It's not legal to fold a load from a narrower stack slot into a wider instruction...
[llvm/avr.git] / lib / CodeGen / RegAllocLinearScan.cpp
blob64490d2e05e44d532ebb1f4644c141bbe9e6fdca
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
17 #include "Spiller.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <set>
42 #include <queue>
43 #include <memory>
44 #include <cmath>
46 using namespace llvm;
48 STATISTIC(NumIters , "Number of iterations performed");
49 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
50 STATISTIC(NumCoalesce, "Number of copies coalesced");
51 STATISTIC(NumDowngrade, "Number of registers downgraded");
53 static cl::opt<bool>
54 NewHeuristic("new-spilling-heuristic",
55 cl::desc("Use new spilling heuristic"),
56 cl::init(false), cl::Hidden);
58 static cl::opt<bool>
59 PreSplitIntervals("pre-alloc-split",
60 cl::desc("Pre-register allocation live interval splitting"),
61 cl::init(false), cl::Hidden);
63 static cl::opt<bool>
64 NewSpillFramework("new-spill-framework",
65 cl::desc("New spilling framework"),
66 cl::init(false), cl::Hidden);
68 static RegisterRegAlloc
69 linearscanRegAlloc("linearscan", "linear scan register allocator",
70 createLinearScanRegisterAllocator);
72 namespace {
73 struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass {
74 static char ID;
75 RALinScan() : MachineFunctionPass(&ID) {}
77 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
78 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
79 private:
80 /// RelatedRegClasses - This structure is built the first time a function is
81 /// compiled, and keeps track of which register classes have registers that
82 /// belong to multiple classes or have aliases that are in other classes.
83 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
84 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
86 // NextReloadMap - For each register in the map, it maps to the another
87 // register which is defined by a reload from the same stack slot and
88 // both reloads are in the same basic block.
89 DenseMap<unsigned, unsigned> NextReloadMap;
91 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
92 // un-favored for allocation.
93 SmallSet<unsigned, 8> DowngradedRegs;
95 // DowngradeMap - A map from virtual registers to physical registers being
96 // downgraded for the virtual registers.
97 DenseMap<unsigned, unsigned> DowngradeMap;
99 MachineFunction* mf_;
100 MachineRegisterInfo* mri_;
101 const TargetMachine* tm_;
102 const TargetRegisterInfo* tri_;
103 const TargetInstrInfo* tii_;
104 BitVector allocatableRegs_;
105 LiveIntervals* li_;
106 LiveStacks* ls_;
107 const MachineLoopInfo *loopInfo;
109 /// handled_ - Intervals are added to the handled_ set in the order of their
110 /// start value. This is uses for backtracking.
111 std::vector<LiveInterval*> handled_;
113 /// fixed_ - Intervals that correspond to machine registers.
115 IntervalPtrs fixed_;
117 /// active_ - Intervals that are currently being processed, and which have a
118 /// live range active for the current point.
119 IntervalPtrs active_;
121 /// inactive_ - Intervals that are currently being processed, but which have
122 /// a hold at the current point.
123 IntervalPtrs inactive_;
125 typedef std::priority_queue<LiveInterval*,
126 SmallVector<LiveInterval*, 64>,
127 greater_ptr<LiveInterval> > IntervalHeap;
128 IntervalHeap unhandled_;
130 /// regUse_ - Tracks register usage.
131 SmallVector<unsigned, 32> regUse_;
132 SmallVector<unsigned, 32> regUseBackUp_;
134 /// vrm_ - Tracks register assignments.
135 VirtRegMap* vrm_;
137 std::auto_ptr<VirtRegRewriter> rewriter_;
139 std::auto_ptr<Spiller> spiller_;
141 public:
142 virtual const char* getPassName() const {
143 return "Linear Scan Register Allocator";
146 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
147 AU.setPreservesCFG();
148 AU.addRequired<LiveIntervals>();
149 if (StrongPHIElim)
150 AU.addRequiredID(StrongPHIEliminationID);
151 // Make sure PassManager knows which analyses to make available
152 // to coalescing and which analyses coalescing invalidates.
153 AU.addRequiredTransitive<RegisterCoalescer>();
154 if (PreSplitIntervals)
155 AU.addRequiredID(PreAllocSplittingID);
156 AU.addRequired<LiveStacks>();
157 AU.addPreserved<LiveStacks>();
158 AU.addRequired<MachineLoopInfo>();
159 AU.addPreserved<MachineLoopInfo>();
160 AU.addRequired<VirtRegMap>();
161 AU.addPreserved<VirtRegMap>();
162 AU.addPreservedID(MachineDominatorsID);
163 MachineFunctionPass::getAnalysisUsage(AU);
166 /// runOnMachineFunction - register allocate the whole function
167 bool runOnMachineFunction(MachineFunction&);
169 private:
170 /// linearScan - the linear scan algorithm
171 void linearScan();
173 /// initIntervalSets - initialize the interval sets.
175 void initIntervalSets();
177 /// processActiveIntervals - expire old intervals and move non-overlapping
178 /// ones to the inactive list.
179 void processActiveIntervals(MachineInstrIndex CurPoint);
181 /// processInactiveIntervals - expire old intervals and move overlapping
182 /// ones to the active list.
183 void processInactiveIntervals(MachineInstrIndex CurPoint);
185 /// hasNextReloadInterval - Return the next liveinterval that's being
186 /// defined by a reload from the same SS as the specified one.
187 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
189 /// DowngradeRegister - Downgrade a register for allocation.
