make tblgen produce a function that returns the name for a physreg.
[llvm/avr.git] / lib / Target / PowerPC / PPCISelLowering.cpp
blob2a3ca468d78177e4c7eac43b53936702b880d6f5
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPredicates.h"
17 #include "PPCTargetMachine.h"
18 #include "PPCPerfectShuffle.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/Function.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
39 using namespace llvm;
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42 CCValAssign::LocInfo &LocInfo,
43 ISD::ArgFlagsTy &ArgFlags,
44 CCState &State);
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46 EVT &LocVT,
47 CCValAssign::LocInfo &LocInfo,
48 ISD::ArgFlagsTy &ArgFlags,
49 CCState &State);
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51 EVT &LocVT,
52 CCValAssign::LocInfo &LocInfo,
53 ISD::ArgFlagsTy &ArgFlags,
54 CCState &State);
56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58 cl::Hidden);
60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61 if (TM.getSubtargetImpl()->isDarwin())
62 return new TargetLoweringObjectFileMachO();
63 return new TargetLoweringObjectFileELF();
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
70 setPow2DivIsCheap();
72 // Use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(true);
74 setUseUnderscoreLongJmp(true);
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
81 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
85 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
87 // PowerPC has pre-inc load and store's.
88 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
99 // This is used in the ppcf128->int sequence. Note it has different semantics
100 // from FP_ROUND: that rounds to nearest, this rounds to zero.
101 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
103 // PowerPC has no SREM/UREM instructions
104 setOperationAction(ISD::SREM, MVT::i32, Expand);
105 setOperationAction(ISD::UREM, MVT::i32, Expand);
106 setOperationAction(ISD::SREM, MVT::i64, Expand);
107 setOperationAction(ISD::UREM, MVT::i64, Expand);
109 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
119 // We don't support sin/cos/sqrt/fmod/pow
120 setOperationAction(ISD::FSIN , MVT::f64, Expand);
121 setOperationAction(ISD::FCOS , MVT::f64, Expand);
122 setOperationAction(ISD::FREM , MVT::f64, Expand);
123 setOperationAction(ISD::FPOW , MVT::f64, Expand);
124 setOperationAction(ISD::FSIN , MVT::f32, Expand);
125 setOperationAction(ISD::FCOS , MVT::f32, Expand);
126 setOperationAction(ISD::FREM , MVT::f32, Expand);
127 setOperationAction(ISD::FPOW , MVT::f32, Expand);
129 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
131 // If we're enabling GP optimizations, use hardware square root
132 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
137 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
140 // PowerPC does not have BSWAP, CTPOP or CTTZ
141 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
142 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
143 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
144 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
145 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
146 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
148 // PowerPC does not have ROTR
149 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
150 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
152 // PowerPC does not have Select
153 setOperationAction(ISD::SELECT, MVT::i32, Expand);
154 setOperationAction(ISD::SELECT, MVT::i64, Expand);
155 setOperationAction(ISD::SELECT, MVT::f32, Expand);
156 setOperationAction(ISD::SELECT, MVT::f64, Expand);
158 // PowerPC wants to turn select_cc of FP into fsel when possible.
159 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
162 // PowerPC wants to optimize integer setcc a bit
163 setOperationAction(ISD::SETCC, MVT::i32, Custom);
165 // PowerPC does not have BRCOND which requires SetCC
166 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
168 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
170 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
173 // PowerPC does not have [U|S]INT_TO_FP
174 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
177 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
182 // We cannot sextinreg(i1). Expand to shifts.
183 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
185 // Support label based line numbers.
186 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
187 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
189 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
191 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
195 // We want to legalize GlobalAddress and ConstantPool nodes into the
196 // appropriate instructions to materialize the address.
197 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
200 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
201 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
203 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
204 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
206 // TRAP is legal.
207 setOperationAction(ISD::TRAP, MVT::Other, Legal);
209 // TRAMPOLINE is custom lowered.
210 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
212 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
213 setOperationAction(ISD::VASTART , MVT::Other, Custom);
215 // VAARG is custom lowered with the 32-bit SVR4 ABI.
216 if ( TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
217 && !TM.getSubtarget<PPCSubtarget>().isPPC64())
218 setOperationAction(ISD::VAARG, MVT::Other, Custom);
219 else
220 setOperationAction(ISD::VAARG, MVT::Other, Expand);
222 // Use the default implementation.
223 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
224 setOperationAction(ISD::VAEND , MVT::Other, Expand);
225 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
226 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
227 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
228 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
230 // We want to custom lower some of our intrinsics.
231 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
233 // Comparisons that require checking two conditions.
234 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
235 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
236 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
237 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
238 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
239 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
240 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
241 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
242 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
243 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
244 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
245 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
247 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
248 // They also have instructions for converting between i64 and fp.
249 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
250 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
251 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
252 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
253 // This is just the low 32 bits of a (signed) fp->i64 conversion.
254 // We cannot do this with Promote because i64 is not a legal type.
255 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
257 // FIXME: disable this lowered code. This generates 64-bit register values,
258 // and we don't model the fact that the top part is clobbered by calls. We
259 // need to flag these together so that the value isn't live across a call.
260 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
261 } else {
262 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
263 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
267 // 64-bit PowerPC implementations can support i64 types directly
268 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
269 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
270 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
271 // 64-bit PowerPC wants to expand i128 shifts itself.
272 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
273 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
274 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
275 } else {
276 // 32-bit PowerPC wants to expand i64 shifts itself.
277 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
278 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
279 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
283 // First set operation action for all vector types to expand. Then we
284 // will selectively turn on ones that can be effectively codegen'd.
285 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
286 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
287 MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
289 // add/sub are legal for all supported vector VT's.
290 setOperationAction(ISD::ADD , VT, Legal);
291 setOperationAction(ISD::SUB , VT, Legal);
293 // We promote all shuffles to v16i8.
294 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
295 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
297 // We promote all non-typed operations to v4i32.
298 setOperationAction(ISD::AND , VT, Promote);
299 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
300 setOperationAction(ISD::OR , VT, Promote);
301 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
302 setOperationAction(ISD::XOR , VT, Promote);
303 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
304 setOperationAction(ISD::LOAD , VT, Promote);
305 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
306 setOperationAction(ISD::SELECT, VT, Promote);
307 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
308 setOperationAction(ISD::STORE, VT, Promote);
309 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
311 // No other operations are legal.
312 setOperationAction(ISD::MUL , VT, Expand);
313 setOperationAction(ISD::SDIV, VT, Expand);
314 setOperationAction(ISD::SREM, VT, Expand);
315 setOperationAction(ISD::UDIV, VT, Expand);
316 setOperationAction(ISD::UREM, VT, Expand);
317 setOperationAction(ISD::FDIV, VT, Expand);
318 setOperationAction(ISD::FNEG, VT, Expand);
319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
320 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
321 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
322 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
323 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
324 setOperationAction(ISD::UDIVREM, VT, Expand);
325 setOperationAction(ISD::SDIVREM, VT, Expand);
326 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
327 setOperationAction(ISD::FPOW, VT, Expand);
328 setOperationAction(ISD::CTPOP, VT, Expand);
329 setOperationAction(ISD::CTLZ, VT, Expand);
330 setOperationAction(ISD::CTTZ, VT, Expand);
333 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
334 // with merges, splats, etc.
335 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
337 setOperationAction(ISD::AND , MVT::v4i32, Legal);
338 setOperationAction(ISD::OR , MVT::v4i32, Legal);
339 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
340 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
341 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
342 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
344 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
345 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
346 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
347 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
349 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
350 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
351 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
352 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
354 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
355 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
357 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
358 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
359 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
360 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363 setShiftAmountType(MVT::i32);
364 setBooleanContents(ZeroOrOneBooleanContent);
366 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
367 setStackPointerRegisterToSaveRestore(PPC::X1);
368 setExceptionPointerRegister(PPC::X3);
369 setExceptionSelectorRegister(PPC::X4);
370 } else {
371 setStackPointerRegisterToSaveRestore(PPC::R1);
372 setExceptionPointerRegister(PPC::R3);
373 setExceptionSelectorRegister(PPC::R4);
376 // We have target-specific dag combine patterns for the following nodes:
377 setTargetDAGCombine(ISD::SINT_TO_FP);
378 setTargetDAGCombine(ISD::STORE);
379 setTargetDAGCombine(ISD::BR_CC);
380 setTargetDAGCombine(ISD::BSWAP);
382 // Darwin long double math library functions have $LDBL128 appended.
383 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
384 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
385 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
386 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
387 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
388 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
389 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
390 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
391 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
392 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
393 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
396 computeRegisterProperties();
399 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
400 /// function arguments in the caller parameter area.
401 unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
402 TargetMachine &TM = getTargetMachine();
403 // Darwin passes everything on 4 byte boundary.
404 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
405 return 4;
406 // FIXME SVR4 TBD
407 return 4;
410 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
411 switch (Opcode) {
412 default: return 0;
413 case PPCISD::FSEL: return "PPCISD::FSEL";
414 case PPCISD::FCFID: return "PPCISD::FCFID";
415 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
416 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
417 case PPCISD::STFIWX: return "PPCISD::STFIWX";
418 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
419 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
420 case PPCISD::VPERM: return "PPCISD::VPERM";
421 case PPCISD::Hi: return "PPCISD::Hi";
422 case PPCISD::Lo: return "PPCISD::Lo";
423 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
424 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
425 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
426 case PPCISD::SRL: return "PPCISD::SRL";
427 case PPCISD::SRA: return "PPCISD::SRA";
428 case PPCISD::SHL: return "PPCISD::SHL";
429 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
430 case PPCISD::STD_32: return "PPCISD::STD_32";
431 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4";
432 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin";
433 case PPCISD::NOP: return "PPCISD::NOP";
434 case PPCISD::MTCTR: return "PPCISD::MTCTR";
435 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin";
436 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4";
437 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
438 case PPCISD::MFCR: return "PPCISD::MFCR";
439 case PPCISD::VCMP: return "PPCISD::VCMP";
440 case PPCISD::VCMPo: return "PPCISD::VCMPo";
441 case PPCISD::LBRX: return "PPCISD::LBRX";
442 case PPCISD::STBRX: return "PPCISD::STBRX";
443 case PPCISD::LARX: return "PPCISD::LARX";
444 case PPCISD::STCX: return "PPCISD::STCX";
445 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
446 case PPCISD::MFFS: return "PPCISD::MFFS";
447 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
448 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
449 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
450 case PPCISD::MTFSF: return "PPCISD::MTFSF";
451 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
455 MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
456 return MVT::i32;
459 /// getFunctionAlignment - Return the Log2 alignment of this function.
460 unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
461 if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
462 return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
463 else
464 return 2;
467 //===----------------------------------------------------------------------===//
468 // Node matching predicates, for use by the tblgen matching code.
469 //===----------------------------------------------------------------------===//
471 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
472 static bool isFloatingPointZero(SDValue Op) {
473 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
474 return CFP->getValueAPF().isZero();
475 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
476 // Maybe this has already been legalized into the constant pool?
477 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
478 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
479 return CFP->getValueAPF().isZero();
481 return false;
484 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
485 /// true if Op is undef or if it matches the specified value.
486 static bool isConstantOrUndef(int Op, int Val) {
487 return Op < 0 || Op == Val;
490 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
491 /// VPKUHUM instruction.
492 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
493 if (!isUnary) {
494 for (unsigned i = 0; i != 16; ++i)
495 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
496 return false;
497 } else {
498 for (unsigned i = 0; i != 8; ++i)
499 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
500 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
501 return false;
503 return true;
506 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
507 /// VPKUWUM instruction.
508 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
509 if (!isUnary) {
510 for (unsigned i = 0; i != 16; i += 2)
511 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
512 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
513 return false;
514 } else {
515 for (unsigned i = 0; i != 8; i += 2)
516 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
517 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
518 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
519 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
520 return false;
522 return true;
525 /// isVMerge - Common function, used to match vmrg* shuffles.
527 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
528 unsigned LHSStart, unsigned RHSStart) {
529 assert(N->getValueType(0) == MVT::v16i8 &&
530 "PPC only supports shuffles by bytes!");
531 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
532 "Unsupported merge size!");
534 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
535 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
536 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
537 LHSStart+j+i*UnitSize) ||
538 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
539 RHSStart+j+i*UnitSize))
540 return false;
542 return true;
545 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
546 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
547 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
548 bool isUnary) {
549 if (!isUnary)
550 return isVMerge(N, UnitSize, 8, 24);
551 return isVMerge(N, UnitSize, 8, 8);
554 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
555 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
556 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
557 bool isUnary) {
558 if (!isUnary)
559 return isVMerge(N, UnitSize, 0, 16);
560 return isVMerge(N, UnitSize, 0, 0);
564 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
565 /// amount, otherwise return -1.
566 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
567 assert(N->getValueType(0) == MVT::v16i8 &&
568 "PPC only supports shuffles by bytes!");
570 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
572 // Find the first non-undef value in the shuffle mask.
573 unsigned i;
574 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
575 /*search*/;
577 if (i == 16) return -1; // all undef.
579 // Otherwise, check to see if the rest of the elements are consecutively
580 // numbered from this value.
581 unsigned ShiftAmt = SVOp->getMaskElt(i);
582 if (ShiftAmt < i) return -1;
583 ShiftAmt -= i;
585 if (!isUnary) {
586 // Check the rest of the elements to see if they are consecutive.
587 for (++i; i != 16; ++i)
588 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
589 return -1;
590 } else {
591 // Check the rest of the elements to see if they are consecutive.
592 for (++i; i != 16; ++i)
593 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
594 return -1;
596 return ShiftAmt;
599 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
600 /// specifies a splat of a single element that is suitable for input to
601 /// VSPLTB/VSPLTH/VSPLTW.
602 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
603 assert(N->getValueType(0) == MVT::v16i8 &&
604 (EltSize == 1 || EltSize == 2 || EltSize == 4));
606 // This is a splat operation if each element of the permute is the same, and
607 // if the value doesn't reference the second vector.
608 unsigned ElementBase = N->getMaskElt(0);
610 // FIXME: Handle UNDEF elements too!
611 if (ElementBase >= 16)
612 return false;
614 // Check that the indices are consecutive, in the case of a multi-byte element
615 // splatted with a v16i8 mask.
616 for (unsigned i = 1; i != EltSize; ++i)
617 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
618 return false;
620 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
621 if (N->getMaskElt(i) < 0) continue;
622 for (unsigned j = 0; j != EltSize; ++j)
623 if (N->getMaskElt(i+j) != N->getMaskElt(j))
624 return false;
626 return true;
629 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
630 /// are -0.0.
