1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Path.h"
31 #include "llvm/ADT/DenseMap.h"
35 // Error - Simple wrapper function to conditionally assign to E and return true.
36 // This just makes error return conditions a little bit simpler...
37 static inline bool Error(std::string
*E
, const Twine
&Message
) {
38 if (E
) *E
= Message
.str();
42 // Function: ResolveTypes()
45 // Attempt to link the two specified types together.
48 // DestTy - The type to which we wish to resolve.
49 // SrcTy - The original type which we want to resolve.
52 // DestST - The symbol table in which the new type should be placed.
55 // true - There is an error and the types cannot yet be linked.
58 static bool ResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
59 if (DestTy
== SrcTy
) return false; // If already equal, noop
60 assert(DestTy
&& SrcTy
&& "Can't handle null types");
62 if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(DestTy
)) {
63 // Type _is_ in module, just opaque...
64 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(SrcTy
);
65 } else if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(SrcTy
)) {
66 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(DestTy
);
68 return true; // Cannot link types... not-equal and neither is opaque.
73 /// LinkerTypeMap - This implements a map of types that is stable
74 /// even if types are resolved/refined to other types. This is not a general
75 /// purpose map, it is specific to the linker's use.
77 class LinkerTypeMap
: public AbstractTypeUser
{
78 typedef DenseMap
<const Type
*, PATypeHolder
> TheMapTy
;
81 LinkerTypeMap(const LinkerTypeMap
&); // DO NOT IMPLEMENT
82 void operator=(const LinkerTypeMap
&); // DO NOT IMPLEMENT
86 for (DenseMap
<const Type
*, PATypeHolder
>::iterator I
= TheMap
.begin(),
87 E
= TheMap
.end(); I
!= E
; ++I
)
88 I
->first
->removeAbstractTypeUser(this);
91 /// lookup - Return the value for the specified type or null if it doesn't
93 const Type
*lookup(const Type
*Ty
) const {
94 TheMapTy::const_iterator I
= TheMap
.find(Ty
);
95 if (I
!= TheMap
.end()) return I
->second
;
99 /// erase - Remove the specified type, returning true if it was in the set.
100 bool erase(const Type
*Ty
) {
101 if (!TheMap
.erase(Ty
))
103 if (Ty
->isAbstract())
104 Ty
->removeAbstractTypeUser(this);
108 /// insert - This returns true if the pointer was new to the set, false if it
109 /// was already in the set.
110 bool insert(const Type
*Src
, const Type
*Dst
) {
111 if (!TheMap
.insert(std::make_pair(Src
, PATypeHolder(Dst
))).second
)
112 return false; // Already in map.
113 if (Src
->isAbstract())
114 Src
->addAbstractTypeUser(this);
119 /// refineAbstractType - The callback method invoked when an abstract type is
120 /// resolved to another type. An object must override this method to update
121 /// its internal state to reference NewType instead of OldType.
123 virtual void refineAbstractType(const DerivedType
*OldTy
,
125 TheMapTy::iterator I
= TheMap
.find(OldTy
);
126 const Type
*DstTy
= I
->second
;
129 if (OldTy
->isAbstract())
130 OldTy
->removeAbstractTypeUser(this);
132 // Don't reinsert into the map if the key is concrete now.
133 if (NewTy
->isAbstract())
134 insert(NewTy
, DstTy
);
137 /// The other case which AbstractTypeUsers must be aware of is when a type
138 /// makes the transition from being abstract (where it has clients on it's
139 /// AbstractTypeUsers list) to concrete (where it does not). This method
140 /// notifies ATU's when this occurs for a type.
141 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) {
143 AbsTy
->removeAbstractTypeUser(this);
147 virtual void dump() const {
148 errs() << "AbstractTypeSet!\n";
154 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
155 // recurses down into derived types, merging the used types if the parent types
157 static bool RecursiveResolveTypesI(const Type
*DstTy
, const Type
*SrcTy
,
158 LinkerTypeMap
&Pointers
) {
159 if (DstTy
== SrcTy
) return false; // If already equal, noop
161 // If we found our opaque type, resolve it now!
162 if (isa
<OpaqueType
>(DstTy
) || isa
<OpaqueType
>(SrcTy
))
163 return ResolveTypes(DstTy
, SrcTy
);
165 // Two types cannot be resolved together if they are of different primitive
166 // type. For example, we cannot resolve an int to a float.
167 if (DstTy
->getTypeID() != SrcTy
->getTypeID()) return true;
169 // If neither type is abstract, then they really are just different types.
170 if (!DstTy
->isAbstract() && !SrcTy
->isAbstract())
173 // Otherwise, resolve the used type used by this derived type...
174 switch (DstTy
->getTypeID()) {
177 case Type::FunctionTyID
: {
178 const FunctionType
*DstFT
= cast
<FunctionType
>(DstTy
);
179 const FunctionType
*SrcFT
= cast
<FunctionType
>(SrcTy
);
180 if (DstFT
->isVarArg() != SrcFT
->isVarArg() ||
181 DstFT
->getNumContainedTypes() != SrcFT
->getNumContainedTypes())
184 // Use TypeHolder's so recursive resolution won't break us.
185 PATypeHolder
ST(SrcFT
), DT(DstFT
);
186 for (unsigned i
= 0, e
= DstFT
->getNumContainedTypes(); i
!= e
; ++i
) {
187 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
188 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
193 case Type::StructTyID
: {
194 const StructType
*DstST
= cast
<StructType
>(DstTy
);
195 const StructType
*SrcST
= cast
<StructType
>(SrcTy
);
196 if (DstST
->getNumContainedTypes() != SrcST
->getNumContainedTypes())
199 PATypeHolder
ST(SrcST
), DT(DstST
);
200 for (unsigned i
= 0, e
= DstST
->getNumContainedTypes(); i
!= e
; ++i
) {
201 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
202 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
207 case Type::ArrayTyID
: {
208 const ArrayType
*DAT
= cast
<ArrayType
>(DstTy
);
209 const ArrayType
*SAT
= cast
<ArrayType
>(SrcTy
);
210 if (DAT
->getNumElements() != SAT
->getNumElements()) return true;
211 return RecursiveResolveTypesI(DAT
->getElementType(), SAT
->getElementType(),
214 case Type::VectorTyID
: {
215 const VectorType
*DVT
= cast
<VectorType
>(DstTy
);
216 const VectorType
*SVT
= cast
<VectorType
>(SrcTy
);
217 if (DVT
->getNumElements() != SVT
->getNumElements()) return true;
218 return RecursiveResolveTypesI(DVT
->getElementType(), SVT
->getElementType(),
221 case Type::PointerTyID
: {
222 const PointerType
*DstPT
= cast
<PointerType
>(DstTy
);
223 const PointerType
*SrcPT
= cast
<PointerType
>(SrcTy
);
225 if (DstPT
->getAddressSpace() != SrcPT
->getAddressSpace())
228 // If this is a pointer type, check to see if we have already seen it. If
229 // so, we are in a recursive branch. Cut off the search now. We cannot use
230 // an associative container for this search, because the type pointers (keys
231 // in the container) change whenever types get resolved.
