1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
30 /// A utility function for allocating memory, checking for allocation failures,
31 /// and ensuring the contents are zeroed.
32 inline static uint64_t* getClearedMemory(unsigned numWords
) {
33 uint64_t * result
= new uint64_t[numWords
];
34 assert(result
&& "APInt memory allocation fails!");
35 memset(result
, 0, numWords
* sizeof(uint64_t));
39 /// A utility function for allocating memory and checking for allocation
40 /// failure. The content is not zeroed.
41 inline static uint64_t* getMemory(unsigned numWords
) {
42 uint64_t * result
= new uint64_t[numWords
];
43 assert(result
&& "APInt memory allocation fails!");
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit
, uint8_t radix
) {
73 void APInt::initSlowCase(unsigned numBits
, uint64_t val
, bool isSigned
) {
74 pVal
= getClearedMemory(getNumWords());
76 if (isSigned
&& int64_t(val
) < 0)
77 for (unsigned i
= 1; i
< getNumWords(); ++i
)
81 void APInt::initSlowCase(const APInt
& that
) {
82 pVal
= getMemory(getNumWords());
83 memcpy(pVal
, that
.pVal
, getNumWords() * APINT_WORD_SIZE
);
87 APInt::APInt(unsigned numBits
, unsigned numWords
, const uint64_t bigVal
[])
88 : BitWidth(numBits
), VAL(0) {
89 assert(BitWidth
&& "Bitwidth too small");
90 assert(bigVal
&& "Null pointer detected!");
94 // Get memory, cleared to 0
95 pVal
= getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
97 unsigned words
= std::min
<unsigned>(numWords
, getNumWords());
98 // Copy the words from bigVal to pVal
99 memcpy(pVal
, bigVal
, words
* APINT_WORD_SIZE
);
101 // Make sure unused high bits are cleared
105 APInt::APInt(unsigned numbits
, const StringRef
& Str
, uint8_t radix
)
106 : BitWidth(numbits
), VAL(0) {
107 assert(BitWidth
&& "Bitwidth too small");
108 fromString(numbits
, Str
, radix
);
111 APInt
& APInt::AssignSlowCase(const APInt
& RHS
) {
112 // Don't do anything for X = X
116 if (BitWidth
== RHS
.getBitWidth()) {
117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal
, RHS
.pVal
, getNumWords() * APINT_WORD_SIZE
);
123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS
.isSingleWord());
127 pVal
= getMemory(RHS
.getNumWords());
128 memcpy(pVal
, RHS
.pVal
, RHS
.getNumWords() * APINT_WORD_SIZE
);
129 } else if (getNumWords() == RHS
.getNumWords())
130 memcpy(pVal
, RHS
.pVal
, RHS
.getNumWords() * APINT_WORD_SIZE
);
131 else if (RHS
.isSingleWord()) {
136 pVal
= getMemory(RHS
.getNumWords());
137 memcpy(pVal
, RHS
.pVal
, RHS
.getNumWords() * APINT_WORD_SIZE
);
139 BitWidth
= RHS
.BitWidth
;
140 return clearUnusedBits();
143 APInt
& APInt::operator=(uint64_t RHS
) {
148 memset(pVal
+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE
);
150 return clearUnusedBits();
153 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID
& ID
) const {
155 ID
.AddInteger(BitWidth
);
157 if (isSingleWord()) {
162 unsigned NumWords
= getNumWords();
163 for (unsigned i
= 0; i
< NumWords
; ++i
)
164 ID
.AddInteger(pVal
[i
]);
167 /// add_1 - This function adds a single "digit" integer, y, to the multiple
168 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
169 /// 1 is returned if there is a carry out, otherwise 0 is returned.
170 /// @returns the carry of the addition.
171 static bool add_1(uint64_t dest
[], uint64_t x
[], unsigned len
, uint64_t y
) {
172 for (unsigned i
= 0; i
< len
; ++i
) {
175 y
= 1; // Carry one to next digit.
177 y
= 0; // No need to carry so exit early
184 /// @brief Prefix increment operator. Increments the APInt by one.
185 APInt
& APInt::operator++() {
189 add_1(pVal
, pVal
, getNumWords(), 1);
190 return clearUnusedBits();
193 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
195 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
196 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197 /// In other words, if y > x then this function returns 1, otherwise 0.
198 /// @returns the borrow out of the subtraction
199 static bool sub_1(uint64_t x
[], unsigned len
, uint64_t y
) {
200 for (unsigned i
= 0; i
< len
; ++i
) {
204 y
= 1; // We have to "borrow 1" from next "digit"
206 y
= 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
213 /// @brief Prefix decrement operator. Decrements the APInt by one.
214 APInt
& APInt::operator--() {
218 sub_1(pVal
, getNumWords(), 1);
219 return clearUnusedBits();
222 /// add - This function adds the integer array x to the integer array Y and
223 /// places the result in dest.
224 /// @returns the carry out from the addition
225 /// @brief General addition of 64-bit integer arrays
226 static bool add(uint64_t *dest
, const uint64_t *x
, const uint64_t *y
,
229 for (unsigned i
= 0; i
< len
; ++i
) {
230 uint64_t limit
= std::min(x
[i
],y
[i
]); // must come first in case dest == x
231 dest
[i
] = x
[i
] + y
[i
] + carry
;
232 carry
= dest
[i
] < limit
|| (carry
&& dest
[i
] == limit
);
237 /// Adds the RHS APint to this APInt.
238 /// @returns this, after addition of RHS.
239 /// @brief Addition assignment operator.
240 APInt
& APInt::operator+=(const APInt
& RHS
) {
241 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
245 add(pVal
, pVal
, RHS
.pVal
, getNumWords());
247 return clearUnusedBits();
250 /// Subtracts the integer array y from the integer array x
251 /// @returns returns the borrow out.
252 /// @brief Generalized subtraction of 64-bit integer arrays.
253 static bool sub(uint64_t *dest
, const uint64_t *x
, const uint64_t *y
,
256 for (unsigned i
= 0; i
< len
; ++i
) {
257 uint64_t x_tmp
= borrow
? x
[i
] - 1 : x
[i
];
258 borrow
= y
[i
] > x_tmp
|| (borrow
&& x
[i
] == 0);
259 dest
[i
] = x_tmp
- y
[i
];
264 /// Subtracts the RHS APInt from this APInt
265 /// @returns this, after subtraction
266 /// @brief Subtraction assignment operator.
267 APInt
& APInt::operator-=(const APInt
& RHS
) {
268 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
272 sub(pVal
, pVal
, RHS
.pVal
, getNumWords());
273 return clearUnusedBits();
276 /// Multiplies an integer array, x by a a uint64_t integer and places the result
278 /// @returns the carry out of the multiplication.
279 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
280 static uint64_t mul_1(uint64_t dest
[], uint64_t x
[], unsigned len
, uint64_t y
) {
281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly
= y
& 0xffffffffULL
, hy
= y
>> 32;
285 // For each digit of x.
286 for (unsigned i
= 0; i
< len
; ++i
) {
287 // Split x into high and low words
288 uint64_t lx
= x
[i
] & 0xffffffffULL
;
289 uint64_t hx
= x
[i
] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry
= 0;
295 dest
[i
] = carry
+ lx
* ly
;
296 // Determine if the add above introduces carry.
297 hasCarry
= (dest
[i
] < carry
) ? 1 : 0;
298 carry
= hx
* ly
+ (dest
[i
] >> 32) + (hasCarry
? (1ULL << 32) : 0);
299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry
= (!carry
&& hasCarry
) ? 1 : (!carry
? 2 : 0);
303 carry
+= (lx
* hy
) & 0xffffffffULL
;
304 dest
[i
] = (carry
<< 32) | (dest
[i
] & 0xffffffffULL
);
305 carry
= (((!carry
&& hasCarry
!= 2) || hasCarry
== 1) ? (1ULL << 32) : 0) +
306 (carry
>> 32) + ((lx
* hy
) >> 32) + hx
* hy
;
311 /// Multiplies integer array x by integer array y and stores the result into
312 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
313 /// @brief Generalized multiplicate of integer arrays.
314 static void mul(uint64_t dest
[], uint64_t x
[], unsigned xlen
, uint64_t y
[],
316 dest
[xlen
] = mul_1(dest
, x
, xlen
, y
[0]);
317 for (unsigned i
= 1; i
< ylen
; ++i
) {
318 uint64_t ly
= y
[i
] & 0xffffffffULL
, hy
= y
[i
] >> 32;
319 uint64_t carry
= 0, lx
= 0, hx
= 0;
320 for (unsigned j
= 0; j
< xlen
; ++j
) {
321 lx
= x
[j
] & 0xffffffffULL
;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry
= 0;
328 uint64_t resul
= carry
+ lx
* ly
;
329 hasCarry
= (resul
< carry
) ? 1 : 0;
330 carry
= (hasCarry
? (1ULL << 32) : 0) + hx
* ly
+ (resul
>> 32);
331 hasCarry
= (!carry
&& hasCarry
) ? 1 : (!carry
? 2 : 0);
333 carry
+= (lx
* hy
) & 0xffffffffULL
;
334 resul
= (carry
<< 32) | (resul
& 0xffffffffULL
);
336 carry
= (((!carry
&& hasCarry
!= 2) || hasCarry
== 1) ? (1ULL << 32) : 0)+
337 (carry
>> 32) + (dest
[i
+j
] < resul
? 1 : 0) +
338 ((lx
* hy
) >> 32) + hx
* hy
;
340 dest
[i
+xlen
] = carry
;
344 APInt
& APInt::operator*=(const APInt
& RHS
) {
345 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
346 if (isSingleWord()) {
352 // Get some bit facts about LHS and check for zero
353 unsigned lhsBits
= getActiveBits();
354 unsigned lhsWords
= !lhsBits
? 0 : whichWord(lhsBits
- 1) + 1;
359 // Get some bit facts about RHS and check for zero
360 unsigned rhsBits
= RHS
.getActiveBits();
361 unsigned rhsWords
= !rhsBits
? 0 : whichWord(rhsBits
- 1) + 1;
368 // Allocate space for the result
369 unsigned destWords
= rhsWords
+ lhsWords
;
370 uint64_t *dest
= getMemory(destWords
);
372 // Perform the long multiply
373 mul(dest
, pVal
, lhsWords
, RHS
.pVal
, rhsWords
);
375 // Copy result back into *this
377 unsigned wordsToCopy
= destWords
>= getNumWords() ? getNumWords() : destWords
;
378 memcpy(pVal
, dest
, wordsToCopy
* APINT_WORD_SIZE
);
380 // delete dest array and return
385 APInt
& APInt::operator&=(const APInt
& RHS
) {
386 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
387 if (isSingleWord()) {
391 unsigned numWords
= getNumWords();
392 for (unsigned i
= 0; i
< numWords
; ++i
)
393 pVal
[i
] &= RHS
.pVal
[i
];
397 APInt
& APInt::operator|=(const APInt
& RHS
) {
398 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
399 if (isSingleWord()) {
403 unsigned numWords
= getNumWords();
404 for (unsigned i
= 0; i
< numWords
; ++i
)
405 pVal
[i
] |= RHS
.pVal
[i
];
409 APInt
& APInt::operator^=(const APInt
& RHS
) {
410 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
411 if (isSingleWord()) {
413 this->clearUnusedBits();
416 unsigned numWords
= getNumWords();
417 for (unsigned i
= 0; i
< numWords
; ++i
)
418 pVal
[i
] ^= RHS
.pVal
[i
];
419 return clearUnusedBits();
422 APInt
APInt::AndSlowCase(const APInt
& RHS
) const {
423 unsigned numWords
= getNumWords();
424 uint64_t* val
= getMemory(numWords
);
425 for (unsigned i
= 0; i
< numWords
; ++i
)
426 val
[i
] = pVal
[i
] & RHS
.pVal
[i
];
427 return APInt(val
, getBitWidth());
430 APInt
APInt::OrSlowCase(const APInt
& RHS
) const {
431 unsigned numWords
= getNumWords();
432 uint64_t *val
= getMemory(numWords
);
433 for (unsigned i
= 0; i
< numWords
; ++i
)
434 val
[i
] = pVal
[i
] | RHS
.pVal
[i
];
435 return APInt(val
, getBitWidth());
438 APInt
APInt::XorSlowCase(const APInt
& RHS
) const {
439 unsigned numWords
= getNumWords();
440 uint64_t *val
= getMemory(numWords
);
441 for (unsigned i
= 0; i
< numWords
; ++i
)
442 val
[i
] = pVal
[i
] ^ RHS
.pVal
[i
];
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val
, getBitWidth()).clearUnusedBits();
448 bool APInt::operator !() const {
452 for (unsigned i
= 0; i
< getNumWords(); ++i
)
458 APInt
APInt::operator*(const APInt
& RHS
) const {
459 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
461 return APInt(BitWidth
, VAL
* RHS
.VAL
);
464 return Result
.clearUnusedBits();
467 APInt
APInt::operator+(const APInt
& RHS
) const {
468 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
470 return APInt(BitWidth
, VAL
+ RHS
.VAL
);
471 APInt
Result(BitWidth
, 0);
472 add(Result
.pVal
, this->pVal
, RHS
.pVal
, getNumWords());
473 return Result
.clearUnusedBits();
476 APInt
APInt::operator-(const APInt
& RHS
) const {
477 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
479 return APInt(BitWidth
, VAL
- RHS
.VAL
);
480 APInt
Result(BitWidth
, 0);
481 sub(Result
.pVal
, this->pVal
, RHS
.pVal
, getNumWords());
482 return Result
.clearUnusedBits();
485 bool APInt::operator[](unsigned bitPosition
) const {
486 return (maskBit(bitPosition
) &
487 (isSingleWord() ? VAL
: pVal
[whichWord(bitPosition
)])) != 0;
490 bool APInt::EqualSlowCase(const APInt
& RHS
) const {
491 // Get some facts about the number of bits used in the two operands.