631 bool PPC::isAllNegativeZeroVector(SDNode *N) {
632 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
634 APInt APVal, APUndef;
635 unsigned BitSize;
636 bool HasAnyUndefs;
638 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
639 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
640 return CFP->getValueAPF().isNegZero();
642 return false;
645 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
646 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
647 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
648 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
649 assert(isSplatShuffleMask(SVOp, EltSize));
650 return SVOp->getMaskElt(0) / EltSize;
653 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
654 /// by using a vspltis[bhw] instruction of the specified element size, return
655 /// the constant being splatted. The ByteSize field indicates the number of
656 /// bytes of each element [124] -> [bhw].
657 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
658 SDValue OpVal(0, 0);
660 // If ByteSize of the splat is bigger than the element size of the
661 // build_vector, then we have a case where we are checking for a splat where
662 // multiple elements of the buildvector are folded together into a single
663 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
664 unsigned EltSize = 16/N->getNumOperands();
665 if (EltSize < ByteSize) {
666 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
667 SDValue UniquedVals[4];
668 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
670 // See if all of the elements in the buildvector agree across.
671 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
672 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
673 // If the element isn't a constant, bail fully out.
674 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
677 if (UniquedVals[i&(Multiple-1)].getNode() == 0)
678 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
679 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
680 return SDValue(); // no match.
683 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
684 // either constant or undef values that are identical for each chunk. See
685 // if these chunks can form into a larger vspltis*.
687 // Check to see if all of the leading entries are either 0 or -1. If
688 // neither, then this won't fit into the immediate field.
689 bool LeadingZero = true;
690 bool LeadingOnes = true;
691 for (unsigned i = 0; i != Multiple-1; ++i) {
692 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
694 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
695 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
697 // Finally, check the least significant entry.
698 if (LeadingZero) {
699 if (UniquedVals[Multiple-1].getNode() == 0)
700 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
701 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
702 if (Val < 16)
703 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
705 if (LeadingOnes) {
706 if (UniquedVals[Multiple-1].getNode() == 0)
707 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
708 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
709 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
710 return DAG.getTargetConstant(Val, MVT::i32);
713 return SDValue();
716 // Check to see if this buildvec has a single non-undef value in its elements.
717 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
718 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
719 if (OpVal.getNode() == 0)
720 OpVal = N->getOperand(i);
721 else if (OpVal != N->getOperand(i))
722 return SDValue();
725 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
727 unsigned ValSizeInBytes = EltSize;
728 uint64_t Value = 0;
729 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
730 Value = CN->getZExtValue();
731 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
732 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
733 Value = FloatToBits(CN->getValueAPF().convertToFloat());
736 // If the splat value is larger than the element value, then we can never do
737 // this splat. The only case that we could fit the replicated bits into our
738 // immediate field for would be zero, and we prefer to use vxor for it.
739 if (ValSizeInBytes < ByteSize) return SDValue();
741 // If the element value is larger than the splat value, cut it in half and
742 // check to see if the two halves are equal. Continue doing this until we
743 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
744 while (ValSizeInBytes > ByteSize) {
745 ValSizeInBytes >>= 1;
747 // If the top half equals the bottom half, we're still ok.
748 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
749 (Value & ((1 << (8*ValSizeInBytes))-1)))
750 return SDValue();
753 // Properly sign extend the value.
754 int ShAmt = (4-ByteSize)*8;
755 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
757 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
758 if (MaskVal == 0) return SDValue();
760 // Finally, if this value fits in a 5 bit sext field, return it
761 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
762 return DAG.getTargetConstant(MaskVal, MVT::i32);
763 return SDValue();
766 //===----------------------------------------------------------------------===//
767 // Addressing Mode Selection
768 //===----------------------------------------------------------------------===//
770 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
771 /// or 64-bit immediate, and if the value can be accurately represented as a
772 /// sign extension from a 16-bit value. If so, this returns true and the
773 /// immediate.
774 static bool isIntS16Immediate(SDNode *N, short &Imm) {
775 if (N->getOpcode() != ISD::Constant)
776 return false;
778 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
779 if (N->getValueType(0) == MVT::i32)
780 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
781 else
782 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
784 static bool isIntS16Immediate(SDValue Op, short &Imm) {
785 return isIntS16Immediate(Op.getNode(), Imm);
789 /// SelectAddressRegReg - Given the specified addressed, check to see if it
790 /// can be represented as an indexed [r+r] operation. Returns false if it
791 /// can be more efficiently represented with [r+imm].
792 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
793 SDValue &Index,
794 SelectionDAG &DAG) const {
795 short imm = 0;
796 if (N.getOpcode() == ISD::ADD) {
797 if (isIntS16Immediate(N.getOperand(1), imm))
798 return false; // r+i
799 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
800 return false; // r+i
802 Base = N.getOperand(0);
803 Index = N.getOperand(1);
804 return true;
805 } else if (N.getOpcode() == ISD::OR) {
806 if (isIntS16Immediate(N.getOperand(1), imm))
807 return false; // r+i can fold it if we can.
809 // If this is an or of disjoint bitfields, we can codegen this as an add
810 // (for better address arithmetic) if the LHS and RHS of the OR are provably
811 // disjoint.
812 APInt LHSKnownZero, LHSKnownOne;
813 APInt RHSKnownZero, RHSKnownOne;
814 DAG.ComputeMaskedBits(N.getOperand(0),
815 APInt::getAllOnesValue(N.getOperand(0)
816 .getValueSizeInBits()),
817 LHSKnownZero, LHSKnownOne);
819 if (LHSKnownZero.getBoolValue()) {
820 DAG.ComputeMaskedBits(N.getOperand(1),
821 APInt::getAllOnesValue(N.getOperand(1)
822 .getValueSizeInBits()),
823 RHSKnownZero, RHSKnownOne);
824 // If all of the bits are known zero on the LHS or RHS, the add won't
825 // carry.
826 if (~(LHSKnownZero | RHSKnownZero) == 0) {
827 Base = N.getOperand(0);
828 Index = N.getOperand(1);
829 return true;
834 return false;
837 /// Returns true if the address N can be represented by a base register plus
838 /// a signed 16-bit displacement [r+imm], and if it is not better
839 /// represented as reg+reg.
840 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
841 SDValue &Base,
842 SelectionDAG &DAG) const {
843 // FIXME dl should come from parent load or store, not from address
844 DebugLoc dl = N.getDebugLoc();
845 // If this can be more profitably realized as r+r, fail.
846 if (SelectAddressRegReg(N, Disp, Base, DAG))
847 return false;
849 if (N.getOpcode() == ISD::ADD) {
850 short imm = 0;
851 if (isIntS16Immediate(N.getOperand(1), imm)) {
852 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
853 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
854 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
855 } else {
856 Base = N.getOperand(0);
858 return true; // [r+i]
859 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
860 // Match LOAD (ADD (X, Lo(G))).
861 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
862 && "Cannot handle constant offsets yet!");
863 Disp = N.getOperand(1).getOperand(0); // The global address.
864 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
865 Disp.getOpcode() == ISD::TargetConstantPool ||
866 Disp.getOpcode() == ISD::TargetJumpTable);
867 Base = N.getOperand(0);
868 return true; // [&g+r]
870 } else if (N.getOpcode() == ISD::OR) {
871 short imm = 0;
872 if (isIntS16Immediate(N.getOperand(1), imm)) {
873 // If this is an or of disjoint bitfields, we can codegen this as an add
874 // (for better address arithmetic) if the LHS and RHS of the OR are
875 // provably disjoint.
876 APInt LHSKnownZero, LHSKnownOne;
877 DAG.ComputeMaskedBits(N.getOperand(0),
878 APInt::getAllOnesValue(N.getOperand(0)
879 .getValueSizeInBits()),
880 LHSKnownZero, LHSKnownOne);
882 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
883 // If all of the bits are known zero on the LHS or RHS, the add won't
884 // carry.
885 Base = N.getOperand(0);
886 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
887 return true;
890 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
891 // Loading from a constant address.
893 // If this address fits entirely in a 16-bit sext immediate field, codegen
894 // this as "d, 0"
895 short Imm;
896 if (isIntS16Immediate(CN, Imm)) {
897 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
898 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
899 return true;
902 // Handle 32-bit sext immediates with LIS + addr mode.
903 if (CN->getValueType(0) == MVT::i32 ||
904 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
905 int Addr = (int)CN->getZExtValue();
907 // Otherwise, break this down into an LIS + disp.
908 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
911 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
912 Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
913 return true;
917 Disp = DAG.getTargetConstant(0, getPointerTy());
918 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
919 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
920 else
921 Base = N;
922 return true; // [r+0]
925 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
926 /// represented as an indexed [r+r] operation.
927 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
928 SDValue &Index,
929 SelectionDAG &DAG) const {
930 // Check to see if we can easily represent this as an [r+r] address. This
931 // will fail if it thinks that the address is more profitably represented as
932 // reg+imm, e.g. where imm = 0.
933 if (SelectAddressRegReg(N, Base, Index, DAG))
934 return true;
936 // If the operand is an addition, always emit this as [r+r], since this is
937 // better (for code size, and execution, as the memop does the add for free)
938 // than emitting an explicit add.
939 if (N.getOpcode() == ISD::ADD) {
940 Base = N.getOperand(0);
941 Index = N.getOperand(1);
942 return true;
945 // Otherwise, do it the hard way, using R0 as the base register.
946 Base = DAG.getRegister(PPC::R0, N.getValueType());
947 Index = N;
948 return true;
951 /// SelectAddressRegImmShift - Returns true if the address N can be
952 /// represented by a base register plus a signed 14-bit displacement
953 /// [r+imm*4]. Suitable for use by STD and friends.
954 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
955 SDValue &Base,
956 SelectionDAG &DAG) const {
957 // FIXME dl should come from the parent load or store, not the address
958 DebugLoc dl = N.getDebugLoc();
959 // If this can be more profitably realized as r+r, fail.
960 if (SelectAddressRegReg(N, Disp, Base, DAG))
961 return false;
963 if (N.getOpcode() == ISD::ADD) {
964 short imm = 0;
965 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
966 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
967 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
968 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
969 } else {
970 Base = N.getOperand(0);
972 return true; // [r+i]
973 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
974 // Match LOAD (ADD (X, Lo(G))).
975 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
976 && "Cannot handle constant offsets yet!");
977 Disp = N.getOperand(1).getOperand(0); // The global address.
978 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
979 Disp.getOpcode() == ISD::TargetConstantPool ||
980 Disp.getOpcode() == ISD::TargetJumpTable);
981 Base = N.getOperand(0);
982 return true; // [&g+r]
984 } else if (N.getOpcode() == ISD::OR) {
985 short imm = 0;
986 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
987 // If this is an or of disjoint bitfields, we can codegen this as an add
988 // (for better address arithmetic) if the LHS and RHS of the OR are
989 // provably disjoint.
990 APInt LHSKnownZero, LHSKnownOne;
991 DAG.ComputeMaskedBits(N.getOperand(0),
992 APInt::getAllOnesValue(N.getOperand(0)
993 .getValueSizeInBits()),
994 LHSKnownZero, LHSKnownOne);
995 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
996 // If all of the bits are known zero on the LHS or RHS, the add won't
997 // carry.
998 Base = N.getOperand(0);
999 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1000 return true;
1003 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1004 // Loading from a constant address. Verify low two bits are clear.
1005 if ((CN->getZExtValue() & 3) == 0) {
1006 // If this address fits entirely in a 14-bit sext immediate field, codegen
1007 // this as "d, 0"
1008 short Imm;
1009 if (isIntS16Immediate(CN, Imm)) {
1010 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1011 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1012 return true;
1015 // Fold the low-part of 32-bit absolute addresses into addr mode.
1016 if (CN->getValueType(0) == MVT::i32 ||
1017 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1018 int Addr = (int)CN->getZExtValue();
1020 // Otherwise, break this down into an LIS + disp.
1021 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1022 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1023 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1024 Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1025 return true;
1030 Disp = DAG.getTargetConstant(0, getPointerTy());
1031 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1032 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1033 else
1034 Base = N;
1035 return true; // [r+0]
1039 /// getPreIndexedAddressParts - returns true by value, base pointer and
1040 /// offset pointer and addressing mode by reference if the node's address
1041 /// can be legally represented as pre-indexed load / store address.
1042 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1043 SDValue &Offset,
1044 ISD::MemIndexedMode &AM,
1045 SelectionDAG &DAG) const {
1046 // Disabled by default for now.
1047 if (!EnablePPCPreinc) return false;
1049 SDValue Ptr;
1050 EVT VT;
1051 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1052 Ptr = LD->getBasePtr();
1053 VT = LD->getMemoryVT();
1055 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1056 ST = ST;
1057 Ptr = ST->getBasePtr();
1058 VT = ST->getMemoryVT();
1059 } else
1060 return false;
1062 // PowerPC doesn't have preinc load/store instructions for vectors.
1063 if (VT.isVector())
1064 return false;
1066 // TODO: Check reg+reg first.
1068 // LDU/STU use reg+imm*4, others use reg+imm.
1069 if (VT != MVT::i64) {
1070 // reg + imm
1071 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1072 return false;
1073 } else {
1074 // reg + imm * 4.
1075 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1076 return false;
1079 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1080 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1081 // sext i32 to i64 when addr mode is r+i.
1082 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1083 LD->getExtensionType() == ISD::SEXTLOAD &&
1084 isa<ConstantSDNode>(Offset))
1085 return false;
1088 AM = ISD::PRE_INC;
1089 return true;
1092 //===----------------------------------------------------------------------===//
1093 // LowerOperation implementation
1094 //===----------------------------------------------------------------------===//
1096 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1097 SelectionDAG &DAG) {
1098 EVT PtrVT = Op.getValueType();
1099 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1100 Constant *C = CP->getConstVal();
1101 SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1102 SDValue Zero = DAG.getConstant(0, PtrVT);
1103 // FIXME there isn't really any debug info here
1104 DebugLoc dl = Op.getDebugLoc();
1106 const TargetMachine &TM = DAG.getTarget();
1108 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1109 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1111 // If this is a non-darwin platform, we don't support non-static relo models
1112 // yet.
1113 if (TM.getRelocationModel() == Reloc::Static ||
1114 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1115 // Generate non-pic code that has direct accesses to the constant pool.
1116 // The address of the global is just (hi(&g)+lo(&g)).
1117 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1120 if (TM.getRelocationModel() == Reloc::PIC_) {
1121 // With PIC, the first instruction is actually "GR+hi(&G)".