190 void DowngradeRegister(LiveInterval *li, unsigned Reg);
192 /// UpgradeRegister - Upgrade a register for allocation.
193 void UpgradeRegister(unsigned Reg);
195 /// assignRegOrStackSlotAtInterval - assign a register if one
196 /// is available, or spill.
197 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
199 void updateSpillWeights(std::vector<float> &Weights,
200 unsigned reg, float weight,
201 const TargetRegisterClass *RC);
203 /// findIntervalsToSpill - Determine the intervals to spill for the
204 /// specified interval. It's passed the physical registers whose spill
205 /// weight is the lowest among all the registers whose live intervals
206 /// conflict with the interval.
207 void findIntervalsToSpill(LiveInterval *cur,
208 std::vector<std::pair<unsigned,float> > &Candidates,
209 unsigned NumCands,
210 SmallVector<LiveInterval*, 8> &SpillIntervals);
212 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
213 /// try allocate the definition the same register as the source register
214 /// if the register is not defined during live time of the interval. This
215 /// eliminate a copy. This is used to coalesce copies which were not
216 /// coalesced away before allocation either due to dest and src being in
217 /// different register classes or because the coalescer was overly
218 /// conservative.
219 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
222 /// Register usage / availability tracking helpers.
225 void initRegUses() {
226 regUse_.resize(tri_->getNumRegs(), 0);
227 regUseBackUp_.resize(tri_->getNumRegs(), 0);
230 void finalizeRegUses() {
231 #ifndef NDEBUG
232 // Verify all the registers are "freed".
233 bool Error = false;
234 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
235 if (regUse_[i] != 0) {
236 errs() << tri_->getName(i) << " is still in use!\n";
237 Error = true;
240 if (Error)
241 llvm_unreachable(0);
242 #endif
243 regUse_.clear();
244 regUseBackUp_.clear();
247 void addRegUse(unsigned physReg) {
248 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
249 "should be physical register!");
250 ++regUse_[physReg];
251 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
252 ++regUse_[*as];
255 void delRegUse(unsigned physReg) {
256 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
257 "should be physical register!");
258 assert(regUse_[physReg] != 0);
259 --regUse_[physReg];
260 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
261 assert(regUse_[*as] != 0);
262 --regUse_[*as];
266 bool isRegAvail(unsigned physReg) const {
267 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
268 "should be physical register!");
269 return regUse_[physReg] == 0;
272 void backUpRegUses() {
273 regUseBackUp_ = regUse_;
276 void restoreRegUses() {
277 regUse_ = regUseBackUp_;
281 /// Register handling helpers.
284 /// getFreePhysReg - return a free physical register for this virtual
285 /// register interval if we have one, otherwise return 0.
286 unsigned getFreePhysReg(LiveInterval* cur);
287 unsigned getFreePhysReg(LiveInterval* cur,
288 const TargetRegisterClass *RC,
289 unsigned MaxInactiveCount,
290 SmallVector<unsigned, 256> &inactiveCounts,
291 bool SkipDGRegs);
293 /// assignVirt2StackSlot - assigns this virtual register to a
294 /// stack slot. returns the stack slot
295 int assignVirt2StackSlot(unsigned virtReg);
297 void ComputeRelatedRegClasses();
299 template <typename ItTy>
300 void printIntervals(const char* const str, ItTy i, ItTy e) const {
301 DEBUG({
302 if (str)
303 errs() << str << " intervals:\n";
305 for (; i != e; ++i) {
306 errs() << "\t" << *i->first << " -> ";
308 unsigned reg = i->first->reg;
309 if (TargetRegisterInfo::isVirtualRegister(reg))
310 reg = vrm_->getPhys(reg);
312 errs() << tri_->getName(reg) << '\n';
317 char RALinScan::ID = 0;
320 static RegisterPass<RALinScan>
321 X("linearscan-regalloc", "Linear Scan Register Allocator");
323 void RALinScan::ComputeRelatedRegClasses() {
324 // First pass, add all reg classes to the union, and determine at least one
325 // reg class that each register is in.
326 bool HasAliases = false;
327 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
328 E = tri_->regclass_end(); RCI != E; ++RCI) {
329 RelatedRegClasses.insert(*RCI);
330 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
331 I != E; ++I) {
332 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
334 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
335 if (PRC) {
336 // Already processed this register. Just make sure we know that
337 // multiple register classes share a register.
338 RelatedRegClasses.unionSets(PRC, *RCI);
339 } else {
340 PRC = *RCI;
345 // Second pass, now that we know conservatively what register classes each reg
346 // belongs to, add info about aliases. We don't need to do this for targets
347 // without register aliases.
348 if (HasAliases)
349 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
350 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
351 I != E; ++I)
352 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
353 RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
356 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
357 /// try allocate the definition the same register as the source register
358 /// if the register is not defined during live time of the interval. This
359 /// eliminate a copy. This is used to coalesce copies which were not
360 /// coalesced away before allocation either due to dest and src being in
361 /// different register classes or because the coalescer was overly
362 /// conservative.
363 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
364 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
365 if ((Preference && Preference == Reg) || !cur.containsOneValue())
366 return Reg;
368 VNInfo *vni = cur.begin()->valno;
369 if ((vni->def == MachineInstrIndex()) ||
370 vni->isUnused() || !vni->isDefAccurate())
371 return Reg;
372 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
373 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
374 if (!CopyMI ||
375 !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg))
376 return Reg;
377 PhysReg = SrcReg;
378 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
379 if (!vrm_->isAssignedReg(SrcReg))
380 return Reg;
381 PhysReg = vrm_->getPhys(SrcReg);
383 if (Reg == PhysReg)
384 return Reg;
386 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
387 if (!RC->contains(PhysReg))
388 return Reg;
390 // Try to coalesce.
