1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/Debug.h"
24 //===----------------------------------------------------------------------===//
25 // Helpers for working with extended types.
27 /// FilterVTs - Filter a list of VT's according to a predicate.
30 static std::vector
<MVT::SimpleValueType
>
31 FilterVTs(const std::vector
<MVT::SimpleValueType
> &InVTs
, T Filter
) {
32 std::vector
<MVT::SimpleValueType
> Result
;
33 for (unsigned i
= 0, e
= InVTs
.size(); i
!= e
; ++i
)
35 Result
.push_back(InVTs
[i
]);
40 static std::vector
<unsigned char>
41 FilterEVTs(const std::vector
<unsigned char> &InVTs
, T Filter
) {
42 std::vector
<unsigned char> Result
;
43 for (unsigned i
= 0, e
= InVTs
.size(); i
!= e
; ++i
)
44 if (Filter((MVT::SimpleValueType
)InVTs
[i
]))
45 Result
.push_back(InVTs
[i
]);
49 static std::vector
<unsigned char>
50 ConvertVTs(const std::vector
<MVT::SimpleValueType
> &InVTs
) {
51 std::vector
<unsigned char> Result
;
52 for (unsigned i
= 0, e
= InVTs
.size(); i
!= e
; ++i
)
53 Result
.push_back(InVTs
[i
]);
57 static inline bool isInteger(MVT::SimpleValueType VT
) {
58 return EVT(VT
).isInteger();
61 static inline bool isFloatingPoint(MVT::SimpleValueType VT
) {
62 return EVT(VT
).isFloatingPoint();
65 static inline bool isVector(MVT::SimpleValueType VT
) {
66 return EVT(VT
).isVector();
69 static bool LHSIsSubsetOfRHS(const std::vector
<unsigned char> &LHS
,
70 const std::vector
<unsigned char> &RHS
) {
71 if (LHS
.size() > RHS
.size()) return false;
72 for (unsigned i
= 0, e
= LHS
.size(); i
!= e
; ++i
)
73 if (std::find(RHS
.begin(), RHS
.end(), LHS
[i
]) == RHS
.end())
80 /// isExtIntegerInVTs - Return true if the specified extended value type vector
81 /// contains iAny or an integer value type.
82 bool isExtIntegerInVTs(const std::vector
<unsigned char> &EVTs
) {
83 assert(!EVTs
.empty() && "Cannot check for integer in empty ExtVT list!");
84 return EVTs
[0] == MVT::iAny
|| !(FilterEVTs(EVTs
, isInteger
).empty());
87 /// isExtFloatingPointInVTs - Return true if the specified extended value type
88 /// vector contains fAny or a FP value type.
89 bool isExtFloatingPointInVTs(const std::vector
<unsigned char> &EVTs
) {
90 assert(!EVTs
.empty() && "Cannot check for FP in empty ExtVT list!");
91 return EVTs
[0] == MVT::fAny
|| !(FilterEVTs(EVTs
, isFloatingPoint
).empty());
94 /// isExtVectorInVTs - Return true if the specified extended value type
95 /// vector contains vAny or a vector value type.
96 bool isExtVectorInVTs(const std::vector
<unsigned char> &EVTs
) {
97 assert(!EVTs
.empty() && "Cannot check for vector in empty ExtVT list!");
98 return EVTs
[0] == MVT::vAny
|| !(FilterEVTs(EVTs
, isVector
).empty());
100 } // end namespace EEVT.
101 } // end namespace llvm.
103 bool RecordPtrCmp::operator()(const Record
*LHS
, const Record
*RHS
) const {
104 return LHS
->getID() < RHS
->getID();
107 /// Dependent variable map for CodeGenDAGPattern variant generation
108 typedef std::map
<std::string
, int> DepVarMap
;
110 /// Const iterator shorthand for DepVarMap
111 typedef DepVarMap::const_iterator DepVarMap_citer
;
114 void FindDepVarsOf(TreePatternNode
*N
, DepVarMap
&DepMap
) {
116 if (dynamic_cast<DefInit
*>(N
->getLeafValue()) != NULL
) {
117 DepMap
[N
->getName()]++;
120 for (size_t i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
121 FindDepVarsOf(N
->getChild(i
), DepMap
);
125 //! Find dependent variables within child patterns
128 void FindDepVars(TreePatternNode
*N
, MultipleUseVarSet
&DepVars
) {
130 FindDepVarsOf(N
, depcounts
);
131 for (DepVarMap_citer i
= depcounts
.begin(); i
!= depcounts
.end(); ++i
) {
132 if (i
->second
> 1) { // std::pair<std::string, int>
133 DepVars
.insert(i
->first
);
138 //! Dump the dependent variable set:
139 void DumpDepVars(MultipleUseVarSet
&DepVars
) {
140 if (DepVars
.empty()) {
141 DEBUG(errs() << "<empty set>");
143 DEBUG(errs() << "[ ");
144 for (MultipleUseVarSet::const_iterator i
= DepVars
.begin(), e
= DepVars
.end();
146 DEBUG(errs() << (*i
) << " ");
148 DEBUG(errs() << "]");
153 //===----------------------------------------------------------------------===//
154 // PatternToMatch implementation
157 /// getPredicateCheck - Return a single string containing all of this
158 /// pattern's predicates concatenated with "&&" operators.
160 std::string
PatternToMatch::getPredicateCheck() const {
161 std::string PredicateCheck
;
162 for (unsigned i
= 0, e
= Predicates
->getSize(); i
!= e
; ++i
) {
163 if (DefInit
*Pred
= dynamic_cast<DefInit
*>(Predicates
->getElement(i
))) {
164 Record
*Def
= Pred
->getDef();
165 if (!Def
->isSubClassOf("Predicate")) {
169 assert(0 && "Unknown predicate type!");
171 if (!PredicateCheck
.empty())
172 PredicateCheck
+= " && ";
173 PredicateCheck
+= "(" + Def
->getValueAsString("CondString") + ")";
177 return PredicateCheck
;
180 //===----------------------------------------------------------------------===//
181 // SDTypeConstraint implementation
184 SDTypeConstraint::SDTypeConstraint(Record
*R
) {
185 OperandNo
= R
->getValueAsInt("OperandNum");
187 if (R
->isSubClassOf("SDTCisVT")) {
188 ConstraintType
= SDTCisVT
;
189 x
.SDTCisVT_Info
.VT
= getValueType(R
->getValueAsDef("VT"));
190 } else if (R
->isSubClassOf("SDTCisPtrTy")) {
191 ConstraintType
= SDTCisPtrTy
;
192 } else if (R
->isSubClassOf("SDTCisInt")) {
193 ConstraintType
= SDTCisInt
;
194 } else if (R
->isSubClassOf("SDTCisFP")) {
195 ConstraintType
= SDTCisFP
;
196 } else if (R
->isSubClassOf("SDTCisVec")) {
197 ConstraintType
= SDTCisVec
;
198 } else if (R
->isSubClassOf("SDTCisSameAs")) {
199 ConstraintType
= SDTCisSameAs
;
200 x
.SDTCisSameAs_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOperandNum");
201 } else if (R
->isSubClassOf("SDTCisVTSmallerThanOp")) {
202 ConstraintType
= SDTCisVTSmallerThanOp
;
203 x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
=
204 R
->getValueAsInt("OtherOperandNum");
205 } else if (R
->isSubClassOf("SDTCisOpSmallerThanOp")) {
206 ConstraintType
= SDTCisOpSmallerThanOp
;
207 x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
=
208 R
->getValueAsInt("BigOperandNum");
209 } else if (R
->isSubClassOf("SDTCisEltOfVec")) {
210 ConstraintType
= SDTCisEltOfVec
;
211 x
.SDTCisEltOfVec_Info
.OtherOperandNum
=
212 R
->getValueAsInt("OtherOpNum");
214 errs() << "Unrecognized SDTypeConstraint '" << R
->getName() << "'!\n";
219 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
220 /// N, which has NumResults results.
221 TreePatternNode
*SDTypeConstraint::getOperandNum(unsigned OpNo
,
223 unsigned NumResults
) const {
224 assert(NumResults
<= 1 &&
225 "We only work with nodes with zero or one result so far!");
227 if (OpNo
>= (NumResults
+ N
->getNumChildren())) {
228 errs() << "Invalid operand number " << OpNo
<< " ";
234 if (OpNo
< NumResults
)
235 return N
; // FIXME: need value #
237 return N
->getChild(OpNo
-NumResults
);
240 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
241 /// constraint to the nodes operands. This returns true if it makes a
242 /// change, false otherwise. If a type contradiction is found, throw an
244 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode
*N
,
245 const SDNodeInfo
&NodeInfo
,
246 TreePattern
&TP
) const {
247 unsigned NumResults
= NodeInfo
.getNumResults();
248 assert(NumResults
<= 1 &&
249 "We only work with nodes with zero or one result so far!");
251 // Check that the number of operands is sane. Negative operands -> varargs.
252 if (NodeInfo
.getNumOperands() >= 0) {
253 if (N
->getNumChildren() != (unsigned)NodeInfo
.getNumOperands())
254 TP
.error(N
->getOperator()->getName() + " node requires exactly " +
255 itostr(NodeInfo
.getNumOperands()) + " operands!");
258 const CodeGenTarget
&CGT
= TP
.getDAGPatterns().getTargetInfo();
260 TreePatternNode
*NodeToApply
= getOperandNum(OperandNo
, N
, NumResults
);
262 switch (ConstraintType
) {
263 default: assert(0 && "Unknown constraint type!");
265 // Operand must be a particular type.
266 return NodeToApply
->UpdateNodeType(x
.SDTCisVT_Info
.VT
, TP
);
268 // Operand must be same as target pointer type.
269 return NodeToApply
->UpdateNodeType(MVT::iPTR
, TP
);
272 // If there is only one integer type supported, this must be it.
273 std::vector
<MVT::SimpleValueType
> IntVTs
=
274 FilterVTs(CGT
.getLegalValueTypes(), isInteger
);
276 // If we found exactly one supported integer type, apply it.
277 if (IntVTs
.size() == 1)
278 return NodeToApply
->UpdateNodeType(IntVTs
[0], TP
);
279 return NodeToApply
->UpdateNodeType(MVT::iAny
, TP
);
282 // If there is only one FP type supported, this must be it.
283 std::vector
<MVT::SimpleValueType
> FPVTs
=
284 FilterVTs(CGT
.getLegalValueTypes(), isFloatingPoint
);
286 // If we found exactly one supported FP type, apply it.
287 if (FPVTs
.size() == 1)
288 return NodeToApply
->UpdateNodeType(FPVTs
[0], TP
);
289 return NodeToApply
->UpdateNodeType(MVT::fAny
, TP
);
292 // If there is only one vector type supported, this must be it.
293 std::vector
<MVT::SimpleValueType
> VecVTs
=
294 FilterVTs(CGT
.getLegalValueTypes(), isVector
);
296 // If we found exactly one supported vector type, apply it.
297 if (VecVTs
.size() == 1)
298 return NodeToApply
->UpdateNodeType(VecVTs
[0], TP
);
299 return NodeToApply
->UpdateNodeType(MVT::vAny
, TP
);
302 TreePatternNode
*OtherNode
=
303 getOperandNum(x
.SDTCisSameAs_Info
.OtherOperandNum
, N
, NumResults
);
304 return NodeToApply
->UpdateNodeType(OtherNode
->getExtTypes(), TP
) |
305 OtherNode
->UpdateNodeType(NodeToApply
->getExtTypes(), TP
);
307 case SDTCisVTSmallerThanOp
: {
308 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
309 // have an integer type that is smaller than the VT.
310 if (!NodeToApply
->isLeaf() ||
311 !dynamic_cast<DefInit
*>(NodeToApply
->getLeafValue()) ||
312 !static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef()
313 ->isSubClassOf("ValueType"))
314 TP
.error(N
->getOperator()->getName() + " expects a VT operand!");
315 MVT::SimpleValueType VT
=
316 getValueType(static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef());
318 TP
.error(N
->getOperator()->getName() + " VT operand must be integer!");
320 TreePatternNode
*OtherNode
=
321 getOperandNum(x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
, N
,NumResults
);
323 // It must be integer.
324 bool MadeChange
= false;
325 MadeChange
|= OtherNode
->UpdateNodeType(MVT::iAny
, TP
);
327 // This code only handles nodes that have one type set. Assert here so
328 // that we can change this if we ever need to deal with multiple value
329 // types at this point.