1122 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1123 DAG.getNode(PPCISD::GlobalBaseReg,
1124 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1127 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1128 return Lo;
1131 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1132 EVT PtrVT = Op.getValueType();
1133 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1134 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1135 SDValue Zero = DAG.getConstant(0, PtrVT);
1136 // FIXME there isn't really any debug loc here
1137 DebugLoc dl = Op.getDebugLoc();
1139 const TargetMachine &TM = DAG.getTarget();
1141 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1142 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1144 // If this is a non-darwin platform, we don't support non-static relo models
1145 // yet.
1146 if (TM.getRelocationModel() == Reloc::Static ||
1147 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1148 // Generate non-pic code that has direct accesses to the constant pool.
1149 // The address of the global is just (hi(&g)+lo(&g)).
1150 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1153 if (TM.getRelocationModel() == Reloc::PIC_) {
1154 // With PIC, the first instruction is actually "GR+hi(&G)".
1155 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1156 DAG.getNode(PPCISD::GlobalBaseReg,
1157 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1160 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1161 return Lo;
1164 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1165 SelectionDAG &DAG) {
1166 llvm_unreachable("TLS not implemented for PPC.");
1167 return SDValue(); // Not reached
1170 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1171 SelectionDAG &DAG) {
1172 EVT PtrVT = Op.getValueType();
1173 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1174 GlobalValue *GV = GSDN->getGlobal();
1175 SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1176 SDValue Zero = DAG.getConstant(0, PtrVT);
1177 // FIXME there isn't really any debug info here
1178 DebugLoc dl = GSDN->getDebugLoc();
1180 const TargetMachine &TM = DAG.getTarget();
1182 // 64-bit SVR4 ABI code is always position-independent.
1183 // The actual address of the GlobalValue is stored in the TOC.
1184 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1185 return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1186 DAG.getRegister(PPC::X2, MVT::i64));
1189 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1190 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1192 // If this is a non-darwin platform, we don't support non-static relo models
1193 // yet.
1194 if (TM.getRelocationModel() == Reloc::Static ||
1195 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1196 // Generate non-pic code that has direct accesses to globals.
1197 // The address of the global is just (hi(&g)+lo(&g)).
1198 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1201 if (TM.getRelocationModel() == Reloc::PIC_) {
1202 // With PIC, the first instruction is actually "GR+hi(&G)".
1203 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1204 DAG.getNode(PPCISD::GlobalBaseReg,
1205 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1208 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1210 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1211 return Lo;
1213 // If the global is weak or external, we have to go through the lazy
1214 // resolution stub.
1215 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1218 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1219 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1220 DebugLoc dl = Op.getDebugLoc();
1222 // If we're comparing for equality to zero, expose the fact that this is
1223 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1224 // fold the new nodes.
1225 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1226 if (C->isNullValue() && CC == ISD::SETEQ) {
1227 EVT VT = Op.getOperand(0).getValueType();
1228 SDValue Zext = Op.getOperand(0);
1229 if (VT.bitsLT(MVT::i32)) {
1230 VT = MVT::i32;
1231 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1233 unsigned Log2b = Log2_32(VT.getSizeInBits());
1234 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1235 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1236 DAG.getConstant(Log2b, MVT::i32));
1237 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1239 // Leave comparisons against 0 and -1 alone for now, since they're usually
1240 // optimized. FIXME: revisit this when we can custom lower all setcc
1241 // optimizations.
1242 if (C->isAllOnesValue() || C->isNullValue())
1243 return SDValue();
1246 // If we have an integer seteq/setne, turn it into a compare against zero
1247 // by xor'ing the rhs with the lhs, which is faster than setting a
1248 // condition register, reading it back out, and masking the correct bit. The
1249 // normal approach here uses sub to do this instead of xor. Using xor exposes
1250 // the result to other bit-twiddling opportunities.
1251 EVT LHSVT = Op.getOperand(0).getValueType();
1252 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1253 EVT VT = Op.getValueType();
1254 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1255 Op.getOperand(1));
1256 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1258 return SDValue();
1261 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1262 int VarArgsFrameIndex,
1263 int VarArgsStackOffset,
1264 unsigned VarArgsNumGPR,
1265 unsigned VarArgsNumFPR,
1266 const PPCSubtarget &Subtarget) {
1268 llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1269 return SDValue(); // Not reached
1272 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1273 SDValue Chain = Op.getOperand(0);
1274 SDValue Trmp = Op.getOperand(1); // trampoline
1275 SDValue FPtr = Op.getOperand(2); // nested function
1276 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1277 DebugLoc dl = Op.getDebugLoc();
1279 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1280 bool isPPC64 = (PtrVT == MVT::i64);
1281 const Type *IntPtrTy =
1282 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1283 *DAG.getContext());
1285 TargetLowering::ArgListTy Args;
1286 TargetLowering::ArgListEntry Entry;
1288 Entry.Ty = IntPtrTy;
1289 Entry.Node = Trmp; Args.push_back(Entry);
1291 // TrampSize == (isPPC64 ? 48 : 40);
1292 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1293 isPPC64 ? MVT::i64 : MVT::i32);
1294 Args.push_back(Entry);
1296 Entry.Node = FPtr; Args.push_back(Entry);
1297 Entry.Node = Nest; Args.push_back(Entry);
1299 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1300 std::pair<SDValue, SDValue> CallResult =
1301 LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1302 false, false, false, false, 0, CallingConv::C, false,
1303 /*isReturnValueUsed=*/true,
1304 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1305 Args, DAG, dl);
1307 SDValue Ops[] =
1308 { CallResult.first, CallResult.second };
1310 return DAG.getMergeValues(Ops, 2, dl);
1313 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1314 int VarArgsFrameIndex,
1315 int VarArgsStackOffset,
1316 unsigned VarArgsNumGPR,
1317 unsigned VarArgsNumFPR,
1318 const PPCSubtarget &Subtarget) {
1319 DebugLoc dl = Op.getDebugLoc();
1321 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1322 // vastart just stores the address of the VarArgsFrameIndex slot into the
1323 // memory location argument.
1324 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1325 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1326 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1327 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1330 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1331 // We suppose the given va_list is already allocated.
1333 // typedef struct {
1334 // char gpr; /* index into the array of 8 GPRs
1335 // * stored in the register save area
1336 // * gpr=0 corresponds to r3,
1337 // * gpr=1 to r4, etc.
1338 // */
1339 // char fpr; /* index into the array of 8 FPRs
1340 // * stored in the register save area
1341 // * fpr=0 corresponds to f1,
1342 // * fpr=1 to f2, etc.
1343 // */
1344 // char *overflow_arg_area;
1345 // /* location on stack that holds
1346 // * the next overflow argument
1347 // */
1348 // char *reg_save_area;
1349 // /* where r3:r10 and f1:f8 (if saved)
1350 // * are stored
1351 // */
1352 // } va_list[1];
1355 SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1356 SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1359 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1361 SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1362 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1364 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1365 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1367 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1368 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1370 uint64_t FPROffset = 1;
1371 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1373 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1375 // Store first byte : number of int regs
1376 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1377 Op.getOperand(1), SV, 0, MVT::i8);
1378 uint64_t nextOffset = FPROffset;
1379 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1380 ConstFPROffset);
1382 // Store second byte : number of float regs
1383 SDValue secondStore =
1384 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1385 nextOffset += StackOffset;
1386 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1388 // Store second word : arguments given on stack
1389 SDValue thirdStore =
1390 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1391 nextOffset += FrameOffset;
1392 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1394 // Store third word : arguments given in registers
1395 return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1399 #include "PPCGenCallingConv.inc"
1401 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1402 CCValAssign::LocInfo &LocInfo,
1403 ISD::ArgFlagsTy &ArgFlags,
1404 CCState &State) {
1405 return true;
1408 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1409 EVT &LocVT,
1410 CCValAssign::LocInfo &LocInfo,
1411 ISD::ArgFlagsTy &ArgFlags,
1412 CCState &State) {
1413 static const unsigned ArgRegs[] = {
1414 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1415 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1417 const unsigned NumArgRegs = array_lengthof(ArgRegs);
1419 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1421 // Skip one register if the first unallocated register has an even register
1422 // number and there are still argument registers available which have not been
1423 // allocated yet. RegNum is actually an index into ArgRegs, which means we
1424 // need to skip a register if RegNum is odd.
1425 if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1426 State.AllocateReg(ArgRegs[RegNum]);
1429 // Always return false here, as this function only makes sure that the first
1430 // unallocated register has an odd register number and does not actually
1431 // allocate a register for the current argument.
1432 return false;
1435 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1436 EVT &LocVT,
1437 CCValAssign::LocInfo &LocInfo,
1438 ISD::ArgFlagsTy &ArgFlags,
1439 CCState &State) {
1440 static const unsigned ArgRegs[] = {
1441 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1442 PPC::F8
1445 const unsigned NumArgRegs = array_lengthof(ArgRegs);
1447 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1449 // If there is only one Floating-point register left we need to put both f64
1450 // values of a split ppc_fp128 value on the stack.
1451 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1452 State.AllocateReg(ArgRegs[RegNum]);
1455 // Always return false here, as this function only makes sure that the two f64
1456 // values a ppc_fp128 value is split into are both passed in registers or both
1457 // passed on the stack and does not actually allocate a register for the
1458 // current argument.
1459 return false;
1462 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1463 /// on Darwin.
1464 static const unsigned *GetFPR() {
1465 static const unsigned FPR[] = {
1466 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1467 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1470 return FPR;
1473 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1474 /// the stack.
1475 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1476 unsigned PtrByteSize) {
1477 unsigned ArgSize = ArgVT.getSizeInBits()/8;
1478 if (Flags.isByVal())
1479 ArgSize = Flags.getByValSize();
1480 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1482 return ArgSize;
1485 SDValue
1486 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1487 CallingConv::ID CallConv, bool isVarArg,
1488 const SmallVectorImpl<ISD::InputArg>
1489 &Ins,
1490 DebugLoc dl, SelectionDAG &DAG,
1491 SmallVectorImpl<SDValue> &InVals) {
1492 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1493 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1494 dl, DAG, InVals);
1495 } else {
1496 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1497 dl, DAG, InVals);
1501 SDValue
1502 PPCTargetLowering::LowerFormalArguments_SVR4(
1503 SDValue Chain,
1504 CallingConv::ID CallConv, bool isVarArg,
1505 const SmallVectorImpl<ISD::InputArg>
1506 &Ins,
1507 DebugLoc dl, SelectionDAG &DAG,
1508 SmallVectorImpl<SDValue> &InVals) {
1510 // 32-bit SVR4 ABI Stack Frame Layout:
1511 // +-----------------------------------+
1512 // +--> | Back chain |
1513 // | +-----------------------------------+
1514 // | | Floating-point register save area |
1515 // | +-----------------------------------+
1516 // | | General register save area |
1517 // | +-----------------------------------+
1518 // | | CR save word |
1519 // | +-----------------------------------+
1520 // | | VRSAVE save word |
1521 // | +-----------------------------------+
1522 // | | Alignment padding |
1523 // | +-----------------------------------+
1524 // | | Vector register save area |
1525 // | +-----------------------------------+
1526 // | | Local variable space |
1527 // | +-----------------------------------+
1528 // | | Parameter list area |
1529 // | +-----------------------------------+
1530 // | | LR save word |
1531 // | +-----------------------------------+
1532 // SP--> +--- | Back chain |
1533 // +-----------------------------------+
1535 // Specifications:
1536 // System V Application Binary Interface PowerPC Processor Supplement
1537 // AltiVec Technology Programming Interface Manual
1539 MachineFunction &MF = DAG.getMachineFunction();
1540 MachineFrameInfo *MFI = MF.getFrameInfo();
1542 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1543 // Potential tail calls could cause overwriting of argument stack slots.
1544 bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1545 unsigned PtrByteSize = 4;
1547 // Assign locations to all of the incoming arguments.
1548 SmallVector<CCValAssign, 16> ArgLocs;
1549 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1550 *DAG.getContext());
1552 // Reserve space for the linkage area on the stack.
1553 CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1555 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1557 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1558 CCValAssign &VA = ArgLocs[i];
1560 // Arguments stored in registers.
1561 if (VA.isRegLoc()) {
1562 TargetRegisterClass *RC;
1563 EVT ValVT = VA.getValVT();
1565 switch (ValVT.getSimpleVT().SimpleTy) {
1566 default:
1567 llvm_unreachable("ValVT not supported by formal arguments Lowering");
1568 case MVT::i32:
1569 RC = PPC::GPRCRegisterClass;
1570 break;
1571 case MVT::f32:
1572 RC = PPC::F4RCRegisterClass;
1573 break;
1574 case MVT::f64:
1575 RC = PPC::F8RCRegisterClass;
1576 break;
1577 case MVT::v16i8:
1578 case MVT::v8i16:
1579 case MVT::v4i32:
1580 case MVT::v4f32:
1581 RC = PPC::VRRCRegisterClass;
1582 break;
1585 // Transform the arguments stored in physical registers into virtual ones.
1586 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1587 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1589 InVals.push_back(ArgValue);
1590 } else {
1591 // Argument stored in memory.
1592 assert(VA.isMemLoc());
1594 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1595 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1596 isImmutable);
1598 // Create load nodes to retrieve arguments from the stack.
1599 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1600 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1604 // Assign locations to all of the incoming aggregate by value arguments.
1605 // Aggregates passed by value are stored in the local variable space of the
1606 // caller's stack frame, right above the parameter list area.
1607 SmallVector<CCValAssign, 16> ByValArgLocs;
1608 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1609 ByValArgLocs, *DAG.getContext());
1611 // Reserve stack space for the allocations in CCInfo.
1612 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1614 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1616 // Area that is at least reserved in the caller of this function.
1617 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1619 // Set the size that is at least reserved in caller of this function. Tail
1620 // call optimized function's reserved stack space needs to be aligned so that
1621 // taking the difference between two stack areas will result in an aligned
1622 // stack.
1623 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1625 MinReservedArea =
1626 std::max(MinReservedArea,
1627 PPCFrameInfo::getMinCallFrameSize(false, false));
1629 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1630 getStackAlignment();
1631 unsigned AlignMask = TargetAlign-1;
1632 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1634 FI->setMinReservedArea(MinReservedArea);
1636 SmallVector<SDValue, 8> MemOps;
1638 // If the function takes variable number of arguments, make a frame index for
1639 // the start of the first vararg value... for expansion of llvm.va_start.
1640 if (isVarArg) {
1641 static const unsigned GPArgRegs[] = {
1642 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1643 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1645 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1647 static const unsigned FPArgRegs[] = {
1648 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1649 PPC::F8
1651 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1653 VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1654 VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1656 // Make room for NumGPArgRegs and NumFPArgRegs.