391 if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) {
392 DEBUG(errs() << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
393 << '\n');
394 vrm_->clearVirt(cur.reg);
395 vrm_->assignVirt2Phys(cur.reg, PhysReg);
397 // Remove unnecessary kills since a copy does not clobber the register.
398 if (li_->hasInterval(SrcReg)) {
399 LiveInterval &SrcLI = li_->getInterval(SrcReg);
400 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg),
401 E = mri_->reg_end(); I != E; ++I) {
402 MachineOperand &O = I.getOperand();
403 if (!O.isUse() || !O.isKill())
404 continue;
405 MachineInstr *MI = &*I;
406 if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI))))
407 O.setIsKill(false);
411 ++NumCoalesce;
412 return PhysReg;
415 return Reg;
418 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
419 mf_ = &fn;
420 mri_ = &fn.getRegInfo();
421 tm_ = &fn.getTarget();
422 tri_ = tm_->getRegisterInfo();
423 tii_ = tm_->getInstrInfo();
424 allocatableRegs_ = tri_->getAllocatableSet(fn);
425 li_ = &getAnalysis<LiveIntervals>();
426 ls_ = &getAnalysis<LiveStacks>();
427 loopInfo = &getAnalysis<MachineLoopInfo>();
429 // We don't run the coalescer here because we have no reason to
430 // interact with it. If the coalescer requires interaction, it
431 // won't do anything. If it doesn't require interaction, we assume
432 // it was run as a separate pass.
434 // If this is the first function compiled, compute the related reg classes.
435 if (RelatedRegClasses.empty())
436 ComputeRelatedRegClasses();
438 // Also resize register usage trackers.
439 initRegUses();
441 vrm_ = &getAnalysis<VirtRegMap>();
442 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
444 if (NewSpillFramework) {
445 spiller_.reset(createSpiller(mf_, li_, ls_, vrm_));
448 initIntervalSets();
450 linearScan();
452 // Rewrite spill code and update the PhysRegsUsed set.
453 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
455 assert(unhandled_.empty() && "Unhandled live intervals remain!");
457 finalizeRegUses();
459 fixed_.clear();
460 active_.clear();
461 inactive_.clear();
462 handled_.clear();
463 NextReloadMap.clear();
464 DowngradedRegs.clear();
465 DowngradeMap.clear();
466 spiller_.reset(0);
468 return true;
471 /// initIntervalSets - initialize the interval sets.
473 void RALinScan::initIntervalSets()
475 assert(unhandled_.empty() && fixed_.empty() &&
476 active_.empty() && inactive_.empty() &&
477 "interval sets should be empty on initialization");
479 handled_.reserve(li_->getNumIntervals());
481 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
482 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
483 mri_->setPhysRegUsed(i->second->reg);
484 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
485 } else
486 unhandled_.push(i->second);
490 void RALinScan::linearScan() {
491 // linear scan algorithm
492 DEBUG({
493 errs() << "********** LINEAR SCAN **********\n"
494 << "********** Function: "
495 << mf_->getFunction()->getName() << '\n';
496 printIntervals("fixed", fixed_.begin(), fixed_.end());
499 while (!unhandled_.empty()) {
500 // pick the interval with the earliest start point
501 LiveInterval* cur = unhandled_.top();
502 unhandled_.pop();
503 ++NumIters;
504 DEBUG(errs() << "\n*** CURRENT ***: " << *cur << '\n');
506 if (!cur->empty()) {
507 processActiveIntervals(cur->beginIndex());
508 processInactiveIntervals(cur->beginIndex());
510 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
511 "Can only allocate virtual registers!");
514 // Allocating a virtual register. try to find a free
515 // physical register or spill an interval (possibly this one) in order to
516 // assign it one.
517 assignRegOrStackSlotAtInterval(cur);
519 DEBUG({
520 printIntervals("active", active_.begin(), active_.end());
521 printIntervals("inactive", inactive_.begin(), inactive_.end());
525 // Expire any remaining active intervals
526 while (!active_.empty()) {
527 IntervalPtr &IP = active_.back();
528 unsigned reg = IP.first->reg;
529 DEBUG(errs() << "\tinterval " << *IP.first << " expired\n");
530 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
531 "Can only allocate virtual registers!");
532 reg = vrm_->getPhys(reg);
533 delRegUse(reg);
534 active_.pop_back();
537 // Expire any remaining inactive intervals
538 DEBUG({
539 for (IntervalPtrs::reverse_iterator
540 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
541 errs() << "\tinterval " << *i->first << " expired\n";
543 inactive_.clear();
545 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
546 MachineFunction::iterator EntryMBB = mf_->begin();
547 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
548 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
549 LiveInterval &cur = *i->second;
550 unsigned Reg = 0;
551 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
552 if (isPhys)
553 Reg = cur.reg;
554 else if (vrm_->isAssignedReg(cur.reg))
555 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
556 if (!Reg)
557 continue;
558 // Ignore splited live intervals.
559 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
560 continue;
562 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
563 I != E; ++I) {
564 const LiveRange &LR = *I;
565 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
566 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
567 if (LiveInMBBs[i] != EntryMBB) {
568 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
569 "Adding a virtual register to livein set?");
570 LiveInMBBs[i]->addLiveIn(Reg);
572 LiveInMBBs.clear();
577 DEBUG(errs() << *vrm_);
579 // Look for physical registers that end up not being allocated even though
580 // register allocator had to spill other registers in its register class.