330 assert(OtherNode
->getExtTypes().size() == 1 && "Node has too many types!");
331 if (OtherNode
->hasTypeSet() && OtherNode
->getTypeNum(0) <= VT
)
332 OtherNode
->UpdateNodeType(MVT::Other
, TP
); // Throw an error.
335 case SDTCisOpSmallerThanOp
: {
336 TreePatternNode
*BigOperand
=
337 getOperandNum(x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
, N
, NumResults
);
339 // Both operands must be integer or FP, but we don't care which.
340 bool MadeChange
= false;
342 // This code does not currently handle nodes which have multiple types,
343 // where some types are integer, and some are fp. Assert that this is not
345 assert(!(EEVT::isExtIntegerInVTs(NodeToApply
->getExtTypes()) &&
346 EEVT::isExtFloatingPointInVTs(NodeToApply
->getExtTypes())) &&
347 !(EEVT::isExtIntegerInVTs(BigOperand
->getExtTypes()) &&
348 EEVT::isExtFloatingPointInVTs(BigOperand
->getExtTypes())) &&
349 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
350 if (EEVT::isExtIntegerInVTs(NodeToApply
->getExtTypes()))
351 MadeChange
|= BigOperand
->UpdateNodeType(MVT::iAny
, TP
);
352 else if (EEVT::isExtFloatingPointInVTs(NodeToApply
->getExtTypes()))
353 MadeChange
|= BigOperand
->UpdateNodeType(MVT::fAny
, TP
);
354 if (EEVT::isExtIntegerInVTs(BigOperand
->getExtTypes()))
355 MadeChange
|= NodeToApply
->UpdateNodeType(MVT::iAny
, TP
);
356 else if (EEVT::isExtFloatingPointInVTs(BigOperand
->getExtTypes()))
357 MadeChange
|= NodeToApply
->UpdateNodeType(MVT::fAny
, TP
);
359 std::vector
<MVT::SimpleValueType
> VTs
= CGT
.getLegalValueTypes();
361 if (EEVT::isExtIntegerInVTs(NodeToApply
->getExtTypes())) {
362 VTs
= FilterVTs(VTs
, isInteger
);
363 } else if (EEVT::isExtFloatingPointInVTs(NodeToApply
->getExtTypes())) {
364 VTs
= FilterVTs(VTs
, isFloatingPoint
);
369 switch (VTs
.size()) {
370 default: // Too many VT's to pick from.
371 case 0: break; // No info yet.
373 // Only one VT of this flavor. Cannot ever satisfy the constraints.
374 return NodeToApply
->UpdateNodeType(MVT::Other
, TP
); // throw
376 // If we have exactly two possible types, the little operand must be the
377 // small one, the big operand should be the big one. Common with
378 // float/double for example.
379 assert(VTs
[0] < VTs
[1] && "Should be sorted!");
380 MadeChange
|= NodeToApply
->UpdateNodeType(VTs
[0], TP
);
381 MadeChange
|= BigOperand
->UpdateNodeType(VTs
[1], TP
);
386 case SDTCisEltOfVec
: {
387 TreePatternNode
*OtherOperand
=
388 getOperandNum(x
.SDTCisEltOfVec_Info
.OtherOperandNum
,
390 if (OtherOperand
->hasTypeSet()) {
391 if (!isVector(OtherOperand
->getTypeNum(0)))
392 TP
.error(N
->getOperator()->getName() + " VT operand must be a vector!");
393 EVT IVT
= OtherOperand
->getTypeNum(0);
394 IVT
= IVT
.getVectorElementType();
395 return NodeToApply
->UpdateNodeType(IVT
.getSimpleVT().SimpleTy
, TP
);
403 //===----------------------------------------------------------------------===//
404 // SDNodeInfo implementation
406 SDNodeInfo::SDNodeInfo(Record
*R
) : Def(R
) {
407 EnumName
= R
->getValueAsString("Opcode");
408 SDClassName
= R
->getValueAsString("SDClass");
409 Record
*TypeProfile
= R
->getValueAsDef("TypeProfile");
410 NumResults
= TypeProfile
->getValueAsInt("NumResults");
411 NumOperands
= TypeProfile
->getValueAsInt("NumOperands");
413 // Parse the properties.
415 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
416 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
) {
417 if (PropList
[i
]->getName() == "SDNPCommutative") {
418 Properties
|= 1 << SDNPCommutative
;
419 } else if (PropList
[i
]->getName() == "SDNPAssociative") {
420 Properties
|= 1 << SDNPAssociative
;
421 } else if (PropList
[i
]->getName() == "SDNPHasChain") {
422 Properties
|= 1 << SDNPHasChain
;
423 } else if (PropList
[i
]->getName() == "SDNPOutFlag") {
424 Properties
|= 1 << SDNPOutFlag
;
425 } else if (PropList
[i
]->getName() == "SDNPInFlag") {
426 Properties
|= 1 << SDNPInFlag
;
427 } else if (PropList
[i
]->getName() == "SDNPOptInFlag") {
428 Properties
|= 1 << SDNPOptInFlag
;
429 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
430 Properties
|= 1 << SDNPMayStore
;
431 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
432 Properties
|= 1 << SDNPMayLoad
;
433 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
434 Properties
|= 1 << SDNPSideEffect
;
435 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
436 Properties
|= 1 << SDNPMemOperand
;
438 errs() << "Unknown SD Node property '" << PropList
[i
]->getName()
439 << "' on node '" << R
->getName() << "'!\n";
445 // Parse the type constraints.
446 std::vector
<Record
*> ConstraintList
=
447 TypeProfile
->getValueAsListOfDefs("Constraints");
448 TypeConstraints
.assign(ConstraintList
.begin(), ConstraintList
.end());
451 //===----------------------------------------------------------------------===//
452 // TreePatternNode implementation
455 TreePatternNode::~TreePatternNode() {
456 #if 0 // FIXME: implement refcounted tree nodes!
457 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
462 /// UpdateNodeType - Set the node type of N to VT if VT contains
463 /// information. If N already contains a conflicting type, then throw an
464 /// exception. This returns true if any information was updated.
466 bool TreePatternNode::UpdateNodeType(const std::vector
<unsigned char> &ExtVTs
,
468 assert(!ExtVTs
.empty() && "Cannot update node type with empty type vector!");
470 if (ExtVTs
[0] == EEVT::isUnknown
|| LHSIsSubsetOfRHS(getExtTypes(), ExtVTs
))
472 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs
, getExtTypes())) {
477 if (getExtTypeNum(0) == MVT::iPTR
|| getExtTypeNum(0) == MVT::iPTRAny
) {
478 if (ExtVTs
[0] == MVT::iPTR
|| ExtVTs
[0] == MVT::iPTRAny
||
479 ExtVTs
[0] == MVT::iAny
)
481 if (EEVT::isExtIntegerInVTs(ExtVTs
)) {
482 std::vector
<unsigned char> FVTs
= FilterEVTs(ExtVTs
, isInteger
);
490 // Merge vAny with iAny/fAny. The latter include vector types so keep them
491 // as the more specific information.
492 if (ExtVTs
[0] == MVT::vAny
&&
493 (getExtTypeNum(0) == MVT::iAny
|| getExtTypeNum(0) == MVT::fAny
))
495 if (getExtTypeNum(0) == MVT::vAny
&&
496 (ExtVTs
[0] == MVT::iAny
|| ExtVTs
[0] == MVT::fAny
)) {
501 if (ExtVTs
[0] == MVT::iAny
&&
502 EEVT::isExtIntegerInVTs(getExtTypes())) {
503 assert(hasTypeSet() && "should be handled above!");
504 std::vector
<unsigned char> FVTs
= FilterEVTs(getExtTypes(), isInteger
);
505 if (getExtTypes() == FVTs
)
510 if ((ExtVTs
[0] == MVT::iPTR
|| ExtVTs
[0] == MVT::iPTRAny
) &&
511 EEVT::isExtIntegerInVTs(getExtTypes())) {
512 //assert(hasTypeSet() && "should be handled above!");
513 std::vector
<unsigned char> FVTs
= FilterEVTs(getExtTypes(), isInteger
);
514 if (getExtTypes() == FVTs
)
521 if (ExtVTs
[0] == MVT::fAny
&&
522 EEVT::isExtFloatingPointInVTs(getExtTypes())) {
523 assert(hasTypeSet() && "should be handled above!");
524 std::vector
<unsigned char> FVTs
=
525 FilterEVTs(getExtTypes(), isFloatingPoint
);
526 if (getExtTypes() == FVTs
)
531 if (ExtVTs
[0] == MVT::vAny
&&
532 EEVT::isExtVectorInVTs(getExtTypes())) {
533 assert(hasTypeSet() && "should be handled above!");
534 std::vector
<unsigned char> FVTs
= FilterEVTs(getExtTypes(), isVector
);
535 if (getExtTypes() == FVTs
)
541 // If we know this is an int, FP, or vector type, and we are told it is a
542 // specific one, take the advice.
544 // Similarly, we should probably set the type here to the intersection of
545 // {iAny|fAny|vAny} and ExtVTs
546 if ((getExtTypeNum(0) == MVT::iAny
&&
547 EEVT::isExtIntegerInVTs(ExtVTs
)) ||
548 (getExtTypeNum(0) == MVT::fAny
&&
549 EEVT::isExtFloatingPointInVTs(ExtVTs
)) ||
550 (getExtTypeNum(0) == MVT::vAny
&&
551 EEVT::isExtVectorInVTs(ExtVTs
))) {
555 if (getExtTypeNum(0) == MVT::iAny
&&
556 (ExtVTs
[0] == MVT::iPTR
|| ExtVTs
[0] == MVT::iPTRAny
)) {
564 TP
.error("Type inference contradiction found in node!");
566 TP
.error("Type inference contradiction found in node " +
567 getOperator()->getName() + "!");
569 return true; // unreachable
573 void TreePatternNode::print(raw_ostream
&OS
) const {
575 OS
<< *getLeafValue();
577 OS
<< "(" << getOperator()->getName();
580 // FIXME: At some point we should handle printing all the value types for
581 // nodes that are multiply typed.
582 switch (getExtTypeNum(0)) {
583 case MVT::Other
: OS
<< ":Other"; break;
584 case MVT::iAny
: OS
<< ":iAny"; break;
585 case MVT::fAny
: OS
<< ":fAny"; break;
586 case MVT::vAny
: OS
<< ":vAny"; break;
587 case EEVT::isUnknown
: ; /*OS << ":?";*/ break;
588 case MVT::iPTR
: OS
<< ":iPTR"; break;
589 case MVT::iPTRAny
: OS
<< ":iPTRAny"; break;
591 std::string VTName
= llvm::getName(getTypeNum(0));
592 // Strip off EVT:: prefix if present.
593 if (VTName
.substr(0,5) == "MVT::")
594 VTName
= VTName
.substr(5);
601 if (getNumChildren() != 0) {
603 getChild(0)->print(OS
);
604 for (unsigned i
= 1, e
= getNumChildren(); i
!= e
; ++i
) {
606 getChild(i
)->print(OS
);
612 for (unsigned i
= 0, e
= PredicateFns
.size(); i
!= e
; ++i
)
613 OS
<< "<<P:" << PredicateFns
[i
] << ">>";
615 OS
<< "<<X:" << TransformFn
->getName() << ">>";
616 if (!getName().empty())
617 OS
<< ":$" << getName();
620 void TreePatternNode::dump() const {
624 /// isIsomorphicTo - Return true if this node is recursively
625 /// isomorphic to the specified node. For this comparison, the node's
626 /// entire state is considered. The assigned name is ignored, since
627 /// nodes with differing names are considered isomorphic. However, if
628 /// the assigned name is present in the dependent variable set, then
629 /// the assigned name is considered significant and the node is
630 /// isomorphic if the names match.
631 bool TreePatternNode::isIsomorphicTo(const TreePatternNode
*N
,
632 const MultipleUseVarSet
&DepVars
) const {
633 if (N
== this) return true;
634 if (N
->isLeaf() != isLeaf() || getExtTypes() != N
->getExtTypes() ||
635 getPredicateFns() != N
->getPredicateFns() ||
636 getTransformFn() != N
->getTransformFn())
640 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
641 if (DefInit
*NDI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
642 return ((DI
->getDef() == NDI
->getDef())
643 && (DepVars
.find(getName()) == DepVars
.end()
644 || getName() == N
->getName()));
647 return getLeafValue() == N
->getLeafValue();
650 if (N
->getOperator() != getOperator() ||
651 N
->getNumChildren() != getNumChildren()) return false;
652 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
653 if (!getChild(i
)->isIsomorphicTo(N
->getChild(i
), DepVars
))
658 /// clone - Make a copy of this tree and all of its children.