1657 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1658 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1660 VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1661 CCInfo.getNextStackOffset());
1663 VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1664 SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1666 // The fixed integer arguments of a variadic function are
1667 // stored to the VarArgsFrameIndex on the stack.
1668 unsigned GPRIndex = 0;
1669 for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1670 SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1671 SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1672 MemOps.push_back(Store);
1673 // Increment the address by four for the next argument to store
1674 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1675 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1678 // If this function is vararg, store any remaining integer argument regs
1679 // to their spots on the stack so that they may be loaded by deferencing the
1680 // result of va_next.
1681 for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1682 unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1684 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1685 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1686 MemOps.push_back(Store);
1687 // Increment the address by four for the next argument to store
1688 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1689 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1692 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1693 // is set.
1695 // The double arguments are stored to the VarArgsFrameIndex
1696 // on the stack.
1697 unsigned FPRIndex = 0;
1698 for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1699 SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1700 SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1701 MemOps.push_back(Store);
1702 // Increment the address by eight for the next argument to store
1703 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1704 PtrVT);
1705 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1708 for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1709 unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1711 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1712 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1713 MemOps.push_back(Store);
1714 // Increment the address by eight for the next argument to store
1715 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1716 PtrVT);
1717 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1721 if (!MemOps.empty())
1722 Chain = DAG.getNode(ISD::TokenFactor, dl,
1723 MVT::Other, &MemOps[0], MemOps.size());
1725 return Chain;
1728 SDValue
1729 PPCTargetLowering::LowerFormalArguments_Darwin(
1730 SDValue Chain,
1731 CallingConv::ID CallConv, bool isVarArg,
1732 const SmallVectorImpl<ISD::InputArg>
1733 &Ins,
1734 DebugLoc dl, SelectionDAG &DAG,
1735 SmallVectorImpl<SDValue> &InVals) {
1736 // TODO: add description of PPC stack frame format, or at least some docs.
1738 MachineFunction &MF = DAG.getMachineFunction();
1739 MachineFrameInfo *MFI = MF.getFrameInfo();
1741 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1742 bool isPPC64 = PtrVT == MVT::i64;
1743 // Potential tail calls could cause overwriting of argument stack slots.
1744 bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1745 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1747 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1748 // Area that is at least reserved in caller of this function.
1749 unsigned MinReservedArea = ArgOffset;
1751 static const unsigned GPR_32[] = { // 32-bit registers.
1752 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1753 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1755 static const unsigned GPR_64[] = { // 64-bit registers.
1756 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1757 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1760 static const unsigned *FPR = GetFPR();
1762 static const unsigned VR[] = {
1763 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1764 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1767 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1768 const unsigned Num_FPR_Regs = 13;
1769 const unsigned Num_VR_Regs = array_lengthof( VR);
1771 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1773 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1775 // In 32-bit non-varargs functions, the stack space for vectors is after the
1776 // stack space for non-vectors. We do not use this space unless we have
1777 // too many vectors to fit in registers, something that only occurs in
1778 // constructed examples:), but we have to walk the arglist to figure
1779 // that out...for the pathological case, compute VecArgOffset as the
1780 // start of the vector parameter area. Computing VecArgOffset is the
1781 // entire point of the following loop.
1782 unsigned VecArgOffset = ArgOffset;
1783 if (!isVarArg && !isPPC64) {
1784 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1785 ++ArgNo) {
1786 EVT ObjectVT = Ins[ArgNo].VT;
1787 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1788 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1790 if (Flags.isByVal()) {
1791 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1792 ObjSize = Flags.getByValSize();
1793 unsigned ArgSize =
1794 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1795 VecArgOffset += ArgSize;
1796 continue;
1799 switch(ObjectVT.getSimpleVT().SimpleTy) {
1800 default: llvm_unreachable("Unhandled argument type!");
1801 case MVT::i32:
1802 case MVT::f32:
1803 VecArgOffset += isPPC64 ? 8 : 4;
1804 break;
1805 case MVT::i64: // PPC64
1806 case MVT::f64:
1807 VecArgOffset += 8;
1808 break;
1809 case MVT::v4f32:
1810 case MVT::v4i32:
1811 case MVT::v8i16:
1812 case MVT::v16i8:
1813 // Nothing to do, we're only looking at Nonvector args here.
1814 break;
1818 // We've found where the vector parameter area in memory is. Skip the
1819 // first 12 parameters; these don't use that memory.
1820 VecArgOffset = ((VecArgOffset+15)/16)*16;
1821 VecArgOffset += 12*16;
1823 // Add DAG nodes to load the arguments or copy them out of registers. On
1824 // entry to a function on PPC, the arguments start after the linkage area,
1825 // although the first ones are often in registers.
1827 SmallVector<SDValue, 8> MemOps;
1828 unsigned nAltivecParamsAtEnd = 0;
1829 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1830 SDValue ArgVal;
1831 bool needsLoad = false;
1832 EVT ObjectVT = Ins[ArgNo].VT;
1833 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1834 unsigned ArgSize = ObjSize;
1835 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1837 unsigned CurArgOffset = ArgOffset;
1839 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1840 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1841 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1842 if (isVarArg || isPPC64) {
1843 MinReservedArea = ((MinReservedArea+15)/16)*16;
1844 MinReservedArea += CalculateStackSlotSize(ObjectVT,
1845 Flags,
1846 PtrByteSize);
1847 } else nAltivecParamsAtEnd++;
1848 } else
1849 // Calculate min reserved area.
1850 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1851 Flags,
1852 PtrByteSize);
1854 // FIXME the codegen can be much improved in some cases.
1855 // We do not have to keep everything in memory.
1856 if (Flags.isByVal()) {
1857 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1858 ObjSize = Flags.getByValSize();
1859 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1860 // Objects of size 1 and 2 are right justified, everything else is
1861 // left justified. This means the memory address is adjusted forwards.
1862 if (ObjSize==1 || ObjSize==2) {
1863 CurArgOffset = CurArgOffset + (4 - ObjSize);
1865 // The value of the object is its address.
1866 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1867 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1868 InVals.push_back(FIN);
1869 if (ObjSize==1 || ObjSize==2) {
1870 if (GPR_idx != Num_GPR_Regs) {
1871 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1872 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1873 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1874 NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1875 MemOps.push_back(Store);
1876 ++GPR_idx;
1879 ArgOffset += PtrByteSize;
1881 continue;
1883 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1884 // Store whatever pieces of the object are in registers
1885 // to memory. ArgVal will be address of the beginning of
1886 // the object.
1887 if (GPR_idx != Num_GPR_Regs) {
1888 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1889 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1890 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1891 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1892 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1893 MemOps.push_back(Store);
1894 ++GPR_idx;
1895 ArgOffset += PtrByteSize;
1896 } else {
1897 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1898 break;
1901 continue;
1904 switch (ObjectVT.getSimpleVT().SimpleTy) {
1905 default: llvm_unreachable("Unhandled argument type!");
1906 case MVT::i32:
1907 if (!isPPC64) {
1908 if (GPR_idx != Num_GPR_Regs) {
1909 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1910 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1911 ++GPR_idx;
1912 } else {
1913 needsLoad = true;
1914 ArgSize = PtrByteSize;
1916 // All int arguments reserve stack space in the Darwin ABI.
1917 ArgOffset += PtrByteSize;
1918 break;
1920 // FALLTHROUGH
1921 case MVT::i64: // PPC64
1922 if (GPR_idx != Num_GPR_Regs) {
1923 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1924 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1926 if (ObjectVT == MVT::i32) {
1927 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1928 // value to MVT::i64 and then truncate to the correct register size.
1929 if (Flags.isSExt())
1930 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1931 DAG.getValueType(ObjectVT));
1932 else if (Flags.isZExt())
1933 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1934 DAG.getValueType(ObjectVT));
1936 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1939 ++GPR_idx;
1940 } else {
1941 needsLoad = true;
1942 ArgSize = PtrByteSize;
1944 // All int arguments reserve stack space in the Darwin ABI.
1945 ArgOffset += 8;
1946 break;
1948 case MVT::f32:
1949 case MVT::f64:
1950 // Every 4 bytes of argument space consumes one of the GPRs available for
1951 // argument passing.
1952 if (GPR_idx != Num_GPR_Regs) {
1953 ++GPR_idx;
1954 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1955 ++GPR_idx;
1957 if (FPR_idx != Num_FPR_Regs) {
1958 unsigned VReg;
1960 if (ObjectVT == MVT::f32)
1961 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1962 else
1963 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1965 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1966 ++FPR_idx;
1967 } else {
1968 needsLoad = true;
1971 // All FP arguments reserve stack space in the Darwin ABI.
1972 ArgOffset += isPPC64 ? 8 : ObjSize;
1973 break;
1974 case MVT::v4f32:
1975 case MVT::v4i32:
1976 case MVT::v8i16:
1977 case MVT::v16i8:
1978 // Note that vector arguments in registers don't reserve stack space,
1979 // except in varargs functions.
1980 if (VR_idx != Num_VR_Regs) {
1981 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1982 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1983 if (isVarArg) {
1984 while ((ArgOffset % 16) != 0) {
1985 ArgOffset += PtrByteSize;
1986 if (GPR_idx != Num_GPR_Regs)
1987 GPR_idx++;
1989 ArgOffset += 16;
1990 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
1992 ++VR_idx;
1993 } else {
1994 if (!isVarArg && !isPPC64) {
1995 // Vectors go after all the nonvectors.
1996 CurArgOffset = VecArgOffset;
1997 VecArgOffset += 16;
1998 } else {
1999 // Vectors are aligned.
2000 ArgOffset = ((ArgOffset+15)/16)*16;
2001 CurArgOffset = ArgOffset;
2002 ArgOffset += 16;
2004 needsLoad = true;
2006 break;
2009 // We need to load the argument to a virtual register if we determined above
2010 // that we ran out of physical registers of the appropriate type.
2011 if (needsLoad) {
2012 int FI = MFI->CreateFixedObject(ObjSize,
2013 CurArgOffset + (ArgSize - ObjSize),
2014 isImmutable);
2015 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2016 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2019 InVals.push_back(ArgVal);
2022 // Set the size that is at least reserved in caller of this function. Tail
2023 // call optimized function's reserved stack space needs to be aligned so that
2024 // taking the difference between two stack areas will result in an aligned
2025 // stack.
2026 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2027 // Add the Altivec parameters at the end, if needed.
2028 if (nAltivecParamsAtEnd) {
2029 MinReservedArea = ((MinReservedArea+15)/16)*16;
2030 MinReservedArea += 16*nAltivecParamsAtEnd;
2032 MinReservedArea =
2033 std::max(MinReservedArea,
2034 PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2035 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2036 getStackAlignment();
2037 unsigned AlignMask = TargetAlign-1;
2038 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2039 FI->setMinReservedArea(MinReservedArea);
2041 // If the function takes variable number of arguments, make a frame index for
2042 // the start of the first vararg value... for expansion of llvm.va_start.
2043 if (isVarArg) {
2044 int Depth = ArgOffset;
2046 VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2047 Depth);
2048 SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2050 // If this function is vararg, store any remaining integer argument regs
2051 // to their spots on the stack so that they may be loaded by deferencing the
2052 // result of va_next.
2053 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2054 unsigned VReg;
2056 if (isPPC64)
2057 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2058 else
2059 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2061 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2062 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2063 MemOps.push_back(Store);
2064 // Increment the address by four for the next argument to store
2065 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2066 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2070 if (!MemOps.empty())
2071 Chain = DAG.getNode(ISD::TokenFactor, dl,
2072 MVT::Other, &MemOps[0], MemOps.size());
2074 return Chain;
2077 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2078 /// linkage area for the Darwin ABI.
2079 static unsigned
2080 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2081 bool isPPC64,
2082 bool isVarArg,
2083 unsigned CC,
2084 const SmallVectorImpl<ISD::OutputArg>
2085 &Outs,
2086 unsigned &nAltivecParamsAtEnd) {
2087 // Count how many bytes are to be pushed on the stack, including the linkage
2088 // area, and parameter passing area. We start with 24/48 bytes, which is
2089 // prereserved space for [SP][CR][LR][3 x unused].
2090 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2091 unsigned NumOps = Outs.size();
2092 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2094 // Add up all the space actually used.
2095 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2096 // they all go in registers, but we must reserve stack space for them for
2097 // possible use by the caller. In varargs or 64-bit calls, parameters are
2098 // assigned stack space in order, with padding so Altivec parameters are
2099 // 16-byte aligned.
2100 nAltivecParamsAtEnd = 0;
2101 for (unsigned i = 0; i != NumOps; ++i) {
2102 SDValue Arg = Outs[i].Val;
2103 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2104 EVT ArgVT = Arg.getValueType();
2105 // Varargs Altivec parameters are padded to a 16 byte boundary.
2106 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2107 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2108 if (!isVarArg && !isPPC64) {
2109 // Non-varargs Altivec parameters go after all the non-Altivec
2110 // parameters; handle those later so we know how much padding we need.
2111 nAltivecParamsAtEnd++;
2112 continue;
2114 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2115 NumBytes = ((NumBytes+15)/16)*16;
2117 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2120 // Allow for Altivec parameters at the end, if needed.
2121 if (nAltivecParamsAtEnd) {
2122 NumBytes = ((NumBytes+15)/16)*16;
2123 NumBytes += 16*nAltivecParamsAtEnd;
2126 // The prolog code of the callee may store up to 8 GPR argument registers to
2127 // the stack, allowing va_start to index over them in memory if its varargs.
2128 // Because we cannot tell if this is needed on the caller side, we have to
2129 // conservatively assume that it is needed. As such, make sure we have at
2130 // least enough stack space for the caller to store the 8 GPRs.
2131 NumBytes = std::max(NumBytes,
2132 PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2134 // Tail call needs the stack to be aligned.
2135 if (CC==CallingConv::Fast && PerformTailCallOpt) {
2136 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2137 getStackAlignment();
2138 unsigned AlignMask = TargetAlign-1;
2139 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2142 return NumBytes;
2145 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2146 /// adjusted to accomodate the arguments for the tailcall.
2147 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2148 unsigned ParamSize) {
2150 if (!IsTailCall) return 0;
2152 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2153 unsigned CallerMinReservedArea = FI->getMinReservedArea();
2154 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2155 // Remember only if the new adjustement is bigger.
2156 if (SPDiff < FI->getTailCallSPDelta())
2157 FI->setTailCallSPDelta(SPDiff);
2159 return SPDiff;
2162 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2163 /// for tail call optimization. Targets which want to do tail call
2164 /// optimization should implement this function.
