1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
33 class MachineFunction
;
34 class MachineRegisterInfo
;
35 class TargetInstrInfo
;
36 class TargetRegisterInfo
;
39 class VirtRegMap
: public MachineFunctionPass
{
43 NO_STACK_SLOT
= (1L << 30)-1,
44 MAX_STACK_SLOT
= (1L << 18)-1
47 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
48 typedef std::multimap
<MachineInstr
*,
49 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
52 MachineRegisterInfo
*MRI
;
53 const TargetInstrInfo
*TII
;
54 const TargetRegisterInfo
*TRI
;
57 DenseMap
<const TargetRegisterClass
*, BitVector
> allocatableRCRegs
;
59 /// Virt2PhysMap - This is a virtual to physical register
60 /// mapping. Each virtual register is required to have an entry in
61 /// it; even spilled virtual registers (the register mapped to a
62 /// spilled register is the temporary used to load it from the
64 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
66 /// Virt2StackSlotMap - This is virtual register to stack slot
67 /// mapping. Each spilled virtual register has an entry in it
68 /// which corresponds to the stack slot this register is spilled
70 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
72 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
73 /// mapping. Each spilled virtual register that should be remat'd has an
74 /// entry in it which corresponds to the remat id.
75 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
77 /// Virt2SplitMap - This is virtual register to splitted virtual register
79 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
81 /// Virt2SplitKillMap - This is splitted virtual register to its last use
82 /// (kill) index mapping.
83 IndexedMap
<MachineInstrIndex
> Virt2SplitKillMap
;
85 /// ReMatMap - This is virtual register to re-materialized instruction
86 /// mapping. Each virtual register whose definition is going to be
87 /// re-materialized has an entry in it.
88 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
90 /// MI2VirtMap - This is MachineInstr to virtual register
91 /// mapping. In the case of memory spill code being folded into
92 /// instructions, we need to know which virtual register was
93 /// read/written by this instruction.
94 MI2VirtMapTy MI2VirtMap
;
96 /// SpillPt2VirtMap - This records the virtual registers which should
97 /// be spilled right after the MachineInstr due to live interval
99 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
102 /// RestorePt2VirtMap - This records the virtual registers which should
103 /// be restored right before the MachineInstr due to live interval
105 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
107 /// EmergencySpillMap - This records the physical registers that should
108 /// be spilled / restored around the MachineInstr since the register
109 /// allocator has run out of registers.
110 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
112 /// EmergencySpillSlots - This records emergency spill slots used to
113 /// spill physical registers when the register allocator runs out of
114 /// registers. Ideally only one stack slot is used per function per
116 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
118 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
119 /// virtual register, an unique id is being assigned. This keeps track of
120 /// the highest id used so far. Note, this starts at (1<<18) to avoid
121 /// conflicts with stack slot numbers.
124 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
125 int LowSpillSlot
, HighSpillSlot
;
127 /// SpillSlotToUsesMap - Records uses for each register spill slot.
128 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
130 /// ImplicitDefed - One bit for each virtual register. If set it indicates
131 /// the register is implicitly defined.
132 BitVector ImplicitDefed
;
134 /// UnusedRegs - A list of physical registers that have not been used.
135 BitVector UnusedRegs
;
137 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
138 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
142 VirtRegMap() : MachineFunctionPass(&ID
), Virt2PhysMap(NO_PHYS_REG
),
143 Virt2StackSlotMap(NO_STACK_SLOT
),
144 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
145 Virt2SplitKillMap(MachineInstrIndex()), ReMatMap(NULL
),
146 ReMatId(MAX_STACK_SLOT
+1),
147 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
148 virtual bool runOnMachineFunction(MachineFunction
&MF
);
150 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
151 AU
.setPreservesAll();
152 MachineFunctionPass::getAnalysisUsage(AU
);
157 /// @brief returns true if the specified virtual register is
158 /// mapped to a physical register
159 bool hasPhys(unsigned virtReg
) const {
160 return getPhys(virtReg
) != NO_PHYS_REG
;
163 /// @brief returns the physical register mapped to the specified
165 unsigned getPhys(unsigned virtReg
) const {
166 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
167 return Virt2PhysMap
[virtReg
];
170 /// @brief creates a mapping for the specified virtual register to
171 /// the specified physical register
172 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
173 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
174 TargetRegisterInfo::isPhysicalRegister(physReg
));
175 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
176 "attempt to assign physical register to already mapped "
178 Virt2PhysMap
[virtReg
] = physReg
;
181 /// @brief clears the specified virtual register's, physical
183 void clearVirt(unsigned virtReg
) {
184 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
185 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
186 "attempt to clear a not assigned virtual register");
187 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
190 /// @brief clears all virtual to physical register mappings
191 void clearAllVirt() {
192 Virt2PhysMap
.clear();
196 /// @brief returns the register allocation preference.