232 if (SrcPT
->isAbstract())
233 if (const Type
*ExistingDestTy
= Pointers
.lookup(SrcPT
))
234 return ExistingDestTy
!= DstPT
;
236 if (DstPT
->isAbstract())
237 if (const Type
*ExistingSrcTy
= Pointers
.lookup(DstPT
))
238 return ExistingSrcTy
!= SrcPT
;
239 // Otherwise, add the current pointers to the vector to stop recursion on
241 if (DstPT
->isAbstract())
242 Pointers
.insert(DstPT
, SrcPT
);
243 if (SrcPT
->isAbstract())
244 Pointers
.insert(SrcPT
, DstPT
);
246 return RecursiveResolveTypesI(DstPT
->getElementType(),
247 SrcPT
->getElementType(), Pointers
);
252 static bool RecursiveResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
253 LinkerTypeMap PointerTypes
;
254 return RecursiveResolveTypesI(DestTy
, SrcTy
, PointerTypes
);
258 // LinkTypes - Go through the symbol table of the Src module and see if any
259 // types are named in the src module that are not named in the Dst module.
260 // Make sure there are no type name conflicts.
261 static bool LinkTypes(Module
*Dest
, const Module
*Src
, std::string
*Err
) {
262 TypeSymbolTable
*DestST
= &Dest
->getTypeSymbolTable();
263 const TypeSymbolTable
*SrcST
= &Src
->getTypeSymbolTable();
265 // Look for a type plane for Type's...
266 TypeSymbolTable::const_iterator TI
= SrcST
->begin();
267 TypeSymbolTable::const_iterator TE
= SrcST
->end();
268 if (TI
== TE
) return false; // No named types, do nothing.
270 // Some types cannot be resolved immediately because they depend on other
271 // types being resolved to each other first. This contains a list of types we
272 // are waiting to recheck.
273 std::vector
<std::string
> DelayedTypesToResolve
;
275 for ( ; TI
!= TE
; ++TI
) {
276 const std::string
&Name
= TI
->first
;
277 const Type
*RHS
= TI
->second
;
279 // Check to see if this type name is already in the dest module.
280 Type
*Entry
= DestST
->lookup(Name
);
282 // If the name is just in the source module, bring it over to the dest.
285 DestST
->insert(Name
, const_cast<Type
*>(RHS
));
286 } else if (ResolveTypes(Entry
, RHS
)) {
287 // They look different, save the types 'till later to resolve.
288 DelayedTypesToResolve
.push_back(Name
);
292 // Iteratively resolve types while we can...
293 while (!DelayedTypesToResolve
.empty()) {
294 // Loop over all of the types, attempting to resolve them if possible...
295 unsigned OldSize
= DelayedTypesToResolve
.size();
297 // Try direct resolution by name...
298 for (unsigned i
= 0; i
!= DelayedTypesToResolve
.size(); ++i
) {
299 const std::string
&Name
= DelayedTypesToResolve
[i
];
300 Type
*T1
= SrcST
->lookup(Name
);
301 Type
*T2
= DestST
->lookup(Name
);
302 if (!ResolveTypes(T2
, T1
)) {
303 // We are making progress!
304 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
309 // Did we not eliminate any types?
310 if (DelayedTypesToResolve
.size() == OldSize
) {
311 // Attempt to resolve subelements of types. This allows us to merge these
312 // two types: { int* } and { opaque* }
313 for (unsigned i
= 0, e
= DelayedTypesToResolve
.size(); i
!= e
; ++i
) {
314 const std::string
&Name
= DelayedTypesToResolve
[i
];
315 if (!RecursiveResolveTypes(SrcST
->lookup(Name
), DestST
->lookup(Name
))) {
316 // We are making progress!
317 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
319 // Go back to the main loop, perhaps we can resolve directly by name
325 // If we STILL cannot resolve the types, then there is something wrong.
326 if (DelayedTypesToResolve
.size() == OldSize
) {
327 // Remove the symbol name from the destination.
328 DelayedTypesToResolve
.pop_back();
338 static void PrintMap(const std::map
<const Value
*, Value
*> &M
) {
339 for (std::map
<const Value
*, Value
*>::const_iterator I
= M
.begin(), E
=M
.end();
341 errs() << " Fr: " << (void*)I
->first
<< " ";
343 errs() << " To: " << (void*)I
->second
<< " ";
351 // RemapOperand - Use ValueMap to convert constants from one module to another.
352 static Value
*RemapOperand(const Value
*In
,
353 std::map
<const Value
*, Value
*> &ValueMap
,
354 LLVMContext
&Context
) {
355 std::map
<const Value
*,Value
*>::const_iterator I
= ValueMap
.find(In
);
356 if (I
!= ValueMap
.end())
359 // Check to see if it's a constant that we are interested in transforming.
361 if (const Constant
*CPV
= dyn_cast
<Constant
>(In
)) {
362 if ((!isa
<DerivedType
>(CPV
->getType()) && !isa
<ConstantExpr
>(CPV
)) ||
363 isa
<ConstantInt
>(CPV
) || isa
<ConstantAggregateZero
>(CPV
))
364 return const_cast<Constant
*>(CPV
); // Simple constants stay identical.