660 TreePatternNode
*TreePatternNode::clone() const {
661 TreePatternNode
*New
;
663 New
= new TreePatternNode(getLeafValue());
665 std::vector
<TreePatternNode
*> CChildren
;
666 CChildren
.reserve(Children
.size());
667 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
668 CChildren
.push_back(getChild(i
)->clone());
669 New
= new TreePatternNode(getOperator(), CChildren
);
671 New
->setName(getName());
672 New
->setTypes(getExtTypes());
673 New
->setPredicateFns(getPredicateFns());
674 New
->setTransformFn(getTransformFn());
678 /// SubstituteFormalArguments - Replace the formal arguments in this tree
679 /// with actual values specified by ArgMap.
680 void TreePatternNode::
681 SubstituteFormalArguments(std::map
<std::string
, TreePatternNode
*> &ArgMap
) {
682 if (isLeaf()) return;
684 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
685 TreePatternNode
*Child
= getChild(i
);
686 if (Child
->isLeaf()) {
687 Init
*Val
= Child
->getLeafValue();
688 if (dynamic_cast<DefInit
*>(Val
) &&
689 static_cast<DefInit
*>(Val
)->getDef()->getName() == "node") {
690 // We found a use of a formal argument, replace it with its value.
691 TreePatternNode
*NewChild
= ArgMap
[Child
->getName()];
692 assert(NewChild
&& "Couldn't find formal argument!");
693 assert((Child
->getPredicateFns().empty() ||
694 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
695 "Non-empty child predicate clobbered!");
696 setChild(i
, NewChild
);
699 getChild(i
)->SubstituteFormalArguments(ArgMap
);
705 /// InlinePatternFragments - If this pattern refers to any pattern
706 /// fragments, inline them into place, giving us a pattern without any
707 /// PatFrag references.
708 TreePatternNode
*TreePatternNode::InlinePatternFragments(TreePattern
&TP
) {
709 if (isLeaf()) return this; // nothing to do.
710 Record
*Op
= getOperator();
712 if (!Op
->isSubClassOf("PatFrag")) {
713 // Just recursively inline children nodes.
714 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
715 TreePatternNode
*Child
= getChild(i
);
716 TreePatternNode
*NewChild
= Child
->InlinePatternFragments(TP
);
718 assert((Child
->getPredicateFns().empty() ||
719 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
720 "Non-empty child predicate clobbered!");
722 setChild(i
, NewChild
);
727 // Otherwise, we found a reference to a fragment. First, look up its
728 // TreePattern record.
729 TreePattern
*Frag
= TP
.getDAGPatterns().getPatternFragment(Op
);
731 // Verify that we are passing the right number of operands.
732 if (Frag
->getNumArgs() != Children
.size())
733 TP
.error("'" + Op
->getName() + "' fragment requires " +
734 utostr(Frag
->getNumArgs()) + " operands!");
736 TreePatternNode
*FragTree
= Frag
->getOnlyTree()->clone();
738 std::string Code
= Op
->getValueAsCode("Predicate");
740 FragTree
->addPredicateFn("Predicate_"+Op
->getName());
742 // Resolve formal arguments to their actual value.
743 if (Frag
->getNumArgs()) {
744 // Compute the map of formal to actual arguments.
745 std::map
<std::string
, TreePatternNode
*> ArgMap
;
746 for (unsigned i
= 0, e
= Frag
->getNumArgs(); i
!= e
; ++i
)
747 ArgMap
[Frag
->getArgName(i
)] = getChild(i
)->InlinePatternFragments(TP
);
749 FragTree
->SubstituteFormalArguments(ArgMap
);
752 FragTree
->setName(getName());
753 FragTree
->UpdateNodeType(getExtTypes(), TP
);
755 // Transfer in the old predicates.
756 for (unsigned i
= 0, e
= getPredicateFns().size(); i
!= e
; ++i
)
757 FragTree
->addPredicateFn(getPredicateFns()[i
]);
759 // Get a new copy of this fragment to stitch into here.
760 //delete this; // FIXME: implement refcounting!
762 // The fragment we inlined could have recursive inlining that is needed. See
763 // if there are any pattern fragments in it and inline them as needed.
764 return FragTree
->InlinePatternFragments(TP
);
767 /// getImplicitType - Check to see if the specified record has an implicit
768 /// type which should be applied to it. This will infer the type of register
769 /// references from the register file information, for example.
771 static std::vector
<unsigned char> getImplicitType(Record
*R
, bool NotRegisters
,
773 // Some common return values
774 std::vector
<unsigned char> Unknown(1, EEVT::isUnknown
);
775 std::vector
<unsigned char> Other(1, MVT::Other
);
777 // Check to see if this is a register or a register class...
778 if (R
->isSubClassOf("RegisterClass")) {
781 const CodeGenRegisterClass
&RC
=
782 TP
.getDAGPatterns().getTargetInfo().getRegisterClass(R
);
783 return ConvertVTs(RC
.getValueTypes());
784 } else if (R
->isSubClassOf("PatFrag")) {
785 // Pattern fragment types will be resolved when they are inlined.
787 } else if (R
->isSubClassOf("Register")) {
790 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
791 return T
.getRegisterVTs(R
);
792 } else if (R
->isSubClassOf("ValueType") || R
->isSubClassOf("CondCode")) {
793 // Using a VTSDNode or CondCodeSDNode.
795 } else if (R
->isSubClassOf("ComplexPattern")) {
798 std::vector
<unsigned char>
799 ComplexPat(1, TP
.getDAGPatterns().getComplexPattern(R
).getValueType());
801 } else if (R
->isSubClassOf("PointerLikeRegClass")) {
802 Other
[0] = MVT::iPTR
;
804 } else if (R
->getName() == "node" || R
->getName() == "srcvalue" ||
805 R
->getName() == "zero_reg") {
810 TP
.error("Unknown node flavor used in pattern: " + R
->getName());
815 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
816 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
817 const CodeGenIntrinsic
*TreePatternNode::
818 getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const {
819 if (getOperator() != CDP
.get_intrinsic_void_sdnode() &&
820 getOperator() != CDP
.get_intrinsic_w_chain_sdnode() &&
821 getOperator() != CDP
.get_intrinsic_wo_chain_sdnode())
825 dynamic_cast<IntInit
*>(getChild(0)->getLeafValue())->getValue();
826 return &CDP
.getIntrinsicInfo(IID
);
829 /// isCommutativeIntrinsic - Return true if the node corresponds to a
830 /// commutative intrinsic.
832 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const {
833 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
))
834 return Int
->isCommutative
;
839 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
840 /// this node and its children in the tree. This returns true if it makes a
841 /// change, false otherwise. If a type contradiction is found, throw an
843 bool TreePatternNode::ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
) {
844 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
846 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
847 // If it's a regclass or something else known, include the type.
848 return UpdateNodeType(getImplicitType(DI
->getDef(), NotRegisters
, TP
),TP
);
849 } else if (IntInit
*II
= dynamic_cast<IntInit
*>(getLeafValue())) {
850 // Int inits are always integers. :)
851 bool MadeChange
= UpdateNodeType(MVT::iAny
, TP
);
854 // At some point, it may make sense for this tree pattern to have
855 // multiple types. Assert here that it does not, so we revisit this
856 // code when appropriate.
857 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
858 MVT::SimpleValueType VT
= getTypeNum(0);
859 for (unsigned i
= 1, e
= getExtTypes().size(); i
!= e
; ++i
)
860 assert(getTypeNum(i
) == VT
&& "TreePattern has too many types!");
863 if (VT
!= MVT::iPTR
&& VT
!= MVT::iPTRAny
) {
864 unsigned Size
= EVT(VT
).getSizeInBits();
865 // Make sure that the value is representable for this type.
867 int Val
= (II
->getValue() << (32-Size
)) >> (32-Size
);
868 if (Val
!= II
->getValue()) {
869 // If sign-extended doesn't fit, does it fit as unsigned?
871 unsigned UnsignedVal
;
872 ValueMask
= unsigned(~uint32_t(0UL) >> (32-Size
));
873 UnsignedVal
= unsigned(II
->getValue());
875 if ((ValueMask
& UnsignedVal
) != UnsignedVal
) {
876 TP
.error("Integer value '" + itostr(II
->getValue())+
877 "' is out of range for type '" +
878 getEnumName(getTypeNum(0)) + "'!");
890 // special handling for set, which isn't really an SDNode.
891 if (getOperator()->getName() == "set") {
892 assert (getNumChildren() >= 2 && "Missing RHS of a set?");
893 unsigned NC
= getNumChildren();
894 bool MadeChange
= false;
895 for (unsigned i
= 0; i
< NC
-1; ++i
) {
896 MadeChange
= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
897 MadeChange
|= getChild(NC
-1)->ApplyTypeConstraints(TP
, NotRegisters
);
899 // Types of operands must match.
900 MadeChange
|= getChild(i
)->UpdateNodeType(getChild(NC
-1)->getExtTypes(),
902 MadeChange
|= getChild(NC
-1)->UpdateNodeType(getChild(i
)->getExtTypes(),
904 MadeChange
|= UpdateNodeType(MVT::isVoid
, TP
);
907 } else if (getOperator()->getName() == "implicit" ||
908 getOperator()->getName() == "parallel") {
909 bool MadeChange
= false;
910 for (unsigned i
= 0; i
< getNumChildren(); ++i
)
911 MadeChange
= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
912 MadeChange
|= UpdateNodeType(MVT::isVoid
, TP
);
914 } else if (getOperator()->getName() == "COPY_TO_REGCLASS") {
915 bool MadeChange
= false;
916 MadeChange
|= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
917 MadeChange
|= getChild(1)->ApplyTypeConstraints(TP
, NotRegisters
);
918 MadeChange
|= UpdateNodeType(getChild(1)->getTypeNum(0), TP
);
920 } else if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
)) {
921 bool MadeChange
= false;
923 // Apply the result type to the node.
924 unsigned NumRetVTs
= Int
->IS
.RetVTs
.size();
925 unsigned NumParamVTs
= Int
->IS
.ParamVTs
.size();
927 for (unsigned i
= 0, e
= NumRetVTs
; i
!= e
; ++i
)
928 MadeChange
|= UpdateNodeType(Int
->IS
.RetVTs
[i
], TP
);
930 if (getNumChildren() != NumParamVTs
+ NumRetVTs
)
931 TP
.error("Intrinsic '" + Int
->Name
+ "' expects " +
932 utostr(NumParamVTs
+ NumRetVTs
- 1) + " operands, not " +
933 utostr(getNumChildren() - 1) + " operands!");
935 // Apply type info to the intrinsic ID.
936 MadeChange
|= getChild(0)->UpdateNodeType(MVT::iPTR
, TP
);
938 for (unsigned i
= NumRetVTs
, e
= getNumChildren(); i
!= e
; ++i
) {
939 MVT::SimpleValueType OpVT
= Int
->IS
.ParamVTs
[i
- NumRetVTs
];
940 MadeChange
|= getChild(i
)->UpdateNodeType(OpVT
, TP
);
941 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
944 } else if (getOperator()->isSubClassOf("SDNode")) {
945 const SDNodeInfo
&NI
= CDP
.getSDNodeInfo(getOperator());
947 bool MadeChange
= NI
.ApplyTypeConstraints(this, TP
);
948 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
949 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
950 // Branch, etc. do not produce results and top-level forms in instr pattern
951 // must have void types.
952 if (NI
.getNumResults() == 0)
953 MadeChange
|= UpdateNodeType(MVT::isVoid
, TP
);
956 } else if (getOperator()->isSubClassOf("Instruction")) {
957 const DAGInstruction
&Inst
= CDP
.getInstruction(getOperator());
958 bool MadeChange
= false;
959 unsigned NumResults
= Inst
.getNumResults();
961 assert(NumResults
<= 1 &&
962 "Only supports zero or one result instrs!");
964 CodeGenInstruction
&InstInfo
=
965 CDP
.getTargetInfo().getInstruction(getOperator()->getName());
966 // Apply the result type to the node
967 if (NumResults
== 0 || InstInfo
.NumDefs
== 0) {
968 MadeChange
= UpdateNodeType(MVT::isVoid
, TP
);
970 Record
*ResultNode
= Inst
.getResult(0);
972 if (ResultNode
->isSubClassOf("PointerLikeRegClass")) {
973 std::vector
<unsigned char> VT
;
974 VT
.push_back(MVT::iPTR
);
975 MadeChange
= UpdateNodeType(VT
, TP
);
976 } else if (ResultNode
->getName() == "unknown") {
977 std::vector
<unsigned char> VT
;
978 VT
.push_back(EEVT::isUnknown
);
979 MadeChange
= UpdateNodeType(VT
, TP
);
981 assert(ResultNode
->isSubClassOf("RegisterClass") &&
982 "Operands should be register classes!");
984 const CodeGenRegisterClass
&RC
=
985 CDP
.getTargetInfo().getRegisterClass(ResultNode
);
986 MadeChange
= UpdateNodeType(ConvertVTs(RC
.getValueTypes()), TP
);
990 unsigned ChildNo
= 0;
991 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
) {
992 Record
*OperandNode
= Inst
.getOperand(i
);
994 // If the instruction expects a predicate or optional def operand, we
995 // codegen this by setting the operand to it's default value if it has a
996 // non-empty DefaultOps field.
