1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
48 STATISTIC(NumIters
, "Number of iterations performed");
49 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
50 STATISTIC(NumCoalesce
, "Number of copies coalesced");
51 STATISTIC(NumDowngrade
, "Number of registers downgraded");
54 NewHeuristic("new-spilling-heuristic",
55 cl::desc("Use new spilling heuristic"),
56 cl::init(false), cl::Hidden
);
59 PreSplitIntervals("pre-alloc-split",
60 cl::desc("Pre-register allocation live interval splitting"),
61 cl::init(false), cl::Hidden
);
64 NewSpillFramework("new-spill-framework",
65 cl::desc("New spilling framework"),
66 cl::init(false), cl::Hidden
);
68 static RegisterRegAlloc
69 linearscanRegAlloc("linearscan", "linear scan register allocator",
70 createLinearScanRegisterAllocator
);
73 struct VISIBILITY_HIDDEN RALinScan
: public MachineFunctionPass
{
75 RALinScan() : MachineFunctionPass(&ID
) {}
77 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
78 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
80 /// RelatedRegClasses - This structure is built the first time a function is
81 /// compiled, and keeps track of which register classes have registers that
82 /// belong to multiple classes or have aliases that are in other classes.
83 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
84 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
86 // NextReloadMap - For each register in the map, it maps to the another
87 // register which is defined by a reload from the same stack slot and
88 // both reloads are in the same basic block.
89 DenseMap
<unsigned, unsigned> NextReloadMap
;
91 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
92 // un-favored for allocation.
93 SmallSet
<unsigned, 8> DowngradedRegs
;
95 // DowngradeMap - A map from virtual registers to physical registers being
96 // downgraded for the virtual registers.
97 DenseMap
<unsigned, unsigned> DowngradeMap
;
100 MachineRegisterInfo
* mri_
;
101 const TargetMachine
* tm_
;
102 const TargetRegisterInfo
* tri_
;
103 const TargetInstrInfo
* tii_
;
104 BitVector allocatableRegs_
;
107 const MachineLoopInfo
*loopInfo
;
109 /// handled_ - Intervals are added to the handled_ set in the order of their
110 /// start value. This is uses for backtracking.
111 std::vector
<LiveInterval
*> handled_
;
113 /// fixed_ - Intervals that correspond to machine registers.
117 /// active_ - Intervals that are currently being processed, and which have a
118 /// live range active for the current point.
119 IntervalPtrs active_
;
121 /// inactive_ - Intervals that are currently being processed, but which have
122 /// a hold at the current point.
123 IntervalPtrs inactive_
;
125 typedef std::priority_queue
<LiveInterval
*,
126 SmallVector
<LiveInterval
*, 64>,
127 greater_ptr
<LiveInterval
> > IntervalHeap
;
128 IntervalHeap unhandled_
;
130 /// regUse_ - Tracks register usage.
131 SmallVector
<unsigned, 32> regUse_
;
132 SmallVector
<unsigned, 32> regUseBackUp_
;
134 /// vrm_ - Tracks register assignments.
137 std::auto_ptr
<VirtRegRewriter
> rewriter_
;
139 std::auto_ptr
<Spiller
> spiller_
;
142 virtual const char* getPassName() const {
143 return "Linear Scan Register Allocator";
146 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
147 AU
.setPreservesCFG();
148 AU
.addRequired
<LiveIntervals
>();
150 AU
.addRequiredID(StrongPHIEliminationID
);
151 // Make sure PassManager knows which analyses to make available
152 // to coalescing and which analyses coalescing invalidates.
153 AU
.addRequiredTransitive
<RegisterCoalescer
>();
154 if (PreSplitIntervals
)
155 AU
.addRequiredID(PreAllocSplittingID
);
156 AU
.addRequired
<LiveStacks
>();
157 AU
.addPreserved
<LiveStacks
>();
158 AU
.addRequired
<MachineLoopInfo
>();
159 AU
.addPreserved
<MachineLoopInfo
>();
160 AU
.addRequired
<VirtRegMap
>();
161 AU
.addPreserved
<VirtRegMap
>();
162 AU
.addPreservedID(MachineDominatorsID
);
163 MachineFunctionPass::getAnalysisUsage(AU
);
166 /// runOnMachineFunction - register allocate the whole function
167 bool runOnMachineFunction(MachineFunction
&);
170 /// linearScan - the linear scan algorithm
173 /// initIntervalSets - initialize the interval sets.
175 void initIntervalSets();
177 /// processActiveIntervals - expire old intervals and move non-overlapping
178 /// ones to the inactive list.
179 void processActiveIntervals(MachineInstrIndex CurPoint
);
181 /// processInactiveIntervals - expire old intervals and move overlapping
182 /// ones to the active list.
183 void processInactiveIntervals(MachineInstrIndex CurPoint
);
185 /// hasNextReloadInterval - Return the next liveinterval that's being
186 /// defined by a reload from the same SS as the specified one.
187 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
189 /// DowngradeRegister - Downgrade a register for allocation.
190 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
192 /// UpgradeRegister - Upgrade a register for allocation.
193 void UpgradeRegister(unsigned Reg
);
195 /// assignRegOrStackSlotAtInterval - assign a register if one
196 /// is available, or spill.