492 unsigned n1
= getActiveBits();
493 unsigned n2
= RHS
.getActiveBits();
495 // If the number of bits isn't the same, they aren't equal
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1
<= APINT_BITS_PER_WORD
)
501 return pVal
[0] == RHS
.pVal
[0];
503 // Otherwise, compare everything
504 for (int i
= whichWord(n1
- 1); i
>= 0; --i
)
505 if (pVal
[i
] != RHS
.pVal
[i
])
510 bool APInt::EqualSlowCase(uint64_t Val
) const {
511 unsigned n
= getActiveBits();
512 if (n
<= APINT_BITS_PER_WORD
)
513 return pVal
[0] == Val
;
518 bool APInt::ult(const APInt
& RHS
) const {
519 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be same for comparison");
521 return VAL
< RHS
.VAL
;
523 // Get active bit length of both operands
524 unsigned n1
= getActiveBits();
525 unsigned n2
= RHS
.getActiveBits();
527 // If magnitude of LHS is less than RHS, return true.
531 // If magnitude of RHS is greather than LHS, return false.
535 // If they bot fit in a word, just compare the low order word
536 if (n1
<= APINT_BITS_PER_WORD
&& n2
<= APINT_BITS_PER_WORD
)
537 return pVal
[0] < RHS
.pVal
[0];
539 // Otherwise, compare all words
540 unsigned topWord
= whichWord(std::max(n1
,n2
)-1);
541 for (int i
= topWord
; i
>= 0; --i
) {
542 if (pVal
[i
] > RHS
.pVal
[i
])
544 if (pVal
[i
] < RHS
.pVal
[i
])
550 bool APInt::slt(const APInt
& RHS
) const {
551 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext
= (int64_t(VAL
) << (64-BitWidth
)) >> (64-BitWidth
);
554 int64_t rhsSext
= (int64_t(RHS
.VAL
) << (64-BitWidth
)) >> (64-BitWidth
);
555 return lhsSext
< rhsSext
;
560 bool lhsNeg
= isNegative();
561 bool rhsNeg
= rhs
.isNegative();
563 // Sign bit is set so perform two's complement to make it positive
568 // Sign bit is set so perform two's complement to make it positive
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
586 APInt
& APInt::set(unsigned bitPosition
) {
588 VAL
|= maskBit(bitPosition
);
590 pVal
[whichWord(bitPosition
)] |= maskBit(bitPosition
);
594 /// Set the given bit to 0 whose position is given as "bitPosition".
595 /// @brief Set a given bit to 0.
596 APInt
& APInt::clear(unsigned bitPosition
) {
598 VAL
&= ~maskBit(bitPosition
);
600 pVal
[whichWord(bitPosition
)] &= ~maskBit(bitPosition
);
604 /// @brief Toggle every bit to its opposite value.
606 /// Toggle a given bit to its opposite value whose position is given
607 /// as "bitPosition".
608 /// @brief Toggles a given bit to its opposite value.
609 APInt
& APInt::flip(unsigned bitPosition
) {
610 assert(bitPosition
< BitWidth
&& "Out of the bit-width range!");
611 if ((*this)[bitPosition
]) clear(bitPosition
);
612 else set(bitPosition
);
616 unsigned APInt::getBitsNeeded(const StringRef
& str
, uint8_t radix
) {
617 assert(!str
.empty() && "Invalid string length");
618 assert((radix
== 10 || radix
== 8 || radix
== 16 || radix
== 2) &&
619 "Radix should be 2, 8, 10, or 16!");
621 size_t slen
= str
.size();
623 // Each computation below needs to know if it's negative.
624 StringRef::iterator p
= str
.begin();
625 unsigned isNegative
= *p
== '-';
626 if (*p
== '-' || *p
== '+') {
629 assert(slen
&& "String is only a sign, needs a value.");
632 // For radixes of power-of-two values, the bits required is accurately and
635 return slen
+ isNegative
;
637 return slen
* 3 + isNegative
;
639 return slen
* 4 + isNegative
;
641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
645 // Compute a sufficient number of bits that is always large enough but might
646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient
= slen
== 1 ? 4 : slen
* 64/18;
651 // Convert to the actual binary value.
652 APInt
tmp(sufficient
, StringRef(p
, slen
), radix
);
654 // Compute how many bits are required. If the log is infinite, assume we need
656 unsigned log
= tmp
.logBase2();
657 if (log
== (unsigned)-1) {
658 return isNegative
+ 1;
660 return isNegative
+ log
+ 1;
664 // From http://www.burtleburtle.net, byBob Jenkins.
665 // When targeting x86, both GCC and LLVM seem to recognize this as a
666 // rotate instruction.
667 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
669 // From http://www.burtleburtle.net, by Bob Jenkins.
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
680 // From http://www.burtleburtle.net, by Bob Jenkins.
681 #define final(a,b,c) \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
692 // hashword() was adapted from http://www.burtleburtle.net, by Bob
693 // Jenkins. k is a pointer to an array of uint32_t values; length is
694 // the length of the key, in 32-bit chunks. This version only handles
695 // keys that are a multiple of 32 bits in size.
696 static inline uint32_t hashword(const uint64_t *k64
, size_t length
)
698 const uint32_t *k
= reinterpret_cast<const uint32_t *>(k64
);
701 /* Set up the internal state */
702 a
= b
= c
= 0xdeadbeef + (((uint32_t)length
)<<2);
704 /*------------------------------------------------- handle most of the key */
715 /*------------------------------------------- handle the last 3 uint32_t's */
716 switch (length
) { /* all the case statements fall through */
721 case 0: /* case 0: nothing left to add */
724 /*------------------------------------------------------ report the result */
728 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
729 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
730 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731 // function into about 35 instructions when inlined.
732 static inline uint32_t hashword8(const uint64_t k64
)
735 a
= b
= c
= 0xdeadbeef + 4;
737 a
+= k64
& 0xffffffff;
745 uint64_t APInt::getHashValue() const {
748 hash
= hashword8(VAL
);
750 hash
= hashword(pVal
, getNumWords()*2);
754 /// HiBits - This function returns the high "numBits" bits of this APInt.
755 APInt
APInt::getHiBits(unsigned numBits
) const {
756 return APIntOps::lshr(*this, BitWidth
- numBits
);
759 /// LoBits - This function returns the low "numBits" bits of this APInt.