997 if ((OperandNode
->isSubClassOf("PredicateOperand") ||
998 OperandNode
->isSubClassOf("OptionalDefOperand")) &&
999 !CDP
.getDefaultOperand(OperandNode
).DefaultOps
.empty())
1002 // Verify that we didn't run out of provided operands.
1003 if (ChildNo
>= getNumChildren())
1004 TP
.error("Instruction '" + getOperator()->getName() +
1005 "' expects more operands than were provided.");
1007 MVT::SimpleValueType VT
;
1008 TreePatternNode
*Child
= getChild(ChildNo
++);
1009 if (OperandNode
->isSubClassOf("RegisterClass")) {
1010 const CodeGenRegisterClass
&RC
=
1011 CDP
.getTargetInfo().getRegisterClass(OperandNode
);
1012 MadeChange
|= Child
->UpdateNodeType(ConvertVTs(RC
.getValueTypes()), TP
);
1013 } else if (OperandNode
->isSubClassOf("Operand")) {
1014 VT
= getValueType(OperandNode
->getValueAsDef("Type"));
1015 MadeChange
|= Child
->UpdateNodeType(VT
, TP
);
1016 } else if (OperandNode
->isSubClassOf("PointerLikeRegClass")) {
1017 MadeChange
|= Child
->UpdateNodeType(MVT::iPTR
, TP
);
1018 } else if (OperandNode
->getName() == "unknown") {
1019 MadeChange
|= Child
->UpdateNodeType(EEVT::isUnknown
, TP
);
1021 assert(0 && "Unknown operand type!");
1024 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1027 if (ChildNo
!= getNumChildren())
1028 TP
.error("Instruction '" + getOperator()->getName() +
1029 "' was provided too many operands!");
1033 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1035 // Node transforms always take one operand.
1036 if (getNumChildren() != 1)
1037 TP
.error("Node transform '" + getOperator()->getName() +
1038 "' requires one operand!");
1040 // If either the output or input of the xform does not have exact
1041 // type info. We assume they must be the same. Otherwise, it is perfectly
1042 // legal to transform from one type to a completely different type.
1043 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1044 bool MadeChange
= UpdateNodeType(getChild(0)->getExtTypes(), TP
);
1045 MadeChange
|= getChild(0)->UpdateNodeType(getExtTypes(), TP
);
1052 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1053 /// RHS of a commutative operation, not the on LHS.
1054 static bool OnlyOnRHSOfCommutative(TreePatternNode
*N
) {
1055 if (!N
->isLeaf() && N
->getOperator()->getName() == "imm")
1057 if (N
->isLeaf() && dynamic_cast<IntInit
*>(N
->getLeafValue()))
1063 /// canPatternMatch - If it is impossible for this pattern to match on this
1064 /// target, fill in Reason and return false. Otherwise, return true. This is
1065 /// used as a sanity check for .td files (to prevent people from writing stuff
1066 /// that can never possibly work), and to prevent the pattern permuter from
1067 /// generating stuff that is useless.
1068 bool TreePatternNode::canPatternMatch(std::string
&Reason
,
1069 const CodeGenDAGPatterns
&CDP
) {
1070 if (isLeaf()) return true;
1072 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1073 if (!getChild(i
)->canPatternMatch(Reason
, CDP
))
1076 // If this is an intrinsic, handle cases that would make it not match. For
1077 // example, if an operand is required to be an immediate.
1078 if (getOperator()->isSubClassOf("Intrinsic")) {
1083 // If this node is a commutative operator, check that the LHS isn't an
1085 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(getOperator());
1086 bool isCommIntrinsic
= isCommutativeIntrinsic(CDP
);
1087 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
1088 // Scan all of the operands of the node and make sure that only the last one
1089 // is a constant node, unless the RHS also is.
1090 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1091 bool Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
1092 for (unsigned i
= Skip
, e
= getNumChildren()-1; i
!= e
; ++i
)
1093 if (OnlyOnRHSOfCommutative(getChild(i
))) {
1094 Reason
="Immediate value must be on the RHS of commutative operators!";
1103 //===----------------------------------------------------------------------===//
1104 // TreePattern implementation
1107 TreePattern::TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
1108 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1109 isInputPattern
= isInput
;
1110 for (unsigned i
= 0, e
= RawPat
->getSize(); i
!= e
; ++i
)
1111 Trees
.push_back(ParseTreePattern((DagInit
*)RawPat
->getElement(i
)));
1114 TreePattern::TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
1115 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1116 isInputPattern
= isInput
;
1117 Trees
.push_back(ParseTreePattern(Pat
));
1120 TreePattern::TreePattern(Record
*TheRec
, TreePatternNode
*Pat
, bool isInput
,
1121 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1122 isInputPattern
= isInput
;
1123 Trees
.push_back(Pat
);
1128 void TreePattern::error(const std::string
&Msg
) const {
1130 throw TGError(TheRecord
->getLoc(), "In " + TheRecord
->getName() + ": " + Msg
);
1133 TreePatternNode
*TreePattern::ParseTreePattern(DagInit
*Dag
) {
1134 DefInit
*OpDef
= dynamic_cast<DefInit
*>(Dag
->getOperator());
1135 if (!OpDef
) error("Pattern has unexpected operator type!");
1136 Record
*Operator
= OpDef
->getDef();
1138 if (Operator
->isSubClassOf("ValueType")) {
1139 // If the operator is a ValueType, then this must be "type cast" of a leaf
1141 if (Dag
->getNumArgs() != 1)
1142 error("Type cast only takes one operand!");
1144 Init
*Arg
= Dag
->getArg(0);
1145 TreePatternNode
*New
;
1146 if (DefInit
*DI
= dynamic_cast<DefInit
*>(Arg
)) {
1147 Record
*R
= DI
->getDef();
1148 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrag")) {
1149 Dag
->setArg(0, new DagInit(DI
, "",
1150 std::vector
<std::pair
<Init
*, std::string
> >()));
1151 return ParseTreePattern(Dag
);
1153 New
= new TreePatternNode(DI
);
1154 } else if (DagInit
*DI
= dynamic_cast<DagInit
*>(Arg
)) {
1155 New
= ParseTreePattern(DI
);
1156 } else if (IntInit
*II
= dynamic_cast<IntInit
*>(Arg
)) {
1157 New
= new TreePatternNode(II
);
1158 if (!Dag
->getArgName(0).empty())
1159 error("Constant int argument should not have a name!");
1160 } else if (BitsInit
*BI
= dynamic_cast<BitsInit
*>(Arg
)) {
1161 // Turn this into an IntInit.
1162 Init
*II
= BI
->convertInitializerTo(new IntRecTy());
1163 if (II
== 0 || !dynamic_cast<IntInit
*>(II
))
1164 error("Bits value must be constants!");
1166 New
= new TreePatternNode(dynamic_cast<IntInit
*>(II
));
1167 if (!Dag
->getArgName(0).empty())
1168 error("Constant int argument should not have a name!");
1171 error("Unknown leaf value for tree pattern!");
1175 // Apply the type cast.
1176 New
->UpdateNodeType(getValueType(Operator
), *this);
1177 if (New
->getNumChildren() == 0)
1178 New
->setName(Dag
->getArgName(0));
1182 // Verify that this is something that makes sense for an operator.
1183 if (!Operator
->isSubClassOf("PatFrag") &&
1184 !Operator
->isSubClassOf("SDNode") &&
1185 !Operator
->isSubClassOf("Instruction") &&
1186 !Operator
->isSubClassOf("SDNodeXForm") &&
1187 !Operator
->isSubClassOf("Intrinsic") &&
1188 Operator
->getName() != "set" &&
1189 Operator
->getName() != "implicit" &&
1190 Operator
->getName() != "parallel")
1191 error("Unrecognized node '" + Operator
->getName() + "'!");
1193 // Check to see if this is something that is illegal in an input pattern.
1194 if (isInputPattern
&& (Operator
->isSubClassOf("Instruction") ||
1195 Operator
->isSubClassOf("SDNodeXForm")))
1196 error("Cannot use '" + Operator
->getName() + "' in an input pattern!");
1198 std::vector
<TreePatternNode
*> Children
;
1200 for (unsigned i
= 0, e
= Dag
->getNumArgs(); i
!= e
; ++i
) {
1201 Init
*Arg
= Dag
->getArg(i
);
1202 if (DagInit
*DI
= dynamic_cast<DagInit
*>(Arg
)) {
1203 Children
.push_back(ParseTreePattern(DI
));
1204 if (Children
.back()->getName().empty())
1205 Children
.back()->setName(Dag
->getArgName(i
));
1206 } else if (DefInit
*DefI
= dynamic_cast<DefInit
*>(Arg
)) {
1207 Record
*R
= DefI
->getDef();
1208 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1209 // TreePatternNode if its own.
1210 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrag")) {
1211 Dag
->setArg(i
, new DagInit(DefI
, "",
1212 std::vector
<std::pair
<Init
*, std::string
> >()));
1213 --i
; // Revisit this node...
1215 TreePatternNode
*Node
= new TreePatternNode(DefI
);
1216 Node
->setName(Dag
->getArgName(i
));
1217 Children
.push_back(Node
);
1220 if (R
->getName() == "node") {
1221 if (Dag
->getArgName(i
).empty())
1222 error("'node' argument requires a name to match with operand list");
1223 Args
.push_back(Dag
->getArgName(i
));
1226 } else if (IntInit
*II
= dynamic_cast<IntInit
*>(Arg
)) {
1227 TreePatternNode
*Node
= new TreePatternNode(II
);
1228 if (!Dag
->getArgName(i
).empty())
1229 error("Constant int argument should not have a name!");
1230 Children
.push_back(Node
);
1231 } else if (BitsInit
*BI
= dynamic_cast<BitsInit
*>(Arg
)) {
1232 // Turn this into an IntInit.
1233 Init
*II
= BI
->convertInitializerTo(new IntRecTy());
1234 if (II
== 0 || !dynamic_cast<IntInit
*>(II
))
1235 error("Bits value must be constants!");
1237 TreePatternNode
*Node
= new TreePatternNode(dynamic_cast<IntInit
*>(II
));
1238 if (!Dag
->getArgName(i
).empty())
1239 error("Constant int argument should not have a name!");
1240 Children
.push_back(Node
);
1245 error("Unknown leaf value for tree pattern!");
1249 // If the operator is an intrinsic, then this is just syntactic sugar for for
1250 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1251 // convert the intrinsic name to a number.
1252 if (Operator
->isSubClassOf("Intrinsic")) {
1253 const CodeGenIntrinsic
&Int
= getDAGPatterns().getIntrinsic(Operator
);
1254 unsigned IID
= getDAGPatterns().getIntrinsicID(Operator
)+1;
1256 // If this intrinsic returns void, it must have side-effects and thus a
1258 if (Int
.IS
.RetVTs
[0] == MVT::isVoid
) {
1259 Operator
= getDAGPatterns().get_intrinsic_void_sdnode();
1260 } else if (Int
.ModRef
!= CodeGenIntrinsic::NoMem
) {
1261 // Has side-effects, requires chain.
1262 Operator
= getDAGPatterns().get_intrinsic_w_chain_sdnode();
1264 // Otherwise, no chain.
1265 Operator
= getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1268 TreePatternNode
*IIDNode
= new TreePatternNode(new IntInit(IID
));
1269 Children
.insert(Children
.begin(), IIDNode
);
1272 TreePatternNode
*Result
= new TreePatternNode(Operator
, Children
);
1273 Result
->setName(Dag
->getName());
1277 /// InferAllTypes - Infer/propagate as many types throughout the expression
1278 /// patterns as possible. Return true if all types are inferred, false
1279 /// otherwise. Throw an exception if a type contradiction is found.