197 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
199 void updateSpillWeights(std::vector
<float> &Weights
,
200 unsigned reg
, float weight
,
201 const TargetRegisterClass
*RC
);
203 /// findIntervalsToSpill - Determine the intervals to spill for the
204 /// specified interval. It's passed the physical registers whose spill
205 /// weight is the lowest among all the registers whose live intervals
206 /// conflict with the interval.
207 void findIntervalsToSpill(LiveInterval
*cur
,
208 std::vector
<std::pair
<unsigned,float> > &Candidates
,
210 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
212 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
213 /// try allocate the definition the same register as the source register
214 /// if the register is not defined during live time of the interval. This
215 /// eliminate a copy. This is used to coalesce copies which were not
216 /// coalesced away before allocation either due to dest and src being in
217 /// different register classes or because the coalescer was overly
219 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
222 /// Register usage / availability tracking helpers.
226 regUse_
.resize(tri_
->getNumRegs(), 0);
227 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
230 void finalizeRegUses() {
232 // Verify all the registers are "freed".
234 for (unsigned i
= 0, e
= tri_
->getNumRegs(); i
!= e
; ++i
) {
235 if (regUse_
[i
] != 0) {
236 errs() << tri_
->getName(i
) << " is still in use!\n";
244 regUseBackUp_
.clear();
247 void addRegUse(unsigned physReg
) {
248 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
249 "should be physical register!");
251 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
255 void delRegUse(unsigned physReg
) {
256 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
257 "should be physical register!");
258 assert(regUse_
[physReg
] != 0);
260 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
261 assert(regUse_
[*as
] != 0);
266 bool isRegAvail(unsigned physReg
) const {
267 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
268 "should be physical register!");
269 return regUse_
[physReg
] == 0;
272 void backUpRegUses() {
273 regUseBackUp_
= regUse_
;
276 void restoreRegUses() {
277 regUse_
= regUseBackUp_
;
281 /// Register handling helpers.
284 /// getFreePhysReg - return a free physical register for this virtual
285 /// register interval if we have one, otherwise return 0.
286 unsigned getFreePhysReg(LiveInterval
* cur
);
287 unsigned getFreePhysReg(LiveInterval
* cur
,
288 const TargetRegisterClass
*RC
,
289 unsigned MaxInactiveCount
,
290 SmallVector
<unsigned, 256> &inactiveCounts
,
293 /// assignVirt2StackSlot - assigns this virtual register to a
294 /// stack slot. returns the stack slot
295 int assignVirt2StackSlot(unsigned virtReg
);
297 void ComputeRelatedRegClasses();
299 template <typename ItTy
>
300 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
303 errs() << str
<< " intervals:\n";
305 for (; i
!= e
; ++i
) {
306 errs() << "\t" << *i
->first
<< " -> ";
308 unsigned reg
= i
->first
->reg
;
309 if (TargetRegisterInfo::isVirtualRegister(reg
))
310 reg
= vrm_
->getPhys(reg
);
312 errs() << tri_
->getName(reg
) << '\n';
317 char RALinScan::ID
= 0;
320 static RegisterPass
<RALinScan
>
321 X("linearscan-regalloc", "Linear Scan Register Allocator");
323 void RALinScan::ComputeRelatedRegClasses() {
324 // First pass, add all reg classes to the union, and determine at least one
325 // reg class that each register is in.
326 bool HasAliases
= false;
327 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
328 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
329 RelatedRegClasses
.insert(*RCI
);
330 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
332 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
334 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
336 // Already processed this register. Just make sure we know that
337 // multiple register classes share a register.
338 RelatedRegClasses
.unionSets(PRC
, *RCI
);
345 // Second pass, now that we know conservatively what register classes each reg
346 // belongs to, add info about aliases. We don't need to do this for targets
347 // without register aliases.
349 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
350 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
352 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
)
353 RelatedRegClasses
.unionSets(I
->second
, OneClassForEachPhysReg
[*AS
]);
356 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
357 /// try allocate the definition the same register as the source register
358 /// if the register is not defined during live time of the interval. This
359 /// eliminate a copy. This is used to coalesce copies which were not
360 /// coalesced away before allocation either due to dest and src being in
361 /// different register classes or because the coalescer was overly
363 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
364 unsigned Preference
= vrm_
->getRegAllocPref(cur
.reg
);
365 if ((Preference
&& Preference
== Reg
) || !cur
.containsOneValue())
368 VNInfo
*vni
= cur
.begin()->valno
;
369 if ((vni
->def
== MachineInstrIndex()) ||
370 vni
->isUnused() || !vni
->isDefAccurate())
372 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
373 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
, PhysReg
;
375 !tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
378 if (TargetRegisterInfo::isVirtualRegister(SrcReg
)) {
379 if (!vrm_
->isAssignedReg(SrcReg
))
381 PhysReg
= vrm_
->getPhys(SrcReg
);
386 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
387 if (!RC
->contains(PhysReg
))
391 if (!li_
->conflictsWithPhysRegDef(cur
, *vrm_
, PhysReg
)) {
392 DEBUG(errs() << "Coalescing: " << cur
<< " -> " << tri_
->getName(PhysReg
)
394 vrm_
->clearVirt(cur
.reg
);
395 vrm_
->assignVirt2Phys(cur
.reg
, PhysReg
);
397 // Remove unnecessary kills since a copy does not clobber the register.