760 APInt
APInt::getLoBits(unsigned numBits
) const {
761 return APIntOps::lshr(APIntOps::shl(*this, BitWidth
- numBits
),
765 bool APInt::isPowerOf2() const {
766 return (!!*this) && !(*this & (*this - APInt(BitWidth
,1)));
769 unsigned APInt::countLeadingZerosSlowCase() const {
771 for (unsigned i
= getNumWords(); i
> 0u; --i
) {
773 Count
+= APINT_BITS_PER_WORD
;
775 Count
+= CountLeadingZeros_64(pVal
[i
-1]);
779 unsigned remainder
= BitWidth
% APINT_BITS_PER_WORD
;
781 Count
-= APINT_BITS_PER_WORD
- remainder
;
782 return std::min(Count
, BitWidth
);
785 static unsigned countLeadingOnes_64(uint64_t V
, unsigned skip
) {
789 while (V
&& (V
& (1ULL << 63))) {
796 unsigned APInt::countLeadingOnes() const {
798 return countLeadingOnes_64(VAL
, APINT_BITS_PER_WORD
- BitWidth
);
800 unsigned highWordBits
= BitWidth
% APINT_BITS_PER_WORD
;
803 highWordBits
= APINT_BITS_PER_WORD
;
806 shift
= APINT_BITS_PER_WORD
- highWordBits
;
808 int i
= getNumWords() - 1;
809 unsigned Count
= countLeadingOnes_64(pVal
[i
], shift
);
810 if (Count
== highWordBits
) {
811 for (i
--; i
>= 0; --i
) {
812 if (pVal
[i
] == -1ULL)
813 Count
+= APINT_BITS_PER_WORD
;
815 Count
+= countLeadingOnes_64(pVal
[i
], 0);
823 unsigned APInt::countTrailingZeros() const {
825 return std::min(unsigned(CountTrailingZeros_64(VAL
)), BitWidth
);
828 for (; i
< getNumWords() && pVal
[i
] == 0; ++i
)
829 Count
+= APINT_BITS_PER_WORD
;
830 if (i
< getNumWords())
831 Count
+= CountTrailingZeros_64(pVal
[i
]);
832 return std::min(Count
, BitWidth
);
835 unsigned APInt::countTrailingOnesSlowCase() const {
838 for (; i
< getNumWords() && pVal
[i
] == -1ULL; ++i
)
839 Count
+= APINT_BITS_PER_WORD
;
840 if (i
< getNumWords())
841 Count
+= CountTrailingOnes_64(pVal
[i
]);
842 return std::min(Count
, BitWidth
);
845 unsigned APInt::countPopulationSlowCase() const {
847 for (unsigned i
= 0; i
< getNumWords(); ++i
)
848 Count
+= CountPopulation_64(pVal
[i
]);
852 APInt
APInt::byteSwap() const {
853 assert(BitWidth
>= 16 && BitWidth
% 16 == 0 && "Cannot byteswap!");
855 return APInt(BitWidth
, ByteSwap_16(uint16_t(VAL
)));
856 else if (BitWidth
== 32)
857 return APInt(BitWidth
, ByteSwap_32(unsigned(VAL
)));
858 else if (BitWidth
== 48) {
859 unsigned Tmp1
= unsigned(VAL
>> 16);
860 Tmp1
= ByteSwap_32(Tmp1
);
861 uint16_t Tmp2
= uint16_t(VAL
);
862 Tmp2
= ByteSwap_16(Tmp2
);
863 return APInt(BitWidth
, (uint64_t(Tmp2
) << 32) | Tmp1
);
864 } else if (BitWidth
== 64)
865 return APInt(BitWidth
, ByteSwap_64(VAL
));
867 APInt
Result(BitWidth
, 0);
868 char *pByte
= (char*)Result
.pVal
;
869 for (unsigned i
= 0; i
< BitWidth
/ APINT_WORD_SIZE
/ 2; ++i
) {
871 pByte
[i
] = pByte
[BitWidth
/ APINT_WORD_SIZE
- 1 - i
];
872 pByte
[BitWidth
/ APINT_WORD_SIZE
- i
- 1] = Tmp
;
878 APInt
llvm::APIntOps::GreatestCommonDivisor(const APInt
& API1
,
880 APInt A
= API1
, B
= API2
;
883 B
= APIntOps::urem(A
, B
);
889 APInt
llvm::APIntOps::RoundDoubleToAPInt(double Double
, unsigned width
) {
896 // Get the sign bit from the highest order bit
897 bool isNeg
= T
.I
>> 63;
899 // Get the 11-bit exponent and adjust for the 1023 bit bias
900 int64_t exp
= ((T
.I
>> 52) & 0x7ff) - 1023;
902 // If the exponent is negative, the value is < 0 so just return 0.
904 return APInt(width
, 0u);
906 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
907 uint64_t mantissa
= (T
.I
& (~0ULL >> 12)) | 1ULL << 52;
909 // If the exponent doesn't shift all bits out of the mantissa
911 return isNeg
? -APInt(width
, mantissa
>> (52 - exp
)) :
912 APInt(width
, mantissa
>> (52 - exp
));
914 // If the client didn't provide enough bits for us to shift the mantissa into
915 // then the result is undefined, just return 0
916 if (width
<= exp
- 52)
917 return APInt(width
, 0);
919 // Otherwise, we have to shift the mantissa bits up to the right location
920 APInt
Tmp(width
, mantissa
);
921 Tmp
= Tmp
.shl((unsigned)exp
- 52);
922 return isNeg
? -Tmp
: Tmp
;
925 /// RoundToDouble - This function converts this APInt to a double.
926 /// The layout for double is as following (IEEE Standard 754):
927 /// --------------------------------------
928 /// | Sign Exponent Fraction Bias |
929 /// |-------------------------------------- |
930 /// | 1[63] 11[62-52] 52[51-00] 1023 |
931 /// --------------------------------------
932 double APInt::roundToDouble(bool isSigned
) const {
934 // Handle the simple case where the value is contained in one uint64_t.
935 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
936 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD
) {
938 int64_t sext
= (int64_t(getWord(0)) << (64-BitWidth
)) >> (64-BitWidth
);
941 return double(getWord(0));
944 // Determine if the value is negative.
945 bool isNeg
= isSigned
? (*this)[BitWidth
-1] : false;
947 // Construct the absolute value if we're negative.
948 APInt
Tmp(isNeg
? -(*this) : (*this));
950 // Figure out how many bits we're using.
951 unsigned n
= Tmp
.getActiveBits();
953 // The exponent (without bias normalization) is just the number of bits
954 // we are using. Note that the sign bit is gone since we constructed the
958 // Return infinity for exponent overflow
960 if (!isSigned
|| !isNeg
)
961 return std::numeric_limits
<double>::infinity();
963 return -std::numeric_limits
<double>::infinity();
965 exp
+= 1023; // Increment for 1023 bias
967 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
968 // extract the high 52 bits from the correct words in pVal.
970 unsigned hiWord
= whichWord(n
-1);
972 mantissa
= Tmp
.pVal
[0];
974 mantissa
>>= n
- 52; // shift down, we want the top 52 bits.
976 assert(hiWord
> 0 && "huh?");
977 uint64_t hibits
= Tmp
.pVal
[hiWord
] << (52 - n
% APINT_BITS_PER_WORD
);
978 uint64_t lobits
= Tmp
.pVal
[hiWord
-1] >> (11 + n
% APINT_BITS_PER_WORD
);
979 mantissa
= hibits
| lobits
;
982 // The leading bit of mantissa is implicit, so get rid of it.
983 uint64_t sign
= isNeg
? (1ULL << (APINT_BITS_PER_WORD
- 1)) : 0;
988 T
.I
= sign
| (exp
<< 52) | mantissa
;
992 // Truncate to new width.
993 APInt
&APInt::trunc(unsigned width
) {
994 assert(width
< BitWidth
&& "Invalid APInt Truncate request");
995 assert(width
&& "Can't truncate to 0 bits");
996 unsigned wordsBefore
= getNumWords();
998 unsigned wordsAfter
= getNumWords();
999 if (wordsBefore
!= wordsAfter
) {
1000 if (wordsAfter
== 1) {
1001 uint64_t *tmp
= pVal
;
1005 uint64_t *newVal
= getClearedMemory(wordsAfter
);
1006 for (unsigned i
= 0; i
< wordsAfter
; ++i
)
1007 newVal
[i
] = pVal
[i
];
1012 return clearUnusedBits();
1015 // Sign extend to a new width.
1016 APInt
&APInt::sext(unsigned width
) {
1017 assert(width
> BitWidth
&& "Invalid APInt SignExtend request");
1018 // If the sign bit isn't set, this is the same as zext.
1019 if (!isNegative()) {
1024 // The sign bit is set. First, get some facts
1025 unsigned wordsBefore
= getNumWords();
1026 unsigned wordBits
= BitWidth
% APINT_BITS_PER_WORD
;
1028 unsigned wordsAfter
= getNumWords();
1030 // Mask the high order word appropriately
1031 if (wordsBefore
== wordsAfter
) {
1032 unsigned newWordBits
= width
% APINT_BITS_PER_WORD
;
1033 // The extension is contained to the wordsBefore-1th word.
1034 uint64_t mask
= ~0ULL;
1036 mask
>>= APINT_BITS_PER_WORD
- newWordBits
;
1038 if (wordsBefore
== 1)
1041 pVal
[wordsBefore
-1] |= mask
;
1042 return clearUnusedBits();
1045 uint64_t mask
= wordBits
== 0 ? 0 : ~0ULL << wordBits
;
1046 uint64_t *newVal
= getMemory(wordsAfter
);
1047 if (wordsBefore
== 1)
1048 newVal
[0] = VAL
| mask
;
1050 for (unsigned i
= 0; i
< wordsBefore
; ++i
)
1051 newVal
[i
] = pVal
[i
];
1052 newVal
[wordsBefore
-1] |= mask
;
1054 for (unsigned i
= wordsBefore
; i
< wordsAfter
; i
++)
1056 if (wordsBefore
!= 1)
1059 return clearUnusedBits();
1062 // Zero extend to a new width.
1063 APInt
&APInt::zext(unsigned width
) {
1064 assert(width
> BitWidth
&& "Invalid APInt ZeroExtend request");
1065 unsigned wordsBefore
= getNumWords();
1067 unsigned wordsAfter
= getNumWords();
1068 if (wordsBefore
!= wordsAfter
) {
1069 uint64_t *newVal
= getClearedMemory(wordsAfter
);
1070 if (wordsBefore
== 1)
1073 for (unsigned i
= 0; i
< wordsBefore
; ++i
)
1074 newVal
[i
] = pVal
[i
];
1075 if (wordsBefore
!= 1)
1082 APInt
&APInt::zextOrTrunc(unsigned width
) {
1083 if (BitWidth
< width
)
1085 if (BitWidth
> width
)
1086 return trunc(width
);
1090 APInt
&APInt::sextOrTrunc(unsigned width
) {
1091 if (BitWidth
< width
)
1093 if (BitWidth
> width
)
1094 return trunc(width
);
1098 /// Arithmetic right-shift this APInt by shiftAmt.
1099 /// @brief Arithmetic right-shift function.
1100 APInt
APInt::ashr(const APInt
&shiftAmt
) const {
1101 return ashr((unsigned)shiftAmt
.getLimitedValue(BitWidth
));
1104 /// Arithmetic right-shift this APInt by shiftAmt.
1105 /// @brief Arithmetic right-shift function.
1106 APInt
APInt::ashr(unsigned shiftAmt
) const {
1107 assert(shiftAmt
<= BitWidth
&& "Invalid shift amount");
1108 // Handle a degenerate case
1112 // Handle single word shifts with built-in ashr
1113 if (isSingleWord()) {
1114 if (shiftAmt
== BitWidth
)
1115 return APInt(BitWidth
, 0); // undefined
1117 unsigned SignBit
= APINT_BITS_PER_WORD
- BitWidth
;
1118 return APInt(BitWidth
,
1119 (((int64_t(VAL
) << SignBit
) >> SignBit
) >> shiftAmt
));
1123 // If all the bits were shifted out, the result is, technically, undefined.
1124 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1125 // issues in the algorithm below.
1126 if (shiftAmt
== BitWidth
) {
1128 return APInt(BitWidth
, -1ULL, true);
1130 return APInt(BitWidth
, 0);
1133 // Create some space for the result.
1134 uint64_t * val
= new uint64_t[getNumWords()];
1136 // Compute some values needed by the following shift algorithms
1137 unsigned wordShift
= shiftAmt
% APINT_BITS_PER_WORD
; // bits to shift per word
1138 unsigned offset
= shiftAmt
/ APINT_BITS_PER_WORD
; // word offset for shift
1139 unsigned breakWord
= getNumWords() - 1 - offset
; // last word affected
1140 unsigned bitsInWord
= whichBit(BitWidth
); // how many bits in last word?
