructions
.begin(), Info
.Instructions
.end(),
1405 less_ptr
<InstructionInfo
>());
1407 DEBUG_WITH_TYPE("instruction_info", {
1408 for (std::vector
<InstructionInfo
*>::iterator
1409 it
= Info
.Instructions
.begin(), ie
= Info
.Instructions
.end();
1414 // Check for ambiguous instructions.
1415 unsigned NumAmbiguous
= 0;
1416 for (unsigned i
= 0, e
= Info
.Instructions
.size(); i
!= e
; ++i
) {
1417 for (unsigned j
= i
+ 1; j
!= e
; ++j
) {
1418 InstructionInfo
&A
= *Info
.Instructions
[i
];
1419 InstructionInfo
&B
= *Info
.Instructions
[j
];
1421 if (A
.CouldMatchAmiguouslyWith(B
)) {
1422 DEBUG_WITH_TYPE("ambiguous_instrs", {
1423 errs() << "warning: ambiguous instruction match:\n";
1425 errs() << "\nis incomparable with:\n";
1434 DEBUG_WITH_TYPE("ambiguous_instrs", {
1435 errs() << "warning: " << NumAmbiguous
1436 << " ambiguous instructions!\n";
1439 // Write the output.
1441 EmitSourceFileHeader("Assembly Matcher Source Fragment", OS
);
1443 // Emit the function to match a register name to number.
1444 EmitMatchRegisterName(Target
, AsmParser
, OS
);
1446 // Generate the unified function to convert operands into an MCInst.
1447 EmitConvertToMCInst(Target
, Info
.Instructions
, OS
);
1449 // Emit the enumeration for classes which participate in matching.
1450 EmitMatchClassEnumeration(Target
, Info
.Classes
, OS
);
1452 // Emit the routine to match token strings to their match class.
1453 EmitMatchTokenString(Target
, Info
.Classes
, OS
);
1455 // Emit the routine to classify an operand.
1456 EmitClassifyOperand(Target
, Info
, OS
);
1458 // Emit the subclass predicate routine.
1459 EmitIsSubclass(Target
, Info
.Classes
, OS
);
1461 // Finally, build the match function.
1463 size_t MaxNumOperands
= 0;
1464 for (std::vector
<InstructionInfo
*>::const_iterator it
=
1465 Info
.Instructions
.begin(), ie
= Info
.Instructions
.end();
1467 MaxNumOperands
= std::max(MaxNumOperands
, (*it
)->Operands
.size());
1469 OS
<< "bool " << Target
.getName() << ClassName
1470 << "::MatchInstruction("
1471 << "SmallVectorImpl<" << Target
.getName() << "Operand> &Operands, "
1472 << "MCInst &Inst) {\n";
1474 // Emit the static match table; unused classes get initalized to 0 which is
1475 // guaranteed to be InvalidMatchClass.
1477 // FIXME: We can reduce the size of this table very easily. First, we change
1478 // it so that store the kinds in separate bit-fields for each index, which
1479 // only needs to be the max width used for classes at that index (we also need
1480 // to reject based on this during classification). If we then make sure to
1481 // order the match kinds appropriately (putting mnemonics last), then we
1482 // should only end up using a few bits for each class, especially the ones
1483 // following the mnemonic.
1484 OS
<< " static const struct MatchEntry {\n";
1485 OS
<< " unsigned Opcode;\n";
1486 OS
<< " ConversionKind ConvertFn;\n";
1487 OS
<< " MatchClassKind Classes[" << MaxNumOperands
<< "];\n";
1488 OS
<< " } MatchTable[" << Info
.Instructions
.size() << "] = {\n";
1490 for (std::vector
<InstructionInfo
*>::const_iterator it
=
1491 Info
.Instructions
.begin(), ie
= Info
.Instructions
.end();
1493 InstructionInfo
&II
= **it
;
1495 OS
<< " { " << Target
.getName() << "::" << II
.InstrName
1496 << ", " << II
.ConversionFnKind
<< ", { ";
1497 for (unsigned i
= 0, e
= II
.Operands
.size(); i
!= e
; ++i
) {
1498 InstructionInfo::Operand
&Op
= II
.Operands
[i
];
1501 OS
<< Op
.Class
->Name
;
1508 // Emit code to compute the class list for this operand vector.
1509 OS
<< " // Eliminate obvious mismatches.\n";
1510 OS
<< " if (Operands.size() > " << MaxNumOperands
<< ")\n";
1511 OS
<< " return true;\n\n";
1513 OS
<< " // Compute the class list for this operand vector.\n";
1514 OS
<< " MatchClassKind Classes[" << MaxNumOperands
<< "];\n";
1515 OS
<< " for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
1516 OS
<< " Classes[i] = ClassifyOperand(Operands[i]);\n\n";
1518 OS
<< " // Check for invalid operands before matching.\n";
1519 OS
<< " if (Classes[i] == InvalidMatchClass)\n";
1520 OS
<< " return true;\n";
1523 OS
<< " // Mark unused classes.\n";
1524 OS
<< " for (unsigned i = Operands.size(), e = " << MaxNumOperands
<< "; "
1525 << "i != e; ++i)\n";
1526 OS
<< " Classes[i] = InvalidMatchClass;\n\n";
1528 // Emit code to search the table.
1529 OS
<< " // Search the table.\n";
1530 OS
<< " for (const MatchEntry *it = MatchTable, "
1531 << "*ie = MatchTable + " << Info
.Instructions
.size()
1532 << "; it != ie; ++it) {\n";
1533 for (unsigned i
= 0; i
!= MaxNumOperands
; ++i
) {
1534 OS
<< " if (!IsSubclass(Classes["
1535 << i
<< "], it->Classes[" << i
<< "]))\n";
1536 OS
<< " continue;\n";
1539 OS
<< " return ConvertToMCInst(it->ConvertFn, Inst, "
1540 << "it->Opcode, Operands);\n";
1543 OS
<< " return true;\n";