398 if (li_
->hasInterval(SrcReg
)) {
399 LiveInterval
&SrcLI
= li_
->getInterval(SrcReg
);
400 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(cur
.reg
),
401 E
= mri_
->reg_end(); I
!= E
; ++I
) {
402 MachineOperand
&O
= I
.getOperand();
403 if (!O
.isUse() || !O
.isKill())
405 MachineInstr
*MI
= &*I
;
406 if (SrcLI
.liveAt(li_
->getDefIndex(li_
->getInstructionIndex(MI
))))
418 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
420 mri_
= &fn
.getRegInfo();
421 tm_
= &fn
.getTarget();
422 tri_
= tm_
->getRegisterInfo();
423 tii_
= tm_
->getInstrInfo();
424 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
425 li_
= &getAnalysis
<LiveIntervals
>();
426 ls_
= &getAnalysis
<LiveStacks
>();
427 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
429 // We don't run the coalescer here because we have no reason to
430 // interact with it. If the coalescer requires interaction, it
431 // won't do anything. If it doesn't require interaction, we assume
432 // it was run as a separate pass.
434 // If this is the first function compiled, compute the related reg classes.
435 if (RelatedRegClasses
.empty())
436 ComputeRelatedRegClasses();
438 // Also resize register usage trackers.
441 vrm_
= &getAnalysis
<VirtRegMap
>();
442 if (!rewriter_
.get()) rewriter_
.reset(createVirtRegRewriter());
444 if (NewSpillFramework
) {
445 spiller_
.reset(createSpiller(mf_
, li_
, ls_
, vrm_
));
452 // Rewrite spill code and update the PhysRegsUsed set.
453 rewriter_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
455 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
463 NextReloadMap
.clear();
464 DowngradedRegs
.clear();
465 DowngradeMap
.clear();
471 /// initIntervalSets - initialize the interval sets.
473 void RALinScan::initIntervalSets()
475 assert(unhandled_
.empty() && fixed_
.empty() &&
476 active_
.empty() && inactive_
.empty() &&
477 "interval sets should be empty on initialization");
479 handled_
.reserve(li_
->getNumIntervals());
481 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
482 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
483 mri_
->setPhysRegUsed(i
->second
->reg
);
484 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
486 unhandled_
.push(i
->second
);
490 void RALinScan::linearScan() {
491 // linear scan algorithm
493 errs() << "********** LINEAR SCAN **********\n"
494 << "********** Function: "
495 << mf_
->getFunction()->getName() << '\n';
496 printIntervals("fixed", fixed_
.begin(), fixed_
.end());
499 while (!unhandled_
.empty()) {
500 // pick the interval with the earliest start point
501 LiveInterval
* cur
= unhandled_
.top();
504 DEBUG(errs() << "\n*** CURRENT ***: " << *cur
<< '\n');
507 processActiveIntervals(cur
->beginIndex());
508 processInactiveIntervals(cur
->beginIndex());
510 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
511 "Can only allocate virtual registers!");
514 // Allocating a virtual register. try to find a free
515 // physical register or spill an interval (possibly this one) in order to
517 assignRegOrStackSlotAtInterval(cur
);
520 printIntervals("active", active_
.begin(), active_
.end());
521 printIntervals("inactive", inactive_
.begin(), inactive_
.end());
525 // Expire any remaining active intervals
526 while (!active_
.empty()) {
527 IntervalPtr
&IP
= active_
.back();
528 unsigned reg
= IP
.first
->reg
;
529 DEBUG(errs() << "\tinterval " << *IP
.first
<< " expired\n");
530 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
531 "Can only allocate virtual registers!");
532 reg
= vrm_
->getPhys(reg
);
537 // Expire any remaining inactive intervals
539 for (IntervalPtrs::reverse_iterator
540 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
541 errs() << "\tinterval " << *i
->first
<< " expired\n";
545 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
546 MachineFunction::iterator EntryMBB
= mf_
->begin();
547 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
548 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
549 LiveInterval
&cur
= *i
->second
;
551 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
554 else if (vrm_
->isAssignedReg(cur
.reg
))
555 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
558 // Ignore splited live intervals.
559 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
562 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
564 const LiveRange
&LR
= *I
;
565 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
566 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
567 if (LiveInMBBs
[i
] != EntryMBB
) {
568 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) &&
569 "Adding a virtual register to livein set?");
570 LiveInMBBs
[i
]->addLiveIn(Reg
);
577 DEBUG(errs() << *vrm_
);
579 // Look for physical registers that end up not being allocated even though
580 // register allocator had to spill other registers in its register class.
581 if (ls_
->getNumIntervals() == 0)
583 if (!vrm_
->FindUnusedRegisters(li_
))
587 /// processActiveIntervals - expire old intervals and move non-overlapping ones
588 /// to the inactive list.