366 if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(CPV
)) {
367 std::vector
<Constant
*> Operands(CPA
->getNumOperands());
368 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
369 Operands
[i
] =cast
<Constant
>(RemapOperand(CPA
->getOperand(i
), ValueMap
,
372 ConstantArray::get(cast
<ArrayType
>(CPA
->getType()), Operands
);
373 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(CPV
)) {
374 std::vector
<Constant
*> Operands(CPS
->getNumOperands());
375 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
376 Operands
[i
] =cast
<Constant
>(RemapOperand(CPS
->getOperand(i
), ValueMap
,
379 ConstantStruct::get(cast
<StructType
>(CPS
->getType()), Operands
);
380 } else if (isa
<ConstantPointerNull
>(CPV
) || isa
<UndefValue
>(CPV
)) {
381 Result
= const_cast<Constant
*>(CPV
);
382 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CPV
)) {
383 std::vector
<Constant
*> Operands(CP
->getNumOperands());
384 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
385 Operands
[i
] = cast
<Constant
>(RemapOperand(CP
->getOperand(i
), ValueMap
,
387 Result
= ConstantVector::get(Operands
);
388 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CPV
)) {
389 std::vector
<Constant
*> Ops
;
390 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
391 Ops
.push_back(cast
<Constant
>(RemapOperand(CE
->getOperand(i
),ValueMap
,
393 Result
= CE
->getWithOperands(Ops
);
395 assert(!isa
<GlobalValue
>(CPV
) && "Unmapped global?");
396 llvm_unreachable("Unknown type of derived type constant value!");
398 } else if (isa
<MetadataBase
>(In
)) {
399 Result
= const_cast<Value
*>(In
);
400 } else if (isa
<InlineAsm
>(In
)) {
401 Result
= const_cast<Value
*>(In
);
404 // Cache the mapping in our local map structure
406 ValueMap
[In
] = Result
;
411 errs() << "LinkModules ValueMap: \n";
414 errs() << "Couldn't remap value: " << (void*)In
<< " " << *In
<< "\n";
415 llvm_unreachable("Couldn't remap value!");
420 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
421 /// in the symbol table. This is good for all clients except for us. Go
422 /// through the trouble to force this back.
423 static void ForceRenaming(GlobalValue
*GV
, const std::string
&Name
) {
424 assert(GV
->getName() != Name
&& "Can't force rename to self");
425 ValueSymbolTable
&ST
= GV
->getParent()->getValueSymbolTable();
427 // If there is a conflict, rename the conflict.
428 if (GlobalValue
*ConflictGV
= cast_or_null
<GlobalValue
>(ST
.lookup(Name
))) {
429 assert(ConflictGV
->hasLocalLinkage() &&
430 "Not conflicting with a static global, should link instead!");
431 GV
->takeName(ConflictGV
);
432 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
433 assert(ConflictGV
->getName() != Name
&& "ForceRenaming didn't work");
435 GV
->setName(Name
); // Force the name back
439 /// CopyGVAttributes - copy additional attributes (those not needed to construct
440 /// a GlobalValue) from the SrcGV to the DestGV.
441 static void CopyGVAttributes(GlobalValue
*DestGV
, const GlobalValue
*SrcGV
) {
442 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
443 unsigned Alignment
= std::max(DestGV
->getAlignment(), SrcGV
->getAlignment());
444 DestGV
->copyAttributesFrom(SrcGV
);
445 DestGV
->setAlignment(Alignment
);
448 /// GetLinkageResult - This analyzes the two global values and determines what
449 /// the result will look like in the destination module. In particular, it
450 /// computes the resultant linkage type, computes whether the global in the
451 /// source should be copied over to the destination (replacing the existing
452 /// one), and computes whether this linkage is an error or not. It also performs
453 /// visibility checks: we cannot link together two symbols with different
455 static bool GetLinkageResult(GlobalValue
*Dest
, const GlobalValue
*Src
,
456 GlobalValue::LinkageTypes
<
, bool &LinkFromSrc
,
458 assert((!Dest
|| !Src
->hasLocalLinkage()) &&
459 "If Src has internal linkage, Dest shouldn't be set!");
461 // Linking something to nothing.
463 LT
= Src
->getLinkage();
464 } else if (Src
->isDeclaration()) {
465 // If Src is external or if both Src & Dest are external.. Just link the
466 // external globals, we aren't adding anything.
467 if (Src
->hasDLLImportLinkage()) {
468 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
469 if (Dest
->isDeclaration()) {
471 LT
= Src
->getLinkage();
473 } else if (Dest
->hasExternalWeakLinkage()) {
474 // If the Dest is weak, use the source linkage.
476 LT
= Src
->getLinkage();
479 LT
= Dest
->getLinkage();
481 } else if (Dest
->isDeclaration() && !Dest
->hasDLLImportLinkage()) {
482 // If Dest is external but Src is not:
484 LT
= Src
->getLinkage();
485 } else if (Src
->hasAppendingLinkage() || Dest
->hasAppendingLinkage()) {
486 if (Src
->getLinkage() != Dest
->getLinkage())
487 return Error(Err
, "Linking globals named '" + Src
->getName() +
488 "': can only link appending global with another appending global!");
489 LinkFromSrc
= true; // Special cased.
490 LT
= Src
->getLinkage();
491 } else if (Src
->isWeakForLinker()) {
492 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
494 if (Dest
->hasExternalWeakLinkage() ||
495 Dest
->hasAvailableExternallyLinkage() ||
496 (Dest
->hasLinkOnceLinkage() &&
497 (Src
->hasWeakLinkage() || Src
->hasCommonLinkage()))) {
499 LT
= Src
->getLinkage();
502 LT
= Dest
->getLinkage();
504 } else if (Dest
->isWeakForLinker()) {
505 // At this point we know that Src has External* or DLL* linkage.
506 if (Src
->hasExternalWeakLinkage()) {
508 LT
= Dest
->getLinkage();
511 LT
= GlobalValue::ExternalLinkage
;
514 assert((Dest
->hasExternalLinkage() ||
515 Dest
->hasDLLImportLinkage() ||
516 Dest
->hasDLLExportLinkage() ||
517 Dest
->hasExternalWeakLinkage()) &&
518 (Src
->hasExternalLinkage() ||
519 Src
->hasDLLImportLinkage() ||
520 Src
->hasDLLExportLinkage() ||
521 Src
->hasExternalWeakLinkage()) &&
522 "Unexpected linkage type!");
523 return Error(Err
, "Linking globals named '" + Src
->getName() +
524 "': symbol multiply defined!");
528 if (Dest
&& Src
->getVisibility() != Dest
->getVisibility())
529 if (!Src
->isDeclaration() && !Dest
->isDeclaration())
530 return Error(Err
, "Linking globals named '" + Src
->getName() +
531 "': symbols have different visibilities!");
535 // Insert all of the named mdnoes in Src into the Dest module.