2165 bool
2166 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2167 CallingConv::ID CalleeCC,
2168 bool isVarArg,
2169 const SmallVectorImpl<ISD::InputArg> &Ins,
2170 SelectionDAG& DAG) const {
2171 // Variable argument functions are not supported.
2172 if (isVarArg)
2173 return false;
2175 MachineFunction &MF = DAG.getMachineFunction();
2176 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2177 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2178 // Functions containing by val parameters are not supported.
2179 for (unsigned i = 0; i != Ins.size(); i++) {
2180 ISD::ArgFlagsTy Flags = Ins[i].Flags;
2181 if (Flags.isByVal()) return false;
2184 // Non PIC/GOT tail calls are supported.
2185 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2186 return true;
2188 // At the moment we can only do local tail calls (in same module, hidden
2189 // or protected) if we are generating PIC.
2190 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2191 return G->getGlobal()->hasHiddenVisibility()
2192 || G->getGlobal()->hasProtectedVisibility();
2195 return false;
2198 /// isCallCompatibleAddress - Return the immediate to use if the specified
2199 /// 32-bit value is representable in the immediate field of a BxA instruction.
2200 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2201 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2202 if (!C) return 0;
2204 int Addr = C->getZExtValue();
2205 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
2206 (Addr << 6 >> 6) != Addr)
2207 return 0; // Top 6 bits have to be sext of immediate.
2209 return DAG.getConstant((int)C->getZExtValue() >> 2,
2210 DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2213 namespace {
2215 struct TailCallArgumentInfo {
2216 SDValue Arg;
2217 SDValue FrameIdxOp;
2218 int FrameIdx;
2220 TailCallArgumentInfo() : FrameIdx(0) {}
2225 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2226 static void
2227 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2228 SDValue Chain,
2229 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2230 SmallVector<SDValue, 8> &MemOpChains,
2231 DebugLoc dl) {
2232 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2233 SDValue Arg = TailCallArgs[i].Arg;
2234 SDValue FIN = TailCallArgs[i].FrameIdxOp;
2235 int FI = TailCallArgs[i].FrameIdx;
2236 // Store relative to framepointer.
2237 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2238 PseudoSourceValue::getFixedStack(FI),
2239 0));
2243 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2244 /// the appropriate stack slot for the tail call optimized function call.
2245 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2246 MachineFunction &MF,
2247 SDValue Chain,
2248 SDValue OldRetAddr,
2249 SDValue OldFP,
2250 int SPDiff,
2251 bool isPPC64,
2252 bool isDarwinABI,
2253 DebugLoc dl) {
2254 if (SPDiff) {
2255 // Calculate the new stack slot for the return address.
2256 int SlotSize = isPPC64 ? 8 : 4;
2257 int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2258 isDarwinABI);
2259 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2260 NewRetAddrLoc);
2261 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2262 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2263 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2264 PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2266 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2267 // slot as the FP is never overwritten.
2268 if (isDarwinABI) {
2269 int NewFPLoc =
2270 SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2271 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2272 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2273 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2274 PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2277 return Chain;
2280 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2281 /// the position of the argument.
2282 static void
2283 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2284 SDValue Arg, int SPDiff, unsigned ArgOffset,
2285 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2286 int Offset = ArgOffset + SPDiff;
2287 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2288 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2289 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2290 SDValue FIN = DAG.getFrameIndex(FI, VT);
2291 TailCallArgumentInfo Info;
2292 Info.Arg = Arg;
2293 Info.FrameIdxOp = FIN;
2294 Info.FrameIdx = FI;
2295 TailCallArguments.push_back(Info);
2298 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2299 /// stack slot. Returns the chain as result and the loaded frame pointers in
2300 /// LROpOut/FPOpout. Used when tail calling.
2301 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2302 int SPDiff,
2303 SDValue Chain,
2304 SDValue &LROpOut,
2305 SDValue &FPOpOut,
2306 bool isDarwinABI,
2307 DebugLoc dl) {
2308 if (SPDiff) {
2309 // Load the LR and FP stack slot for later adjusting.
2310 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2311 LROpOut = getReturnAddrFrameIndex(DAG);
2312 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2313 Chain = SDValue(LROpOut.getNode(), 1);
2315 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2316 // slot as the FP is never overwritten.
2317 if (isDarwinABI) {
2318 FPOpOut = getFramePointerFrameIndex(DAG);
2319 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2320 Chain = SDValue(FPOpOut.getNode(), 1);
2323 return Chain;
2326 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2327 /// by "Src" to address "Dst" of size "Size". Alignment information is
2328 /// specified by the specific parameter attribute. The copy will be passed as
2329 /// a byval function parameter.
2330 /// Sometimes what we are copying is the end of a larger object, the part that
2331 /// does not fit in registers.
2332 static SDValue
2333 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2334 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2335 DebugLoc dl) {
2336 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2337 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2338 false, NULL, 0, NULL, 0);
2341 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2342 /// tail calls.
2343 static void
2344 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2345 SDValue Arg, SDValue PtrOff, int SPDiff,
2346 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2347 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2348 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2349 DebugLoc dl) {
2350 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2351 if (!isTailCall) {
2352 if (isVector) {
2353 SDValue StackPtr;
2354 if (isPPC64)
2355 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2356 else
2357 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2358 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2359 DAG.getConstant(ArgOffset, PtrVT));
2361 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2362 // Calculate and remember argument location.
2363 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2364 TailCallArguments);
2367 static
2368 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2369 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2370 SDValue LROp, SDValue FPOp, bool isDarwinABI,
2371 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2372 MachineFunction &MF = DAG.getMachineFunction();
2374 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2375 // might overwrite each other in case of tail call optimization.
2376 SmallVector<SDValue, 8> MemOpChains2;
2377 // Do not flag preceeding copytoreg stuff together with the following stuff.
2378 InFlag = SDValue();
2379 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2380 MemOpChains2, dl);
2381 if (!MemOpChains2.empty())
2382 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2383 &MemOpChains2[0], MemOpChains2.size());
2385 // Store the return address to the appropriate stack slot.
2386 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2387 isPPC64, isDarwinABI, dl);
2389 // Emit callseq_end just before tailcall node.
2390 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2391 DAG.getIntPtrConstant(0, true), InFlag);
2392 InFlag = Chain.getValue(1);
2395 static
2396 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2397 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2398 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2399 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2400 bool isSVR4ABI) {
2401 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2402 NodeTys.push_back(MVT::Other); // Returns a chain
2403 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
2405 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2407 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2408 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2409 // node so that legalize doesn't hack it.
2410 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2411 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2412 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2413 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2414 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2415 // If this is an absolute destination address, use the munged value.
2416 Callee = SDValue(Dest, 0);
2417 else {
2418 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2419 // to do the call, we can't use PPCISD::CALL.
2420 SDValue MTCTROps[] = {Chain, Callee, InFlag};
2421 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2422 2 + (InFlag.getNode() != 0));
2423 InFlag = Chain.getValue(1);
2425 NodeTys.clear();
2426 NodeTys.push_back(MVT::Other);
2427 NodeTys.push_back(MVT::Flag);
2428 Ops.push_back(Chain);
2429 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2430 Callee.setNode(0);
2431 // Add CTR register as callee so a bctr can be emitted later.
2432 if (isTailCall)
2433 Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2436 // If this is a direct call, pass the chain and the callee.
2437 if (Callee.getNode()) {
2438 Ops.push_back(Chain);
2439 Ops.push_back(Callee);
2441 // If this is a tail call add stack pointer delta.
2442 if (isTailCall)
2443 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2445 // Add argument registers to the end of the list so that they are known live
2446 // into the call.
2447 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2448 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2449 RegsToPass[i].second.getValueType()));
2451 return CallOpc;
2454 SDValue
2455 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2456 CallingConv::ID CallConv, bool isVarArg,
2457 const SmallVectorImpl<ISD::InputArg> &Ins,
2458 DebugLoc dl, SelectionDAG &DAG,
2459 SmallVectorImpl<SDValue> &InVals) {
2461 SmallVector<CCValAssign, 16> RVLocs;
2462 CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2463 RVLocs, *DAG.getContext());
2464 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2466 // Copy all of the result registers out of their specified physreg.
2467 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2468 CCValAssign &VA = RVLocs[i];
2469 EVT VT = VA.getValVT();
2470 assert(VA.isRegLoc() && "Can only return in registers!");
2471 Chain = DAG.getCopyFromReg(Chain, dl,
2472 VA.getLocReg(), VT, InFlag).getValue(1);
2473 InVals.push_back(Chain.getValue(0));
2474 InFlag = Chain.getValue(2);
2477 return Chain;
2480 SDValue
2481 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2482 bool isTailCall, bool isVarArg,
2483 SelectionDAG &DAG,
2484 SmallVector<std::pair<unsigned, SDValue>, 8>
2485 &RegsToPass,
2486 SDValue InFlag, SDValue Chain,
2487 SDValue &Callee,
2488 int SPDiff, unsigned NumBytes,
2489 const SmallVectorImpl<ISD::InputArg> &Ins,
2490 SmallVectorImpl<SDValue> &InVals) {
2491 std::vector<EVT> NodeTys;
2492 SmallVector<SDValue, 8> Ops;
2493 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2494 isTailCall, RegsToPass, Ops, NodeTys,
2495 PPCSubTarget.isSVR4ABI());
2497 // When performing tail call optimization the callee pops its arguments off
2498 // the stack. Account for this here so these bytes can be pushed back on in
2499 // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2500 int BytesCalleePops =
2501 (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2503 if (InFlag.getNode())
2504 Ops.push_back(InFlag);
2506 // Emit tail call.
2507 if (isTailCall) {
2508 // If this is the first return lowered for this function, add the regs
2509 // to the liveout set for the function.
2510 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2511 SmallVector<CCValAssign, 16> RVLocs;
2512 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2513 *DAG.getContext());
2514 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2515 for (unsigned i = 0; i != RVLocs.size(); ++i)
2516 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2519 assert(((Callee.getOpcode() == ISD::Register &&
2520 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2521 Callee.getOpcode() == ISD::TargetExternalSymbol ||
2522 Callee.getOpcode() == ISD::TargetGlobalAddress ||
2523 isa<ConstantSDNode>(Callee)) &&
2524 "Expecting an global address, external symbol, absolute value or register");
2526 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2529 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2530 InFlag = Chain.getValue(1);
2532 // Add a NOP immediately after the branch instruction when using the 64-bit
2533 // SVR4 ABI. At link time, if caller and callee are in a different module and
2534 // thus have a different TOC, the call will be replaced with a call to a stub
2535 // function which saves the current TOC, loads the TOC of the callee and
2536 // branches to the callee. The NOP will be replaced with a load instruction
2537 // which restores the TOC of the caller from the TOC save slot of the current
2538 // stack frame. If caller and callee belong to the same module (and have the
2539 // same TOC), the NOP will remain unchanged.
2540 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2541 // Insert NOP.
2542 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2545 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2546 DAG.getIntPtrConstant(BytesCalleePops, true),
2547 InFlag);
2548 if (!Ins.empty())
2549 InFlag = Chain.getValue(1);
2551 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2552 Ins, dl, DAG, InVals);
2555 SDValue
2556 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2557 CallingConv::ID CallConv, bool isVarArg,
2558 bool isTailCall,
2559 const SmallVectorImpl<ISD::OutputArg> &Outs,
2560 const SmallVectorImpl<ISD::InputArg> &Ins,
2561 DebugLoc dl, SelectionDAG &DAG,
2562 SmallVectorImpl<SDValue> &InVals) {
2563 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2564 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2565 isTailCall, Outs, Ins,
2566 dl, DAG, InVals);
2567 } else {
2568 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2569 isTailCall, Outs, Ins,
2570 dl, DAG, InVals);
2574 SDValue
2575 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2576 CallingConv::ID CallConv, bool isVarArg,
2577 bool isTailCall,
2578 const SmallVectorImpl<ISD::OutputArg> &Outs,
2579 const SmallVectorImpl<ISD::InputArg> &Ins,
2580 DebugLoc dl, SelectionDAG &DAG,
2581 SmallVectorImpl<SDValue> &InVals) {
2582 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2583 // of the 32-bit SVR4 ABI stack frame layout.
2585 assert((!isTailCall ||
2586 (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2587 "IsEligibleForTailCallOptimization missed a case!");
2589 assert((CallConv == CallingConv::C ||
2590 CallConv == CallingConv::Fast) && "Unknown calling convention!");
2592 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2593 unsigned PtrByteSize = 4;
2595 MachineFunction &MF = DAG.getMachineFunction();
2597 // Mark this function as potentially containing a function that contains a
2598 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2599 // and restoring the callers stack pointer in this functions epilog. This is
2600 // done because by tail calling the called function might overwrite the value
2601 // in this function's (MF) stack pointer stack slot 0(SP).
2602 if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2603 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2605 // Count how many bytes are to be pushed on the stack, including the linkage
2606 // area, parameter list area and the part of the local variable space which
2607 // contains copies of aggregates which are passed by value.
2609 // Assign locations to all of the outgoing arguments.
2610 SmallVector<CCValAssign, 16> ArgLocs;
2611 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2612 ArgLocs, *DAG.getContext());
2614 // Reserve space for the linkage area on the stack.
2615 CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2617 if (isVarArg) {
2618 // Handle fixed and variable vector arguments differently.
2619 // Fixed vector arguments go into registers as long as registers are
2620 // available. Variable vector arguments always go into memory.
2621 unsigned NumArgs = Outs.size();
2623 for (unsigned i = 0; i != NumArgs; ++i) {
2624 EVT ArgVT = Outs[i].Val.getValueType();
2625 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2626 bool Result;
2628 if (Outs[i].IsFixed) {
2629 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2630 CCInfo);
2631 } else {
2632 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2633 ArgFlags, CCInfo);
2636 if (Result) {
2637 #ifndef NDEBUG
2638 errs() << "Call operand #" << i << " has unhandled type "
2639 << ArgVT.getEVTString() << "\n";
2640 #endif
2641 llvm_unreachable(0);
2644 } else {
2645 // All arguments are treated the same.
2646 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2649 // Assign locations to all of the outgoing aggregate by value arguments.
2650 SmallVector<CCValAssign, 16> ByValArgLocs;
2651 CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2652 *DAG.getContext());
2654 // Reserve stack space for the allocations in CCInfo.
2655 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2657 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2659 // Size of the linkage area, parameter list area and the part of the local
2660 // space variable where copies of aggregates which are passed by value are
2661 // stored.