589 void RALinScan::processActiveIntervals(MachineInstrIndex CurPoint
)
591 DEBUG(errs() << "\tprocessing active intervals:\n");
593 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
594 LiveInterval
*Interval
= active_
[i
].first
;
595 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
596 unsigned reg
= Interval
->reg
;
598 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
600 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
601 DEBUG(errs() << "\t\tinterval " << *Interval
<< " expired\n");
602 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
603 "Can only allocate virtual registers!");
604 reg
= vrm_
->getPhys(reg
);
607 // Pop off the end of the list.
608 active_
[i
] = active_
.back();
612 } else if (IntervalPos
->start
> CurPoint
) {
613 // Move inactive intervals to inactive list.
614 DEBUG(errs() << "\t\tinterval " << *Interval
<< " inactive\n");
615 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
616 "Can only allocate virtual registers!");
617 reg
= vrm_
->getPhys(reg
);
620 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
622 // Pop off the end of the list.
623 active_
[i
] = active_
.back();
627 // Otherwise, just update the iterator position.
628 active_
[i
].second
= IntervalPos
;
633 /// processInactiveIntervals - expire old intervals and move overlapping
634 /// ones to the active list.
635 void RALinScan::processInactiveIntervals(MachineInstrIndex CurPoint
)
637 DEBUG(errs() << "\tprocessing inactive intervals:\n");
639 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
640 LiveInterval
*Interval
= inactive_
[i
].first
;
641 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
642 unsigned reg
= Interval
->reg
;
644 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
646 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
647 DEBUG(errs() << "\t\tinterval " << *Interval
<< " expired\n");
649 // Pop off the end of the list.
650 inactive_
[i
] = inactive_
.back();
651 inactive_
.pop_back();
653 } else if (IntervalPos
->start
<= CurPoint
) {
654 // move re-activated intervals in active list
655 DEBUG(errs() << "\t\tinterval " << *Interval
<< " active\n");
656 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
657 "Can only allocate virtual registers!");
658 reg
= vrm_
->getPhys(reg
);
661 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
663 // Pop off the end of the list.
664 inactive_
[i
] = inactive_
.back();
665 inactive_
.pop_back();
668 // Otherwise, just update the iterator position.
669 inactive_
[i
].second
= IntervalPos
;
674 /// updateSpillWeights - updates the spill weights of the specifed physical
675 /// register and its weight.
676 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
677 unsigned reg
, float weight
,
678 const TargetRegisterClass
*RC
) {
679 SmallSet
<unsigned, 4> Processed
;
680 SmallSet
<unsigned, 4> SuperAdded
;
681 SmallVector
<unsigned, 4> Supers
;
682 Weights
[reg
] += weight
;
683 Processed
.insert(reg
);
684 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
685 Weights
[*as
] += weight
;
686 Processed
.insert(*as
);
687 if (tri_
->isSubRegister(*as
, reg
) &&
688 SuperAdded
.insert(*as
) &&
690 Supers
.push_back(*as
);
694 // If the alias is a super-register, and the super-register is in the
695 // register class we are trying to allocate. Then add the weight to all
696 // sub-registers of the super-register even if they are not aliases.
697 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
698 // bl should get the same spill weight otherwise it will be choosen
699 // as a spill candidate since spilling bh doesn't make ebx available.
700 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
701 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
702 if (!Processed
.count(*sr
))
703 Weights
[*sr
] += weight
;
708 RALinScan::IntervalPtrs::iterator
709 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
710 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
712 if (I
->first
== LI
) return I
;
716 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
, MachineInstrIndex Point
){
717 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
718 RALinScan::IntervalPtr
&IP
= V
[i
];
719 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
721 if (I
!= IP
.first
->begin()) --I
;
726 /// addStackInterval - Create a LiveInterval for stack if the specified live
727 /// interval has been spilled.
728 static void addStackInterval(LiveInterval
*cur
, LiveStacks
*ls_
,
730 MachineRegisterInfo
* mri_
, VirtRegMap
&vrm_
) {
731 int SS
= vrm_
.getStackSlot(cur
->reg
);
732 if (SS
== VirtRegMap::NO_STACK_SLOT
)
735 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
736 LiveInterval
&SI
= ls_
->getOrCreateInterval(SS
, RC
);
739 if (SI
.hasAtLeastOneValue())
740 VNI
= SI
.getValNumInfo(0);
742 VNI
= SI
.getNextValue(MachineInstrIndex(), 0, false,
743 ls_
->getVNInfoAllocator());
745 LiveInterval
&RI
= li_
->getInterval(cur
->reg
);
746 // FIXME: This may be overly conservative.
747 SI
.MergeRangesInAsValue(RI
, VNI
);
750 /// getConflictWeight - Return the number of conflicts between cur
751 /// live interval and defs and uses of Reg weighted by loop depthes.
753 float getConflictWeight(LiveInterval
*cur
, unsigned Reg
, LiveIntervals
*li_
,
754 MachineRegisterInfo
*mri_
,
755 const MachineLoopInfo
*loopInfo
) {
757 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
758 E
= mri_
->reg_end(); I
!= E
; ++I
) {
759 MachineInstr
*MI
= &*I
;
760 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
761 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
762 Conflicts
+= powf(10.0f
, (float)loopDepth
);
768 /// findIntervalsToSpill - Determine the intervals to spill for the
769 /// specified interval. It's passed the physical registers whose spill
770 /// weight is the lowest among all the registers whose live intervals
771 /// conflict with the interval.