581 if (ls_->getNumIntervals() == 0)
582 return;
583 if (!vrm_->FindUnusedRegisters(li_))
584 return;
587 /// processActiveIntervals - expire old intervals and move non-overlapping ones
588 /// to the inactive list.
589 void RALinScan::processActiveIntervals(MachineInstrIndex CurPoint)
591 DEBUG(errs() << "\tprocessing active intervals:\n");
593 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
594 LiveInterval *Interval = active_[i].first;
595 LiveInterval::iterator IntervalPos = active_[i].second;
596 unsigned reg = Interval->reg;
598 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
600 if (IntervalPos == Interval->end()) { // Remove expired intervals.
601 DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
602 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
603 "Can only allocate virtual registers!");
604 reg = vrm_->getPhys(reg);
605 delRegUse(reg);
607 // Pop off the end of the list.
608 active_[i] = active_.back();
609 active_.pop_back();
610 --i; --e;
612 } else if (IntervalPos->start > CurPoint) {
613 // Move inactive intervals to inactive list.
614 DEBUG(errs() << "\t\tinterval " << *Interval << " inactive\n");
615 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
616 "Can only allocate virtual registers!");
617 reg = vrm_->getPhys(reg);
618 delRegUse(reg);
619 // add to inactive.
620 inactive_.push_back(std::make_pair(Interval, IntervalPos));
622 // Pop off the end of the list.
623 active_[i] = active_.back();
624 active_.pop_back();
625 --i; --e;
626 } else {
627 // Otherwise, just update the iterator position.
628 active_[i].second = IntervalPos;
633 /// processInactiveIntervals - expire old intervals and move overlapping
634 /// ones to the active list.
635 void RALinScan::processInactiveIntervals(MachineInstrIndex CurPoint)
637 DEBUG(errs() << "\tprocessing inactive intervals:\n");
639 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
640 LiveInterval *Interval = inactive_[i].first;
641 LiveInterval::iterator IntervalPos = inactive_[i].second;
642 unsigned reg = Interval->reg;
644 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
646 if (IntervalPos == Interval->end()) { // remove expired intervals.
647 DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
649 // Pop off the end of the list.
650 inactive_[i] = inactive_.back();
651 inactive_.pop_back();
652 --i; --e;
653 } else if (IntervalPos->start <= CurPoint) {
654 // move re-activated intervals in active list
655 DEBUG(errs() << "\t\tinterval " << *Interval << " active\n");
656 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
657 "Can only allocate virtual registers!");
658 reg = vrm_->getPhys(reg);
659 addRegUse(reg);
660 // add to active
661 active_.push_back(std::make_pair(Interval, IntervalPos));
663 // Pop off the end of the list.
664 inactive_[i] = inactive_.back();
665 inactive_.pop_back();
666 --i; --e;
667 } else {
668 // Otherwise, just update the iterator position.
669 inactive_[i].second = IntervalPos;
674 /// updateSpillWeights - updates the spill weights of the specifed physical
675 /// register and its weight.
676 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
677 unsigned reg, float weight,
678 const TargetRegisterClass *RC) {
679 SmallSet<unsigned, 4> Processed;
680 SmallSet<unsigned, 4> SuperAdded;
681 SmallVector<unsigned, 4> Supers;
682 Weights[reg] += weight;
683 Processed.insert(reg);
684 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
685 Weights[*as] += weight;
686 Processed.insert(*as);
687 if (tri_->isSubRegister(*as, reg) &&
688 SuperAdded.insert(*as) &&
689 RC->contains(*as)) {
690 Supers.push_back(*as);
694 // If the alias is a super-register, and the super-register is in the
695 // register class we are trying to allocate. Then add the weight to all
696 // sub-registers of the super-register even if they are not aliases.
697 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
698 // bl should get the same spill weight otherwise it will be choosen
699 // as a spill candidate since spilling bh doesn't make ebx available.
700 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
701 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
702 if (!Processed.count(*sr))
703 Weights[*sr] += weight;
707 static
708 RALinScan::IntervalPtrs::iterator
709 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
710 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
711 I != E; ++I)
712 if (I->first == LI) return I;
713 return IP.end();
716 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, MachineInstrIndex Point){
717 for (unsigned i = 0, e = V.size(); i != e; ++i) {
718 RALinScan::IntervalPtr &IP = V[i];
719 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
720 IP.second, Point);
721 if (I != IP.first->begin()) --I;
722 IP.second = I;
726 /// addStackInterval - Create a LiveInterval for stack if the specified live
727 /// interval has been spilled.
728 static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
729 LiveIntervals *li_,
730 MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
731 int SS = vrm_.getStackSlot(cur->reg);
732 if (SS == VirtRegMap::NO_STACK_SLOT)
733 return;
735 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
736 LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);
738 VNInfo *VNI;
739 if (SI.hasAtLeastOneValue())
740 VNI = SI.getValNumInfo(0);
741 else
742 VNI = SI.getNextValue(MachineInstrIndex(), 0, false,
743 ls_->getVNInfoAllocator());
745 LiveInterval &RI = li_->getInterval(cur->reg);
746 // FIXME: This may be overly conservative.
747 SI.MergeRangesInAsValue(RI, VNI);
750 /// getConflictWeight - Return the number of conflicts between cur
751 /// live interval and defs and uses of Reg weighted by loop depthes.