1141 if (bitsInWord
== 0)
1142 bitsInWord
= APINT_BITS_PER_WORD
;
1144 // If we are shifting whole words, just move whole words
1145 if (wordShift
== 0) {
1146 // Move the words containing significant bits
1147 for (unsigned i
= 0; i
<= breakWord
; ++i
)
1148 val
[i
] = pVal
[i
+offset
]; // move whole word
1150 // Adjust the top significant word for sign bit fill, if negative
1152 if (bitsInWord
< APINT_BITS_PER_WORD
)
1153 val
[breakWord
] |= ~0ULL << bitsInWord
; // set high bits
1155 // Shift the low order words
1156 for (unsigned i
= 0; i
< breakWord
; ++i
) {
1157 // This combines the shifted corresponding word with the low bits from
1158 // the next word (shifted into this word's high bits).
1159 val
[i
] = (pVal
[i
+offset
] >> wordShift
) |
1160 (pVal
[i
+offset
+1] << (APINT_BITS_PER_WORD
- wordShift
));
1163 // Shift the break word. In this case there are no bits from the next word
1164 // to include in this word.
1165 val
[breakWord
] = pVal
[breakWord
+offset
] >> wordShift
;
1167 // Deal with sign extenstion in the break word, and possibly the word before
1170 if (wordShift
> bitsInWord
) {
1173 ~0ULL << (APINT_BITS_PER_WORD
- (wordShift
- bitsInWord
));
1174 val
[breakWord
] |= ~0ULL;
1176 val
[breakWord
] |= (~0ULL << (bitsInWord
- wordShift
));
1180 // Remaining words are 0 or -1, just assign them.
1181 uint64_t fillValue
= (isNegative() ? -1ULL : 0);
1182 for (unsigned i
= breakWord
+1; i
< getNumWords(); ++i
)
1184 return APInt(val
, BitWidth
).clearUnusedBits();
1187 /// Logical right-shift this APInt by shiftAmt.
1188 /// @brief Logical right-shift function.
1189 APInt
APInt::lshr(const APInt
&shiftAmt
) const {
1190 return lshr((unsigned)shiftAmt
.getLimitedValue(BitWidth
));
1193 /// Logical right-shift this APInt by shiftAmt.
1194 /// @brief Logical right-shift function.
1195 APInt
APInt::lshr(unsigned shiftAmt
) const {
1196 if (isSingleWord()) {
1197 if (shiftAmt
== BitWidth
)
1198 return APInt(BitWidth
, 0);
1200 return APInt(BitWidth
, this->VAL
>> shiftAmt
);
1203 // If all the bits were shifted out, the result is 0. This avoids issues
1204 // with shifting by the size of the integer type, which produces undefined
1205 // results. We define these "undefined results" to always be 0.
1206 if (shiftAmt
== BitWidth
)
1207 return APInt(BitWidth
, 0);
1209 // If none of the bits are shifted out, the result is *this. This avoids
1210 // issues with shifting by the size of the integer type, which produces
1211 // undefined results in the code below. This is also an optimization.
1215 // Create some space for the result.
1216 uint64_t * val
= new uint64_t[getNumWords()];
1218 // If we are shifting less than a word, compute the shift with a simple carry
1219 if (shiftAmt
< APINT_BITS_PER_WORD
) {
1221 for (int i
= getNumWords()-1; i
>= 0; --i
) {
1222 val
[i
] = (pVal
[i
] >> shiftAmt
) | carry
;
1223 carry
= pVal
[i
] << (APINT_BITS_PER_WORD
- shiftAmt
);
1225 return APInt(val
, BitWidth
).clearUnusedBits();
1228 // Compute some values needed by the remaining shift algorithms
1229 unsigned wordShift
= shiftAmt
% APINT_BITS_PER_WORD
;
1230 unsigned offset
= shiftAmt
/ APINT_BITS_PER_WORD
;
1232 // If we are shifting whole words, just move whole words
1233 if (wordShift
== 0) {
1234 for (unsigned i
= 0; i
< getNumWords() - offset
; ++i
)
1235 val
[i
] = pVal
[i
+offset
];
1236 for (unsigned i
= getNumWords()-offset
; i
< getNumWords(); i
++)
1238 return APInt(val
,BitWidth
).clearUnusedBits();
1241 // Shift the low order words
1242 unsigned breakWord
= getNumWords() - offset
-1;
1243 for (unsigned i
= 0; i
< breakWord
; ++i
)
1244 val
[i
] = (pVal
[i
+offset
] >> wordShift
) |
1245 (pVal
[i
+offset
+1] << (APINT_BITS_PER_WORD
- wordShift
));
1246 // Shift the break word.
1247 val
[breakWord
] = pVal
[breakWord
+offset
] >> wordShift
;
1249 // Remaining words are 0
1250 for (unsigned i
= breakWord
+1; i
< getNumWords(); ++i
)
1252 return APInt(val
, BitWidth
).clearUnusedBits();
1255 /// Left-shift this APInt by shiftAmt.
1256 /// @brief Left-shift function.
1257 APInt
APInt::shl(const APInt
&shiftAmt
) const {
1258 // It's undefined behavior in C to shift by BitWidth or greater.
1259 return shl((unsigned)shiftAmt
.getLimitedValue(BitWidth
));
1262 APInt
APInt::shlSlowCase(unsigned shiftAmt
) const {
1263 // If all the bits were shifted out, the result is 0. This avoids issues
1264 // with shifting by the size of the integer type, which produces undefined
1265 // results. We define these "undefined results" to always be 0.
1266 if (shiftAmt
== BitWidth
)
1267 return APInt(BitWidth
, 0);
1269 // If none of the bits are shifted out, the result is *this. This avoids a
1270 // lshr by the words size in the loop below which can produce incorrect
1271 // results. It also avoids the expensive computation below for a common case.
1275 // Create some space for the result.
1276 uint64_t * val
= new uint64_t[getNumWords()];
1278 // If we are shifting less than a word, do it the easy way
1279 if (shiftAmt
< APINT_BITS_PER_WORD
) {
1281 for (unsigned i
= 0; i
< getNumWords(); i
++) {
1282 val
[i
] = pVal
[i
] << shiftAmt
| carry
;
1283 carry
= pVal
[i
] >> (APINT_BITS_PER_WORD
- shiftAmt
);
1285 return APInt(val
, BitWidth
).clearUnusedBits();
1288 // Compute some values needed by the remaining shift algorithms
1289 unsigned wordShift
= shiftAmt
% APINT_BITS_PER_WORD
;
1290 unsigned offset
= shiftAmt
/ APINT_BITS_PER_WORD
;
1292 // If we are shifting whole words, just move whole words
1293 if (wordShift
== 0) {
1294 for (unsigned i
= 0; i
< offset
; i
++)
1296 for (unsigned i
= offset
; i
< getNumWords(); i
++)
1297 val
[i
] = pVal
[i
-offset
];
1298 return APInt(val
,BitWidth
).clearUnusedBits();
1301 // Copy whole words from this to Result.
1302 unsigned i
= getNumWords() - 1;
1303 for (; i
> offset
; --i
)
1304 val
[i
] = pVal
[i
-offset
] << wordShift
|
1305 pVal
[i
-offset
-1] >> (APINT_BITS_PER_WORD
- wordShift
);
1306 val
[offset
] = pVal
[0] << wordShift
;
1307 for (i
= 0; i
< offset
; ++i
)
1309 return APInt(val
, BitWidth
).clearUnusedBits();
1312 APInt
APInt::rotl(const APInt
&rotateAmt
) const {
1313 return rotl((unsigned)rotateAmt
.getLimitedValue(BitWidth
));
1316 APInt
APInt::rotl(unsigned rotateAmt
) const {
1319 // Don't get too fancy, just use existing shift/or facilities
1323 lo
.lshr(BitWidth
- rotateAmt
);
1327 APInt
APInt::rotr(const APInt
&rotateAmt
) const {
1328 return rotr((unsigned)rotateAmt
.getLimitedValue(BitWidth
));
1331 APInt
APInt::rotr(unsigned rotateAmt
) const {
1334 // Don't get too fancy, just use existing shift/or facilities
1338 hi
.shl(BitWidth
- rotateAmt
);
1342 // Square Root - this method computes and returns the square root of "this".
1343 // Three mechanisms are used for computation. For small values (<= 5 bits),
1344 // a table lookup is done. This gets some performance for common cases. For
1345 // values using less than 52 bits, the value is converted to double and then
1346 // the libc sqrt function is called. The result is rounded and then converted
1347 // back to a uint64_t which is then used to construct the result. Finally,
1348 // the Babylonian method for computing square roots is used.
1349 APInt
APInt::sqrt() const {
1351 // Determine the magnitude of the value.
1352 unsigned magnitude
= getActiveBits();
1354 // Use a fast table for some small values. This also gets rid of some
1355 // rounding errors in libc sqrt for small values.
1356 if (magnitude
<= 5) {
1357 static const uint8_t results
[32] = {
1360 /* 3- 6 */ 2, 2, 2, 2,
1361 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1362 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1363 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1366 return APInt(BitWidth
, results
[ (isSingleWord() ? VAL
: pVal
[0]) ]);
1369 // If the magnitude of the value fits in less than 52 bits (the precision of
1370 // an IEEE double precision floating point value), then we can use the
1371 // libc sqrt function which will probably use a hardware sqrt computation.
1372 // This should be faster than the algorithm below.
1373 if (magnitude
< 52) {
1375 // Amazingly, VC++ doesn't have round().
1376 return APInt(BitWidth
,
1377 uint64_t(::sqrt(double(isSingleWord()?VAL
:pVal
[0]))) + 0.5);
1379 return APInt(BitWidth
,
1380 uint64_t(::round(::sqrt(double(isSingleWord()?VAL
:pVal
[0])))));
1384 // Okay, all the short cuts are exhausted. We must compute it. The following
1385 // is a classical Babylonian method for computing the square root. This code
1386 // was adapted to APINt from a wikipedia article on such computations.
1387 // See http://www.wikipedia.org/ and go to the page named
1388 // Calculate_an_integer_square_root.
1389 unsigned nbits
= BitWidth
, i
= 4;
1390 APInt
testy(BitWidth
, 16);
1391 APInt
x_old(BitWidth
, 1);
1392 APInt
x_new(BitWidth
, 0);
1393 APInt
two(BitWidth
, 2);
1395 // Select a good starting value using binary logarithms.
1396 for (;; i
+= 2, testy
= testy
.shl(2))
1397 if (i
>= nbits
|| this->ule(testy
)) {
1398 x_old
= x_old
.shl(i
/ 2);
1402 // Use the Babylonian method to arrive at the integer square root:
1404 x_new
= (this->udiv(x_old
) + x_old
).udiv(two
);
1405 if (x_old
.ule(x_new
))
1410 // Make sure we return the closest approximation
1411 // NOTE: The rounding calculation below is correct. It will produce an
1412 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1413 // determined to be a rounding issue with pari/gp as it begins to use a
1414 // floating point representation after 192 bits. There are no discrepancies
1415 // between this algorithm and pari/gp for bit widths < 192 bits.
1416 APInt
square(x_old
* x_old
);
1417 APInt
nextSquare((x_old
+ 1) * (x_old
+1));
1418 if (this->ult(square
))
1420 else if (this->ule(nextSquare
)) {
1421 APInt
midpoint((nextSquare
- square
).udiv(two
));
1422 APInt
offset(*this - square
);
1423 if (offset
.ult(midpoint
))
1428 llvm_unreachable("Error in APInt::sqrt computation");
1432 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1433 /// iterative extended Euclidean algorithm is used to solve for this value,
1434 /// however we simplify it to speed up calculating only the inverse, and take
1435 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1436 /// (potentially large) APInts around.