772 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
773 std::vector
<std::pair
<unsigned,float> > &Candidates
,
775 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
776 // We have figured out the *best* register to spill. But there are other
777 // registers that are pretty good as well (spill weight within 3%). Spill
778 // the one that has fewest defs and uses that conflict with cur.
779 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
780 SmallVector
<LiveInterval
*, 8> SLIs
[3];
783 errs() << "\tConsidering " << NumCands
<< " candidates: ";
784 for (unsigned i
= 0; i
!= NumCands
; ++i
)
785 errs() << tri_
->getName(Candidates
[i
].first
) << " ";
789 // Calculate the number of conflicts of each candidate.
790 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
791 unsigned Reg
= i
->first
->reg
;
792 unsigned PhysReg
= vrm_
->getPhys(Reg
);
793 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
795 for (unsigned j
= 0; j
< NumCands
; ++j
) {
796 unsigned Candidate
= Candidates
[j
].first
;
797 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
799 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
800 SLIs
[j
].push_back(i
->first
);
805 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
806 unsigned Reg
= i
->first
->reg
;
807 unsigned PhysReg
= vrm_
->getPhys(Reg
);
808 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
810 for (unsigned j
= 0; j
< NumCands
; ++j
) {
811 unsigned Candidate
= Candidates
[j
].first
;
812 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
814 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
815 SLIs
[j
].push_back(i
->first
);
820 // Which is the best candidate?
821 unsigned BestCandidate
= 0;
822 float MinConflicts
= Conflicts
[0];
823 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
824 if (Conflicts
[i
] < MinConflicts
) {
826 MinConflicts
= Conflicts
[i
];
830 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
831 std::back_inserter(SpillIntervals
));
835 struct WeightCompare
{
836 typedef std::pair
<unsigned, float> RegWeightPair
;
837 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
838 return LHS
.second
< RHS
.second
;
843 static bool weightsAreClose(float w1
, float w2
) {
847 float diff
= w1
- w2
;
848 if (diff
<= 0.02f
) // Within 0.02f
850 return (diff
/ w2
) <= 0.05f
; // Within 5%.
853 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
854 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
855 if (I
== NextReloadMap
.end())
857 return &li_
->getInterval(I
->second
);
860 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
861 bool isNew
= DowngradedRegs
.insert(Reg
);
862 isNew
= isNew
; // Silence compiler warning.
863 assert(isNew
&& "Multiple reloads holding the same register?");
864 DowngradeMap
.insert(std::make_pair(li
->reg
, Reg
));
865 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
) {
866 isNew
= DowngradedRegs
.insert(*AS
);
867 isNew
= isNew
; // Silence compiler warning.
868 assert(isNew
&& "Multiple reloads holding the same register?");
869 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
874 void RALinScan::UpgradeRegister(unsigned Reg
) {
876 DowngradedRegs
.erase(Reg
);
877 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
878 DowngradedRegs
.erase(*AS
);
884 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
885 return A
->beginIndex() < B
->beginIndex();
890 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
892 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
) {
893 DEBUG(errs() << "\tallocating current interval: ");
895 // This is an implicitly defined live interval, just assign any register.
896 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
898 unsigned physReg
= vrm_
->getRegAllocPref(cur
->reg
);
900 physReg
= *RC
->allocation_order_begin(*mf_
);
901 DEBUG(errs() << tri_
->getName(physReg
) << '\n');
902 // Note the register is not really in use.
903 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
909 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
910 MachineInstrIndex StartPosition
= cur
->beginIndex();
911 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
913 // If start of this live interval is defined by a move instruction and its
914 // source is assigned a physical register that is compatible with the target
915 // register class, then we should try to assign it the same register.
916 // This can happen when the move is from a larger register class to a smaller
917 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
918 if (!vrm_
->getRegAllocPref(cur
->reg
) && cur
->hasAtLeastOneValue()) {
919 VNInfo
*vni
= cur
->begin()->valno
;
920 if ((vni
->def
!= MachineInstrIndex()) && !vni
->isUnused() &&
921 vni
->isDefAccurate()) {
922 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
923 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
925 tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
)) {
927 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
929 else if (vrm_
->isAssignedReg(SrcReg
))
930 Reg
= vrm_
->getPhys(SrcReg
);
933 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
935 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
936 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
937 mri_
->setRegAllocationHint(cur
->reg
, 0, Reg
);
943 // For every interval in inactive we overlap with, mark the
944 // register as not free and update spill weights.
945 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
946 e
= inactive_
.end(); i
!= e
; ++i
) {
947 unsigned Reg
= i
->first
->reg
;
948 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
949 "Can only allocate virtual registers!");
950 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
951 // If this is not in a related reg class to the register we're allocating,
953 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
954 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
955 Reg
= vrm_
->getPhys(Reg
);
957 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
961 // Speculatively check to see if we can get a register right now. If not,
962 // we know we won't be able to by adding more constraints. If so, we can
963 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
964 // is very bad (it contains all callee clobbered registers for any functions
965 // with a call), so we want to avoid doing that if possible.