2662 unsigned NumBytes = CCByValInfo.getNextStackOffset();
2664 // Calculate by how many bytes the stack has to be adjusted in case of tail
2665 // call optimization.
2666 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2668 // Adjust the stack pointer for the new arguments...
2669 // These operations are automatically eliminated by the prolog/epilog pass
2670 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2671 SDValue CallSeqStart = Chain;
2673 // Load the return address and frame pointer so it can be moved somewhere else
2674 // later.
2675 SDValue LROp, FPOp;
2676 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2677 dl);
2679 // Set up a copy of the stack pointer for use loading and storing any
2680 // arguments that may not fit in the registers available for argument
2681 // passing.
2682 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2684 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2685 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2686 SmallVector<SDValue, 8> MemOpChains;
2688 // Walk the register/memloc assignments, inserting copies/loads.
2689 for (unsigned i = 0, j = 0, e = ArgLocs.size();
2690 i != e;
2691 ++i) {
2692 CCValAssign &VA = ArgLocs[i];
2693 SDValue Arg = Outs[i].Val;
2694 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2696 if (Flags.isByVal()) {
2697 // Argument is an aggregate which is passed by value, thus we need to
2698 // create a copy of it in the local variable space of the current stack
2699 // frame (which is the stack frame of the caller) and pass the address of
2700 // this copy to the callee.
2701 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2702 CCValAssign &ByValVA = ByValArgLocs[j++];
2703 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2705 // Memory reserved in the local variable space of the callers stack frame.
2706 unsigned LocMemOffset = ByValVA.getLocMemOffset();
2708 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2709 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2711 // Create a copy of the argument in the local area of the current
2712 // stack frame.
2713 SDValue MemcpyCall =
2714 CreateCopyOfByValArgument(Arg, PtrOff,
2715 CallSeqStart.getNode()->getOperand(0),
2716 Flags, DAG, dl);
2718 // This must go outside the CALLSEQ_START..END.
2719 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2720 CallSeqStart.getNode()->getOperand(1));
2721 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2722 NewCallSeqStart.getNode());
2723 Chain = CallSeqStart = NewCallSeqStart;
2725 // Pass the address of the aggregate copy on the stack either in a
2726 // physical register or in the parameter list area of the current stack
2727 // frame to the callee.
2728 Arg = PtrOff;
2731 if (VA.isRegLoc()) {
2732 // Put argument in a physical register.
2733 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2734 } else {
2735 // Put argument in the parameter list area of the current stack frame.
2736 assert(VA.isMemLoc());
2737 unsigned LocMemOffset = VA.getLocMemOffset();
2739 if (!isTailCall) {
2740 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2741 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2743 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2744 PseudoSourceValue::getStack(), LocMemOffset));
2745 } else {
2746 // Calculate and remember argument location.
2747 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2748 TailCallArguments);
2753 if (!MemOpChains.empty())
2754 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2755 &MemOpChains[0], MemOpChains.size());
2757 // Build a sequence of copy-to-reg nodes chained together with token chain
2758 // and flag operands which copy the outgoing args into the appropriate regs.
2759 SDValue InFlag;
2760 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2761 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2762 RegsToPass[i].second, InFlag);
2763 InFlag = Chain.getValue(1);
2766 // Set CR6 to true if this is a vararg call.
2767 if (isVarArg) {
2768 SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2769 Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2770 InFlag = Chain.getValue(1);
2773 if (isTailCall) {
2774 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2775 false, TailCallArguments);
2778 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2779 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2780 Ins, InVals);
2783 SDValue
2784 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2785 CallingConv::ID CallConv, bool isVarArg,
2786 bool isTailCall,
2787 const SmallVectorImpl<ISD::OutputArg> &Outs,
2788 const SmallVectorImpl<ISD::InputArg> &Ins,
2789 DebugLoc dl, SelectionDAG &DAG,
2790 SmallVectorImpl<SDValue> &InVals) {
2792 unsigned NumOps = Outs.size();
2794 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2795 bool isPPC64 = PtrVT == MVT::i64;
2796 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2798 MachineFunction &MF = DAG.getMachineFunction();
2800 // Mark this function as potentially containing a function that contains a
2801 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2802 // and restoring the callers stack pointer in this functions epilog. This is
2803 // done because by tail calling the called function might overwrite the value
2804 // in this function's (MF) stack pointer stack slot 0(SP).
2805 if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2806 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2808 unsigned nAltivecParamsAtEnd = 0;
2810 // Count how many bytes are to be pushed on the stack, including the linkage
2811 // area, and parameter passing area. We start with 24/48 bytes, which is
2812 // prereserved space for [SP][CR][LR][3 x unused].
2813 unsigned NumBytes =
2814 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2815 Outs,
2816 nAltivecParamsAtEnd);
2818 // Calculate by how many bytes the stack has to be adjusted in case of tail
2819 // call optimization.
2820 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2822 // To protect arguments on the stack from being clobbered in a tail call,
2823 // force all the loads to happen before doing any other lowering.
2824 if (isTailCall)
2825 Chain = DAG.getStackArgumentTokenFactor(Chain);
2827 // Adjust the stack pointer for the new arguments...
2828 // These operations are automatically eliminated by the prolog/epilog pass
2829 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2830 SDValue CallSeqStart = Chain;
2832 // Load the return address and frame pointer so it can be move somewhere else
2833 // later.
2834 SDValue LROp, FPOp;
2835 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2836 dl);
2838 // Set up a copy of the stack pointer for use loading and storing any
2839 // arguments that may not fit in the registers available for argument
2840 // passing.
2841 SDValue StackPtr;
2842 if (isPPC64)
2843 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2844 else
2845 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2847 // Figure out which arguments are going to go in registers, and which in
2848 // memory. Also, if this is a vararg function, floating point operations
2849 // must be stored to our stack, and loaded into integer regs as well, if
2850 // any integer regs are available for argument passing.
2851 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2852 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2854 static const unsigned GPR_32[] = { // 32-bit registers.
2855 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2856 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2858 static const unsigned GPR_64[] = { // 64-bit registers.
2859 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2860 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2862 static const unsigned *FPR = GetFPR();
2864 static const unsigned VR[] = {
2865 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2866 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2868 const unsigned NumGPRs = array_lengthof(GPR_32);
2869 const unsigned NumFPRs = 13;
2870 const unsigned NumVRs = array_lengthof(VR);
2872 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2874 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2875 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2877 SmallVector<SDValue, 8> MemOpChains;
2878 for (unsigned i = 0; i != NumOps; ++i) {
2879 SDValue Arg = Outs[i].Val;
2880 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2882 // PtrOff will be used to store the current argument to the stack if a
2883 // register cannot be found for it.
2884 SDValue PtrOff;
2886 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2888 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2890 // On PPC64, promote integers to 64-bit values.
2891 if (isPPC64 && Arg.getValueType() == MVT::i32) {
2892 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2893 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2894 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2897 // FIXME memcpy is used way more than necessary. Correctness first.
2898 if (Flags.isByVal()) {
2899 unsigned Size = Flags.getByValSize();
2900 if (Size==1 || Size==2) {
2901 // Very small objects are passed right-justified.
2902 // Everything else is passed left-justified.
2903 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2904 if (GPR_idx != NumGPRs) {
2905 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2906 NULL, 0, VT);
2907 MemOpChains.push_back(Load.getValue(1));
2908 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2910 ArgOffset += PtrByteSize;
2911 } else {
2912 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2913 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2914 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2915 CallSeqStart.getNode()->getOperand(0),
2916 Flags, DAG, dl);
2917 // This must go outside the CALLSEQ_START..END.
2918 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2919 CallSeqStart.getNode()->getOperand(1));
2920 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2921 NewCallSeqStart.getNode());
2922 Chain = CallSeqStart = NewCallSeqStart;
2923 ArgOffset += PtrByteSize;
2925 continue;
2927 // Copy entire object into memory. There are cases where gcc-generated
2928 // code assumes it is there, even if it could be put entirely into
2929 // registers. (This is not what the doc says.)
2930 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2931 CallSeqStart.getNode()->getOperand(0),
2932 Flags, DAG, dl);
2933 // This must go outside the CALLSEQ_START..END.
2934 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2935 CallSeqStart.getNode()->getOperand(1));
2936 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2937 Chain = CallSeqStart = NewCallSeqStart;
2938 // And copy the pieces of it that fit into registers.
2939 for (unsigned j=0; j<Size; j+=PtrByteSize) {
2940 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2941 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2942 if (GPR_idx != NumGPRs) {
2943 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2944 MemOpChains.push_back(Load.getValue(1));
2945 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2946 ArgOffset += PtrByteSize;
2947 } else {
2948 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2949 break;
2952 continue;
2955 switch (Arg.getValueType().getSimpleVT().SimpleTy) {
2956 default: llvm_unreachable("Unexpected ValueType for argument!");
2957 case MVT::i32:
2958 case MVT::i64:
2959 if (GPR_idx != NumGPRs) {
2960 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2961 } else {
2962 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2963 isPPC64, isTailCall, false, MemOpChains,
2964 TailCallArguments, dl);
2966 ArgOffset += PtrByteSize;
2967 break;
2968 case MVT::f32:
2969 case MVT::f64:
2970 if (FPR_idx != NumFPRs) {
2971 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2973 if (isVarArg) {
2974 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2975 MemOpChains.push_back(Store);
2977 // Float varargs are always shadowed in available integer registers
2978 if (GPR_idx != NumGPRs) {
2979 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2980 MemOpChains.push_back(Load.getValue(1));
2981 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2983 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2984 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2985 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2986 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2987 MemOpChains.push_back(Load.getValue(1));
2988 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2990 } else {
2991 // If we have any FPRs remaining, we may also have GPRs remaining.
2992 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2993 // GPRs.
2994 if (GPR_idx != NumGPRs)
2995 ++GPR_idx;
2996 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2997 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
2998 ++GPR_idx;
3000 } else {
3001 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3002 isPPC64, isTailCall, false, MemOpChains,
3003 TailCallArguments, dl);
3005 if (isPPC64)
3006 ArgOffset += 8;
3007 else
3008 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3009 break;
3010 case MVT::v4f32:
3011 case MVT::v4i32:
3012 case MVT::v8i16:
3013 case MVT::v16i8:
3014 if (isVarArg) {
3015 // These go aligned on the stack, or in the corresponding R registers
3016 // when within range. The Darwin PPC ABI doc claims they also go in
3017 // V registers; in fact gcc does this only for arguments that are
3018 // prototyped, not for those that match the ... We do it for all
3019 // arguments, seems to work.
3020 while (ArgOffset % 16 !=0) {
3021 ArgOffset += PtrByteSize;
3022 if (GPR_idx != NumGPRs)
3023 GPR_idx++;
3025 // We could elide this store in the case where the object fits
3026 // entirely in R registers. Maybe later.
3027 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3028 DAG.getConstant(ArgOffset, PtrVT));
3029 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3030 MemOpChains.push_back(Store);
3031 if (VR_idx != NumVRs) {
3032 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3033 MemOpChains.push_back(Load.getValue(1));
3034 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3036 ArgOffset += 16;
3037 for (unsigned i=0; i<16; i+=PtrByteSize) {
3038 if (GPR_idx == NumGPRs)
3039 break;
3040 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3041 DAG.getConstant(i, PtrVT));
3042 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3043 MemOpChains.push_back(Load.getValue(1));
3044 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3046 break;
3049 // Non-varargs Altivec params generally go in registers, but have
3050 // stack space allocated at the end.
3051 if (VR_idx != NumVRs) {
3052 // Doesn't have GPR space allocated.
3053 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3054 } else if (nAltivecParamsAtEnd==0) {
3055 // We are emitting Altivec params in order.
3056 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3057 isPPC64, isTailCall, true, MemOpChains,
3058 TailCallArguments, dl);
3059 ArgOffset += 16;
3061 break;
3064 // If all Altivec parameters fit in registers, as they usually do,
3065 // they get stack space following the non-Altivec parameters. We
3066 // don't track this here because nobody below needs it.
3067 // If there are more Altivec parameters than fit in registers emit
3068 // the stores here.
3069 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3070 unsigned j = 0;
3071 // Offset is aligned; skip 1st 12 params which go in V registers.
3072 ArgOffset = ((ArgOffset+15)/16)*16;
3073 ArgOffset += 12*16;
3074 for (unsigned i = 0; i != NumOps; ++i) {
3075 SDValue Arg = Outs[i].Val;
3076 EVT ArgType = Arg.getValueType();
3077 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3078 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3079 if (++j > NumVRs) {
3080 SDValue PtrOff;
3081 // We are emitting Altivec params in order.
3082 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3083 isPPC64, isTailCall, true, MemOpChains,
3084 TailCallArguments, dl);
3085 ArgOffset += 16;
3091 if (!MemOpChains.empty())
3092 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3093 &MemOpChains[0], MemOpChains.size());
3095 // Build a sequence of copy-to-reg nodes chained together with token chain
3096 // and flag operands which copy the outgoing args into the appropriate regs.
3097 SDValue InFlag;
3098 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3099 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3100 RegsToPass[i].second, InFlag);
3101 InFlag = Chain.getValue(1);
3104 if (isTailCall) {
3105 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3106 FPOp, true, TailCallArguments);
3109 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3110 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3111 Ins, InVals);
3114 SDValue
3115 PPCTargetLowering::LowerReturn(SDValue Chain,
3116 CallingConv::ID CallConv, bool isVarArg,
3117 const SmallVectorImpl<ISD::OutputArg> &Outs,
3118 DebugLoc dl, SelectionDAG &DAG) {
3120 SmallVector<CCValAssign, 16> RVLocs;
3121 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3122 RVLocs, *DAG.getContext());
3123 CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3125 // If this is the first return lowered for this function, add the regs to the
3126 // liveout set for the function.
3127 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3128 for (unsigned i = 0; i != RVLocs.size(); ++i)
3129 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3132 SDValue Flag;
3134 // Copy the result values into the output registers.
3135 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3136 CCValAssign &VA = RVLocs[i];
3137 assert(VA.isRegLoc() && "Can only return in registers!");
3138 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3139 Outs[i].Val, Flag);
3140 Flag = Chain.getValue(1);
3143 if (Flag.getNode())
3144 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3145 else
3146 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3149 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3150 const PPCSubtarget &Subtarget) {
3151 // When we pop the dynamic allocation we need to restore the SP link.
3152 DebugLoc dl = Op.getDebugLoc();
3154 // Get the corect type for pointers.
3155 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3157 // Construct the stack pointer operand.
3158 bool IsPPC64 = Subtarget.isPPC64();
3159 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3160 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3162 // Get the operands for the STACKRESTORE.