536 static void LinkNamedMDNodes(Module
*Dest
, Module
*Src
) {
537 for (Module::const_named_metadata_iterator I
= Src
->named_metadata_begin(),
538 E
= Src
->named_metadata_end(); I
!= E
; ++I
) {
539 const NamedMDNode
*SrcNMD
= I
;
540 NamedMDNode
*DestNMD
= Dest
->getNamedMetadata(SrcNMD
->getName());
542 NamedMDNode::Create(SrcNMD
, Dest
);
544 // Add Src elements into Dest node.
545 for (unsigned i
= 0, e
= SrcNMD
->getNumElements(); i
!= e
; ++i
)
546 DestNMD
->addElement(SrcNMD
->getElement(i
));
551 // LinkGlobals - Loop through the global variables in the src module and merge
552 // them into the dest module.
553 static bool LinkGlobals(Module
*Dest
, const Module
*Src
,
554 std::map
<const Value
*, Value
*> &ValueMap
,
555 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
557 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
559 // Loop over all of the globals in the src module, mapping them over as we go
560 for (Module::const_global_iterator I
= Src
->global_begin(),
561 E
= Src
->global_end(); I
!= E
; ++I
) {
562 const GlobalVariable
*SGV
= I
;
563 GlobalValue
*DGV
= 0;
565 // Check to see if may have to link the global with the global, alias or
567 if (SGV
->hasName() && !SGV
->hasLocalLinkage())
568 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SGV
->getName()));
570 // If we found a global with the same name in the dest module, but it has
571 // internal linkage, we are really not doing any linkage here.
572 if (DGV
&& DGV
->hasLocalLinkage())
575 // If types don't agree due to opaque types, try to resolve them.
576 if (DGV
&& DGV
->getType() != SGV
->getType())
577 RecursiveResolveTypes(SGV
->getType(), DGV
->getType());
579 assert((SGV
->hasInitializer() || SGV
->hasExternalWeakLinkage() ||
580 SGV
->hasExternalLinkage() || SGV
->hasDLLImportLinkage()) &&
581 "Global must either be external or have an initializer!");
583 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
584 bool LinkFromSrc
= false;
585 if (GetLinkageResult(DGV
, SGV
, NewLinkage
, LinkFromSrc
, Err
))
589 // No linking to be performed, simply create an identical version of the
590 // symbol over in the dest module... the initializer will be filled in
591 // later by LinkGlobalInits.
592 GlobalVariable
*NewDGV
=
593 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
594 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
595 SGV
->getName(), 0, false,
596 SGV
->getType()->getAddressSpace());
597 // Propagate alignment, visibility and section info.
598 CopyGVAttributes(NewDGV
, SGV
);
600 // If the LLVM runtime renamed the global, but it is an externally visible
601 // symbol, DGV must be an existing global with internal linkage. Rename
603 if (!NewDGV
->hasLocalLinkage() && NewDGV
->getName() != SGV
->getName())
604 ForceRenaming(NewDGV
, SGV
->getName());
606 // Make sure to remember this mapping.
607 ValueMap
[SGV
] = NewDGV
;
609 // Keep track that this is an appending variable.
610 if (SGV
->hasAppendingLinkage())
611 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
615 // If the visibilities of the symbols disagree and the destination is a
616 // prototype, take the visibility of its input.
617 if (DGV
->isDeclaration())
618 DGV
->setVisibility(SGV
->getVisibility());
620 if (DGV
->hasAppendingLinkage()) {
621 // No linking is performed yet. Just insert a new copy of the global, and
622 // keep track of the fact that it is an appending variable in the
623 // AppendingVars map. The name is cleared out so that no linkage is
625 GlobalVariable
*NewDGV
=
626 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
627 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
629 SGV
->getType()->getAddressSpace());
631 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
632 NewDGV
->setAlignment(DGV
->getAlignment());
633 // Propagate alignment, section and visibility info.
634 CopyGVAttributes(NewDGV
, SGV
);
636 // Make sure to remember this mapping...
637 ValueMap
[SGV
] = NewDGV
;
639 // Keep track that this is an appending variable...
640 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
645 if (isa
<GlobalAlias
>(DGV
))
646 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
647 "': symbol multiple defined");
649 // If the types don't match, and if we are to link from the source, nuke
650 // DGV and create a new one of the appropriate type. Note that the thing
651 // we are replacing may be a function (if a prototype, weak, etc) or a
653 GlobalVariable
*NewDGV
=
654 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
655 SGV
->isConstant(), NewLinkage
, /*init*/0,
656 DGV
->getName(), 0, false,
657 SGV
->getType()->getAddressSpace());
659 // Propagate alignment, section, and visibility info.
660 CopyGVAttributes(NewDGV
, SGV
);
661 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV
,
664 // DGV will conflict with NewDGV because they both had the same
665 // name. We must erase this now so ForceRenaming doesn't assert
666 // because DGV might not have internal linkage.
667 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
668 Var
->eraseFromParent();
670 cast
<Function
>(DGV
)->eraseFromParent();
673 // If the symbol table renamed the global, but it is an externally visible
674 // symbol, DGV must be an existing global with internal linkage. Rename.
675 if (NewDGV
->getName() != SGV
->getName() && !NewDGV
->hasLocalLinkage())
676 ForceRenaming(NewDGV
, SGV
->getName());
678 // Inherit const as appropriate.
679 NewDGV
->setConstant(SGV
->isConstant());
681 // Make sure to remember this mapping.
682 ValueMap
[SGV
] = NewDGV
;
686 // Not "link from source", keep the one in the DestModule and remap the
689 // Special case for const propagation.
690 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
))
691 if (DGVar
->isDeclaration() && SGV
->isConstant() && !DGVar
->isConstant())
692 DGVar
->setConstant(true);
694 // SGV is global, but DGV is alias.
695 if (isa
<GlobalAlias
>(DGV
)) {
696 // The only valid mappings are:
697 // - SGV is external declaration, which is effectively a no-op.
698 // - SGV is weak, when we just need to throw SGV out.
699 if (!SGV
->isDeclaration() && !SGV
->isWeakForLinker())
700 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
701 "': symbol multiple defined");
704 // Set calculated linkage
705 DGV
->setLinkage(NewLinkage
);
707 // Make sure to remember this mapping...