966 unsigned physReg
= getFreePhysReg(cur
);
967 unsigned BestPhysReg
= physReg
;
969 // We got a register. However, if it's in the fixed_ list, we might
970 // conflict with it. Check to see if we conflict with it or any of its
972 SmallSet
<unsigned, 8> RegAliases
;
973 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
974 RegAliases
.insert(*AS
);
976 bool ConflictsWithFixed
= false;
977 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
978 IntervalPtr
&IP
= fixed_
[i
];
979 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
980 // Okay, this reg is on the fixed list. Check to see if we actually
982 LiveInterval
*I
= IP
.first
;
983 if (I
->endIndex() > StartPosition
) {
984 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
986 if (II
!= I
->begin() && II
->start
> StartPosition
)
988 if (cur
->overlapsFrom(*I
, II
)) {
989 ConflictsWithFixed
= true;
996 // Okay, the register picked by our speculative getFreePhysReg call turned
997 // out to be in use. Actually add all of the conflicting fixed registers to
998 // regUse_ so we can do an accurate query.
999 if (ConflictsWithFixed
) {
1000 // For every interval in fixed we overlap with, mark the register as not
1001 // free and update spill weights.
1002 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1003 IntervalPtr
&IP
= fixed_
[i
];
1004 LiveInterval
*I
= IP
.first
;
1006 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
1007 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1008 I
->endIndex() > StartPosition
) {
1009 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1011 if (II
!= I
->begin() && II
->start
> StartPosition
)
1013 if (cur
->overlapsFrom(*I
, II
)) {
1014 unsigned reg
= I
->reg
;
1016 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
1021 // Using the newly updated regUse_ object, which includes conflicts in the
1022 // future, see if there are any registers available.
1023 physReg
= getFreePhysReg(cur
);
1027 // Restore the physical register tracker, removing information about the
1031 // If we find a free register, we are done: assign this virtual to
1032 // the free physical register and add this interval to the active
1035 DEBUG(errs() << tri_
->getName(physReg
) << '\n');
1036 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
1038 active_
.push_back(std::make_pair(cur
, cur
->begin()));
1039 handled_
.push_back(cur
);
1041 // "Upgrade" the physical register since it has been allocated.
1042 UpgradeRegister(physReg
);
1043 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
1044 // "Downgrade" physReg to try to keep physReg from being allocated until
1045 // the next reload from the same SS is allocated.
1046 mri_
->setRegAllocationHint(NextReloadLI
->reg
, 0, physReg
);
1047 DowngradeRegister(cur
, physReg
);
1051 DEBUG(errs() << "no free registers\n");
1053 // Compile the spill weights into an array that is better for scanning.
1054 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
1055 for (std::vector
<std::pair
<unsigned, float> >::iterator
1056 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
1057 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
1059 // for each interval in active, update spill weights.
1060 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
1062 unsigned reg
= i
->first
->reg
;
1063 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1064 "Can only allocate virtual registers!");
1065 reg
= vrm_
->getPhys(reg
);
1066 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
1069 DEBUG(errs() << "\tassigning stack slot at interval "<< *cur
<< ":\n");
1071 // Find a register to spill.
1072 float minWeight
= HUGE_VALF
;
1073 unsigned minReg
= 0;
1076 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1077 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1078 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1079 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1081 float regWeight
= SpillWeights
[reg
];
1082 if (minWeight
> regWeight
)
1084 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1087 // If we didn't find a register that is spillable, try aliases?
1089 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1090 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1092 // No need to worry about if the alias register size < regsize of RC.
1093 // We are going to spill all registers that alias it anyway.
1094 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1095 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1099 // Sort all potential spill candidates by weight.
1100 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare());
1101 minReg
= RegsWeights
[0].first
;
1102 minWeight
= RegsWeights
[0].second
;
1103 if (minWeight
== HUGE_VALF
) {
1104 // All registers must have inf weight. Just grab one!
1105 minReg
= BestPhysReg
? BestPhysReg
: *RC
->allocation_order_begin(*mf_
);
1106 if (cur
->weight
== HUGE_VALF
||
1107 li_
->getApproximateInstructionCount(*cur
) == 0) {
1108 // Spill a physical register around defs and uses.
1109 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1110 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1111 // in fixed_. Reset them.
1112 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1113 IntervalPtr
&IP
= fixed_
[i
];
1114 LiveInterval
*I
= IP
.first
;
1115 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1116 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1119 DowngradedRegs
.clear();
1120 assignRegOrStackSlotAtInterval(cur
);
1122 llvm_report_error("Ran out of registers during register allocation!");
1128 // Find up to 3 registers to consider as spill candidates.