3163 SDValue Chain = Op.getOperand(0);
3164 SDValue SaveSP = Op.getOperand(1);
3166 // Load the old link SP.
3167 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3169 // Restore the stack pointer.
3170 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3172 // Store the old link SP.
3173 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3178 SDValue
3179 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3180 MachineFunction &MF = DAG.getMachineFunction();
3181 bool IsPPC64 = PPCSubTarget.isPPC64();
3182 bool isDarwinABI = PPCSubTarget.isDarwinABI();
3183 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3185 // Get current frame pointer save index. The users of this index will be
3186 // primarily DYNALLOC instructions.
3187 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3188 int RASI = FI->getReturnAddrSaveIndex();
3190 // If the frame pointer save index hasn't been defined yet.
3191 if (!RASI) {
3192 // Find out what the fix offset of the frame pointer save area.
3193 int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3194 // Allocate the frame index for frame pointer save area.
3195 RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3196 // Save the result.
3197 FI->setReturnAddrSaveIndex(RASI);
3199 return DAG.getFrameIndex(RASI, PtrVT);
3202 SDValue
3203 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3204 MachineFunction &MF = DAG.getMachineFunction();
3205 bool IsPPC64 = PPCSubTarget.isPPC64();
3206 bool isDarwinABI = PPCSubTarget.isDarwinABI();
3207 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3209 // Get current frame pointer save index. The users of this index will be
3210 // primarily DYNALLOC instructions.
3211 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3212 int FPSI = FI->getFramePointerSaveIndex();
3214 // If the frame pointer save index hasn't been defined yet.
3215 if (!FPSI) {
3216 // Find out what the fix offset of the frame pointer save area.
3217 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3218 isDarwinABI);
3220 // Allocate the frame index for frame pointer save area.
3221 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3222 // Save the result.
3223 FI->setFramePointerSaveIndex(FPSI);
3225 return DAG.getFrameIndex(FPSI, PtrVT);
3228 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3229 SelectionDAG &DAG,
3230 const PPCSubtarget &Subtarget) {
3231 // Get the inputs.
3232 SDValue Chain = Op.getOperand(0);
3233 SDValue Size = Op.getOperand(1);
3234 DebugLoc dl = Op.getDebugLoc();
3236 // Get the corect type for pointers.
3237 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3238 // Negate the size.
3239 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3240 DAG.getConstant(0, PtrVT), Size);
3241 // Construct a node for the frame pointer save index.
3242 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3243 // Build a DYNALLOC node.
3244 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3245 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3246 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3249 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3250 /// possible.
3251 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3252 // Not FP? Not a fsel.
3253 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3254 !Op.getOperand(2).getValueType().isFloatingPoint())
3255 return Op;
3257 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3259 // Cannot handle SETEQ/SETNE.
3260 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3262 EVT ResVT = Op.getValueType();
3263 EVT CmpVT = Op.getOperand(0).getValueType();
3264 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3265 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
3266 DebugLoc dl = Op.getDebugLoc();
3268 // If the RHS of the comparison is a 0.0, we don't need to do the
3269 // subtraction at all.
3270 if (isFloatingPointZero(RHS))
3271 switch (CC) {
3272 default: break; // SETUO etc aren't handled by fsel.
3273 case ISD::SETULT:
3274 case ISD::SETLT:
3275 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
3276 case ISD::SETOGE:
3277 case ISD::SETGE:
3278 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
3279 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3280 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3281 case ISD::SETUGT:
3282 case ISD::SETGT:
3283 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
3284 case ISD::SETOLE:
3285 case ISD::SETLE:
3286 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
3287 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3288 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3289 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3292 SDValue Cmp;
3293 switch (CC) {
3294 default: break; // SETUO etc aren't handled by fsel.
3295 case ISD::SETULT:
3296 case ISD::SETLT:
3297 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3298 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3299 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3300 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3301 case ISD::SETOGE:
3302 case ISD::SETGE:
3303 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3304 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3305 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3306 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3307 case ISD::SETUGT:
3308 case ISD::SETGT:
3309 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3310 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3311 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3312 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3313 case ISD::SETOLE:
3314 case ISD::SETLE:
3315 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3316 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
3317 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3318 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3320 return Op;
3323 // FIXME: Split this code up when LegalizeDAGTypes lands.
3324 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3325 DebugLoc dl) {
3326 assert(Op.getOperand(0).getValueType().isFloatingPoint());
3327 SDValue Src = Op.getOperand(0);
3328 if (Src.getValueType() == MVT::f32)
3329 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3331 SDValue Tmp;
3332 switch (Op.getValueType().getSimpleVT().SimpleTy) {
3333 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3334 case MVT::i32:
3335 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3336 PPCISD::FCTIDZ,
3337 dl, MVT::f64, Src);
3338 break;
3339 case MVT::i64:
3340 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3341 break;
3344 // Convert the FP value to an int value through memory.
3345 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3347 // Emit a store to the stack slot.
3348 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3350 // Result is a load from the stack slot. If loading 4 bytes, make sure to
3351 // add in a bias.
3352 if (Op.getValueType() == MVT::i32)
3353 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3354 DAG.getConstant(4, FIPtr.getValueType()));
3355 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3358 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3359 DebugLoc dl = Op.getDebugLoc();
3360 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3361 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3362 return SDValue();
3364 if (Op.getOperand(0).getValueType() == MVT::i64) {
3365 SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3366 MVT::f64, Op.getOperand(0));
3367 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3368 if (Op.getValueType() == MVT::f32)
3369 FP = DAG.getNode(ISD::FP_ROUND, dl,
3370 MVT::f32, FP, DAG.getIntPtrConstant(0));
3371 return FP;
3374 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3375 "Unhandled SINT_TO_FP type in custom expander!");
3376 // Since we only generate this in 64-bit mode, we can take advantage of
3377 // 64-bit registers. In particular, sign extend the input value into the
3378 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3379 // then lfd it and fcfid it.
3380 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3381 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3382 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3383 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3385 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3386 Op.getOperand(0));
3388 // STD the extended value into the stack slot.
3389 MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
3390 MachineMemOperand::MOStore, 0, 8, 8);
3391 SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
3392 DAG.getEntryNode(), Ext64, FIdx,
3393 DAG.getMemOperand(MO));
3394 // Load the value as a double.
3395 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3397 // FCFID it and return it.
3398 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3399 if (Op.getValueType() == MVT::f32)
3400 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3401 return FP;
3404 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3405 DebugLoc dl = Op.getDebugLoc();
3407 The rounding mode is in bits 30:31 of FPSR, and has the following
3408 settings:
3409 00 Round to nearest
3410 01 Round to 0
3411 10 Round to +inf
3412 11 Round to -inf
3414 FLT_ROUNDS, on the other hand, expects the following:
3415 -1 Undefined
3416 0 Round to 0
3417 1 Round to nearest
3418 2 Round to +inf
3419 3 Round to -inf
3421 To perform the conversion, we do:
3422 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3425 MachineFunction &MF = DAG.getMachineFunction();
3426 EVT VT = Op.getValueType();
3427 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3428 std::vector<EVT> NodeTys;
3429 SDValue MFFSreg, InFlag;
3431 // Save FP Control Word to register
3432 NodeTys.push_back(MVT::f64); // return register
3433 NodeTys.push_back(MVT::Flag); // unused in this context
3434 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3436 // Save FP register to stack slot
3437 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3438 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3439 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3440 StackSlot, NULL, 0);
3442 // Load FP Control Word from low 32 bits of stack slot.
3443 SDValue Four = DAG.getConstant(4, PtrVT);
3444 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3445 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3447 // Transform as necessary
3448 SDValue CWD1 =
3449 DAG.getNode(ISD::AND, dl, MVT::i32,
3450 CWD, DAG.getConstant(3, MVT::i32));
3451 SDValue CWD2 =
3452 DAG.getNode(ISD::SRL, dl, MVT::i32,
3453 DAG.getNode(ISD::AND, dl, MVT::i32,
3454 DAG.getNode(ISD::XOR, dl, MVT::i32,
3455 CWD, DAG.getConstant(3, MVT::i32)),
3456 DAG.getConstant(3, MVT::i32)),
3457 DAG.getConstant(1, MVT::i32));
3459 SDValue RetVal =
3460 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3462 return DAG.getNode((VT.getSizeInBits() < 16 ?
3463 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3466 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3467 EVT VT = Op.getValueType();
3468 unsigned BitWidth = VT.getSizeInBits();
3469 DebugLoc dl = Op.getDebugLoc();
3470 assert(Op.getNumOperands() == 3 &&
3471 VT == Op.getOperand(1).getValueType() &&
3472 "Unexpected SHL!");
3474 // Expand into a bunch of logical ops. Note that these ops
3475 // depend on the PPC behavior for oversized shift amounts.
3476 SDValue Lo = Op.getOperand(0);
3477 SDValue Hi = Op.getOperand(1);
3478 SDValue Amt = Op.getOperand(2);
3479 EVT AmtVT = Amt.getValueType();
3481 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3482 DAG.getConstant(BitWidth, AmtVT), Amt);
3483 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3484 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3485 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3486 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3487 DAG.getConstant(-BitWidth, AmtVT));
3488 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3489 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3490 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3491 SDValue OutOps[] = { OutLo, OutHi };
3492 return DAG.getMergeValues(OutOps, 2, dl);
3495 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3496 EVT VT = Op.getValueType();
3497 DebugLoc dl = Op.getDebugLoc();
3498 unsigned BitWidth = VT.getSizeInBits();
3499 assert(Op.getNumOperands() == 3 &&
3500 VT == Op.getOperand(1).getValueType() &&
3501 "Unexpected SRL!");
3503 // Expand into a bunch of logical ops. Note that these ops
3504 // depend on the PPC behavior for oversized shift amounts.
3505 SDValue Lo = Op.getOperand(0);
3506 SDValue Hi = Op.getOperand(1);
3507 SDValue Amt = Op.getOperand(2);
3508 EVT AmtVT = Amt.getValueType();
3510 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3511 DAG.getConstant(BitWidth, AmtVT), Amt);
3512 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3513 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3514 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3515 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3516 DAG.getConstant(-BitWidth, AmtVT));
3517 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3518 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3519 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3520 SDValue OutOps[] = { OutLo, OutHi };
3521 return DAG.getMergeValues(OutOps, 2, dl);
3524 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3525 DebugLoc dl = Op.getDebugLoc();
3526 EVT VT = Op.getValueType();
3527 unsigned BitWidth = VT.getSizeInBits();
3528 assert(Op.getNumOperands() == 3 &&
3529 VT == Op.getOperand(1).getValueType() &&
3530 "Unexpected SRA!");
3532 // Expand into a bunch of logical ops, followed by a select_cc.
3533 SDValue Lo = Op.getOperand(0);
3534 SDValue Hi = Op.getOperand(1);
3535 SDValue Amt = Op.getOperand(2);
3536 EVT AmtVT = Amt.getValueType();
3538 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3539 DAG.getConstant(BitWidth, AmtVT), Amt);
3540 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3541 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3542 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3543 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3544 DAG.getConstant(-BitWidth, AmtVT));
3545 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3546 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3547 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3548 Tmp4, Tmp6, ISD::SETLE);
3549 SDValue OutOps[] = { OutLo, OutHi };
3550 return DAG.getMergeValues(OutOps, 2, dl);
3553 //===----------------------------------------------------------------------===//
3554 // Vector related lowering.
3557 /// BuildSplatI - Build a canonical splati of Val with an element size of
3558 /// SplatSize. Cast the result to VT.
3559 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3560 SelectionDAG &DAG, DebugLoc dl) {
3561 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3563 static const EVT VTys[] = { // canonical VT to use for each size.
3564 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3567 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3569 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3570 if (Val == -1)
3571 SplatSize = 1;
3573 EVT CanonicalVT = VTys[SplatSize-1];
3575 // Build a canonical splat for this value.
3576 SDValue Elt = DAG.getConstant(Val, MVT::i32);
3577 SmallVector<SDValue, 8> Ops;
3578 Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3579 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3580 &Ops[0], Ops.size());
3581 return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3584 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3585 /// specified intrinsic ID.
3586 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3587 SelectionDAG &DAG, DebugLoc dl,
3588 EVT DestVT = MVT::Other) {
3589 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3590 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3591 DAG.getConstant(IID, MVT::i32), LHS, RHS);
3594 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3595 /// specified intrinsic ID.
3596 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3597 SDValue Op2, SelectionDAG &DAG,
3598 DebugLoc dl, EVT DestVT = MVT::Other) {
3599 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3600 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3601 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3605 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3606 /// amount. The result has the specified value type.
3607 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3608 EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3609 // Force LHS/RHS to be the right type.
3610 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3611 RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3613 int Ops[16];
3614 for (unsigned i = 0; i != 16; ++i)
3615 Ops[i] = i + Amt;
3616 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3617 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3620 // If this is a case we can't handle, return null and let the default
3621 // expansion code take care of it. If we CAN select this case, and if it
3622 // selects to a single instruction, return Op. Otherwise, if we can codegen
3623 // this case more efficiently than a constant pool load, lower it to the
3624 // sequence of ops that should be used.
3625 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3626 DebugLoc dl = Op.getDebugLoc();
3627 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3628 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3630 // Check if this is a splat of a constant value.
3631 APInt APSplatBits, APSplatUndef;
3632 unsigned SplatBitSize;
3633 bool HasAnyUndefs;
3634 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3635 HasAnyUndefs) || SplatBitSize > 32)
3636 return SDValue();
3638 unsigned SplatBits = APSplatBits.getZExtValue();
3639 unsigned SplatUndef = APSplatUndef.getZExtValue();
3640 unsigned SplatSize = SplatBitSize / 8;
3642 // First, handle single instruction cases.
3644 // All zeros?
3645 if (SplatBits == 0) {
3646 // Canonicalize all zero vectors to be v4i32.
3647 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3648 SDValue Z = DAG.getConstant(0, MVT::i32);
3649 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3650 Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3652 return Op;
3655 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3656 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3657 (32-SplatBitSize));
3658 if (SextVal >= -16 && SextVal <= 15)
3659 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3662 // Two instruction sequences.
3664 // If this value is in the range [-32,30] and is even, use:
3665 // tmp = VSPLTI[bhw], result = add tmp, tmp
3666 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3667 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3668 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3669 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3672 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
3673 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
3674 // for fneg/fabs.
3675 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3676 // Make -1 and vspltisw -1:
3677 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3679 // Make the VSLW intrinsic, computing 0x8000_0000.