1280 bool TreePattern::InferAllTypes() {
1281 bool MadeChange
= true;
1282 while (MadeChange
) {
1284 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1285 MadeChange
|= Trees
[i
]->ApplyTypeConstraints(*this, false);
1288 bool HasUnresolvedTypes
= false;
1289 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1290 HasUnresolvedTypes
|= Trees
[i
]->ContainsUnresolvedType();
1291 return !HasUnresolvedTypes
;
1294 void TreePattern::print(raw_ostream
&OS
) const {
1295 OS
<< getRecord()->getName();
1296 if (!Args
.empty()) {
1297 OS
<< "(" << Args
[0];
1298 for (unsigned i
= 1, e
= Args
.size(); i
!= e
; ++i
)
1299 OS
<< ", " << Args
[i
];
1304 if (Trees
.size() > 1)
1306 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1308 Trees
[i
]->print(OS
);
1312 if (Trees
.size() > 1)
1316 void TreePattern::dump() const { print(errs()); }
1318 //===----------------------------------------------------------------------===//
1319 // CodeGenDAGPatterns implementation
1322 // FIXME: REMOVE OSTREAM ARGUMENT
1323 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper
&R
) : Records(R
) {
1324 Intrinsics
= LoadIntrinsics(Records
, false);
1325 TgtIntrinsics
= LoadIntrinsics(Records
, true);
1327 ParseNodeTransforms();
1328 ParseComplexPatterns();
1329 ParsePatternFragments();
1330 ParseDefaultOperands();
1331 ParseInstructions();
1334 // Generate variants. For example, commutative patterns can match
1335 // multiple ways. Add them to PatternsToMatch as well.
1338 // Infer instruction flags. For example, we can detect loads,
1339 // stores, and side effects in many cases by examining an
1340 // instruction's pattern.
1341 InferInstructionFlags();
1344 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
1345 for (pf_iterator I
= PatternFragments
.begin(),
1346 E
= PatternFragments
.end(); I
!= E
; ++I
)
1351 Record
*CodeGenDAGPatterns::getSDNodeNamed(const std::string
&Name
) const {
1352 Record
*N
= Records
.getDef(Name
);
1353 if (!N
|| !N
->isSubClassOf("SDNode")) {
1354 errs() << "Error getting SDNode '" << Name
<< "'!\n";
1360 // Parse all of the SDNode definitions for the target, populating SDNodes.
1361 void CodeGenDAGPatterns::ParseNodeInfo() {
1362 std::vector
<Record
*> Nodes
= Records
.getAllDerivedDefinitions("SDNode");
1363 while (!Nodes
.empty()) {
1364 SDNodes
.insert(std::make_pair(Nodes
.back(), Nodes
.back()));
1368 // Get the builtin intrinsic nodes.
1369 intrinsic_void_sdnode
= getSDNodeNamed("intrinsic_void");
1370 intrinsic_w_chain_sdnode
= getSDNodeNamed("intrinsic_w_chain");
1371 intrinsic_wo_chain_sdnode
= getSDNodeNamed("intrinsic_wo_chain");
1374 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1375 /// map, and emit them to the file as functions.
1376 void CodeGenDAGPatterns::ParseNodeTransforms() {
1377 std::vector
<Record
*> Xforms
= Records
.getAllDerivedDefinitions("SDNodeXForm");
1378 while (!Xforms
.empty()) {
1379 Record
*XFormNode
= Xforms
.back();
1380 Record
*SDNode
= XFormNode
->getValueAsDef("Opcode");
1381 std::string Code
= XFormNode
->getValueAsCode("XFormFunction");
1382 SDNodeXForms
.insert(std::make_pair(XFormNode
, NodeXForm(SDNode
, Code
)));
1388 void CodeGenDAGPatterns::ParseComplexPatterns() {
1389 std::vector
<Record
*> AMs
= Records
.getAllDerivedDefinitions("ComplexPattern");
1390 while (!AMs
.empty()) {
1391 ComplexPatterns
.insert(std::make_pair(AMs
.back(), AMs
.back()));
1397 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1398 /// file, building up the PatternFragments map. After we've collected them all,
1399 /// inline fragments together as necessary, so that there are no references left
1400 /// inside a pattern fragment to a pattern fragment.
1402 void CodeGenDAGPatterns::ParsePatternFragments() {
1403 std::vector
<Record
*> Fragments
= Records
.getAllDerivedDefinitions("PatFrag");
1405 // First step, parse all of the fragments.
1406 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
1407 DagInit
*Tree
= Fragments
[i
]->getValueAsDag("Fragment");
1408 TreePattern
*P
= new TreePattern(Fragments
[i
], Tree
, true, *this);
1409 PatternFragments
[Fragments
[i
]] = P
;
1411 // Validate the argument list, converting it to set, to discard duplicates.
1412 std::vector
<std::string
> &Args
= P
->getArgList();
1413 std::set
<std::string
> OperandsSet(Args
.begin(), Args
.end());
1415 if (OperandsSet
.count(""))
1416 P
->error("Cannot have unnamed 'node' values in pattern fragment!");
1418 // Parse the operands list.
1419 DagInit
*OpsList
= Fragments
[i
]->getValueAsDag("Operands");
1420 DefInit
*OpsOp
= dynamic_cast<DefInit
*>(OpsList
->getOperator());
1421 // Special cases: ops == outs == ins. Different names are used to
1422 // improve readability.
1424 (OpsOp
->getDef()->getName() != "ops" &&
1425 OpsOp
->getDef()->getName() != "outs" &&
1426 OpsOp
->getDef()->getName() != "ins"))
1427 P
->error("Operands list should start with '(ops ... '!");
1429 // Copy over the arguments.
1431 for (unsigned j
= 0, e
= OpsList
->getNumArgs(); j
!= e
; ++j
) {
1432 if (!dynamic_cast<DefInit
*>(OpsList
->getArg(j
)) ||
1433 static_cast<DefInit
*>(OpsList
->getArg(j
))->
1434 getDef()->getName() != "node")
1435 P
->error("Operands list should all be 'node' values.");
1436 if (OpsList
->getArgName(j
).empty())
1437 P
->error("Operands list should have names for each operand!");
1438 if (!OperandsSet
.count(OpsList
->getArgName(j
)))
1439 P
->error("'" + OpsList
->getArgName(j
) +
1440 "' does not occur in pattern or was multiply specified!");
1441 OperandsSet
.erase(OpsList
->getArgName(j
));
1442 Args
.push_back(OpsList
->getArgName(j
));
1445 if (!OperandsSet
.empty())
1446 P
->error("Operands list does not contain an entry for operand '" +
1447 *OperandsSet
.begin() + "'!");
1449 // If there is a code init for this fragment, keep track of the fact that
1450 // this fragment uses it.
1451 std::string Code
= Fragments
[i
]->getValueAsCode("Predicate");
1453 P
->getOnlyTree()->addPredicateFn("Predicate_"+Fragments
[i
]->getName());
1455 // If there is a node transformation corresponding to this, keep track of
1457 Record
*Transform
= Fragments
[i
]->getValueAsDef("OperandTransform");
1458 if (!getSDNodeTransform(Transform
).second
.empty()) // not noop xform?
1459 P
->getOnlyTree()->setTransformFn(Transform
);
1462 // Now that we've parsed all of the tree fragments, do a closure on them so
1463 // that there are not references to PatFrags left inside of them.
1464 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
1465 TreePattern
*ThePat
= PatternFragments
[Fragments
[i
]];
1466 ThePat
->InlinePatternFragments();
1468 // Infer as many types as possible. Don't worry about it if we don't infer
1469 // all of them, some may depend on the inputs of the pattern.
1471 ThePat
->InferAllTypes();
1473 // If this pattern fragment is not supported by this target (no types can
1474 // satisfy its constraints), just ignore it. If the bogus pattern is
1475 // actually used by instructions, the type consistency error will be
1479 // If debugging, print out the pattern fragment result.
1480 DEBUG(ThePat
->dump());
1484 void CodeGenDAGPatterns::ParseDefaultOperands() {
1485 std::vector
<Record
*> DefaultOps
[2];
1486 DefaultOps
[0] = Records
.getAllDerivedDefinitions("PredicateOperand");
1487 DefaultOps
[1] = Records
.getAllDerivedDefinitions("OptionalDefOperand");
1489 // Find some SDNode.
1490 assert(!SDNodes
.empty() && "No SDNodes parsed?");
1491 Init
*SomeSDNode
= new DefInit(SDNodes
.begin()->first
);
1493 for (unsigned iter
= 0; iter
!= 2; ++iter
) {
1494 for (unsigned i
= 0, e
= DefaultOps
[iter
].size(); i
!= e
; ++i
) {
1495 DagInit
*DefaultInfo
= DefaultOps
[iter
][i
]->getValueAsDag("DefaultOps");
1497 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1498 // SomeSDnode so that we can parse this.
1499 std::vector
<std::pair
<Init
*, std::string
> > Ops
;
1500 for (unsigned op
= 0, e
= DefaultInfo
->getNumArgs(); op
!= e
; ++op
)
1501 Ops
.push_back(std::make_pair(DefaultInfo
->getArg(op
),
1502 DefaultInfo
->getArgName(op
)));
1503 DagInit
*DI
= new DagInit(SomeSDNode
, "", Ops
);
1505 // Create a TreePattern to parse this.
1506 TreePattern
P(DefaultOps
[iter
][i
], DI
, false, *this);
1507 assert(P
.getNumTrees() == 1 && "This ctor can only produce one tree!");
1509 // Copy the operands over into a DAGDefaultOperand.
1510 DAGDefaultOperand DefaultOpInfo
;
1512 TreePatternNode
*T
= P
.getTree(0);
1513 for (unsigned op
= 0, e
= T
->getNumChildren(); op
!= e
; ++op
) {
1514 TreePatternNode
*TPN
= T
->getChild(op
);
1515 while (TPN
->ApplyTypeConstraints(P
, false))
1516 /* Resolve all types */;
1518 if (TPN
->ContainsUnresolvedType()) {
1520 throw "Value #" + utostr(i
) + " of PredicateOperand '" +
1521 DefaultOps
[iter
][i
]->getName() + "' doesn't have a concrete type!";
1523 throw "Value #" + utostr(i
) + " of OptionalDefOperand '" +
1524 DefaultOps
[iter
][i
]->getName() + "' doesn't have a concrete type!";
1526 DefaultOpInfo
.DefaultOps
.push_back(TPN
);
1529 // Insert it into the DefaultOperands map so we can find it later.
1530 DefaultOperands
[DefaultOps
[iter
][i
]] = DefaultOpInfo
;
1535 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1536 /// instruction input. Return true if this is a real use.
1537 static bool HandleUse(TreePattern
*I
, TreePatternNode
*Pat
,
1538 std::map
<std::string
, TreePatternNode
*> &InstInputs
,
1539 std::vector
<Record
*> &InstImpInputs
) {
1540 // No name -> not interesting.
1541 if (Pat
->getName().empty()) {
1542 if (Pat
->isLeaf()) {
1543 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
1544 if (DI
&& DI
->getDef()->isSubClassOf("RegisterClass"))
1545 I
->error("Input " + DI
->getDef()->getName() + " must be named!");
1546 else if (DI
&& DI
->getDef()->isSubClassOf("Register"))
1547 InstImpInputs
.push_back(DI
->getDef());
1553 if (Pat
->isLeaf()) {
1554 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
1555 if (!DI
) I
->error("Input $" + Pat
->getName() + " must be an identifier!");
1558 Rec
= Pat
->getOperator();
1561 // SRCVALUE nodes are ignored.
1562 if (Rec
->getName() == "srcvalue")
1565 TreePatternNode
*&Slot
= InstInputs
[Pat
->getName()];
1570 if (Slot
->isLeaf()) {
1571 SlotRec
= dynamic_cast<DefInit
*>(Slot
->getLeafValue())->getDef();
1573 assert(Slot
->getNumChildren() == 0 && "can't be a use with children!");
1574 SlotRec
= Slot
->getOperator();
1577 // Ensure that the inputs agree if we've already seen this input.
1579 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
1580 if (Slot
->getExtTypes() != Pat
->getExtTypes())
1581 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
1586 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1587 /// part of "I", the instruction), computing the set of inputs and outputs of
1588 /// the pattern. Report errors if we see anything naughty.