197 unsigned getRegAllocPref(unsigned virtReg
);
199 /// @brief records virtReg is a split live interval from SReg.
200 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
201 Virt2SplitMap
[virtReg
] = SReg
;
204 /// @brief returns the live interval virtReg is split from.
205 unsigned getPreSplitReg(unsigned virtReg
) {
206 return Virt2SplitMap
[virtReg
];
209 /// @brief returns true if the specified virtual register is not
210 /// mapped to a stack slot or rematerialized.
211 bool isAssignedReg(unsigned virtReg
) const {
212 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
213 getReMatId(virtReg
) == NO_STACK_SLOT
)
215 // Split register can be assigned a physical register as well as a
216 // stack slot or remat id.
217 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
220 /// @brief returns the stack slot mapped to the specified virtual
222 int getStackSlot(unsigned virtReg
) const {
223 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
224 return Virt2StackSlotMap
[virtReg
];
227 /// @brief returns the rematerialization id mapped to the specified virtual
229 int getReMatId(unsigned virtReg
) const {
230 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
231 return Virt2ReMatIdMap
[virtReg
];
234 /// @brief create a mapping for the specifed virtual register to
235 /// the next available stack slot
236 int assignVirt2StackSlot(unsigned virtReg
);
237 /// @brief create a mapping for the specified virtual register to
238 /// the specified stack slot
239 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
241 /// @brief assign an unique re-materialization id to the specified
242 /// virtual register.
243 int assignVirtReMatId(unsigned virtReg
);
244 /// @brief assign an unique re-materialization id to the specified
245 /// virtual register.
246 void assignVirtReMatId(unsigned virtReg
, int id
);
248 /// @brief returns true if the specified virtual register is being
250 bool isReMaterialized(unsigned virtReg
) const {
251 return ReMatMap
[virtReg
] != NULL
;
254 /// @brief returns the original machine instruction being re-issued
255 /// to re-materialize the specified virtual register.
256 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
257 return ReMatMap
[virtReg
];
260 /// @brief records the specified virtual register will be
261 /// re-materialized and the original instruction which will be re-issed
262 /// for this purpose. If parameter all is true, then all uses of the
263 /// registers are rematerialized and it's safe to delete the definition.
264 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
265 ReMatMap
[virtReg
] = def
;
268 /// @brief record the last use (kill) of a split virtual register.
269 void addKillPoint(unsigned virtReg
, MachineInstrIndex index
) {
270 Virt2SplitKillMap
[virtReg
] = index
;
273 MachineInstrIndex
getKillPoint(unsigned virtReg
) const {
274 return Virt2SplitKillMap
[virtReg
];
277 /// @brief remove the last use (kill) of a split virtual register.
278 void removeKillPoint(unsigned virtReg
) {
279 Virt2SplitKillMap
[virtReg
] = MachineInstrIndex();
282 /// @brief returns true if the specified MachineInstr is a spill point.
283 bool isSpillPt(MachineInstr
*Pt
) const {
284 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
287 /// @brief returns the virtual registers that should be spilled due to
288 /// splitting right after the specified MachineInstr.
289 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
290 return SpillPt2VirtMap
[Pt
];
293 /// @brief records the specified MachineInstr as a spill point for virtReg.
294 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
295 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
296 I
= SpillPt2VirtMap
.find(Pt
);
297 if (I
!= SpillPt2VirtMap
.end())
298 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
300 std::vector
<std::pair
<unsigned,bool> > Virts
;
301 Virts
.push_back(std::make_pair(virtReg
, isKill
));
302 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
306 /// @brief - transfer spill point information from one instruction to
308 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
309 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
310 I
= SpillPt2VirtMap
.find(Old
);
311 if (I
== SpillPt2VirtMap
.end())
313 while (!I
->second
.empty()) {
314 unsigned virtReg
= I
->second
.back().first
;
315 bool isKill
= I
->second
.back().second
;
316 I
->second
.pop_back();
317 addSpillPoint(virtReg
, isKill
, New
);
319 SpillPt2VirtMap
.erase(I
);
322 /// @brief returns true if the specified MachineInstr is a restore point.
323 bool isRestorePt(MachineInstr
*Pt
) const {
324 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
327 /// @brief returns the virtual registers that should be restoreed due to
328 /// splitting right after the specified MachineInstr.