1437 APInt
APInt::multiplicativeInverse(const APInt
& modulo
) const {
1438 assert(ult(modulo
) && "This APInt must be smaller than the modulo");
1440 // Using the properties listed at the following web page (accessed 06/21/08):
1441 // http://www.numbertheory.org/php/euclid.html
1442 // (especially the properties numbered 3, 4 and 9) it can be proved that
1443 // BitWidth bits suffice for all the computations in the algorithm implemented
1444 // below. More precisely, this number of bits suffice if the multiplicative
1445 // inverse exists, but may not suffice for the general extended Euclidean
1448 APInt r
[2] = { modulo
, *this };
1449 APInt t
[2] = { APInt(BitWidth
, 0), APInt(BitWidth
, 1) };
1450 APInt
q(BitWidth
, 0);
1453 for (i
= 0; r
[i
^1] != 0; i
^= 1) {
1454 // An overview of the math without the confusing bit-flipping:
1455 // q = r[i-2] / r[i-1]
1456 // r[i] = r[i-2] % r[i-1]
1457 // t[i] = t[i-2] - t[i-1] * q
1458 udivrem(r
[i
], r
[i
^1], q
, r
[i
]);
1462 // If this APInt and the modulo are not coprime, there is no multiplicative
1463 // inverse, so return 0. We check this by looking at the next-to-last
1464 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1467 return APInt(BitWidth
, 0);
1469 // The next-to-last t is the multiplicative inverse. However, we are
1470 // interested in a positive inverse. Calcuate a positive one from a negative
1471 // one if necessary. A simple addition of the modulo suffices because
1472 // abs(t[i]) is known to be less than *this/2 (see the link above).
1473 return t
[i
].isNegative() ? t
[i
] + modulo
: t
[i
];
1476 /// Calculate the magic numbers required to implement a signed integer division
1477 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1478 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1479 /// Warren, Jr., chapter 10.
1480 APInt::ms
APInt::magic() const {
1481 const APInt
& d
= *this;
1483 APInt ad
, anc
, delta
, q1
, r1
, q2
, r2
, t
;
1484 APInt signedMin
= APInt::getSignedMinValue(d
.getBitWidth());
1488 t
= signedMin
+ (d
.lshr(d
.getBitWidth() - 1));
1489 anc
= t
- 1 - t
.urem(ad
); // absolute value of nc
1490 p
= d
.getBitWidth() - 1; // initialize p
1491 q1
= signedMin
.udiv(anc
); // initialize q1 = 2p/abs(nc)
1492 r1
= signedMin
- q1
*anc
; // initialize r1 = rem(2p,abs(nc))
1493 q2
= signedMin
.udiv(ad
); // initialize q2 = 2p/abs(d)
1494 r2
= signedMin
- q2
*ad
; // initialize r2 = rem(2p,abs(d))
1497 q1
= q1
<<1; // update q1 = 2p/abs(nc)
1498 r1
= r1
<<1; // update r1 = rem(2p/abs(nc))
1499 if (r1
.uge(anc
)) { // must be unsigned comparison
1503 q2
= q2
<<1; // update q2 = 2p/abs(d)
1504 r2
= r2
<<1; // update r2 = rem(2p/abs(d))
1505 if (r2
.uge(ad
)) { // must be unsigned comparison
1510 } while (q1
.ule(delta
) || (q1
== delta
&& r1
== 0));
1513 if (d
.isNegative()) mag
.m
= -mag
.m
; // resulting magic number
1514 mag
.s
= p
- d
.getBitWidth(); // resulting shift
1518 /// Calculate the magic numbers required to implement an unsigned integer
1519 /// division by a constant as a sequence of multiplies, adds and shifts.
1520 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1521 /// S. Warren, Jr., chapter 10.
1522 APInt::mu
APInt::magicu() const {
1523 const APInt
& d
= *this;
1525 APInt nc
, delta
, q1
, r1
, q2
, r2
;
1527 magu
.a
= 0; // initialize "add" indicator
1528 APInt allOnes
= APInt::getAllOnesValue(d
.getBitWidth());
1529 APInt signedMin
= APInt::getSignedMinValue(d
.getBitWidth());
1530 APInt signedMax
= APInt::getSignedMaxValue(d
.getBitWidth());
1532 nc
= allOnes
- (-d
).urem(d
);
1533 p
= d
.getBitWidth() - 1; // initialize p
1534 q1
= signedMin
.udiv(nc
); // initialize q1 = 2p/nc
1535 r1
= signedMin
- q1
*nc
; // initialize r1 = rem(2p,nc)
1536 q2
= signedMax
.udiv(d
); // initialize q2 = (2p-1)/d
1537 r2
= signedMax
- q2
*d
; // initialize r2 = rem((2p-1),d)
1540 if (r1
.uge(nc
- r1
)) {
1541 q1
= q1
+ q1
+ 1; // update q1
1542 r1
= r1
+ r1
- nc
; // update r1
1545 q1
= q1
+q1
; // update q1
1546 r1
= r1
+r1
; // update r1
1548 if ((r2
+ 1).uge(d
- r2
)) {
1549 if (q2
.uge(signedMax
)) magu
.a
= 1;
1550 q2
= q2
+q2
+ 1; // update q2
1551 r2
= r2
+r2
+ 1 - d
; // update r2
1554 if (q2
.uge(signedMin
)) magu
.a
= 1;
1555 q2
= q2
+q2
; // update q2
1556 r2
= r2
+r2
+ 1; // update r2
1559 } while (p
< d
.getBitWidth()*2 &&
1560 (q1
.ult(delta
) || (q1
== delta
&& r1
== 0)));
1561 magu
.m
= q2
+ 1; // resulting magic number
1562 magu
.s
= p
- d
.getBitWidth(); // resulting shift
1566 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1567 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1568 /// variables here have the same names as in the algorithm. Comments explain
1569 /// the algorithm and any deviation from it.
1570 static void KnuthDiv(unsigned *u
, unsigned *v
, unsigned *q
, unsigned* r
,
1571 unsigned m
, unsigned n
) {
1572 assert(u
&& "Must provide dividend");
1573 assert(v
&& "Must provide divisor");
1574 assert(q
&& "Must provide quotient");
1575 assert(u
!= v
&& u
!= q
&& v
!= q
&& "Must us different memory");
1576 assert(n
>1 && "n must be > 1");
1578 // Knuth uses the value b as the base of the number system. In our case b
1579 // is 2^31 so we just set it to -1u.
1580 uint64_t b
= uint64_t(1) << 32;
1583 DEBUG(errs() << "KnuthDiv: m=" << m
<< " n=" << n
<< '\n');
1584 DEBUG(errs() << "KnuthDiv: original:");
1585 DEBUG(for (int i
= m
+n
; i
>=0; i
--) errs() << " " << u
[i
]);
1586 DEBUG(errs() << " by");
1587 DEBUG(for (int i
= n
; i
>0; i
--) errs() << " " << v
[i
-1]);
1588 DEBUG(errs() << '\n');
1590 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1591 // u and v by d. Note that we have taken Knuth's advice here to use a power
1592 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1593 // 2 allows us to shift instead of multiply and it is easy to determine the
1594 // shift amount from the leading zeros. We are basically normalizing the u
1595 // and v so that its high bits are shifted to the top of v's range without
1596 // overflow. Note that this can require an extra word in u so that u must
1597 // be of length m+n+1.
1598 unsigned shift
= CountLeadingZeros_32(v
[n
-1]);
1599 unsigned v_carry
= 0;
1600 unsigned u_carry
= 0;
1602 for (unsigned i
= 0; i
< m
+n
; ++i
) {
1603 unsigned u_tmp
= u
[i
] >> (32 - shift
);
1604 u
[i
] = (u
[i
] << shift
) | u_carry
;
1607 for (unsigned i
= 0; i
< n
; ++i
) {
1608 unsigned v_tmp
= v
[i
] >> (32 - shift
);
1609 v
[i
] = (v
[i
] << shift
) | v_carry
;
1615 DEBUG(errs() << "KnuthDiv: normal:");
1616 DEBUG(for (int i
= m
+n
; i
>=0; i
--) errs() << " " << u
[i
]);
1617 DEBUG(errs() << " by");
1618 DEBUG(for (int i
= n
; i
>0; i
--) errs() << " " << v
[i
-1]);
1619 DEBUG(errs() << '\n');
1622 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1625 DEBUG(errs() << "KnuthDiv: quotient digit #" << j
<< '\n');
1626 // D3. [Calculate q'.].
1627 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1628 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1629 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1630 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1631 // on v[n-2] determines at high speed most of the cases in which the trial
1632 // value qp is one too large, and it eliminates all cases where qp is two
1634 uint64_t dividend
= ((uint64_t(u
[j
+n
]) << 32) + u
[j
+n
-1]);
1635 DEBUG(errs() << "KnuthDiv: dividend == " << dividend
<< '\n');
1636 uint64_t qp
= dividend
/ v
[n
-1];
1637 uint64_t rp
= dividend
% v
[n
-1];
1638 if (qp
== b
|| qp
*v
[n
-2] > b
*rp
+ u
[j
+n
-2]) {
1641 if (rp
< b
&& (qp
== b
|| qp
*v
[n
-2] > b
*rp
+ u
[j
+n
-2]))
1644 DEBUG(errs() << "KnuthDiv: qp == " << qp
<< ", rp == " << rp
<< '\n');
1646 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1647 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1648 // consists of a simple multiplication by a one-place number, combined with
1651 for (unsigned i
= 0; i
< n
; ++i
) {
1652 uint64_t u_tmp
= uint64_t(u
[j
+i
]) | (uint64_t(u
[j
+i
+1]) << 32);
1653 uint64_t subtrahend
= uint64_t(qp
) * uint64_t(v
[i
]);
1654 bool borrow
= subtrahend
> u_tmp
;
1655 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
1656 << ", subtrahend == " << subtrahend
1657 << ", borrow = " << borrow
<< '\n');
1659 uint64_t result
= u_tmp
- subtrahend
;
1661 u
[k
++] = (unsigned)(result
& (b
-1)); // subtract low word
1662 u
[k
++] = (unsigned)(result
>> 32); // subtract high word
1663 while (borrow
&& k
<= m
+n
) { // deal with borrow to the left
1669 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u
[j
+i
] << ", u[j+i+1] == " <<
1672 DEBUG(errs() << "KnuthDiv: after subtraction:");
1673 DEBUG(for (int i
= m
+n
; i
>=0; i
--) errs() << " " << u
[i
]);
1674 DEBUG(errs() << '\n');
1675 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1676 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1677 // true value plus b**(n+1), namely as the b's complement of
1678 // the true value, and a "borrow" to the left should be remembered.