1589 void CodeGenDAGPatterns::
1590 FindPatternInputsAndOutputs(TreePattern
*I
, TreePatternNode
*Pat
,
1591 std::map
<std::string
, TreePatternNode
*> &InstInputs
,
1592 std::map
<std::string
, TreePatternNode
*>&InstResults
,
1593 std::vector
<Record
*> &InstImpInputs
,
1594 std::vector
<Record
*> &InstImpResults
) {
1595 if (Pat
->isLeaf()) {
1596 bool isUse
= HandleUse(I
, Pat
, InstInputs
, InstImpInputs
);
1597 if (!isUse
&& Pat
->getTransformFn())
1598 I
->error("Cannot specify a transform function for a non-input value!");
1600 } else if (Pat
->getOperator()->getName() == "implicit") {
1601 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
1602 TreePatternNode
*Dest
= Pat
->getChild(i
);
1603 if (!Dest
->isLeaf())
1604 I
->error("implicitly defined value should be a register!");
1606 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
1607 if (!Val
|| !Val
->getDef()->isSubClassOf("Register"))
1608 I
->error("implicitly defined value should be a register!");
1609 InstImpResults
.push_back(Val
->getDef());
1612 } else if (Pat
->getOperator()->getName() != "set") {
1613 // If this is not a set, verify that the children nodes are not void typed,
1615 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
1616 if (Pat
->getChild(i
)->getExtTypeNum(0) == MVT::isVoid
)
1617 I
->error("Cannot have void nodes inside of patterns!");
1618 FindPatternInputsAndOutputs(I
, Pat
->getChild(i
), InstInputs
, InstResults
,
1619 InstImpInputs
, InstImpResults
);
1622 // If this is a non-leaf node with no children, treat it basically as if
1623 // it were a leaf. This handles nodes like (imm).
1624 bool isUse
= HandleUse(I
, Pat
, InstInputs
, InstImpInputs
);
1626 if (!isUse
&& Pat
->getTransformFn())
1627 I
->error("Cannot specify a transform function for a non-input value!");
1631 // Otherwise, this is a set, validate and collect instruction results.
1632 if (Pat
->getNumChildren() == 0)
1633 I
->error("set requires operands!");
1635 if (Pat
->getTransformFn())
1636 I
->error("Cannot specify a transform function on a set node!");
1638 // Check the set destinations.
1639 unsigned NumDests
= Pat
->getNumChildren()-1;
1640 for (unsigned i
= 0; i
!= NumDests
; ++i
) {
1641 TreePatternNode
*Dest
= Pat
->getChild(i
);
1642 if (!Dest
->isLeaf())
1643 I
->error("set destination should be a register!");
1645 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
1647 I
->error("set destination should be a register!");
1649 if (Val
->getDef()->isSubClassOf("RegisterClass") ||
1650 Val
->getDef()->isSubClassOf("PointerLikeRegClass")) {
1651 if (Dest
->getName().empty())
1652 I
->error("set destination must have a name!");
1653 if (InstResults
.count(Dest
->getName()))
1654 I
->error("cannot set '" + Dest
->getName() +"' multiple times");
1655 InstResults
[Dest
->getName()] = Dest
;
1656 } else if (Val
->getDef()->isSubClassOf("Register")) {
1657 InstImpResults
.push_back(Val
->getDef());
1659 I
->error("set destination should be a register!");
1663 // Verify and collect info from the computation.
1664 FindPatternInputsAndOutputs(I
, Pat
->getChild(NumDests
),
1665 InstInputs
, InstResults
,
1666 InstImpInputs
, InstImpResults
);
1669 //===----------------------------------------------------------------------===//
1670 // Instruction Analysis
1671 //===----------------------------------------------------------------------===//
1673 class InstAnalyzer
{
1674 const CodeGenDAGPatterns
&CDP
;
1677 bool &HasSideEffects
;
1679 InstAnalyzer(const CodeGenDAGPatterns
&cdp
,
1680 bool &maystore
, bool &mayload
, bool &hse
)
1681 : CDP(cdp
), mayStore(maystore
), mayLoad(mayload
), HasSideEffects(hse
){
1684 /// Analyze - Analyze the specified instruction, returning true if the
1685 /// instruction had a pattern.
1686 bool Analyze(Record
*InstRecord
) {
1687 const TreePattern
*Pattern
= CDP
.getInstruction(InstRecord
).getPattern();
1690 return false; // No pattern.
1693 // FIXME: Assume only the first tree is the pattern. The others are clobber
1695 AnalyzeNode(Pattern
->getTree(0));
1700 void AnalyzeNode(const TreePatternNode
*N
) {
1702 if (DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
1703 Record
*LeafRec
= DI
->getDef();
1704 // Handle ComplexPattern leaves.
1705 if (LeafRec
->isSubClassOf("ComplexPattern")) {
1706 const ComplexPattern
&CP
= CDP
.getComplexPattern(LeafRec
);
1707 if (CP
.hasProperty(SDNPMayStore
)) mayStore
= true;
1708 if (CP
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
1709 if (CP
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
1715 // Analyze children.
1716 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
1717 AnalyzeNode(N
->getChild(i
));
1719 // Ignore set nodes, which are not SDNodes.
1720 if (N
->getOperator()->getName() == "set")
1723 // Get information about the SDNode for the operator.
1724 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N
->getOperator());
1726 // Notice properties of the node.
1727 if (OpInfo
.hasProperty(SDNPMayStore
)) mayStore
= true;
1728 if (OpInfo
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
1729 if (OpInfo
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
1731 if (const CodeGenIntrinsic
*IntInfo
= N
->getIntrinsicInfo(CDP
)) {
1732 // If this is an intrinsic, analyze it.
1733 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadArgMem
)
1734 mayLoad
= true;// These may load memory.
1736 if (IntInfo
->ModRef
>= CodeGenIntrinsic::WriteArgMem
)
1737 mayStore
= true;// Intrinsics that can write to memory are 'mayStore'.
1739 if (IntInfo
->ModRef
>= CodeGenIntrinsic::WriteMem
)
1740 // WriteMem intrinsics can have other strange effects.
1741 HasSideEffects
= true;
1747 static void InferFromPattern(const CodeGenInstruction
&Inst
,
1748 bool &MayStore
, bool &MayLoad
,
1749 bool &HasSideEffects
,
1750 const CodeGenDAGPatterns
&CDP
) {
1751 MayStore
= MayLoad
= HasSideEffects
= false;
1754 InstAnalyzer(CDP
, MayStore
, MayLoad
, HasSideEffects
).Analyze(Inst
.TheDef
);
1756 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
1757 if (Inst
.mayStore
) { // If the .td file explicitly sets mayStore, use it.
1758 // If we decided that this is a store from the pattern, then the .td file
1759 // entry is redundant.
1762 "Warning: mayStore flag explicitly set on instruction '%s'"
1763 " but flag already inferred from pattern.\n",
1764 Inst
.TheDef
->getName().c_str());
1768 if (Inst
.mayLoad
) { // If the .td file explicitly sets mayLoad, use it.
1769 // If we decided that this is a load from the pattern, then the .td file
1770 // entry is redundant.
1773 "Warning: mayLoad flag explicitly set on instruction '%s'"
1774 " but flag already inferred from pattern.\n",
1775 Inst
.TheDef
->getName().c_str());
1779 if (Inst
.neverHasSideEffects
) {
1781 fprintf(stderr
, "Warning: neverHasSideEffects set on instruction '%s' "
1782 "which already has a pattern\n", Inst
.TheDef
->getName().c_str());
1783 HasSideEffects
= false;
1786 if (Inst
.hasSideEffects
) {
1788 fprintf(stderr
, "Warning: hasSideEffects set on instruction '%s' "
1789 "which already inferred this.\n", Inst
.TheDef
->getName().c_str());
1790 HasSideEffects
= true;
1794 /// ParseInstructions - Parse all of the instructions, inlining and resolving
1795 /// any fragments involved. This populates the Instructions list with fully
1796 /// resolved instructions.
1797 void CodeGenDAGPatterns::ParseInstructions() {
1798 std::vector
<Record
*> Instrs
= Records
.getAllDerivedDefinitions("Instruction");
1800 for (unsigned i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
1803 if (dynamic_cast<ListInit
*>(Instrs
[i
]->getValueInit("Pattern")))
1804 LI
= Instrs
[i
]->getValueAsListInit("Pattern");
1806 // If there is no pattern, only collect minimal information about the
1807 // instruction for its operand list. We have to assume that there is one
1808 // result, as we have no detailed info.
1809 if (!LI
|| LI
->getSize() == 0) {
1810 std::vector
<Record
*> Results
;
1811 std::vector
<Record
*> Operands
;
1813 CodeGenInstruction
&InstInfo
=Target
.getInstruction(Instrs
[i
]->getName());
1815 if (InstInfo
.OperandList
.size() != 0) {
1816 if (InstInfo
.NumDefs
== 0) {
1817 // These produce no results
1818 for (unsigned j
= 0, e
= InstInfo
.OperandList
.size(); j
< e
; ++j
)
1819 Operands
.push_back(InstInfo
.OperandList
[j
].Rec
);
1821 // Assume the first operand is the result.
1822 Results
.push_back(InstInfo
.OperandList
[0].Rec
);
1824 // The rest are inputs.
1825 for (unsigned j
= 1, e
= InstInfo
.OperandList
.size(); j
< e
; ++j
)
1826 Operands
.push_back(InstInfo
.OperandList
[j
].Rec
);
1830 // Create and insert the instruction.
1831 std::vector
<Record
*> ImpResults
;
1832 std::vector
<Record
*> ImpOperands
;
1833 Instructions
.insert(std::make_pair(Instrs
[i
],
1834 DAGInstruction(0, Results
, Operands
, ImpResults
,
1836 continue; // no pattern.
1839 // Parse the instruction.
1840 TreePattern
*I
= new TreePattern(Instrs
[i
], LI
, true, *this);
1841 // Inline pattern fragments into it.
1842 I
->InlinePatternFragments();
1844 // Infer as many types as possible. If we cannot infer all of them, we can
1845 // never do anything with this instruction pattern: report it to the user.
1846 if (!I
->InferAllTypes())
1847 I
->error("Could not infer all types in pattern!");
1849 // InstInputs - Keep track of all of the inputs of the instruction, along
1850 // with the record they are declared as.
1851 std::map
<std::string
, TreePatternNode
*> InstInputs
;
1853 // InstResults - Keep track of all the virtual registers that are 'set'
1854 // in the instruction, including what reg class they are.
1855 std::map
<std::string
, TreePatternNode
*> InstResults
;
1857 std::vector
<Record
*> InstImpInputs
;
1858 std::vector
<Record
*> InstImpResults
;
1860 // Verify that the top-level forms in the instruction are of void type, and
1861 // fill in the InstResults map.
1862 for (unsigned j
= 0, e
= I
->getNumTrees(); j
!= e
; ++j
) {
1863 TreePatternNode
*Pat
= I
->getTree(j
);
1864 if (Pat
->getExtTypeNum(0) != MVT::isVoid
)
1865 I
->error("Top-level forms in instruction pattern should have"
1868 // Find inputs and outputs, and verify the structure of the uses/defs.
1869 FindPatternInputsAndOutputs(I
, Pat
, InstInputs
, InstResults
,
1870 InstImpInputs
, InstImpResults
);
1873 // Now that we have inputs and outputs of the pattern, inspect the operands
1874 // list for the instruction. This determines the order that operands are
1875 // added to the machine instruction the node corresponds to.
1876 unsigned NumResults
= InstResults
.size();
1878 // Parse the operands list from the (ops) list, validating it.
1879 assert(I
->getArgList().empty() && "Args list should still be empty here!");
1880 CodeGenInstruction
&CGI
= Target
.getInstruction(Instrs
[i
]->getName());
1882 // Check that all of the results occur first in the list.
1883 std::vector
<Record
*> Results
;
1884 TreePatternNode
*Res0Node
= NULL
;
1885 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
1886 if (i
== CGI
.OperandList
.size())
1887 I
->error("'" + InstResults
.begin()->first
+
1888 "' set but does not appear in operand list!");
1889 const std::string
&OpName
= CGI
.OperandList
[i
].Name
;
1891 // Check that it exists in InstResults.
1892 TreePatternNode
*RNode
= InstResults
[OpName
];
1894 I
->error("Operand $" + OpName
+ " does not exist in operand list!");
1898 Record
*R
= dynamic_cast<DefInit
*>(RNode
->getLeafValue())->getDef();
1900 I
->error("Operand $" + OpName
+ " should be a set destination: all "
1901 "outputs must occur before inputs in operand list!");
1903 if (CGI
.OperandList
[i
].Rec
!= R
)
1904 I
->error("Operand $" + OpName
+ " class mismatch!");
1906 // Remember the return type.