708 ValueMap
[SGV
] = ConstantExpr::getBitCast(DGV
, SGV
->getType());
713 static GlobalValue::LinkageTypes
714 CalculateAliasLinkage(const GlobalValue
*SGV
, const GlobalValue
*DGV
) {
715 GlobalValue::LinkageTypes SL
= SGV
->getLinkage();
716 GlobalValue::LinkageTypes DL
= DGV
->getLinkage();
717 if (SL
== GlobalValue::ExternalLinkage
|| DL
== GlobalValue::ExternalLinkage
)
718 return GlobalValue::ExternalLinkage
;
719 else if (SL
== GlobalValue::WeakAnyLinkage
||
720 DL
== GlobalValue::WeakAnyLinkage
)
721 return GlobalValue::WeakAnyLinkage
;
722 else if (SL
== GlobalValue::WeakODRLinkage
||
723 DL
== GlobalValue::WeakODRLinkage
)
724 return GlobalValue::WeakODRLinkage
;
725 else if (SL
== GlobalValue::InternalLinkage
&&
726 DL
== GlobalValue::InternalLinkage
)
727 return GlobalValue::InternalLinkage
;
728 else if (SL
== GlobalValue::LinkerPrivateLinkage
&&
729 DL
== GlobalValue::LinkerPrivateLinkage
)
730 return GlobalValue::LinkerPrivateLinkage
;
732 assert (SL
== GlobalValue::PrivateLinkage
&&
733 DL
== GlobalValue::PrivateLinkage
&& "Unexpected linkage type");
734 return GlobalValue::PrivateLinkage
;
738 // LinkAlias - Loop through the alias in the src module and link them into the
739 // dest module. We're assuming, that all functions/global variables were already
741 static bool LinkAlias(Module
*Dest
, const Module
*Src
,
742 std::map
<const Value
*, Value
*> &ValueMap
,
744 // Loop over all alias in the src module
745 for (Module::const_alias_iterator I
= Src
->alias_begin(),
746 E
= Src
->alias_end(); I
!= E
; ++I
) {
747 const GlobalAlias
*SGA
= I
;
748 const GlobalValue
*SAliasee
= SGA
->getAliasedGlobal();
749 GlobalAlias
*NewGA
= NULL
;
751 // Globals were already linked, thus we can just query ValueMap for variant
752 // of SAliasee in Dest.
753 std::map
<const Value
*,Value
*>::const_iterator VMI
= ValueMap
.find(SAliasee
);
754 assert(VMI
!= ValueMap
.end() && "Aliasee not linked");
755 GlobalValue
* DAliasee
= cast
<GlobalValue
>(VMI
->second
);
756 GlobalValue
* DGV
= NULL
;
758 // Try to find something 'similar' to SGA in destination module.
759 if (!DGV
&& !SGA
->hasLocalLinkage()) {
760 DGV
= Dest
->getNamedAlias(SGA
->getName());
762 // If types don't agree due to opaque types, try to resolve them.
763 if (DGV
&& DGV
->getType() != SGA
->getType())
764 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
767 if (!DGV
&& !SGA
->hasLocalLinkage()) {
768 DGV
= Dest
->getGlobalVariable(SGA
->getName());
770 // If types don't agree due to opaque types, try to resolve them.
771 if (DGV
&& DGV
->getType() != SGA
->getType())
772 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
775 if (!DGV
&& !SGA
->hasLocalLinkage()) {
776 DGV
= Dest
->getFunction(SGA
->getName());
778 // If types don't agree due to opaque types, try to resolve them.
779 if (DGV
&& DGV
->getType() != SGA
->getType())
780 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
783 // No linking to be performed on internal stuff.
784 if (DGV
&& DGV
->hasLocalLinkage())
787 if (GlobalAlias
*DGA
= dyn_cast_or_null
<GlobalAlias
>(DGV
)) {
788 // Types are known to be the same, check whether aliasees equal. As
789 // globals are already linked we just need query ValueMap to find the
791 if (DAliasee
== DGA
->getAliasedGlobal()) {
792 // This is just two copies of the same alias. Propagate linkage, if
794 DGA
->setLinkage(CalculateAliasLinkage(SGA
, DGA
));
797 // Proceed to 'common' steps
799 return Error(Err
, "Alias Collision on '" + SGA
->getName()+
800 "': aliases have different aliasees");
801 } else if (GlobalVariable
*DGVar
= dyn_cast_or_null
<GlobalVariable
>(DGV
)) {
802 // The only allowed way is to link alias with external declaration or weak
804 if (DGVar
->isDeclaration() || DGVar
->isWeakForLinker()) {
805 // But only if aliasee is global too...
806 if (!isa
<GlobalVariable
>(DAliasee
))
807 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
808 "': aliasee is not global variable");
810 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
811 SGA
->getName(), DAliasee
, Dest
);
812 CopyGVAttributes(NewGA
, SGA
);
814 // Any uses of DGV need to change to NewGA, with cast, if needed.
815 if (SGA
->getType() != DGVar
->getType())
816 DGVar
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
819 DGVar
->replaceAllUsesWith(NewGA
);
821 // DGVar will conflict with NewGA because they both had the same
822 // name. We must erase this now so ForceRenaming doesn't assert
823 // because DGV might not have internal linkage.
824 DGVar
->eraseFromParent();
826 // Proceed to 'common' steps
828 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
829 "': symbol multiple defined");
830 } else if (Function
*DF
= dyn_cast_or_null
<Function
>(DGV
)) {
831 // The only allowed way is to link alias with external declaration or weak
833 if (DF
->isDeclaration() || DF
->isWeakForLinker()) {
834 // But only if aliasee is function too...
835 if (!isa
<Function
>(DAliasee
))
836 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
837 "': aliasee is not function");
839 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
840 SGA
->getName(), DAliasee
, Dest
);
841 CopyGVAttributes(NewGA
, SGA
);
843 // Any uses of DF need to change to NewGA, with cast, if needed.
844 if (SGA
->getType() != DF
->getType())
845 DF
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
848 DF
->replaceAllUsesWith(NewGA
);
850 // DF will conflict with NewGA because they both had the same
851 // name. We must erase this now so ForceRenaming doesn't assert
852 // because DF might not have internal linkage.
853 DF
->eraseFromParent();
855 // Proceed to 'common' steps
857 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
858 "': symbol multiple defined");
860 // No linking to be performed, simply create an identical version of the
861 // alias over in the dest module...
863 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
864 SGA
->getName(), DAliasee
, Dest
);
865 CopyGVAttributes(NewGA
, SGA
);
867 // Proceed to 'common' steps
870 assert(NewGA
&& "No alias was created in destination module!");
872 // If the symbol table renamed the alias, but it is an externally visible
873 // symbol, DGA must be an global value with internal linkage. Rename it.