752 static
753 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
754 MachineRegisterInfo *mri_,
755 const MachineLoopInfo *loopInfo) {
756 float Conflicts = 0;
757 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
758 E = mri_->reg_end(); I != E; ++I) {
759 MachineInstr *MI = &*I;
760 if (cur->liveAt(li_->getInstructionIndex(MI))) {
761 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
762 Conflicts += powf(10.0f, (float)loopDepth);
765 return Conflicts;
768 /// findIntervalsToSpill - Determine the intervals to spill for the
769 /// specified interval. It's passed the physical registers whose spill
770 /// weight is the lowest among all the registers whose live intervals
771 /// conflict with the interval.
772 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
773 std::vector<std::pair<unsigned,float> > &Candidates,
774 unsigned NumCands,
775 SmallVector<LiveInterval*, 8> &SpillIntervals) {
776 // We have figured out the *best* register to spill. But there are other
777 // registers that are pretty good as well (spill weight within 3%). Spill
778 // the one that has fewest defs and uses that conflict with cur.
779 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
780 SmallVector<LiveInterval*, 8> SLIs[3];
782 DEBUG({
783 errs() << "\tConsidering " << NumCands << " candidates: ";
784 for (unsigned i = 0; i != NumCands; ++i)
785 errs() << tri_->getName(Candidates[i].first) << " ";
786 errs() << "\n";
789 // Calculate the number of conflicts of each candidate.
790 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
791 unsigned Reg = i->first->reg;
792 unsigned PhysReg = vrm_->getPhys(Reg);
793 if (!cur->overlapsFrom(*i->first, i->second))
794 continue;
795 for (unsigned j = 0; j < NumCands; ++j) {
796 unsigned Candidate = Candidates[j].first;
797 if (tri_->regsOverlap(PhysReg, Candidate)) {
798 if (NumCands > 1)
799 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
800 SLIs[j].push_back(i->first);
805 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
806 unsigned Reg = i->first->reg;
807 unsigned PhysReg = vrm_->getPhys(Reg);
808 if (!cur->overlapsFrom(*i->first, i->second-1))
809 continue;
810 for (unsigned j = 0; j < NumCands; ++j) {
811 unsigned Candidate = Candidates[j].first;
812 if (tri_->regsOverlap(PhysReg, Candidate)) {
813 if (NumCands > 1)
814 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
815 SLIs[j].push_back(i->first);
820 // Which is the best candidate?
821 unsigned BestCandidate = 0;
822 float MinConflicts = Conflicts[0];
823 for (unsigned i = 1; i != NumCands; ++i) {
824 if (Conflicts[i] < MinConflicts) {
825 BestCandidate = i;
826 MinConflicts = Conflicts[i];
830 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
831 std::back_inserter(SpillIntervals));
834 namespace {
835 struct WeightCompare {
836 typedef std::pair<unsigned, float> RegWeightPair;
837 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
838 return LHS.second < RHS.second;
843 static bool weightsAreClose(float w1, float w2) {
844 if (!NewHeuristic)
845 return false;
847 float diff = w1 - w2;
848 if (diff <= 0.02f) // Within 0.02f
849 return true;
850 return (diff / w2) <= 0.05f; // Within 5%.
853 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
854 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
855 if (I == NextReloadMap.end())
856 return 0;
857 return &li_->getInterval(I->second);
860 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
861 bool isNew = DowngradedRegs.insert(Reg);
862 isNew = isNew; // Silence compiler warning.
863 assert(isNew && "Multiple reloads holding the same register?");
864 DowngradeMap.insert(std::make_pair(li->reg, Reg));
865 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
866 isNew = DowngradedRegs.insert(*AS);
867 isNew = isNew; // Silence compiler warning.
868 assert(isNew && "Multiple reloads holding the same register?");
869 DowngradeMap.insert(std::make_pair(li->reg, *AS));
871 ++NumDowngrade;
874 void RALinScan::UpgradeRegister(unsigned Reg) {
875 if (Reg) {
876 DowngradedRegs.erase(Reg);
877 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
878 DowngradedRegs.erase(*AS);
882 namespace {
883 struct LISorter {
884 bool operator()(LiveInterval* A, LiveInterval* B) {
885 return A->beginIndex() < B->beginIndex();
890 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
891 /// spill.
892 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
893 DEBUG(errs() << "\tallocating current interval: ");
895 // This is an implicitly defined live interval, just assign any register.
896 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
897 if (cur->empty()) {
898 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
899 if (!physReg)
900 physReg = *RC->allocation_order_begin(*mf_);
901 DEBUG(errs() << tri_->getName(physReg) << '\n');
902 // Note the register is not really in use.
903 vrm_->assignVirt2Phys(cur->reg, physReg);
904 return;
907 backUpRegUses();
909 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
910 MachineInstrIndex StartPosition = cur->beginIndex();
911 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
913 // If start of this live interval is defined by a move instruction and its
914 // source is assigned a physical register that is compatible with the target
915 // register class, then we should try to assign it the same register.
916 // This can happen when the move is from a larger register class to a smaller
917 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
918 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
919 VNInfo *vni = cur->begin()->valno;
920 if ((vni->def != MachineInstrIndex()) && !vni->isUnused() &&
921 vni->isDefAccurate()) {
922 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
923 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
924 if (CopyMI &&
925 tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
926 unsigned Reg = 0;
927 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
928 Reg = SrcReg;
929 else if (vrm_->isAssignedReg(SrcReg))
930 Reg = vrm_->getPhys(SrcReg);
931 if (Reg) {
932 if (SrcSubReg)
933 Reg = tri_->getSubReg(Reg, SrcSubReg);
934 if (DstSubReg)
935 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
936 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
937 mri_->setRegAllocationHint(cur->reg, 0, Reg);
943 // For every interval in inactive we overlap with, mark the
944 // register as not free and update spill weights.