1681 bool carry
= true; // true because b's complement is "complement + 1"
1682 for (unsigned i
= 0; i
<= m
+n
; ++i
) {
1683 u
[i
] = ~u
[i
] + carry
; // b's complement
1684 carry
= carry
&& u
[i
] == 0;
1687 DEBUG(errs() << "KnuthDiv: after complement:");
1688 DEBUG(for (int i
= m
+n
; i
>=0; i
--) errs() << " " << u
[i
]);
1689 DEBUG(errs() << '\n');
1691 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1692 // negative, go to step D6; otherwise go on to step D7.
1693 q
[j
] = (unsigned)qp
;
1695 // D6. [Add back]. The probability that this step is necessary is very
1696 // small, on the order of only 2/b. Make sure that test data accounts for
1697 // this possibility. Decrease q[j] by 1
1699 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1700 // A carry will occur to the left of u[j+n], and it should be ignored
1701 // since it cancels with the borrow that occurred in D4.
1703 for (unsigned i
= 0; i
< n
; i
++) {
1704 unsigned limit
= std::min(u
[j
+i
],v
[i
]);
1705 u
[j
+i
] += v
[i
] + carry
;
1706 carry
= u
[j
+i
] < limit
|| (carry
&& u
[j
+i
] == limit
);
1710 DEBUG(errs() << "KnuthDiv: after correction:");
1711 DEBUG(for (int i
= m
+n
; i
>=0; i
--) errs() <<" " << u
[i
]);
1712 DEBUG(errs() << "\nKnuthDiv: digit result = " << q
[j
] << '\n');
1714 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1717 DEBUG(errs() << "KnuthDiv: quotient:");
1718 DEBUG(for (int i
= m
; i
>=0; i
--) errs() <<" " << q
[i
]);
1719 DEBUG(errs() << '\n');
1721 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1722 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1723 // compute the remainder (urem uses this).
1725 // The value d is expressed by the "shift" value above since we avoided
1726 // multiplication by d by using a shift left. So, all we have to do is
1727 // shift right here. In order to mak
1730 DEBUG(errs() << "KnuthDiv: remainder:");
1731 for (int i
= n
-1; i
>= 0; i
--) {
1732 r
[i
] = (u
[i
] >> shift
) | carry
;
1733 carry
= u
[i
] << (32 - shift
);
1734 DEBUG(errs() << " " << r
[i
]);
1737 for (int i
= n
-1; i
>= 0; i
--) {
1739 DEBUG(errs() << " " << r
[i
]);
1742 DEBUG(errs() << '\n');
1745 DEBUG(errs() << '\n');
1749 void APInt::divide(const APInt LHS
, unsigned lhsWords
,
1750 const APInt
&RHS
, unsigned rhsWords
,
1751 APInt
*Quotient
, APInt
*Remainder
)
1753 assert(lhsWords
>= rhsWords
&& "Fractional result");
1755 // First, compose the values into an array of 32-bit words instead of
1756 // 64-bit words. This is a necessity of both the "short division" algorithm
1757 // and the the Knuth "classical algorithm" which requires there to be native
1758 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1759 // can't use 64-bit operands here because we don't have native results of
1760 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1761 // work on large-endian machines.
1762 uint64_t mask
= ~0ull >> (sizeof(unsigned)*CHAR_BIT
);
1763 unsigned n
= rhsWords
* 2;
1764 unsigned m
= (lhsWords
* 2) - n
;
1766 // Allocate space for the temporary values we need either on the stack, if
1767 // it will fit, or on the heap if it won't.
1768 unsigned SPACE
[128];
1773 if ((Remainder
?4:3)*n
+2*m
+1 <= 128) {
1776 Q
= &SPACE
[(m
+n
+1) + n
];
1778 R
= &SPACE
[(m
+n
+1) + n
+ (m
+n
)];
1780 U
= new unsigned[m
+ n
+ 1];
1781 V
= new unsigned[n
];
1782 Q
= new unsigned[m
+n
];
1784 R
= new unsigned[n
];
1787 // Initialize the dividend
1788 memset(U
, 0, (m
+n
+1)*sizeof(unsigned));
1789 for (unsigned i
= 0; i
< lhsWords
; ++i
) {
1790 uint64_t tmp
= (LHS
.getNumWords() == 1 ? LHS
.VAL
: LHS
.pVal
[i
]);
1791 U
[i
* 2] = (unsigned)(tmp
& mask
);
1792 U
[i
* 2 + 1] = (unsigned)(tmp
>> (sizeof(unsigned)*CHAR_BIT
));
1794 U
[m
+n
] = 0; // this extra word is for "spill" in the Knuth algorithm.
1796 // Initialize the divisor
1797 memset(V
, 0, (n
)*sizeof(unsigned));
1798 for (unsigned i
= 0; i
< rhsWords
; ++i
) {
1799 uint64_t tmp
= (RHS
.getNumWords() == 1 ? RHS
.VAL
: RHS
.pVal
[i
]);
1800 V
[i
* 2] = (unsigned)(tmp
& mask
);
1801 V
[i
* 2 + 1] = (unsigned)(tmp
>> (sizeof(unsigned)*CHAR_BIT
));
1804 // initialize the quotient and remainder
1805 memset(Q
, 0, (m
+n
) * sizeof(unsigned));
1807 memset(R
, 0, n
* sizeof(unsigned));
1809 // Now, adjust m and n for the Knuth division. n is the number of words in
1810 // the divisor. m is the number of words by which the dividend exceeds the
1811 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1812 // contain any zero words or the Knuth algorithm fails.
1813 for (unsigned i
= n
; i
> 0 && V
[i
-1] == 0; i
--) {
1817 for (unsigned i
= m
+n
; i
> 0 && U
[i
-1] == 0; i
--)
1820 // If we're left with only a single word for the divisor, Knuth doesn't work
1821 // so we implement the short division algorithm here. This is much simpler
1822 // and faster because we are certain that we can divide a 64-bit quantity
1823 // by a 32-bit quantity at hardware speed and short division is simply a
1824 // series of such operations. This is just like doing short division but we
1825 // are using base 2^32 instead of base 10.
1826 assert(n
!= 0 && "Divide by zero?");
1828 unsigned divisor
= V
[0];
1829 unsigned remainder
= 0;
1830 for (int i
= m
+n
-1; i
>= 0; i
--) {
1831 uint64_t partial_dividend
= uint64_t(remainder
) << 32 | U
[i
];
1832 if (partial_dividend
== 0) {
1835 } else if (partial_dividend
< divisor
) {
1837 remainder
= (unsigned)partial_dividend
;
1838 } else if (partial_dividend
== divisor
) {
1842 Q
[i
] = (unsigned)(partial_dividend
/ divisor
);
1843 remainder
= (unsigned)(partial_dividend
- (Q
[i
] * divisor
));
1849 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1851 KnuthDiv(U
, V
, Q
, R
, m
, n
);
1854 // If the caller wants the quotient
1856 // Set up the Quotient value's memory.
1857 if (Quotient
->BitWidth
!= LHS
.BitWidth
) {
1858 if (Quotient
->isSingleWord())
1861 delete [] Quotient
->pVal
;
1862 Quotient
->BitWidth
= LHS
.BitWidth
;
1863 if (!Quotient
->isSingleWord())
1864 Quotient
->pVal
= getClearedMemory(Quotient
->getNumWords());
1868 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1870 if (lhsWords
== 1) {
1872 uint64_t(Q
[0]) | (uint64_t(Q
[1]) << (APINT_BITS_PER_WORD
/ 2));
1873 if (Quotient
->isSingleWord())
1874 Quotient
->VAL
= tmp
;
1876 Quotient
->pVal
[0] = tmp
;
1878 assert(!Quotient
->isSingleWord() && "Quotient APInt not large enough");
1879 for (unsigned i
= 0; i
< lhsWords
; ++i
)
1881 uint64_t(Q
[i
*2]) | (uint64_t(Q
[i
*2+1]) << (APINT_BITS_PER_WORD
/ 2));
1885 // If the caller wants the remainder
1887 // Set up the Remainder value's memory.
1888 if (Remainder
->BitWidth
!= RHS
.BitWidth
) {
1889 if (Remainder
->isSingleWord())
1892 delete [] Remainder
->pVal
;
1893 Remainder
->BitWidth
= RHS
.BitWidth
;
1894 if (!Remainder
->isSingleWord())
1895 Remainder
->pVal
= getClearedMemory(Remainder
->getNumWords());
1899 // The remainder is in R. Reconstitute the remainder into Remainder's low
1901 if (rhsWords
== 1) {
1903 uint64_t(R
[0]) | (uint64_t(R
[1]) << (APINT_BITS_PER_WORD
/ 2));
1904 if (Remainder
->isSingleWord())
1905 Remainder
->VAL
= tmp
;
1907 Remainder
->pVal
[0] = tmp
;
1909 assert(!Remainder
->isSingleWord() && "Remainder APInt not large enough");
1910 for (unsigned i
= 0; i
< rhsWords
; ++i
)
1911 Remainder
->pVal
[i
] =
1912 uint64_t(R
[i
*2]) | (uint64_t(R
[i
*2+1]) << (APINT_BITS_PER_WORD
/ 2));
1916 // Clean up the memory we allocated.
1917 if (U
!= &SPACE
[0]) {
1925 APInt
APInt::udiv(const APInt
& RHS
) const {
1926 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
1928 // First, deal with the easy case
1929 if (isSingleWord()) {
1930 assert(RHS
.VAL
!= 0 && "Divide by zero?");
1931 return APInt(BitWidth
, VAL
/ RHS
.VAL
);
1934 // Get some facts about the LHS and RHS number of bits and words
1935 unsigned rhsBits
= RHS
.getActiveBits();
1936 unsigned rhsWords
= !rhsBits
? 0 : (APInt::whichWord(rhsBits
- 1) + 1);
1937 assert(rhsWords
&& "Divided by zero???");
1938 unsigned lhsBits
= this->getActiveBits();
1939 unsigned lhsWords
= !lhsBits
? 0 : (APInt::whichWord(lhsBits
- 1) + 1);
1941 // Deal with some degenerate cases
1944 return APInt(BitWidth
, 0);
1945 else if (lhsWords
< rhsWords
|| this->ult(RHS
)) {
1946 // X / Y ===> 0, iff X < Y
1947 return APInt(BitWidth
, 0);
1948 } else if (*this == RHS
) {
1950 return APInt(BitWidth
, 1);
1951 } else if (lhsWords
== 1 && rhsWords
== 1) {
1952 // All high words are zero, just use native divide
1953 return APInt(BitWidth
, this->pVal
[0] / RHS
.pVal
[0]);
1956 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1957 APInt
Quotient(1,0); // to hold result.