874 if (NewGA
->getName() != SGA
->getName() &&
875 !NewGA
->hasLocalLinkage())
876 ForceRenaming(NewGA
, SGA
->getName());
878 // Remember this mapping so uses in the source module get remapped
879 // later by RemapOperand.
880 ValueMap
[SGA
] = NewGA
;
887 // LinkGlobalInits - Update the initializers in the Dest module now that all
888 // globals that may be referenced are in Dest.
889 static bool LinkGlobalInits(Module
*Dest
, const Module
*Src
,
890 std::map
<const Value
*, Value
*> &ValueMap
,
892 // Loop over all of the globals in the src module, mapping them over as we go
893 for (Module::const_global_iterator I
= Src
->global_begin(),
894 E
= Src
->global_end(); I
!= E
; ++I
) {
895 const GlobalVariable
*SGV
= I
;
897 if (SGV
->hasInitializer()) { // Only process initialized GV's
898 // Figure out what the initializer looks like in the dest module...
900 cast
<Constant
>(RemapOperand(SGV
->getInitializer(), ValueMap
,
901 Dest
->getContext()));
902 // Grab destination global variable or alias.
903 GlobalValue
*DGV
= cast
<GlobalValue
>(ValueMap
[SGV
]->stripPointerCasts());
905 // If dest if global variable, check that initializers match.
906 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
)) {
907 if (DGVar
->hasInitializer()) {
908 if (SGV
->hasExternalLinkage()) {
909 if (DGVar
->getInitializer() != SInit
)
910 return Error(Err
, "Global Variable Collision on '" +
912 "': global variables have different initializers");
913 } else if (DGVar
->isWeakForLinker()) {
914 // Nothing is required, mapped values will take the new global
916 } else if (SGV
->isWeakForLinker()) {
917 // Nothing is required, mapped values will take the new global
919 } else if (DGVar
->hasAppendingLinkage()) {
920 llvm_unreachable("Appending linkage unimplemented!");
922 llvm_unreachable("Unknown linkage!");
925 // Copy the initializer over now...
926 DGVar
->setInitializer(SInit
);
929 // Destination is alias, the only valid situation is when source is
930 // weak. Also, note, that we already checked linkage in LinkGlobals(),
931 // thus we assert here.
932 // FIXME: Should we weaken this assumption, 'dereference' alias and
933 // check for initializer of aliasee?
934 assert(SGV
->isWeakForLinker());
941 // LinkFunctionProtos - Link the functions together between the two modules,
942 // without doing function bodies... this just adds external function prototypes
943 // to the Dest function...
945 static bool LinkFunctionProtos(Module
*Dest
, const Module
*Src
,
946 std::map
<const Value
*, Value
*> &ValueMap
,
948 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
950 // Loop over all of the functions in the src module, mapping them over
951 for (Module::const_iterator I
= Src
->begin(), E
= Src
->end(); I
!= E
; ++I
) {
952 const Function
*SF
= I
; // SrcFunction
953 GlobalValue
*DGV
= 0;
955 // Check to see if may have to link the function with the global, alias or
957 if (SF
->hasName() && !SF
->hasLocalLinkage())
958 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SF
->getName()));
960 // If we found a global with the same name in the dest module, but it has
961 // internal linkage, we are really not doing any linkage here.
962 if (DGV
&& DGV
->hasLocalLinkage())
965 // If types don't agree due to opaque types, try to resolve them.
966 if (DGV
&& DGV
->getType() != SF
->getType())
967 RecursiveResolveTypes(SF
->getType(), DGV
->getType());
969 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
970 bool LinkFromSrc
= false;
971 if (GetLinkageResult(DGV
, SF
, NewLinkage
, LinkFromSrc
, Err
))
974 // If there is no linkage to be performed, just bring over SF without
977 // Function does not already exist, simply insert an function signature
978 // identical to SF into the dest module.
979 Function
*NewDF
= Function::Create(SF
->getFunctionType(),
981 SF
->getName(), Dest
);
982 CopyGVAttributes(NewDF
, SF
);
984 // If the LLVM runtime renamed the function, but it is an externally
985 // visible symbol, DF must be an existing function with internal linkage.
987 if (!NewDF
->hasLocalLinkage() && NewDF
->getName() != SF
->getName())
988 ForceRenaming(NewDF
, SF
->getName());
990 // ... and remember this mapping...
991 ValueMap
[SF
] = NewDF
;
995 // If the visibilities of the symbols disagree and the destination is a
996 // prototype, take the visibility of its input.
997 if (DGV
->isDeclaration())
998 DGV
->setVisibility(SF
->getVisibility());
1001 if (isa
<GlobalAlias
>(DGV
))
1002 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
1003 "': symbol multiple defined");
1005 // We have a definition of the same name but different type in the
1006 // source module. Copy the prototype to the destination and replace
1007 // uses of the destination's prototype with the new prototype.
1008 Function
*NewDF
= Function::Create(SF
->getFunctionType(), NewLinkage
,
1009 SF
->getName(), Dest
);
1010 CopyGVAttributes(NewDF
, SF
);
1012 // Any uses of DF need to change to NewDF, with cast
1013 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF
,
1016 // DF will conflict with NewDF because they both had the same. We must
1017 // erase this now so ForceRenaming doesn't assert because DF might
1018 // not have internal linkage.
1019 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
1020 Var
->eraseFromParent();
1022 cast
<Function
>(DGV
)->eraseFromParent();
1024 // If the symbol table renamed the function, but it is an externally
1025 // visible symbol, DF must be an existing function with internal
1026 // linkage. Rename it.
1027 if (NewDF
->getName() != SF
->getName() && !NewDF
->hasLocalLinkage())
1028 ForceRenaming(NewDF
, SF
->getName());
1030 // Remember this mapping so uses in the source module get remapped
1031 // later by RemapOperand.
1032 ValueMap
[SF
] = NewDF
;
1036 // Not "link from source", keep the one in the DestModule and remap the
1039 if (isa
<GlobalAlias
>(DGV
)) {
1040 // The only valid mappings are:
1041 // - SF is external declaration, which is effectively a no-op.
1042 // - SF is weak, when we just need to throw SF out.