329 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
330 return RestorePt2VirtMap
[Pt
];
333 /// @brief records the specified MachineInstr as a restore point for virtReg.
334 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
335 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
336 RestorePt2VirtMap
.find(Pt
);
337 if (I
!= RestorePt2VirtMap
.end())
338 I
->second
.push_back(virtReg
);
340 std::vector
<unsigned> Virts
;
341 Virts
.push_back(virtReg
);
342 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
346 /// @brief - transfer restore point information from one instruction to
348 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
349 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
350 RestorePt2VirtMap
.find(Old
);
351 if (I
== RestorePt2VirtMap
.end())
353 while (!I
->second
.empty()) {
354 unsigned virtReg
= I
->second
.back();
355 I
->second
.pop_back();
356 addRestorePoint(virtReg
, New
);
358 RestorePt2VirtMap
.erase(I
);
361 /// @brief records that the specified physical register must be spilled
362 /// around the specified machine instr.
363 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
364 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
365 EmergencySpillMap
[MI
].push_back(PhysReg
);
367 std::vector
<unsigned> PhysRegs
;
368 PhysRegs
.push_back(PhysReg
);
369 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
373 /// @brief returns true if one or more physical registers must be spilled
374 /// around the specified instruction.
375 bool hasEmergencySpills(MachineInstr
*MI
) const {
376 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
379 /// @brief returns the physical registers to be spilled and restored around
381 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
382 return EmergencySpillMap
[MI
];
385 /// @brief - transfer emergency spill information from one instruction to
387 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
388 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
389 EmergencySpillMap
.find(Old
);
390 if (I
== EmergencySpillMap
.end())
392 while (!I
->second
.empty()) {
393 unsigned virtReg
= I
->second
.back();
394 I
->second
.pop_back();
395 addEmergencySpill(virtReg
, New
);
397 EmergencySpillMap
.erase(I
);
400 /// @brief return or get a emergency spill slot for the register class.
401 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
403 /// @brief Return lowest spill slot index.
404 int getLowSpillSlot() const {
408 /// @brief Return highest spill slot index.
409 int getHighSpillSlot() const {
410 return HighSpillSlot
;
413 /// @brief Records a spill slot use.
414 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
416 /// @brief Returns true if spill slot has been used.
417 bool isSpillSlotUsed(int FrameIndex
) const {
418 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
419 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
422 /// @brief Mark the specified register as being implicitly defined.
423 void setIsImplicitlyDefined(unsigned VirtReg
) {
424 ImplicitDefed
.set(VirtReg
-TargetRegisterInfo::FirstVirtualRegister
);
427 /// @brief Returns true if the virtual register is implicitly defined.
428 bool isImplicitlyDefined(unsigned VirtReg
) const {
429 return ImplicitDefed
[VirtReg
-TargetRegisterInfo::FirstVirtualRegister
];
432 /// @brief Updates information about the specified virtual register's value
433 /// folded into newMI machine instruction.
434 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
437 /// @brief Updates information about the specified virtual register's value
438 /// folded into the specified machine instruction.
439 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
441 /// @brief returns the virtual registers' values folded in memory
442 /// operands of this instruction
443 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
444 getFoldedVirts(MachineInstr
* MI
) const {
445 return MI2VirtMap
.equal_range(MI
);
448 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
449 /// the folded instruction map and spill point map.
450 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
452 /// FindUnusedRegisters - Gather a list of allocatable registers that
453 /// have not been allocated to any virtual register.
454 bool FindUnusedRegisters(LiveIntervals
* LIs
);
456 /// HasUnusedRegisters - Return true if there are any allocatable registers
457 /// that have not been allocated to any virtual register.
458 bool HasUnusedRegisters() const {
459 return !UnusedRegs
.none();
462 /// setRegisterUsed - Remember the physical register is now used.
463 void setRegisterUsed(unsigned Reg
) {
464 UnusedRegs
.reset(Reg
);
467 /// isRegisterUnused - Return true if the physical register has not been
469 bool isRegisterUnused(unsigned Reg
) const {
470 return UnusedRegs
[Reg
];
473 /// getFirstUnusedRegister - Return the first physical register that has not
475 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
476 int Reg
= UnusedRegs
.find_first();
478 if (allocatableRCRegs
[RC
][Reg
])
479 return (unsigned)Reg
;
480 Reg
= UnusedRegs
.find_next(Reg
);
485 void print(raw_ostream
&OS
, const Module
* M
= 0) const;
489 inline raw_ostream
&operator<<(raw_ostream
&OS
, const VirtRegMap
&VRM
) {
493 } // End llvm namespace