1907 Results
.push_back(CGI
.OperandList
[i
].Rec
);
1909 // Okay, this one checks out.
1910 InstResults
.erase(OpName
);
1913 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1914 // the copy while we're checking the inputs.
1915 std::map
<std::string
, TreePatternNode
*> InstInputsCheck(InstInputs
);
1917 std::vector
<TreePatternNode
*> ResultNodeOperands
;
1918 std::vector
<Record
*> Operands
;
1919 for (unsigned i
= NumResults
, e
= CGI
.OperandList
.size(); i
!= e
; ++i
) {
1920 CodeGenInstruction::OperandInfo
&Op
= CGI
.OperandList
[i
];
1921 const std::string
&OpName
= Op
.Name
;
1923 I
->error("Operand #" + utostr(i
) + " in operands list has no name!");
1925 if (!InstInputsCheck
.count(OpName
)) {
1926 // If this is an predicate operand or optional def operand with an
1927 // DefaultOps set filled in, we can ignore this. When we codegen it,
1928 // we will do so as always executed.
1929 if (Op
.Rec
->isSubClassOf("PredicateOperand") ||
1930 Op
.Rec
->isSubClassOf("OptionalDefOperand")) {
1931 // Does it have a non-empty DefaultOps field? If so, ignore this
1933 if (!getDefaultOperand(Op
.Rec
).DefaultOps
.empty())
1936 I
->error("Operand $" + OpName
+
1937 " does not appear in the instruction pattern");
1939 TreePatternNode
*InVal
= InstInputsCheck
[OpName
];
1940 InstInputsCheck
.erase(OpName
); // It occurred, remove from map.
1942 if (InVal
->isLeaf() &&
1943 dynamic_cast<DefInit
*>(InVal
->getLeafValue())) {
1944 Record
*InRec
= static_cast<DefInit
*>(InVal
->getLeafValue())->getDef();
1945 if (Op
.Rec
!= InRec
&& !InRec
->isSubClassOf("ComplexPattern"))
1946 I
->error("Operand $" + OpName
+ "'s register class disagrees"
1947 " between the operand and pattern");
1949 Operands
.push_back(Op
.Rec
);
1951 // Construct the result for the dest-pattern operand list.
1952 TreePatternNode
*OpNode
= InVal
->clone();
1954 // No predicate is useful on the result.
1955 OpNode
->clearPredicateFns();
1957 // Promote the xform function to be an explicit node if set.
1958 if (Record
*Xform
= OpNode
->getTransformFn()) {
1959 OpNode
->setTransformFn(0);
1960 std::vector
<TreePatternNode
*> Children
;
1961 Children
.push_back(OpNode
);
1962 OpNode
= new TreePatternNode(Xform
, Children
);
1965 ResultNodeOperands
.push_back(OpNode
);
1968 if (!InstInputsCheck
.empty())
1969 I
->error("Input operand $" + InstInputsCheck
.begin()->first
+
1970 " occurs in pattern but not in operands list!");
1972 TreePatternNode
*ResultPattern
=
1973 new TreePatternNode(I
->getRecord(), ResultNodeOperands
);
1974 // Copy fully inferred output node type to instruction result pattern.
1976 ResultPattern
->setTypes(Res0Node
->getExtTypes());
1978 // Create and insert the instruction.
1979 // FIXME: InstImpResults and InstImpInputs should not be part of
1981 DAGInstruction
TheInst(I
, Results
, Operands
, InstImpResults
, InstImpInputs
);
1982 Instructions
.insert(std::make_pair(I
->getRecord(), TheInst
));
1984 // Use a temporary tree pattern to infer all types and make sure that the
1985 // constructed result is correct. This depends on the instruction already
1986 // being inserted into the Instructions map.
1987 TreePattern
Temp(I
->getRecord(), ResultPattern
, false, *this);
1988 Temp
.InferAllTypes();
1990 DAGInstruction
&TheInsertedInst
= Instructions
.find(I
->getRecord())->second
;
1991 TheInsertedInst
.setResultPattern(Temp
.getOnlyTree());
1996 // If we can, convert the instructions to be patterns that are matched!
1997 for (std::map
<Record
*, DAGInstruction
, RecordPtrCmp
>::iterator II
=
1998 Instructions
.begin(),
1999 E
= Instructions
.end(); II
!= E
; ++II
) {
2000 DAGInstruction
&TheInst
= II
->second
;
2001 const TreePattern
*I
= TheInst
.getPattern();
2002 if (I
== 0) continue; // No pattern.
2004 // FIXME: Assume only the first tree is the pattern. The others are clobber
2006 TreePatternNode
*Pattern
= I
->getTree(0);
2007 TreePatternNode
*SrcPattern
;
2008 if (Pattern
->getOperator()->getName() == "set") {
2009 SrcPattern
= Pattern
->getChild(Pattern
->getNumChildren()-1)->clone();
2011 // Not a set (store or something?)
2012 SrcPattern
= Pattern
;
2016 if (!SrcPattern
->canPatternMatch(Reason
, *this))
2017 I
->error("Instruction can never match: " + Reason
);
2019 Record
*Instr
= II
->first
;
2020 TreePatternNode
*DstPattern
= TheInst
.getResultPattern();
2022 push_back(PatternToMatch(Instr
->getValueAsListInit("Predicates"),
2023 SrcPattern
, DstPattern
, TheInst
.getImpResults(),
2024 Instr
->getValueAsInt("AddedComplexity")));
2029 void CodeGenDAGPatterns::InferInstructionFlags() {
2030 std::map
<std::string
, CodeGenInstruction
> &InstrDescs
=
2031 Target
.getInstructions();
2032 for (std::map
<std::string
, CodeGenInstruction
>::iterator
2033 II
= InstrDescs
.begin(), E
= InstrDescs
.end(); II
!= E
; ++II
) {
2034 CodeGenInstruction
&InstInfo
= II
->second
;
2035 // Determine properties of the instruction from its pattern.
2036 bool MayStore
, MayLoad
, HasSideEffects
;
2037 InferFromPattern(InstInfo
, MayStore
, MayLoad
, HasSideEffects
, *this);
2038 InstInfo
.mayStore
= MayStore
;
2039 InstInfo
.mayLoad
= MayLoad
;
2040 InstInfo
.hasSideEffects
= HasSideEffects
;
2044 void CodeGenDAGPatterns::ParsePatterns() {
2045 std::vector
<Record
*> Patterns
= Records
.getAllDerivedDefinitions("Pattern");
2047 for (unsigned i
= 0, e
= Patterns
.size(); i
!= e
; ++i
) {
2048 DagInit
*Tree
= Patterns
[i
]->getValueAsDag("PatternToMatch");
2049 DefInit
*OpDef
= dynamic_cast<DefInit
*>(Tree
->getOperator());
2050 Record
*Operator
= OpDef
->getDef();
2051 TreePattern
*Pattern
;
2052 if (Operator
->getName() != "parallel")
2053 Pattern
= new TreePattern(Patterns
[i
], Tree
, true, *this);
2055 std::vector
<Init
*> Values
;
2057 for (unsigned j
= 0, ee
= Tree
->getNumArgs(); j
!= ee
; ++j
) {
2058 Values
.push_back(Tree
->getArg(j
));
2059 TypedInit
*TArg
= dynamic_cast<TypedInit
*>(Tree
->getArg(j
));
2061 errs() << "In dag: " << Tree
->getAsString();
2062 errs() << " -- Untyped argument in pattern\n";
2063 assert(0 && "Untyped argument in pattern");
2066 ListTy
= resolveTypes(ListTy
, TArg
->getType());
2068 errs() << "In dag: " << Tree
->getAsString();
2069 errs() << " -- Incompatible types in pattern arguments\n";
2070 assert(0 && "Incompatible types in pattern arguments");
2074 ListTy
= TArg
->getType();
2077 ListInit
*LI
= new ListInit(Values
, new ListRecTy(ListTy
));
2078 Pattern
= new TreePattern(Patterns
[i
], LI
, true, *this);
2081 // Inline pattern fragments into it.
2082 Pattern
->InlinePatternFragments();
2084 ListInit
*LI
= Patterns
[i
]->getValueAsListInit("ResultInstrs");
2085 if (LI
->getSize() == 0) continue; // no pattern.
2087 // Parse the instruction.
2088 TreePattern
*Result
= new TreePattern(Patterns
[i
], LI
, false, *this);
2090 // Inline pattern fragments into it.
2091 Result
->InlinePatternFragments();
2093 if (Result
->getNumTrees() != 1)
2094 Result
->error("Cannot handle instructions producing instructions "
2095 "with temporaries yet!");
2097 bool IterateInference
;
2098 bool InferredAllPatternTypes
, InferredAllResultTypes
;
2100 // Infer as many types as possible. If we cannot infer all of them, we
2101 // can never do anything with this pattern: report it to the user.
2102 InferredAllPatternTypes
= Pattern
->InferAllTypes();
2104 // Infer as many types as possible. If we cannot infer all of them, we
2105 // can never do anything with this pattern: report it to the user.
2106 InferredAllResultTypes
= Result
->InferAllTypes();
2108 // Apply the type of the result to the source pattern. This helps us
2109 // resolve cases where the input type is known to be a pointer type (which
2110 // is considered resolved), but the result knows it needs to be 32- or
2111 // 64-bits. Infer the other way for good measure.
2112 IterateInference
= Pattern
->getTree(0)->
2113 UpdateNodeType(Result
->getTree(0)->getExtTypes(), *Result
);
2114 IterateInference
|= Result
->getTree(0)->
2115 UpdateNodeType(Pattern
->getTree(0)->getExtTypes(), *Result
);
2116 } while (IterateInference
);
2118 // Verify that we inferred enough types that we can do something with the
2119 // pattern and result. If these fire the user has to add type casts.
2120 if (!InferredAllPatternTypes
)
2121 Pattern
->error("Could not infer all types in pattern!");
2122 if (!InferredAllResultTypes
)
2123 Result
->error("Could not infer all types in pattern result!");
2125 // Validate that the input pattern is correct.
2126 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2127 std::map
<std::string
, TreePatternNode
*> InstResults
;
2128 std::vector
<Record
*> InstImpInputs
;
2129 std::vector
<Record
*> InstImpResults
;
2130 for (unsigned j
= 0, ee
= Pattern
->getNumTrees(); j
!= ee
; ++j
)
2131 FindPatternInputsAndOutputs(Pattern
, Pattern
->getTree(j
),
2132 InstInputs
, InstResults
,
2133 InstImpInputs
, InstImpResults
);
2135 // Promote the xform function to be an explicit node if set.
2136 TreePatternNode
*DstPattern
= Result
->getOnlyTree();
2137 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2138 for (unsigned ii
= 0, ee
= DstPattern
->getNumChildren(); ii
!= ee
; ++ii
) {
2139 TreePatternNode
*OpNode
= DstPattern
->getChild(ii
);
2140 if (Record
*Xform
= OpNode
->getTransformFn()) {
2141 OpNode
->setTransformFn(0);
2142 std::vector
<TreePatternNode
*> Children
;
2143 Children
.push_back(OpNode
);
2144 OpNode
= new TreePatternNode(Xform
, Children
);
2146 ResultNodeOperands
.push_back(OpNode
);
2148 DstPattern
= Result
->getOnlyTree();
2149 if (!DstPattern
->isLeaf())
2150 DstPattern
= new TreePatternNode(DstPattern
->getOperator(),
2151 ResultNodeOperands
);
2152 DstPattern
->setTypes(Result
->getOnlyTree()->getExtTypes());
2153 TreePattern
Temp(Result
->getRecord(), DstPattern
, false, *this);
2154 Temp
.InferAllTypes();
2157 if (!Pattern
->getTree(0)->canPatternMatch(Reason
, *this))
2158 Pattern
->error("Pattern can never match: " + Reason
);
2161 push_back(PatternToMatch(Patterns
[i
]->getValueAsListInit("Predicates"),
2162 Pattern
->getTree(0),
2163 Temp
.getOnlyTree(), InstImpResults
,
2164 Patterns
[i
]->getValueAsInt("AddedComplexity")));
2168 /// CombineChildVariants - Given a bunch of permutations of each child of the
2169 /// 'operator' node, put them together in all possible ways.