1043 if (!SF
->isDeclaration() && !SF
->isWeakForLinker())
1044 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
1045 "': symbol multiple defined");
1048 // Set calculated linkage
1049 DGV
->setLinkage(NewLinkage
);
1051 // Make sure to remember this mapping.
1052 ValueMap
[SF
] = ConstantExpr::getBitCast(DGV
, SF
->getType());
1057 // LinkFunctionBody - Copy the source function over into the dest function and
1058 // fix up references to values. At this point we know that Dest is an external
1059 // function, and that Src is not.
1060 static bool LinkFunctionBody(Function
*Dest
, Function
*Src
,
1061 std::map
<const Value
*, Value
*> &ValueMap
,
1063 assert(Src
&& Dest
&& Dest
->isDeclaration() && !Src
->isDeclaration());
1065 // Go through and convert function arguments over, remembering the mapping.
1066 Function::arg_iterator DI
= Dest
->arg_begin();
1067 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1068 I
!= E
; ++I
, ++DI
) {
1069 DI
->setName(I
->getName()); // Copy the name information over...
1071 // Add a mapping to our local map
1075 // Splice the body of the source function into the dest function.
1076 Dest
->getBasicBlockList().splice(Dest
->end(), Src
->getBasicBlockList());
1078 // At this point, all of the instructions and values of the function are now
1079 // copied over. The only problem is that they are still referencing values in
1080 // the Source function as operands. Loop through all of the operands of the
1081 // functions and patch them up to point to the local versions...
1083 for (Function::iterator BB
= Dest
->begin(), BE
= Dest
->end(); BB
!= BE
; ++BB
)
1084 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1085 for (Instruction::op_iterator OI
= I
->op_begin(), OE
= I
->op_end();
1087 if (!isa
<Instruction
>(*OI
) && !isa
<BasicBlock
>(*OI
))
1088 *OI
= RemapOperand(*OI
, ValueMap
, Dest
->getContext());
1090 // There is no need to map the arguments anymore.
1091 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1099 // LinkFunctionBodies - Link in the function bodies that are defined in the
1100 // source module into the DestModule. This consists basically of copying the
1101 // function over and fixing up references to values.
1102 static bool LinkFunctionBodies(Module
*Dest
, Module
*Src
,
1103 std::map
<const Value
*, Value
*> &ValueMap
,
1106 // Loop over all of the functions in the src module, mapping them over as we
1108 for (Module::iterator SF
= Src
->begin(), E
= Src
->end(); SF
!= E
; ++SF
) {
1109 if (!SF
->isDeclaration()) { // No body if function is external
1110 Function
*DF
= dyn_cast
<Function
>(ValueMap
[SF
]); // Destination function
1112 // DF not external SF external?
1113 if (DF
&& DF
->isDeclaration())
1114 // Only provide the function body if there isn't one already.
1115 if (LinkFunctionBody(DF
, SF
, ValueMap
, Err
))
1122 // LinkAppendingVars - If there were any appending global variables, link them
1123 // together now. Return true on error.
1124 static bool LinkAppendingVars(Module
*M
,
1125 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
1126 std::string
*ErrorMsg
) {
1127 if (AppendingVars
.empty()) return false; // Nothing to do.
1129 // Loop over the multimap of appending vars, processing any variables with the
1130 // same name, forming a new appending global variable with both of the
1131 // initializers merged together, then rewrite references to the old variables
1133 std::vector
<Constant
*> Inits
;
1134 while (AppendingVars
.size() > 1) {
1135 // Get the first two elements in the map...
1136 std::multimap
<std::string
,
1137 GlobalVariable
*>::iterator Second
= AppendingVars
.begin(), First
=Second
++;
1139 // If the first two elements are for different names, there is no pair...
1140 // Otherwise there is a pair, so link them together...
1141 if (First
->first
== Second
->first
) {
1142 GlobalVariable
*G1
= First
->second
, *G2
= Second
->second
;
1143 const ArrayType
*T1
= cast
<ArrayType
>(G1
->getType()->getElementType());
1144 const ArrayType
*T2
= cast
<ArrayType
>(G2
->getType()->getElementType());
1146 // Check to see that they two arrays agree on type...
1147 if (T1
->getElementType() != T2
->getElementType())
1148 return Error(ErrorMsg
,
1149 "Appending variables with different element types need to be linked!");
1150 if (G1
->isConstant() != G2
->isConstant())
1151 return Error(ErrorMsg
,
1152 "Appending variables linked with different const'ness!");
1154 if (G1
->getAlignment() != G2
->getAlignment())
1155 return Error(ErrorMsg
,
1156 "Appending variables with different alignment need to be linked!");
1158 if (G1
->getVisibility() != G2
->getVisibility())
1159 return Error(ErrorMsg
,
1160 "Appending variables with different visibility need to be linked!");
1162 if (G1
->getSection() != G2
->getSection())
1163 return Error(ErrorMsg
,
1164 "Appending variables with different section name need to be linked!");
1166 unsigned NewSize
= T1
->getNumElements() + T2
->getNumElements();
1167 ArrayType
*NewType
= ArrayType::get(T1
->getElementType(),
1170 G1
->setName(""); // Clear G1's name in case of a conflict!
1172 // Create the new global variable...
1173 GlobalVariable
*NG
=
1174 new GlobalVariable(*M
, NewType
, G1
->isConstant(), G1
->getLinkage(),
1175 /*init*/0, First
->first
, 0, G1
->isThreadLocal(),
1176 G1
->getType()->getAddressSpace());
1178 // Propagate alignment, visibility and section info.
1179 CopyGVAttributes(NG
, G1
);
1181 // Merge the initializer...
1182 Inits
.reserve(NewSize
);
1183 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G1
->getInitializer())) {
1184 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1185 Inits
.push_back(I
->getOperand(i
));
1187 assert(isa
<ConstantAggregateZero
>(G1
->getInitializer()));
1188 Constant
*CV
= Constant::getNullValue(T1
->getElementType());
1189 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1190 Inits
.push_back(CV
);
1192 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G2
->getInitializer())) {
1193 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1194 Inits
.push_back(I
->getOperand(i
));
1196 assert(isa
<ConstantAggregateZero
>(G2
->getInitializer()));
1197 Constant
*CV
= Constant::getNullValue(T2
->getElementType());
1198 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1199 Inits
.push_back(CV
);
1201 NG
->setInitializer(ConstantArray::get(NewType
, Inits
));
1204 // Replace any uses of the two global variables with uses of the new
1207 // FIXME: This should rewrite simple/straight-forward uses such as
1208 // getelementptr instructions to not use the Cast!