1129 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1130 while (LastCandidate
> 1) {
1131 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1137 errs() << "\t\tregister(s) with min weight(s): ";
1139 for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1140 errs() << tri_
->getName(RegsWeights
[i
].first
)
1141 << " (" << RegsWeights
[i
].second
<< ")\n";
1144 // If the current has the minimum weight, we need to spill it and
1145 // add any added intervals back to unhandled, and restart
1147 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1148 DEBUG(errs() << "\t\t\tspilling(c): " << *cur
<< '\n');
1149 SmallVector
<LiveInterval
*, 8> spillIs
;
1150 std::vector
<LiveInterval
*> added
;
1152 if (!NewSpillFramework
) {
1153 added
= li_
->addIntervalsForSpills(*cur
, spillIs
, loopInfo
, *vrm_
);
1155 added
= spiller_
->spill(cur
);
1158 std::sort(added
.begin(), added
.end(), LISorter());
1159 addStackInterval(cur
, ls_
, li_
, mri_
, *vrm_
);
1161 return; // Early exit if all spills were folded.
1163 // Merge added with unhandled. Note that we have already sorted
1164 // intervals returned by addIntervalsForSpills by their starting
1166 // This also update the NextReloadMap. That is, it adds mapping from a
1167 // register defined by a reload from SS to the next reload from SS in the
1168 // same basic block.
1169 MachineBasicBlock
*LastReloadMBB
= 0;
1170 LiveInterval
*LastReload
= 0;
1171 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1172 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1173 LiveInterval
*ReloadLi
= added
[i
];
1174 if (ReloadLi
->weight
== HUGE_VALF
&&
1175 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1176 MachineInstrIndex ReloadIdx
= ReloadLi
->beginIndex();
1177 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1178 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1179 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1180 // Last reload of same SS is in the same MBB. We want to try to
1181 // allocate both reloads the same register and make sure the reg
1182 // isn't clobbered in between if at all possible.
1183 assert(LastReload
->beginIndex() < ReloadIdx
);
1184 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1186 LastReloadMBB
= ReloadMBB
;
1187 LastReload
= ReloadLi
;
1188 LastReloadSS
= ReloadSS
;
1190 unhandled_
.push(ReloadLi
);
1197 // Push the current interval back to unhandled since we are going
1198 // to re-run at least this iteration. Since we didn't modify it it
1199 // should go back right in the front of the list
1200 unhandled_
.push(cur
);
1202 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1203 "did not choose a register to spill?");
1205 // We spill all intervals aliasing the register with
1206 // minimum weight, rollback to the interval with the earliest
1207 // start point and let the linear scan algorithm run again
1208 SmallVector
<LiveInterval
*, 8> spillIs
;
1210 // Determine which intervals have to be spilled.
1211 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1213 // Set of spilled vregs (used later to rollback properly)
1214 SmallSet
<unsigned, 8> spilled
;
1216 // The earliest start of a Spilled interval indicates up to where
1217 // in handled we need to roll back
1219 LiveInterval
*earliestStartInterval
= cur
;
1221 // Spill live intervals of virtual regs mapped to the physical register we
1222 // want to clear (and its aliases). We only spill those that overlap with the
1223 // current interval as the rest do not affect its allocation. we also keep
1224 // track of the earliest start of all spilled live intervals since this will
1225 // mark our rollback point.
1226 std::vector
<LiveInterval
*> added
;
1227 while (!spillIs
.empty()) {
1228 LiveInterval
*sli
= spillIs
.back();
1230 DEBUG(errs() << "\t\t\tspilling(a): " << *sli
<< '\n');
1231 earliestStartInterval
=
1232 (earliestStartInterval
->beginIndex() < sli
->beginIndex()) ?
1233 earliestStartInterval
: sli
;
1235 std::vector
<LiveInterval
*> newIs
;
1236 if (!NewSpillFramework
) {
1237 newIs
= li_
->addIntervalsForSpills(*sli
, spillIs
, loopInfo
, *vrm_
);
1239 newIs
= spiller_
->spill(sli
);
1241 addStackInterval(sli
, ls_
, li_
, mri_
, *vrm_
);
1242 std::copy(newIs
.begin(), newIs
.end(), std::back_inserter(added
));
1243 spilled
.insert(sli
->reg
);
1246 MachineInstrIndex earliestStart
= earliestStartInterval
->beginIndex();
1248 DEBUG(errs() << "\t\trolling back to: " << earliestStart
<< '\n');
1250 // Scan handled in reverse order up to the earliest start of a
1251 // spilled live interval and undo each one, restoring the state of
1253 while (!handled_
.empty()) {
1254 LiveInterval
* i
= handled_
.back();
1255 // If this interval starts before t we are done.
1256 if (i
->beginIndex() < earliestStart
)
1258 DEBUG(errs() << "\t\t\tundo changes for: " << *i
<< '\n');
1259 handled_
.pop_back();
1261 // When undoing a live interval allocation we must know if it is active or
1262 // inactive to properly update regUse_ and the VirtRegMap.
1263 IntervalPtrs::iterator it
;
1264 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1266 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1267 if (!spilled
.count(i
->reg
))
1269 delRegUse(vrm_
->getPhys(i
->reg
));
1270 vrm_
->clearVirt(i
->reg
);
1271 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1272 inactive_
.erase(it
);
1273 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1274 if (!spilled
.count(i
->reg
))
1276 vrm_
->clearVirt(i
->reg
);
1278 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1279 "Can only allocate virtual registers!");
1280 vrm_
->clearVirt(i
->reg
);
1284 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1285 if (ii
== DowngradeMap
.end())
1286 // It interval has a preference, it must be defined by a copy. Clear the
1287 // preference now since the source interval allocation may have been
1289 mri_
->setRegAllocationHint(i
->reg
, 0, 0);
1291 UpgradeRegister(ii
->second
);
1295 // Rewind the iterators in the active, inactive, and fixed lists back to the
1296 // point we reverted to.