945 for (IntervalPtrs::const_iterator i = inactive_.begin(),
946 e = inactive_.end(); i != e; ++i) {
947 unsigned Reg = i->first->reg;
948 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
949 "Can only allocate virtual registers!");
950 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
951 // If this is not in a related reg class to the register we're allocating,
952 // don't check it.
953 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
954 cur->overlapsFrom(*i->first, i->second-1)) {
955 Reg = vrm_->getPhys(Reg);
956 addRegUse(Reg);
957 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
961 // Speculatively check to see if we can get a register right now. If not,
962 // we know we won't be able to by adding more constraints. If so, we can
963 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
964 // is very bad (it contains all callee clobbered registers for any functions
965 // with a call), so we want to avoid doing that if possible.
966 unsigned physReg = getFreePhysReg(cur);
967 unsigned BestPhysReg = physReg;
968 if (physReg) {
969 // We got a register. However, if it's in the fixed_ list, we might
970 // conflict with it. Check to see if we conflict with it or any of its
971 // aliases.
972 SmallSet<unsigned, 8> RegAliases;
973 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
974 RegAliases.insert(*AS);
976 bool ConflictsWithFixed = false;
977 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
978 IntervalPtr &IP = fixed_[i];
979 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
980 // Okay, this reg is on the fixed list. Check to see if we actually
981 // conflict.
982 LiveInterval *I = IP.first;
983 if (I->endIndex() > StartPosition) {
984 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
985 IP.second = II;
986 if (II != I->begin() && II->start > StartPosition)
987 --II;
988 if (cur->overlapsFrom(*I, II)) {
989 ConflictsWithFixed = true;
990 break;
996 // Okay, the register picked by our speculative getFreePhysReg call turned
997 // out to be in use. Actually add all of the conflicting fixed registers to
998 // regUse_ so we can do an accurate query.
999 if (ConflictsWithFixed) {
1000 // For every interval in fixed we overlap with, mark the register as not
1001 // free and update spill weights.
1002 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1003 IntervalPtr &IP = fixed_[i];
1004 LiveInterval *I = IP.first;
1006 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1007 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1008 I->endIndex() > StartPosition) {
1009 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1010 IP.second = II;
1011 if (II != I->begin() && II->start > StartPosition)
1012 --II;
1013 if (cur->overlapsFrom(*I, II)) {
1014 unsigned reg = I->reg;
1015 addRegUse(reg);
1016 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1021 // Using the newly updated regUse_ object, which includes conflicts in the
1022 // future, see if there are any registers available.
1023 physReg = getFreePhysReg(cur);
1027 // Restore the physical register tracker, removing information about the
1028 // future.
1029 restoreRegUses();
1031 // If we find a free register, we are done: assign this virtual to
1032 // the free physical register and add this interval to the active
1033 // list.
1034 if (physReg) {
1035 DEBUG(errs() << tri_->getName(physReg) << '\n');
1036 vrm_->assignVirt2Phys(cur->reg, physReg);
1037 addRegUse(physReg);
1038 active_.push_back(std::make_pair(cur, cur->begin()));
1039 handled_.push_back(cur);
1041 // "Upgrade" the physical register since it has been allocated.
1042 UpgradeRegister(physReg);
1043 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1044 // "Downgrade" physReg to try to keep physReg from being allocated until
1045 // the next reload from the same SS is allocated.
1046 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1047 DowngradeRegister(cur, physReg);
1049 return;
1051 DEBUG(errs() << "no free registers\n");
1053 // Compile the spill weights into an array that is better for scanning.
1054 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1055 for (std::vector<std::pair<unsigned, float> >::iterator
1056 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1057 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1059 // for each interval in active, update spill weights.
1060 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1061 i != e; ++i) {
1062 unsigned reg = i->first->reg;
1063 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1064 "Can only allocate virtual registers!");
1065 reg = vrm_->getPhys(reg);
1066 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1069 DEBUG(errs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1071 // Find a register to spill.
1072 float minWeight = HUGE_VALF;
1073 unsigned minReg = 0;
1075 bool Found = false;
1076 std::vector<std::pair<unsigned,float> > RegsWeights;
1077 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1078 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1079 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1080 unsigned reg = *i;
1081 float regWeight = SpillWeights[reg];
1082 if (minWeight > regWeight)
1083 Found = true;
1084 RegsWeights.push_back(std::make_pair(reg, regWeight));
1087 // If we didn't find a register that is spillable, try aliases?
1088 if (!Found) {
1089 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1090 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1091 unsigned reg = *i;
1092 // No need to worry about if the alias register size < regsize of RC.
1093 // We are going to spill all registers that alias it anyway.
1094 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1095 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1099 // Sort all potential spill candidates by weight.
1100 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
1101 minReg = RegsWeights[0].first;
1102 minWeight = RegsWeights[0].second;
1103 if (minWeight == HUGE_VALF) {
1104 // All registers must have inf weight. Just grab one!
1105 minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
1106 if (cur->weight == HUGE_VALF ||
1107 li_->getApproximateInstructionCount(*cur) == 0) {
1108 // Spill a physical register around defs and uses.
1109 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1110 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1111 // in fixed_. Reset them.