1209 G1
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1211 G2
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1214 // Remove the two globals from the module now...
1215 M
->getGlobalList().erase(G1
);
1216 M
->getGlobalList().erase(G2
);
1218 // Put the new global into the AppendingVars map so that we can handle
1219 // linking of more than two vars...
1220 Second
->second
= NG
;
1222 AppendingVars
.erase(First
);
1228 static bool ResolveAliases(Module
*Dest
) {
1229 for (Module::alias_iterator I
= Dest
->alias_begin(), E
= Dest
->alias_end();
1231 if (const GlobalValue
*GV
= I
->resolveAliasedGlobal())
1232 if (GV
!= I
&& !GV
->isDeclaration())
1233 I
->replaceAllUsesWith(const_cast<GlobalValue
*>(GV
));
1238 // LinkModules - This function links two modules together, with the resulting
1239 // left module modified to be the composite of the two input modules. If an
1240 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1241 // the problem. Upon failure, the Dest module could be in a modified state, and
1242 // shouldn't be relied on to be consistent.
1244 Linker::LinkModules(Module
*Dest
, Module
*Src
, std::string
*ErrorMsg
) {
1245 assert(Dest
!= 0 && "Invalid Destination module");
1246 assert(Src
!= 0 && "Invalid Source Module");
1248 if (Dest
->getDataLayout().empty()) {
1249 if (!Src
->getDataLayout().empty()) {
1250 Dest
->setDataLayout(Src
->getDataLayout());
1252 std::string DataLayout
;
1254 if (Dest
->getEndianness() == Module::AnyEndianness
) {
1255 if (Src
->getEndianness() == Module::BigEndian
)
1256 DataLayout
.append("E");
1257 else if (Src
->getEndianness() == Module::LittleEndian
)
1258 DataLayout
.append("e");
1261 if (Dest
->getPointerSize() == Module::AnyPointerSize
) {
1262 if (Src
->getPointerSize() == Module::Pointer64
)
1263 DataLayout
.append(DataLayout
.length() == 0 ? "p:64:64" : "-p:64:64");
1264 else if (Src
->getPointerSize() == Module::Pointer32
)
1265 DataLayout
.append(DataLayout
.length() == 0 ? "p:32:32" : "-p:32:32");
1267 Dest
->setDataLayout(DataLayout
);
1271 // Copy the target triple from the source to dest if the dest's is empty.
1272 if (Dest
->getTargetTriple().empty() && !Src
->getTargetTriple().empty())
1273 Dest
->setTargetTriple(Src
->getTargetTriple());
1275 if (!Src
->getDataLayout().empty() && !Dest
->getDataLayout().empty() &&
1276 Src
->getDataLayout() != Dest
->getDataLayout())
1277 errs() << "WARNING: Linking two modules of different data layouts!\n";
1278 if (!Src
->getTargetTriple().empty() &&
1279 Dest
->getTargetTriple() != Src
->getTargetTriple())
1280 errs() << "WARNING: Linking two modules of different target triples!\n";
1282 // Append the module inline asm string.
1283 if (!Src
->getModuleInlineAsm().empty()) {
1284 if (Dest
->getModuleInlineAsm().empty())
1285 Dest
->setModuleInlineAsm(Src
->getModuleInlineAsm());
1287 Dest
->setModuleInlineAsm(Dest
->getModuleInlineAsm()+"\n"+
1288 Src
->getModuleInlineAsm());
1291 // Update the destination module's dependent libraries list with the libraries
1292 // from the source module. There's no opportunity for duplicates here as the
1293 // Module ensures that duplicate insertions are discarded.
1294 for (Module::lib_iterator SI
= Src
->lib_begin(), SE
= Src
->lib_end();
1296 Dest
->addLibrary(*SI
);
1298 // LinkTypes - Go through the symbol table of the Src module and see if any
1299 // types are named in the src module that are not named in the Dst module.
1300 // Make sure there are no type name conflicts.
1301 if (LinkTypes(Dest
, Src
, ErrorMsg
))
1304 // ValueMap - Mapping of values from what they used to be in Src, to what they
1306 std::map
<const Value
*, Value
*> ValueMap
;
1308 // AppendingVars - Keep track of global variables in the destination module
1309 // with appending linkage. After the module is linked together, they are
1310 // appended and the module is rewritten.
1311 std::multimap
<std::string
, GlobalVariable
*> AppendingVars
;
1312 for (Module::global_iterator I
= Dest
->global_begin(), E
= Dest
->global_end();
1314 // Add all of the appending globals already in the Dest module to
1316 if (I
->hasAppendingLinkage())
1317 AppendingVars
.insert(std::make_pair(I
->getName(), I
));
1320 // Insert all of the named mdnoes in Src into the Dest module.
1321 LinkNamedMDNodes(Dest
, Src
);
1323 // Insert all of the globals in src into the Dest module... without linking
1324 // initializers (which could refer to functions not yet mapped over).
1325 if (LinkGlobals(Dest
, Src
, ValueMap
, AppendingVars
, ErrorMsg
))
1328 // Link the functions together between the two modules, without doing function
1329 // bodies... this just adds external function prototypes to the Dest
1330 // function... We do this so that when we begin processing function bodies,
1331 // all of the global values that may be referenced are available in our
1333 if (LinkFunctionProtos(Dest
, Src
, ValueMap
, ErrorMsg
))
1336 // If there were any alias, link them now. We really need to do this now,
1337 // because all of the aliases that may be referenced need to be available in
1339 if (LinkAlias(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1341 // Update the initializers in the Dest module now that all globals that may
1342 // be referenced are in Dest.
1343 if (LinkGlobalInits(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1345 // Link in the function bodies that are defined in the source module into the
1346 // DestModule. This consists basically of copying the function over and
1347 // fixing up references to values.
1348 if (LinkFunctionBodies(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1350 // If there were any appending global variables, link them together now.
1351 if (LinkAppendingVars(Dest
, AppendingVars
, ErrorMsg
)) return true;
1353 // Resolve all uses of aliases with aliasees
1354 if (ResolveAliases(Dest
)) return true;
1356 // If the source library's module id is in the dependent library list of the
1357 // destination library, remove it since that module is now linked in.
1359 modId
.set(Src
->getModuleIdentifier());
1360 if (!modId
.isEmpty())
1361 Dest
->removeLibrary(modId
.getBasename());