1297 RevertVectorIteratorsTo(active_
, earliestStart
);
1298 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1299 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1301 // Scan the rest and undo each interval that expired after t and
1302 // insert it in active (the next iteration of the algorithm will
1303 // put it in inactive if required)
1304 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1305 LiveInterval
*HI
= handled_
[i
];
1306 if (!HI
->expiredAt(earliestStart
) &&
1307 HI
->expiredAt(cur
->beginIndex())) {
1308 DEBUG(errs() << "\t\t\tundo changes for: " << *HI
<< '\n');
1309 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1310 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1311 addRegUse(vrm_
->getPhys(HI
->reg
));
1315 // Merge added with unhandled.
1316 // This also update the NextReloadMap. That is, it adds mapping from a
1317 // register defined by a reload from SS to the next reload from SS in the
1318 // same basic block.
1319 MachineBasicBlock
*LastReloadMBB
= 0;
1320 LiveInterval
*LastReload
= 0;
1321 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1322 std::sort(added
.begin(), added
.end(), LISorter());
1323 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1324 LiveInterval
*ReloadLi
= added
[i
];
1325 if (ReloadLi
->weight
== HUGE_VALF
&&
1326 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1327 MachineInstrIndex ReloadIdx
= ReloadLi
->beginIndex();
1328 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1329 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1330 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1331 // Last reload of same SS is in the same MBB. We want to try to
1332 // allocate both reloads the same register and make sure the reg
1333 // isn't clobbered in between if at all possible.
1334 assert(LastReload
->beginIndex() < ReloadIdx
);
1335 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1337 LastReloadMBB
= ReloadMBB
;
1338 LastReload
= ReloadLi
;
1339 LastReloadSS
= ReloadSS
;
1341 unhandled_
.push(ReloadLi
);
1345 unsigned RALinScan::getFreePhysReg(LiveInterval
* cur
,
1346 const TargetRegisterClass
*RC
,
1347 unsigned MaxInactiveCount
,
1348 SmallVector
<unsigned, 256> &inactiveCounts
,
1350 unsigned FreeReg
= 0;
1351 unsigned FreeRegInactiveCount
= 0;
1353 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(cur
->reg
);
1354 // Resolve second part of the hint (if possible) given the current allocation.
1355 unsigned physReg
= Hint
.second
;
1357 TargetRegisterInfo::isVirtualRegister(physReg
) && vrm_
->hasPhys(physReg
))
1358 physReg
= vrm_
->getPhys(physReg
);
1360 TargetRegisterClass::iterator I
, E
;
1361 tie(I
, E
) = tri_
->getAllocationOrder(RC
, Hint
.first
, physReg
, *mf_
);
1362 assert(I
!= E
&& "No allocatable register in this register class!");
1364 // Scan for the first available register.
1365 for (; I
!= E
; ++I
) {
1367 // Ignore "downgraded" registers.
1368 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1370 if (isRegAvail(Reg
)) {
1372 if (FreeReg
< inactiveCounts
.size())
1373 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1375 FreeRegInactiveCount
= 0;
1380 // If there are no free regs, or if this reg has the max inactive count,
1381 // return this register.
1382 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
)
1385 // Continue scanning the registers, looking for the one with the highest
1386 // inactive count. Alkis found that this reduced register pressure very
1387 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1389 for (; I
!= E
; ++I
) {
1391 // Ignore "downgraded" registers.
1392 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1394 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1395 FreeRegInactiveCount
< inactiveCounts
[Reg
]) {
1397 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1398 if (FreeRegInactiveCount
== MaxInactiveCount
)
1399 break; // We found the one with the max inactive count.
1406 /// getFreePhysReg - return a free physical register for this virtual register
1407 /// interval if we have one, otherwise return 0.
1408 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1409 SmallVector
<unsigned, 256> inactiveCounts
;
1410 unsigned MaxInactiveCount
= 0;
1412 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1413 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1415 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1417 unsigned reg
= i
->first
->reg
;
1418 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1419 "Can only allocate virtual registers!");
1421 // If this is not in a related reg class to the register we're allocating,
1423 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1424 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1425 reg
= vrm_
->getPhys(reg
);
1426 if (inactiveCounts
.size() <= reg
)
1427 inactiveCounts
.resize(reg
+1);
1428 ++inactiveCounts
[reg
];
1429 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1433 // If copy coalescer has assigned a "preferred" register, check if it's
1435 unsigned Preference
= vrm_
->getRegAllocPref(cur
->reg
);
1437 DEBUG(errs() << "(preferred: " << tri_
->getName(Preference
) << ") ");
1438 if (isRegAvail(Preference
) &&
1439 RC
->contains(Preference
))
1443 if (!DowngradedRegs
.empty()) {
1444 unsigned FreeReg
= getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
,
1449 return getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
, false);
1452 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1453 return new RALinScan();