1958 divide(*this, lhsWords
, RHS
, rhsWords
, &Quotient
, 0);
1962 APInt
APInt::urem(const APInt
& RHS
) const {
1963 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
1964 if (isSingleWord()) {
1965 assert(RHS
.VAL
!= 0 && "Remainder by zero?");
1966 return APInt(BitWidth
, VAL
% RHS
.VAL
);
1969 // Get some facts about the LHS
1970 unsigned lhsBits
= getActiveBits();
1971 unsigned lhsWords
= !lhsBits
? 0 : (whichWord(lhsBits
- 1) + 1);
1973 // Get some facts about the RHS
1974 unsigned rhsBits
= RHS
.getActiveBits();
1975 unsigned rhsWords
= !rhsBits
? 0 : (APInt::whichWord(rhsBits
- 1) + 1);
1976 assert(rhsWords
&& "Performing remainder operation by zero ???");
1978 // Check the degenerate cases
1979 if (lhsWords
== 0) {
1981 return APInt(BitWidth
, 0);
1982 } else if (lhsWords
< rhsWords
|| this->ult(RHS
)) {
1983 // X % Y ===> X, iff X < Y
1985 } else if (*this == RHS
) {
1987 return APInt(BitWidth
, 0);
1988 } else if (lhsWords
== 1) {
1989 // All high words are zero, just use native remainder
1990 return APInt(BitWidth
, pVal
[0] % RHS
.pVal
[0]);
1993 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1994 APInt
Remainder(1,0);
1995 divide(*this, lhsWords
, RHS
, rhsWords
, 0, &Remainder
);
1999 void APInt::udivrem(const APInt
&LHS
, const APInt
&RHS
,
2000 APInt
&Quotient
, APInt
&Remainder
) {
2001 // Get some size facts about the dividend and divisor
2002 unsigned lhsBits
= LHS
.getActiveBits();
2003 unsigned lhsWords
= !lhsBits
? 0 : (APInt::whichWord(lhsBits
- 1) + 1);
2004 unsigned rhsBits
= RHS
.getActiveBits();
2005 unsigned rhsWords
= !rhsBits
? 0 : (APInt::whichWord(rhsBits
- 1) + 1);
2007 // Check the degenerate cases
2008 if (lhsWords
== 0) {
2009 Quotient
= 0; // 0 / Y ===> 0
2010 Remainder
= 0; // 0 % Y ===> 0
2014 if (lhsWords
< rhsWords
|| LHS
.ult(RHS
)) {
2015 Quotient
= 0; // X / Y ===> 0, iff X < Y
2016 Remainder
= LHS
; // X % Y ===> X, iff X < Y
2021 Quotient
= 1; // X / X ===> 1
2022 Remainder
= 0; // X % X ===> 0;
2026 if (lhsWords
== 1 && rhsWords
== 1) {
2027 // There is only one word to consider so use the native versions.
2028 uint64_t lhsValue
= LHS
.isSingleWord() ? LHS
.VAL
: LHS
.pVal
[0];
2029 uint64_t rhsValue
= RHS
.isSingleWord() ? RHS
.VAL
: RHS
.pVal
[0];
2030 Quotient
= APInt(LHS
.getBitWidth(), lhsValue
/ rhsValue
);
2031 Remainder
= APInt(LHS
.getBitWidth(), lhsValue
% rhsValue
);
2035 // Okay, lets do it the long way
2036 divide(LHS
, lhsWords
, RHS
, rhsWords
, &Quotient
, &Remainder
);
2039 void APInt::fromString(unsigned numbits
, const StringRef
& str
, uint8_t radix
) {
2040 // Check our assumptions here
2041 assert(!str
.empty() && "Invalid string length");
2042 assert((radix
== 10 || radix
== 8 || radix
== 16 || radix
== 2) &&
2043 "Radix should be 2, 8, 10, or 16!");
2045 StringRef::iterator p
= str
.begin();
2046 size_t slen
= str
.size();
2047 bool isNeg
= *p
== '-';
2048 if (*p
== '-' || *p
== '+') {
2051 assert(slen
&& "String is only a sign, needs a value.");
2053 assert((slen
<= numbits
|| radix
!= 2) && "Insufficient bit width");
2054 assert(((slen
-1)*3 <= numbits
|| radix
!= 8) && "Insufficient bit width");
2055 assert(((slen
-1)*4 <= numbits
|| radix
!= 16) && "Insufficient bit width");
2056 assert((((slen
-1)*64)/22 <= numbits
|| radix
!= 10)
2057 && "Insufficient bit width");
2060 if (!isSingleWord())
2061 pVal
= getClearedMemory(getNumWords());
2063 // Figure out if we can shift instead of multiply
2064 unsigned shift
= (radix
== 16 ? 4 : radix
== 8 ? 3 : radix
== 2 ? 1 : 0);
2066 // Set up an APInt for the digit to add outside the loop so we don't
2067 // constantly construct/destruct it.
2068 APInt
apdigit(getBitWidth(), 0);
2069 APInt
apradix(getBitWidth(), radix
);
2071 // Enter digit traversal loop
2072 for (StringRef::iterator e
= str
.end(); p
!= e
; ++p
) {
2073 unsigned digit
= getDigit(*p
, radix
);
2074 assert(digit
< radix
&& "Invalid character in digit string");
2076 // Shift or multiply the value by the radix
2084 // Add in the digit we just interpreted
2085 if (apdigit
.isSingleWord())
2086 apdigit
.VAL
= digit
;
2088 apdigit
.pVal
[0] = digit
;
2091 // If its negative, put it in two's complement form
2098 void APInt::toString(SmallVectorImpl
<char> &Str
, unsigned Radix
,
2099 bool Signed
) const {
2100 assert((Radix
== 10 || Radix
== 8 || Radix
== 16 || Radix
== 2) &&
2101 "Radix should be 2, 8, 10, or 16!");
2103 // First, check for a zero value and just short circuit the logic below.
2109 static const char Digits
[] = "0123456789ABCDEF";
2111 if (isSingleWord()) {
2113 char *BufPtr
= Buffer
+65;
2117 int64_t I
= getSExtValue();
2128 *--BufPtr
= Digits
[N
% Radix
];
2131 Str
.append(BufPtr
, Buffer
+65);
2137 if (Signed
&& isNegative()) {
2138 // They want to print the signed version and it is a negative value
2139 // Flip the bits and add one to turn it into the equivalent positive
2140 // value and put a '-' in the result.
2146 // We insert the digits backward, then reverse them to get the right order.
2147 unsigned StartDig
= Str
.size();
2149 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2150 // because the number of bits per digit (1, 3 and 4 respectively) divides
2151 // equaly. We just shift until the value is zero.
2153 // Just shift tmp right for each digit width until it becomes zero
2154 unsigned ShiftAmt
= (Radix
== 16 ? 4 : (Radix
== 8 ? 3 : 1));
2155 unsigned MaskAmt
= Radix
- 1;
2158 unsigned Digit
= unsigned(Tmp
.getRawData()[0]) & MaskAmt
;
2159 Str
.push_back(Digits
[Digit
]);
2160 Tmp
= Tmp
.lshr(ShiftAmt
);
2163 APInt
divisor(4, 10);
2165 APInt
APdigit(1, 0);
2166 APInt
tmp2(Tmp
.getBitWidth(), 0);
2167 divide(Tmp
, Tmp
.getNumWords(), divisor
, divisor
.getNumWords(), &tmp2
,
2169 unsigned Digit
= (unsigned)APdigit
.getZExtValue();
2170 assert(Digit
< Radix
&& "divide failed");
2171 Str
.push_back(Digits
[Digit
]);
2176 // Reverse the digits before returning.
2177 std::reverse(Str
.begin()+StartDig
, Str
.end());
2180 /// toString - This returns the APInt as a std::string. Note that this is an
2181 /// inefficient method. It is better to pass in a SmallVector/SmallString
2182 /// to the methods above.
2183 std::string
APInt::toString(unsigned Radix
= 10, bool Signed
= true) const {
2185 toString(S
, Radix
, Signed
);
2190 void APInt::dump() const {
2191 SmallString
<40> S
, U
;
2192 this->toStringUnsigned(U
);
2193 this->toStringSigned(S
);
2194 errs() << "APInt(" << BitWidth
<< "b, "
2195 << U
.str() << "u " << S
.str() << "s)";
2198 void APInt::print(raw_ostream
&OS
, bool isSigned
) const {
2200 this->toString(S
, 10, isSigned
);
2204 // This implements a variety of operations on a representation of
2205 // arbitrary precision, two's-complement, bignum integer values.
2207 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2208 // and unrestricting assumption.
2209 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2210 COMPILE_TIME_ASSERT(integerPartWidth
% 2 == 0);
2212 /* Some handy functions local to this file. */
2215 /* Returns the integer part with the least significant BITS set.
2216 BITS cannot be zero. */
2217 static inline integerPart
2218 lowBitMask(unsigned int bits
)
2220 assert (bits
!= 0 && bits
<= integerPartWidth
);
2222 return ~(integerPart
) 0 >> (integerPartWidth
- bits
);
2225 /* Returns the value of the lower half of PART. */
2226 static inline integerPart
2227 lowHalf(integerPart part
)
2229 return part
& lowBitMask(integerPartWidth
/ 2);
2232 /* Returns the value of the upper half of PART. */
2233 static inline integerPart
2234 highHalf(integerPart part
)
2236 return part
>> (integerPartWidth
/ 2);
2239 /* Returns the bit number of the most significant set bit of a part.
2240 If the input number has no bits set -1U is returned. */
2242 partMSB(integerPart value
)
2244 unsigned int n
, msb
;
2249 n
= integerPartWidth
/ 2;
2264 /* Returns the bit number of the least significant set bit of a
2265 part. If the input number has no bits set -1U is returned. */
2267 partLSB(integerPart value
)
2269 unsigned int n
, lsb
;
2274 lsb
= integerPartWidth
- 1;
2275 n
= integerPartWidth
/ 2;
2290 /* Sets the least significant part of a bignum to the input value, and
2291 zeroes out higher parts. */
2293 APInt::tcSet(integerPart
*dst
, integerPart part
, unsigned int parts
)
2300 for(i
= 1; i
< parts
; i
++)
2304 /* Assign one bignum to another. */
2306 APInt::tcAssign(integerPart
*dst
, const integerPart
*src
, unsigned int parts
)
2310 for(i
= 0; i
< parts
; i
++)
2314 /* Returns true if a bignum is zero, false otherwise. */
2316 APInt::tcIsZero(const integerPart
*src
, unsigned int parts
)
2320 for(i
= 0; i
< parts
; i
++)
2327 /* Extract the given bit of a bignum; returns 0 or 1. */
2329 APInt::tcExtractBit(const integerPart
*parts
, unsigned int bit
)
2331 return(parts
[bit
/ integerPartWidth
]
2332 & ((integerPart
) 1 << bit
% integerPartWidth
)) != 0;
2335 /* Set the given bit of a bignum. */
2337 APInt::tcSetBit(integerPart
*parts
, unsigned int bit
)
2339 parts
[bit
/ integerPartWidth
] |= (integerPart
) 1 << (bit
% integerPartWidth
);
2342 /* Returns the bit number of the least significant set bit of a
2343 number. If the input number has no bits set -1U is returned. */
2345 APInt::tcLSB(const integerPart
*parts
, unsigned int n
)
2347 unsigned int i
, lsb
;
2349 for(i
= 0; i
< n
; i
++) {
2350 if (parts
[i
] != 0) {
2351 lsb
= partLSB(parts
[i
]);
2353 return lsb
+ i
* integerPartWidth
;
2360 /* Returns the bit number of the most significant set bit of a number.