2170 static void CombineChildVariants(TreePatternNode
*Orig
,
2171 const std::vector
<std::vector
<TreePatternNode
*> > &ChildVariants
,
2172 std::vector
<TreePatternNode
*> &OutVariants
,
2173 CodeGenDAGPatterns
&CDP
,
2174 const MultipleUseVarSet
&DepVars
) {
2175 // Make sure that each operand has at least one variant to choose from.
2176 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2177 if (ChildVariants
[i
].empty())
2180 // The end result is an all-pairs construction of the resultant pattern.
2181 std::vector
<unsigned> Idxs
;
2182 Idxs
.resize(ChildVariants
.size());
2186 if (DebugFlag
&& !Idxs
.empty()) {
2187 errs() << Orig
->getOperator()->getName() << ": Idxs = [ ";
2188 for (unsigned i
= 0; i
< Idxs
.size(); ++i
) {
2189 errs() << Idxs
[i
] << " ";
2194 // Create the variant and add it to the output list.
2195 std::vector
<TreePatternNode
*> NewChildren
;
2196 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2197 NewChildren
.push_back(ChildVariants
[i
][Idxs
[i
]]);
2198 TreePatternNode
*R
= new TreePatternNode(Orig
->getOperator(), NewChildren
);
2200 // Copy over properties.
2201 R
->setName(Orig
->getName());
2202 R
->setPredicateFns(Orig
->getPredicateFns());
2203 R
->setTransformFn(Orig
->getTransformFn());
2204 R
->setTypes(Orig
->getExtTypes());
2206 // If this pattern cannot match, do not include it as a variant.
2207 std::string ErrString
;
2208 if (!R
->canPatternMatch(ErrString
, CDP
)) {
2211 bool AlreadyExists
= false;
2213 // Scan to see if this pattern has already been emitted. We can get
2214 // duplication due to things like commuting:
2215 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
2216 // which are the same pattern. Ignore the dups.
2217 for (unsigned i
= 0, e
= OutVariants
.size(); i
!= e
; ++i
)
2218 if (R
->isIsomorphicTo(OutVariants
[i
], DepVars
)) {
2219 AlreadyExists
= true;
2226 OutVariants
.push_back(R
);
2229 // Increment indices to the next permutation by incrementing the
2230 // indicies from last index backward, e.g., generate the sequence
2231 // [0, 0], [0, 1], [1, 0], [1, 1].
2233 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
2234 if (++Idxs
[IdxsIdx
] == ChildVariants
[IdxsIdx
].size())
2239 NotDone
= (IdxsIdx
>= 0);
2243 /// CombineChildVariants - A helper function for binary operators.
2245 static void CombineChildVariants(TreePatternNode
*Orig
,
2246 const std::vector
<TreePatternNode
*> &LHS
,
2247 const std::vector
<TreePatternNode
*> &RHS
,
2248 std::vector
<TreePatternNode
*> &OutVariants
,
2249 CodeGenDAGPatterns
&CDP
,
2250 const MultipleUseVarSet
&DepVars
) {
2251 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
2252 ChildVariants
.push_back(LHS
);
2253 ChildVariants
.push_back(RHS
);
2254 CombineChildVariants(Orig
, ChildVariants
, OutVariants
, CDP
, DepVars
);
2258 static void GatherChildrenOfAssociativeOpcode(TreePatternNode
*N
,
2259 std::vector
<TreePatternNode
*> &Children
) {
2260 assert(N
->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
2261 Record
*Operator
= N
->getOperator();
2263 // Only permit raw nodes.
2264 if (!N
->getName().empty() || !N
->getPredicateFns().empty() ||
2265 N
->getTransformFn()) {
2266 Children
.push_back(N
);
2270 if (N
->getChild(0)->isLeaf() || N
->getChild(0)->getOperator() != Operator
)
2271 Children
.push_back(N
->getChild(0));
2273 GatherChildrenOfAssociativeOpcode(N
->getChild(0), Children
);
2275 if (N
->getChild(1)->isLeaf() || N
->getChild(1)->getOperator() != Operator
)
2276 Children
.push_back(N
->getChild(1));
2278 GatherChildrenOfAssociativeOpcode(N
->getChild(1), Children
);
2281 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
2282 /// the (potentially recursive) pattern by using algebraic laws.
2284 static void GenerateVariantsOf(TreePatternNode
*N
,
2285 std::vector
<TreePatternNode
*> &OutVariants
,
2286 CodeGenDAGPatterns
&CDP
,
2287 const MultipleUseVarSet
&DepVars
) {
2288 // We cannot permute leaves.
2290 OutVariants
.push_back(N
);
2294 // Look up interesting info about the node.
2295 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(N
->getOperator());
2297 // If this node is associative, re-associate.
2298 if (NodeInfo
.hasProperty(SDNPAssociative
)) {
2299 // Re-associate by pulling together all of the linked operators
2300 std::vector
<TreePatternNode
*> MaximalChildren
;
2301 GatherChildrenOfAssociativeOpcode(N
, MaximalChildren
);
2303 // Only handle child sizes of 3. Otherwise we'll end up trying too many
2305 if (MaximalChildren
.size() == 3) {
2306 // Find the variants of all of our maximal children.
2307 std::vector
<TreePatternNode
*> AVariants
, BVariants
, CVariants
;
2308 GenerateVariantsOf(MaximalChildren
[0], AVariants
, CDP
, DepVars
);
2309 GenerateVariantsOf(MaximalChildren
[1], BVariants
, CDP
, DepVars
);
2310 GenerateVariantsOf(MaximalChildren
[2], CVariants
, CDP
, DepVars
);
2312 // There are only two ways we can permute the tree:
2313 // (A op B) op C and A op (B op C)
2314 // Within these forms, we can also permute A/B/C.
2316 // Generate legal pair permutations of A/B/C.
2317 std::vector
<TreePatternNode
*> ABVariants
;
2318 std::vector
<TreePatternNode
*> BAVariants
;
2319 std::vector
<TreePatternNode
*> ACVariants
;
2320 std::vector
<TreePatternNode
*> CAVariants
;
2321 std::vector
<TreePatternNode
*> BCVariants
;
2322 std::vector
<TreePatternNode
*> CBVariants
;
2323 CombineChildVariants(N
, AVariants
, BVariants
, ABVariants
, CDP
, DepVars
);
2324 CombineChildVariants(N
, BVariants
, AVariants
, BAVariants
, CDP
, DepVars
);
2325 CombineChildVariants(N
, AVariants
, CVariants
, ACVariants
, CDP
, DepVars
);
2326 CombineChildVariants(N
, CVariants
, AVariants
, CAVariants
, CDP
, DepVars
);
2327 CombineChildVariants(N
, BVariants
, CVariants
, BCVariants
, CDP
, DepVars
);
2328 CombineChildVariants(N
, CVariants
, BVariants
, CBVariants
, CDP
, DepVars
);
2330 // Combine those into the result: (x op x) op x
2331 CombineChildVariants(N
, ABVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
2332 CombineChildVariants(N
, BAVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
2333 CombineChildVariants(N
, ACVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
2334 CombineChildVariants(N
, CAVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
2335 CombineChildVariants(N
, BCVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
2336 CombineChildVariants(N
, CBVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
2338 // Combine those into the result: x op (x op x)
2339 CombineChildVariants(N
, CVariants
, ABVariants
, OutVariants
, CDP
, DepVars
);
2340 CombineChildVariants(N
, CVariants
, BAVariants
, OutVariants
, CDP
, DepVars
);
2341 CombineChildVariants(N
, BVariants
, ACVariants
, OutVariants
, CDP
, DepVars
);
2342 CombineChildVariants(N
, BVariants
, CAVariants
, OutVariants
, CDP
, DepVars
);
2343 CombineChildVariants(N
, AVariants
, BCVariants
, OutVariants
, CDP
, DepVars
);
2344 CombineChildVariants(N
, AVariants
, CBVariants
, OutVariants
, CDP
, DepVars
);
2349 // Compute permutations of all children.
2350 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
2351 ChildVariants
.resize(N
->getNumChildren());
2352 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2353 GenerateVariantsOf(N
->getChild(i
), ChildVariants
[i
], CDP
, DepVars
);
2355 // Build all permutations based on how the children were formed.
2356 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
2358 // If this node is commutative, consider the commuted order.
2359 bool isCommIntrinsic
= N
->isCommutativeIntrinsic(CDP
);
2360 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
2361 assert((N
->getNumChildren()==2 || isCommIntrinsic
) &&
2362 "Commutative but doesn't have 2 children!");
2363 // Don't count children which are actually register references.
2365 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
2366 TreePatternNode
*Child
= N
->getChild(i
);
2367 if (Child
->isLeaf())
2368 if (DefInit
*DI
= dynamic_cast<DefInit
*>(Child
->getLeafValue())) {
2369 Record
*RR
= DI
->getDef();
2370 if (RR
->isSubClassOf("Register"))
2375 // Consider the commuted order.
2376 if (isCommIntrinsic
) {
2377 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
2378 // operands are the commutative operands, and there might be more operands
2381 "Commutative intrinsic should have at least 3 childrean!");
2382 std::vector
<std::vector
<TreePatternNode
*> > Variants
;
2383 Variants
.push_back(ChildVariants
[0]); // Intrinsic id.
2384 Variants
.push_back(ChildVariants
[2]);
2385 Variants
.push_back(ChildVariants
[1]);
2386 for (unsigned i
= 3; i
!= NC
; ++i
)
2387 Variants
.push_back(ChildVariants
[i
]);
2388 CombineChildVariants(N
, Variants
, OutVariants
, CDP
, DepVars
);
2390 CombineChildVariants(N
, ChildVariants
[1], ChildVariants
[0],
2391 OutVariants
, CDP
, DepVars
);
2396 // GenerateVariants - Generate variants. For example, commutative patterns can
2397 // match multiple ways. Add them to PatternsToMatch as well.
2398 void CodeGenDAGPatterns::GenerateVariants() {
2399 DEBUG(errs() << "Generating instruction variants.\n");
2401 // Loop over all of the patterns we've collected, checking to see if we can
2402 // generate variants of the instruction, through the exploitation of
2403 // identities. This permits the target to provide aggressive matching without
2404 // the .td file having to contain tons of variants of instructions.
2406 // Note that this loop adds new patterns to the PatternsToMatch list, but we
2407 // intentionally do not reconsider these. Any variants of added patterns have
2408 // already been added.
2410 for (unsigned i
= 0, e
= PatternsToMatch
.size(); i
!= e
; ++i
) {
2411 MultipleUseVarSet DepVars
;
2412 std::vector
<TreePatternNode
*> Variants
;
2413 FindDepVars(PatternsToMatch
[i
].getSrcPattern(), DepVars
);
2414 DEBUG(errs() << "Dependent/multiply used variables: ");
2415 DEBUG(DumpDepVars(DepVars
));
2416 DEBUG(errs() << "\n");
2417 GenerateVariantsOf(PatternsToMatch
[i
].getSrcPattern(), Variants
, *this, DepVars
);
2419 assert(!Variants
.empty() && "Must create at least original variant!");
2420 Variants
.erase(Variants
.begin()); // Remove the original pattern.
2422 if (Variants
.empty()) // No variants for this pattern.
2425 DEBUG(errs() << "FOUND VARIANTS OF: ";
2426 PatternsToMatch
[i
].getSrcPattern()->dump();
2429 for (unsigned v
= 0, e
= Variants
.size(); v
!= e
; ++v
) {
2430 TreePatternNode
*Variant
= Variants
[v
];
2432 DEBUG(errs() << " VAR#" << v
<< ": ";
2436 // Scan to see if an instruction or explicit pattern already matches this.
2437 bool AlreadyExists
= false;
2438 for (unsigned p
= 0, e
= PatternsToMatch
.size(); p
!= e
; ++p
) {
2439 // Skip if the top level predicates do not match.
2440 if (PatternsToMatch
[i
].getPredicates() !=
2441 PatternsToMatch
[p
].getPredicates())
2443 // Check to see if this variant already exists.
2444 if (Variant
->isIsomorphicTo(PatternsToMatch
[p
].getSrcPattern(), DepVars
)) {
2445 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
2446 AlreadyExists
= true;
2450 // If we already have it, ignore the variant.
2451 if (AlreadyExists
) continue;
2453 // Otherwise, add it to the list of patterns we have.
2455 push_back(PatternToMatch(PatternsToMatch
[i
].getPredicates(),
2456 Variant
, PatternsToMatch
[i
].getDstPattern(),
2457 PatternsToMatch
[i
].getDstRegs(),
2458 PatternsToMatch
[i
].getAddedComplexity()));
2461 DEBUG(errs() << "\n");