1112 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1113 IntervalPtr &IP = fixed_[i];
1114 LiveInterval *I = IP.first;
1115 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1116 IP.second = I->advanceTo(I->begin(), StartPosition);
1119 DowngradedRegs.clear();
1120 assignRegOrStackSlotAtInterval(cur);
1121 } else {
1122 llvm_report_error("Ran out of registers during register allocation!");
1124 return;
1128 // Find up to 3 registers to consider as spill candidates.
1129 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1130 while (LastCandidate > 1) {
1131 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1132 break;
1133 --LastCandidate;
1136 DEBUG({
1137 errs() << "\t\tregister(s) with min weight(s): ";
1139 for (unsigned i = 0; i != LastCandidate; ++i)
1140 errs() << tri_->getName(RegsWeights[i].first)
1141 << " (" << RegsWeights[i].second << ")\n";
1144 // If the current has the minimum weight, we need to spill it and
1145 // add any added intervals back to unhandled, and restart
1146 // linearscan.
1147 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1148 DEBUG(errs() << "\t\t\tspilling(c): " << *cur << '\n');
1149 SmallVector<LiveInterval*, 8> spillIs;
1150 std::vector<LiveInterval*> added;
1152 if (!NewSpillFramework) {
1153 added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
1154 } else {
1155 added = spiller_->spill(cur);
1158 std::sort(added.begin(), added.end(), LISorter());
1159 addStackInterval(cur, ls_, li_, mri_, *vrm_);
1160 if (added.empty())
1161 return; // Early exit if all spills were folded.
1163 // Merge added with unhandled. Note that we have already sorted
1164 // intervals returned by addIntervalsForSpills by their starting
1165 // point.
1166 // This also update the NextReloadMap. That is, it adds mapping from a
1167 // register defined by a reload from SS to the next reload from SS in the
1168 // same basic block.
1169 MachineBasicBlock *LastReloadMBB = 0;
1170 LiveInterval *LastReload = 0;
1171 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1172 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1173 LiveInterval *ReloadLi = added[i];
1174 if (ReloadLi->weight == HUGE_VALF &&
1175 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1176 MachineInstrIndex ReloadIdx = ReloadLi->beginIndex();
1177 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1178 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1179 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1180 // Last reload of same SS is in the same MBB. We want to try to
1181 // allocate both reloads the same register and make sure the reg
1182 // isn't clobbered in between if at all possible.
1183 assert(LastReload->beginIndex() < ReloadIdx);
1184 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1186 LastReloadMBB = ReloadMBB;
1187 LastReload = ReloadLi;
1188 LastReloadSS = ReloadSS;
1190 unhandled_.push(ReloadLi);
1192 return;
1195 ++NumBacktracks;
1197 // Push the current interval back to unhandled since we are going
1198 // to re-run at least this iteration. Since we didn't modify it it
1199 // should go back right in the front of the list
1200 unhandled_.push(cur);
1202 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1203 "did not choose a register to spill?");
1205 // We spill all intervals aliasing the register with
1206 // minimum weight, rollback to the interval with the earliest
1207 // start point and let the linear scan algorithm run again
1208 SmallVector<LiveInterval*, 8> spillIs;
1210 // Determine which intervals have to be spilled.
1211 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1213 // Set of spilled vregs (used later to rollback properly)
1214 SmallSet<unsigned, 8> spilled;
1216 // The earliest start of a Spilled interval indicates up to where
1217 // in handled we need to roll back
1219 LiveInterval *earliestStartInterval = cur;
1221 // Spill live intervals of virtual regs mapped to the physical register we
1222 // want to clear (and its aliases). We only spill those that overlap with the
1223 // current interval as the rest do not affect its allocation. we also keep
1224 // track of the earliest start of all spilled live intervals since this will
1225 // mark our rollback point.
1226 std::vector<LiveInterval*> added;
1227 while (!spillIs.empty()) {
1228 LiveInterval *sli = spillIs.back();
1229 spillIs.pop_back();
1230 DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n');
1231 earliestStartInterval =
1232 (earliestStartInterval->beginIndex() < sli->beginIndex()) ?
1233 earliestStartInterval : sli;
1235 std::vector<LiveInterval*> newIs;
1236 if (!NewSpillFramework) {
1237 newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
1238 } else {
1239 newIs = spiller_->spill(sli);
1241 addStackInterval(sli, ls_, li_, mri_, *vrm_);
1242 std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
1243 spilled.insert(sli->reg);
1246 MachineInstrIndex earliestStart = earliestStartInterval->beginIndex();
1248 DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n');
1250 // Scan handled in reverse order up to the earliest start of a
1251 // spilled live interval and undo each one, restoring the state of
1252 // unhandled.
1253 while (!handled_.empty()) {
1254 LiveInterval* i = handled_.back();
1255 // If this interval starts before t we are done.
1256 if (i->beginIndex() < earliestStart)
1257 break;
1258 DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n');
1259 handled_.pop_back();
1261 // When undoing a live interval allocation we must know if it is active or
1262 // inactive to properly update regUse_ and the VirtRegMap.
1263 IntervalPtrs::iterator it;
1264 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1265 active_.erase(it);
1266 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1267 if (!spilled.count(i->reg))
1268 unhandled_.push(i);
1269 delRegUse(vrm_->getPhys(i->reg));
1270 vrm_->clearVirt(i->reg);
1271 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1272 inactive_.erase(it);
1273 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1274 if (!spilled.count(i->reg))
1275 unhandled_.push(i);
1276 vrm_->clearVirt(i->reg);
1277 } else {
1278 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1279 "Can only allocate virtual registers!");
1280 vrm_->clearVirt(i->reg);
1281 unhandled_.push(i);
1284 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1285 if (ii == DowngradeMap.end())
1286 // It interval has a preference, it must be defined by a copy. Clear the
1287 // preference now since the source interval allocation may have been
1288 // undone as well.