2361 If the input number has no bits set -1U is returned. */
2363 APInt::tcMSB(const integerPart
*parts
, unsigned int n
)
2370 if (parts
[n
] != 0) {
2371 msb
= partMSB(parts
[n
]);
2373 return msb
+ n
* integerPartWidth
;
2380 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2381 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2382 the least significant bit of DST. All high bits above srcBITS in
2383 DST are zero-filled. */
2385 APInt::tcExtract(integerPart
*dst
, unsigned int dstCount
,const integerPart
*src
,
2386 unsigned int srcBits
, unsigned int srcLSB
)
2388 unsigned int firstSrcPart
, dstParts
, shift
, n
;
2390 dstParts
= (srcBits
+ integerPartWidth
- 1) / integerPartWidth
;
2391 assert (dstParts
<= dstCount
);
2393 firstSrcPart
= srcLSB
/ integerPartWidth
;
2394 tcAssign (dst
, src
+ firstSrcPart
, dstParts
);
2396 shift
= srcLSB
% integerPartWidth
;
2397 tcShiftRight (dst
, dstParts
, shift
);
2399 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2400 in DST. If this is less that srcBits, append the rest, else
2401 clear the high bits. */
2402 n
= dstParts
* integerPartWidth
- shift
;
2404 integerPart mask
= lowBitMask (srcBits
- n
);
2405 dst
[dstParts
- 1] |= ((src
[firstSrcPart
+ dstParts
] & mask
)
2406 << n
% integerPartWidth
);
2407 } else if (n
> srcBits
) {
2408 if (srcBits
% integerPartWidth
)
2409 dst
[dstParts
- 1] &= lowBitMask (srcBits
% integerPartWidth
);
2412 /* Clear high parts. */
2413 while (dstParts
< dstCount
)
2414 dst
[dstParts
++] = 0;
2417 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2419 APInt::tcAdd(integerPart
*dst
, const integerPart
*rhs
,
2420 integerPart c
, unsigned int parts
)
2426 for(i
= 0; i
< parts
; i
++) {
2431 dst
[i
] += rhs
[i
] + 1;
2442 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2444 APInt::tcSubtract(integerPart
*dst
, const integerPart
*rhs
,
2445 integerPart c
, unsigned int parts
)
2451 for(i
= 0; i
< parts
; i
++) {
2456 dst
[i
] -= rhs
[i
] + 1;
2467 /* Negate a bignum in-place. */
2469 APInt::tcNegate(integerPart
*dst
, unsigned int parts
)
2471 tcComplement(dst
, parts
);
2472 tcIncrement(dst
, parts
);
2475 /* DST += SRC * MULTIPLIER + CARRY if add is true
2476 DST = SRC * MULTIPLIER + CARRY if add is false
2478 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2479 they must start at the same point, i.e. DST == SRC.
2481 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2482 returned. Otherwise DST is filled with the least significant
2483 DSTPARTS parts of the result, and if all of the omitted higher
2484 parts were zero return zero, otherwise overflow occurred and
2487 APInt::tcMultiplyPart(integerPart
*dst
, const integerPart
*src
,
2488 integerPart multiplier
, integerPart carry
,
2489 unsigned int srcParts
, unsigned int dstParts
,
2494 /* Otherwise our writes of DST kill our later reads of SRC. */
2495 assert(dst
<= src
|| dst
>= src
+ srcParts
);
2496 assert(dstParts
<= srcParts
+ 1);
2498 /* N loops; minimum of dstParts and srcParts. */
2499 n
= dstParts
< srcParts
? dstParts
: srcParts
;
2501 for(i
= 0; i
< n
; i
++) {
2502 integerPart low
, mid
, high
, srcPart
;
2504 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2506 This cannot overflow, because
2508 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2510 which is less than n^2. */
2514 if (multiplier
== 0 || srcPart
== 0) {
2518 low
= lowHalf(srcPart
) * lowHalf(multiplier
);
2519 high
= highHalf(srcPart
) * highHalf(multiplier
);
2521 mid
= lowHalf(srcPart
) * highHalf(multiplier
);
2522 high
+= highHalf(mid
);
2523 mid
<<= integerPartWidth
/ 2;
2524 if (low
+ mid
< low
)
2528 mid
= highHalf(srcPart
) * lowHalf(multiplier
);
2529 high
+= highHalf(mid
);
2530 mid
<<= integerPartWidth
/ 2;
2531 if (low
+ mid
< low
)
2535 /* Now add carry. */
2536 if (low
+ carry
< low
)
2542 /* And now DST[i], and store the new low part there. */
2543 if (low
+ dst
[i
] < low
)
2553 /* Full multiplication, there is no overflow. */
2554 assert(i
+ 1 == dstParts
);
2558 /* We overflowed if there is carry. */
2562 /* We would overflow if any significant unwritten parts would be
2563 non-zero. This is true if any remaining src parts are non-zero
2564 and the multiplier is non-zero. */
2566 for(; i
< srcParts
; i
++)
2570 /* We fitted in the narrow destination. */
2575 /* DST = LHS * RHS, where DST has the same width as the operands and
2576 is filled with the least significant parts of the result. Returns
2577 one if overflow occurred, otherwise zero. DST must be disjoint
2578 from both operands. */
2580 APInt::tcMultiply(integerPart
*dst
, const integerPart
*lhs
,
2581 const integerPart
*rhs
, unsigned int parts
)
2586 assert(dst
!= lhs
&& dst
!= rhs
);
2589 tcSet(dst
, 0, parts
);
2591 for(i
= 0; i
< parts
; i
++)
2592 overflow
|= tcMultiplyPart(&dst
[i
], lhs
, rhs
[i
], 0, parts
,
2598 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2599 operands. No overflow occurs. DST must be disjoint from both
2600 operands. Returns the number of parts required to hold the
2603 APInt::tcFullMultiply(integerPart
*dst
, const integerPart
*lhs
,
2604 const integerPart
*rhs
, unsigned int lhsParts
,
2605 unsigned int rhsParts
)
2607 /* Put the narrower number on the LHS for less loops below. */
2608 if (lhsParts
> rhsParts
) {
2609 return tcFullMultiply (dst
, rhs
, lhs
, rhsParts
, lhsParts
);
2613 assert(dst
!= lhs
&& dst
!= rhs
);
2615 tcSet(dst
, 0, rhsParts
);
2617 for(n
= 0; n
< lhsParts
; n
++)
2618 tcMultiplyPart(&dst
[n
], rhs
, lhs
[n
], 0, rhsParts
, rhsParts
+ 1, true);
2620 n
= lhsParts
+ rhsParts
;
2622 return n
- (dst
[n
- 1] == 0);
2626 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2627 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2628 set REMAINDER to the remainder, return zero. i.e.
2630 OLD_LHS = RHS * LHS + REMAINDER
2632 SCRATCH is a bignum of the same size as the operands and result for
2633 use by the routine; its contents need not be initialized and are
2634 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2637 APInt::tcDivide(integerPart
*lhs
, const integerPart
*rhs
,
2638 integerPart
*remainder
, integerPart
*srhs
,
2641 unsigned int n
, shiftCount
;
2644 assert(lhs
!= remainder
&& lhs
!= srhs
&& remainder
!= srhs
);
2646 shiftCount
= tcMSB(rhs
, parts
) + 1;
2647 if (shiftCount
== 0)
2650 shiftCount
= parts
* integerPartWidth
- shiftCount
;
2651 n
= shiftCount
/ integerPartWidth
;
2652 mask
= (integerPart
) 1 << (shiftCount
% integerPartWidth
);
2654 tcAssign(srhs
, rhs
, parts
);
2655 tcShiftLeft(srhs
, parts
, shiftCount
);
2656 tcAssign(remainder
, lhs
, parts
);
2657 tcSet(lhs
, 0, parts
);
2659 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2664 compare
= tcCompare(remainder
, srhs
, parts
);
2666 tcSubtract(remainder
, srhs
, 0, parts
);
2670 if (shiftCount
== 0)
2673 tcShiftRight(srhs
, parts
, 1);
2674 if ((mask
>>= 1) == 0)
2675 mask
= (integerPart
) 1 << (integerPartWidth
- 1), n
--;
2681 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2682 There are no restrictions on COUNT. */
2684 APInt::tcShiftLeft(integerPart
*dst
, unsigned int parts
, unsigned int count
)
2687 unsigned int jump
, shift
;
2689 /* Jump is the inter-part jump; shift is is intra-part shift. */
2690 jump
= count
/ integerPartWidth
;
2691 shift
= count
% integerPartWidth
;
2693 while (parts
> jump
) {
2698 /* dst[i] comes from the two parts src[i - jump] and, if we have
2699 an intra-part shift, src[i - jump - 1]. */
2700 part
= dst
[parts
- jump
];
2703 if (parts
>= jump
+ 1)
2704 part
|= dst
[parts
- jump
- 1] >> (integerPartWidth
- shift
);
2715 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2716 zero. There are no restrictions on COUNT. */
2718 APInt::tcShiftRight(integerPart
*dst
, unsigned int parts
, unsigned int count
)
2721 unsigned int i
, jump
, shift
;
2723 /* Jump is the inter-part jump; shift is is intra-part shift. */
2724 jump
= count
/ integerPartWidth
;
2725 shift
= count
% integerPartWidth
;
2727 /* Perform the shift. This leaves the most significant COUNT bits
2728 of the result at zero. */
2729 for(i
= 0; i
< parts
; i
++) {
2732 if (i
+ jump
>= parts
) {
2735 part
= dst
[i
+ jump
];
2738 if (i
+ jump
+ 1 < parts
)
2739 part
|= dst
[i
+ jump
+ 1] << (integerPartWidth
- shift
);
2748 /* Bitwise and of two bignums. */
2750 APInt::tcAnd(integerPart
*dst
, const integerPart
*rhs
, unsigned int parts
)
2754 for(i
= 0; i
< parts
; i
++)
2758 /* Bitwise inclusive or of two bignums. */
2760 APInt::tcOr(integerPart
*dst
, const integerPart
*rhs
, unsigned int parts
)
2764 for(i
= 0; i
< parts
; i
++)
2768 /* Bitwise exclusive or of two bignums. */
2770 APInt::tcXor(integerPart
*dst
, const integerPart
*rhs
, unsigned int parts
)
2774 for(i
= 0; i
< parts
; i
++)
2778 /* Complement a bignum in-place. */
2780 APInt::tcComplement(integerPart
*dst
, unsigned int parts
)
2784 for(i
= 0; i
< parts
; i
++)
2788 /* Comparison (unsigned) of two bignums. */
2790 APInt::tcCompare(const integerPart
*lhs
, const integerPart
*rhs
,
2795 if (lhs
[parts
] == rhs
[parts
])
2798 if (lhs
[parts
] > rhs
[parts
])
2807 /* Increment a bignum in-place, return the carry flag. */
2809 APInt::tcIncrement(integerPart
*dst
, unsigned int parts
)
2813 for(i
= 0; i
< parts
; i
++)
2820 /* Set the least significant BITS bits of a bignum, clear the
2823 APInt::tcSetLeastSignificantBits(integerPart
*dst
, unsigned int parts
,
2829 while (bits
> integerPartWidth
) {
2830 dst
[i
++] = ~(integerPart
) 0;
2831 bits
-= integerPartWidth
;
2835 dst
[i
++] = ~(integerPart
) 0 >> (integerPartWidth
- bits
);