1289 mri_->setRegAllocationHint(i->reg, 0, 0);
1290 else {
1291 UpgradeRegister(ii->second);
1295 // Rewind the iterators in the active, inactive, and fixed lists back to the
1296 // point we reverted to.
1297 RevertVectorIteratorsTo(active_, earliestStart);
1298 RevertVectorIteratorsTo(inactive_, earliestStart);
1299 RevertVectorIteratorsTo(fixed_, earliestStart);
1301 // Scan the rest and undo each interval that expired after t and
1302 // insert it in active (the next iteration of the algorithm will
1303 // put it in inactive if required)
1304 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1305 LiveInterval *HI = handled_[i];
1306 if (!HI->expiredAt(earliestStart) &&
1307 HI->expiredAt(cur->beginIndex())) {
1308 DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n');
1309 active_.push_back(std::make_pair(HI, HI->begin()));
1310 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1311 addRegUse(vrm_->getPhys(HI->reg));
1315 // Merge added with unhandled.
1316 // This also update the NextReloadMap. That is, it adds mapping from a
1317 // register defined by a reload from SS to the next reload from SS in the
1318 // same basic block.
1319 MachineBasicBlock *LastReloadMBB = 0;
1320 LiveInterval *LastReload = 0;
1321 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1322 std::sort(added.begin(), added.end(), LISorter());
1323 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1324 LiveInterval *ReloadLi = added[i];
1325 if (ReloadLi->weight == HUGE_VALF &&
1326 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1327 MachineInstrIndex ReloadIdx = ReloadLi->beginIndex();
1328 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1329 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1330 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1331 // Last reload of same SS is in the same MBB. We want to try to
1332 // allocate both reloads the same register and make sure the reg
1333 // isn't clobbered in between if at all possible.
1334 assert(LastReload->beginIndex() < ReloadIdx);
1335 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1337 LastReloadMBB = ReloadMBB;
1338 LastReload = ReloadLi;
1339 LastReloadSS = ReloadSS;
1341 unhandled_.push(ReloadLi);
1345 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1346 const TargetRegisterClass *RC,
1347 unsigned MaxInactiveCount,
1348 SmallVector<unsigned, 256> &inactiveCounts,
1349 bool SkipDGRegs) {
1350 unsigned FreeReg = 0;
1351 unsigned FreeRegInactiveCount = 0;
1353 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1354 // Resolve second part of the hint (if possible) given the current allocation.
1355 unsigned physReg = Hint.second;
1356 if (physReg &&
1357 TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1358 physReg = vrm_->getPhys(physReg);
1360 TargetRegisterClass::iterator I, E;
1361 tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
1362 assert(I != E && "No allocatable register in this register class!");
1364 // Scan for the first available register.
1365 for (; I != E; ++I) {
1366 unsigned Reg = *I;
1367 // Ignore "downgraded" registers.
1368 if (SkipDGRegs && DowngradedRegs.count(Reg))
1369 continue;
1370 if (isRegAvail(Reg)) {
1371 FreeReg = Reg;
1372 if (FreeReg < inactiveCounts.size())
1373 FreeRegInactiveCount = inactiveCounts[FreeReg];
1374 else
1375 FreeRegInactiveCount = 0;
1376 break;
1380 // If there are no free regs, or if this reg has the max inactive count,
1381 // return this register.
1382 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
1383 return FreeReg;
1385 // Continue scanning the registers, looking for the one with the highest
1386 // inactive count. Alkis found that this reduced register pressure very
1387 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1388 // reevaluated now.
1389 for (; I != E; ++I) {
1390 unsigned Reg = *I;
1391 // Ignore "downgraded" registers.
1392 if (SkipDGRegs && DowngradedRegs.count(Reg))
1393 continue;
1394 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1395 FreeRegInactiveCount < inactiveCounts[Reg]) {
1396 FreeReg = Reg;
1397 FreeRegInactiveCount = inactiveCounts[Reg];
1398 if (FreeRegInactiveCount == MaxInactiveCount)
1399 break; // We found the one with the max inactive count.
1403 return FreeReg;
1406 /// getFreePhysReg - return a free physical register for this virtual register
1407 /// interval if we have one, otherwise return 0.
1408 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1409 SmallVector<unsigned, 256> inactiveCounts;
1410 unsigned MaxInactiveCount = 0;
1412 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1413 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1415 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1416 i != e; ++i) {
1417 unsigned reg = i->first->reg;
1418 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1419 "Can only allocate virtual registers!");
1421 // If this is not in a related reg class to the register we're allocating,
1422 // don't check it.
1423 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1424 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1425 reg = vrm_->getPhys(reg);
1426 if (inactiveCounts.size() <= reg)
1427 inactiveCounts.resize(reg+1);
1428 ++inactiveCounts[reg];
1429 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1433 // If copy coalescer has assigned a "preferred" register, check if it's
1434 // available first.
1435 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1436 if (Preference) {
1437 DEBUG(errs() << "(preferred: " << tri_->getName(Preference) << ") ");
1438 if (isRegAvail(Preference) &&
1439 RC->contains(Preference))
1440 return Preference;
1443 if (!DowngradedRegs.empty()) {
1444 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1445 true);
1446 if (FreeReg)
1447 return FreeReg;
1449 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1452 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1453 return new RALinScan();