3680 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3681 OnesV, DAG, dl);
3683 // xor by OnesV to invert it.
3684 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3685 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3688 // Check to see if this is a wide variety of vsplti*, binop self cases.
3689 static const signed char SplatCsts[] = {
3690 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3691 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3694 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3695 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3696 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
3697 int i = SplatCsts[idx];
3699 // Figure out what shift amount will be used by altivec if shifted by i in
3700 // this splat size.
3701 unsigned TypeShiftAmt = i & (SplatBitSize-1);
3703 // vsplti + shl self.
3704 if (SextVal == (i << (int)TypeShiftAmt)) {
3705 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3706 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3707 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3708 Intrinsic::ppc_altivec_vslw
3710 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3711 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3714 // vsplti + srl self.
3715 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3716 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3717 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3718 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3719 Intrinsic::ppc_altivec_vsrw
3721 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3722 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3725 // vsplti + sra self.
3726 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3727 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3728 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3729 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3730 Intrinsic::ppc_altivec_vsraw
3732 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3733 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3736 // vsplti + rol self.
3737 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3738 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3739 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3740 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3741 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3742 Intrinsic::ppc_altivec_vrlw
3744 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3745 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3748 // t = vsplti c, result = vsldoi t, t, 1
3749 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3750 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3751 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3753 // t = vsplti c, result = vsldoi t, t, 2
3754 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3755 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3756 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3758 // t = vsplti c, result = vsldoi t, t, 3
3759 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3760 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3761 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3765 // Three instruction sequences.
3767 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
3768 if (SextVal >= 0 && SextVal <= 31) {
3769 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3770 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3771 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3772 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3774 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
3775 if (SextVal >= -31 && SextVal <= 0) {
3776 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3777 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3778 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3779 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3782 return SDValue();
3785 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3786 /// the specified operations to build the shuffle.
3787 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3788 SDValue RHS, SelectionDAG &DAG,
3789 DebugLoc dl) {
3790 unsigned OpNum = (PFEntry >> 26) & 0x0F;
3791 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3792 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
3794 enum {
3795 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3796 OP_VMRGHW,
3797 OP_VMRGLW,
3798 OP_VSPLTISW0,
3799 OP_VSPLTISW1,
3800 OP_VSPLTISW2,
3801 OP_VSPLTISW3,
3802 OP_VSLDOI4,
3803 OP_VSLDOI8,
3804 OP_VSLDOI12
3807 if (OpNum == OP_COPY) {
3808 if (LHSID == (1*9+2)*9+3) return LHS;
3809 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3810 return RHS;
3813 SDValue OpLHS, OpRHS;
3814 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3815 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3817 int ShufIdxs[16];
3818 switch (OpNum) {
3819 default: llvm_unreachable("Unknown i32 permute!");
3820 case OP_VMRGHW:
3821 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
3822 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3823 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
3824 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3825 break;
3826 case OP_VMRGLW:
3827 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3828 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3829 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3830 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3831 break;
3832 case OP_VSPLTISW0:
3833 for (unsigned i = 0; i != 16; ++i)
3834 ShufIdxs[i] = (i&3)+0;
3835 break;
3836 case OP_VSPLTISW1:
3837 for (unsigned i = 0; i != 16; ++i)
3838 ShufIdxs[i] = (i&3)+4;
3839 break;
3840 case OP_VSPLTISW2:
3841 for (unsigned i = 0; i != 16; ++i)
3842 ShufIdxs[i] = (i&3)+8;
3843 break;
3844 case OP_VSPLTISW3:
3845 for (unsigned i = 0; i != 16; ++i)
3846 ShufIdxs[i] = (i&3)+12;
3847 break;
3848 case OP_VSLDOI4:
3849 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3850 case OP_VSLDOI8:
3851 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3852 case OP_VSLDOI12:
3853 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3855 EVT VT = OpLHS.getValueType();
3856 OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3857 OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3858 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3859 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3862 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
3863 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
3864 /// return the code it can be lowered into. Worst case, it can always be
3865 /// lowered into a vperm.
3866 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3867 SelectionDAG &DAG) {
3868 DebugLoc dl = Op.getDebugLoc();
3869 SDValue V1 = Op.getOperand(0);
3870 SDValue V2 = Op.getOperand(1);
3871 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3872 EVT VT = Op.getValueType();
3874 // Cases that are handled by instructions that take permute immediates
3875 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3876 // selected by the instruction selector.
3877 if (V2.getOpcode() == ISD::UNDEF) {
3878 if (PPC::isSplatShuffleMask(SVOp, 1) ||
3879 PPC::isSplatShuffleMask(SVOp, 2) ||
3880 PPC::isSplatShuffleMask(SVOp, 4) ||
3881 PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3882 PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3883 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3884 PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3885 PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3886 PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3887 PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3888 PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3889 PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3890 return Op;
3894 // Altivec has a variety of "shuffle immediates" that take two vector inputs
3895 // and produce a fixed permutation. If any of these match, do not lower to
3896 // VPERM.
3897 if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3898 PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3899 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3900 PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3901 PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3902 PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3903 PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3904 PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3905 PPC::isVMRGHShuffleMask(SVOp, 4, false))
3906 return Op;
3908 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
3909 // perfect shuffle table to emit an optimal matching sequence.
3910 SmallVector<int, 16> PermMask;
3911 SVOp->getMask(PermMask);
3913 unsigned PFIndexes[4];
3914 bool isFourElementShuffle = true;
3915 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3916 unsigned EltNo = 8; // Start out undef.
3917 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
3918 if (PermMask[i*4+j] < 0)
3919 continue; // Undef, ignore it.
3921 unsigned ByteSource = PermMask[i*4+j];
3922 if ((ByteSource & 3) != j) {
3923 isFourElementShuffle = false;
3924 break;
3927 if (EltNo == 8) {
3928 EltNo = ByteSource/4;
3929 } else if (EltNo != ByteSource/4) {
3930 isFourElementShuffle = false;
3931 break;
3934 PFIndexes[i] = EltNo;
3937 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3938 // perfect shuffle vector to determine if it is cost effective to do this as
3939 // discrete instructions, or whether we should use a vperm.
3940 if (isFourElementShuffle) {
3941 // Compute the index in the perfect shuffle table.
3942 unsigned PFTableIndex =
3943 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3945 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3946 unsigned Cost = (PFEntry >> 30);
3948 // Determining when to avoid vperm is tricky. Many things affect the cost
3949 // of vperm, particularly how many times the perm mask needs to be computed.
3950 // For example, if the perm mask can be hoisted out of a loop or is already
3951 // used (perhaps because there are multiple permutes with the same shuffle
3952 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3953 // the loop requires an extra register.
3955 // As a compromise, we only emit discrete instructions if the shuffle can be
3956 // generated in 3 or fewer operations. When we have loop information
3957 // available, if this block is within a loop, we should avoid using vperm
3958 // for 3-operation perms and use a constant pool load instead.
3959 if (Cost < 3)
3960 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3963 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3964 // vector that will get spilled to the constant pool.
3965 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3967 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3968 // that it is in input element units, not in bytes. Convert now.
3969 EVT EltVT = V1.getValueType().getVectorElementType();
3970 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3972 SmallVector<SDValue, 16> ResultMask;
3973 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3974 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3976 for (unsigned j = 0; j != BytesPerElement; ++j)
3977 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3978 MVT::i32));
3981 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3982 &ResultMask[0], ResultMask.size());
3983 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3986 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3987 /// altivec comparison. If it is, return true and fill in Opc/isDot with
3988 /// information about the intrinsic.
3989 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3990 bool &isDot) {
3991 unsigned IntrinsicID =
3992 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3993 CompareOpc = -1;
3994 isDot = false;
3995 switch (IntrinsicID) {
3996 default: return false;
3997 // Comparison predicates.
3998 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
3999 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4000 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
4001 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
4002 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4003 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4004 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4005 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4006 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4007 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4008 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4009 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4010 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4012 // Normal Comparisons.
4013 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
4014 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
4015 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
4016 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
4017 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
4018 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
4019 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
4020 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
4021 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
4022 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
4023 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
4024 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
4025 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
4027 return true;
4030 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4031 /// lower, do it, otherwise return null.
4032 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4033 SelectionDAG &DAG) {
4034 // If this is a lowered altivec predicate compare, CompareOpc is set to the
4035 // opcode number of the comparison.
4036 DebugLoc dl = Op.getDebugLoc();
4037 int CompareOpc;
4038 bool isDot;
4039 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4040 return SDValue(); // Don't custom lower most intrinsics.
4042 // If this is a non-dot comparison, make the VCMP node and we are done.
4043 if (!isDot) {
4044 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4045 Op.getOperand(1), Op.getOperand(2),
4046 DAG.getConstant(CompareOpc, MVT::i32));
4047 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4050 // Create the PPCISD altivec 'dot' comparison node.
4051 SDValue Ops[] = {
4052 Op.getOperand(2), // LHS
4053 Op.getOperand(3), // RHS
4054 DAG.getConstant(CompareOpc, MVT::i32)
4056 std::vector<EVT> VTs;
4057 VTs.push_back(Op.getOperand(2).getValueType());
4058 VTs.push_back(MVT::Flag);
4059 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4061 // Now that we have the comparison, emit a copy from the CR to a GPR.
4062 // This is flagged to the above dot comparison.
4063 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4064 DAG.getRegister(PPC::CR6, MVT::i32),
4065 CompNode.getValue(1));
4067 // Unpack the result based on how the target uses it.
4068 unsigned BitNo; // Bit # of CR6.
4069 bool InvertBit; // Invert result?
4070 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4071 default: // Can't happen, don't crash on invalid number though.
4072 case 0: // Return the value of the EQ bit of CR6.
4073 BitNo = 0; InvertBit = false;
4074 break;
4075 case 1: // Return the inverted value of the EQ bit of CR6.
4076 BitNo = 0; InvertBit = true;
4077 break;
4078 case 2: // Return the value of the LT bit of CR6.
4079 BitNo = 2; InvertBit = false;
4080 break;
4081 case 3: // Return the inverted value of the LT bit of CR6.
4082 BitNo = 2; InvertBit = true;
4083 break;
4086 // Shift the bit into the low position.
4087 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4088 DAG.getConstant(8-(3-BitNo), MVT::i32));
4089 // Isolate the bit.
4090 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4091 DAG.getConstant(1, MVT::i32));
4093 // If we are supposed to, toggle the bit.
4094 if (InvertBit)
4095 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4096 DAG.getConstant(1, MVT::i32));
4097 return Flags;
4100 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4101 SelectionDAG &DAG) {
4102 DebugLoc dl = Op.getDebugLoc();
4103 // Create a stack slot that is 16-byte aligned.
4104 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4105 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4106 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4107 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4109 // Store the input value into Value#0 of the stack slot.
4110 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4111 Op.getOperand(0), FIdx, NULL, 0);
4112 // Load it out.
4113 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4116 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4117 DebugLoc dl = Op.getDebugLoc();
4118 if (Op.getValueType() == MVT::v4i32) {
4119 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4121 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
4122 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4124 SDValue RHSSwap = // = vrlw RHS, 16
4125 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4127 // Shrinkify inputs to v8i16.
4128 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4129 RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4130 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4132 // Low parts multiplied together, generating 32-bit results (we ignore the
4133 // top parts).
4134 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4135 LHS, RHS, DAG, dl, MVT::v4i32);
4137 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4138 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4139 // Shift the high parts up 16 bits.
4140 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4141 Neg16, DAG, dl);
4142 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4143 } else if (Op.getValueType() == MVT::v8i16) {
4144 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4146 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4148 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4149 LHS, RHS, Zero, DAG, dl);
4150 } else if (Op.getValueType() == MVT::v16i8) {
4151 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4153 // Multiply the even 8-bit parts, producing 16-bit sums.
4154 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4155 LHS, RHS, DAG, dl, MVT::v8i16);
4156 EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4158 // Multiply the odd 8-bit parts, producing 16-bit sums.
4159 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4160 LHS, RHS, DAG, dl, MVT::v8i16);
4161 OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4163 // Merge the results together.
4164 int Ops[16];
4165 for (unsigned i = 0; i != 8; ++i) {
4166 Ops[i*2 ] = 2*i+1;
4167 Ops[i*2+1] = 2*i+1+16;
4169 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4170 } else {
4171 llvm_unreachable("Unknown mul to lower!");
4175 /// LowerOperation - Provide custom lowering hooks for some operations.
4177 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4178 switch (Op.getOpcode()) {
4179 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4180 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4181 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4182 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4183 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4184 case ISD::SETCC: return LowerSETCC(Op, DAG);
4185 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
4186 case ISD::VASTART:
4187 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4188 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4190 case ISD::VAARG:
4191 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4192 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4194 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4195 case ISD::DYNAMIC_STACKALLOC:
4196 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4198 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
4199 case ISD::FP_TO_UINT:
4200 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
4201 Op.getDebugLoc());
4202 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4203 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
4205 // Lower 64-bit shifts.
4206 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
4207 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
4208 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
4210 // Vector-related lowering.
4211 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4212 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4213 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4214 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4215 case ISD::MUL: return LowerMUL(Op, DAG);
4217 // Frame & Return address.
4218 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4219 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4221 return SDValue();
4224 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4225 SmallVectorImpl<SDValue>&Results,
4226 SelectionDAG &DAG) {
4227 DebugLoc dl = N->getDebugLoc();
4228 switch (N->getOpcode()) {
4229 default:
4230 assert(false && "Do not know how to custom type legalize this operation!");
4231 return;
4232 case ISD::FP_ROUND_INREG: {
4233 assert(N->getValueType(0) == MVT::ppcf128);
4234 assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4235 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4236 MVT::f64, N->getOperand(0),
4237 DAG.getIntPtrConstant(0));
4238 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4239 MVT::f64, N->getOperand(0),
4240 DAG.getIntPtrConstant(1));
4242 // This sequence changes FPSCR to do round-to-zero, adds the two halves
4243 // of the long double, and puts FPSCR back the way it was. We do not
4244 // actually model FPSCR.
4245 std::vector<EVT> NodeTys;
4246 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4248 NodeTys.push_back(MVT::f64); // Return register
4249 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
4250 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4251 MFFSreg = Result.getValue(0);
4252 InFlag = Result.getValue(1);
4254 NodeTys.clear();
4255 NodeTys.push_back(MVT::Flag); // Returns a flag
4256 Ops[0] = DAG.getConstant(31, MVT::i32);
4257 Ops[1] = InFlag;
4258 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4259 InFlag = Result.getValue(0);
4261 NodeTys.clear();
4262 NodeTys.push_back(MVT::Flag); // Returns a flag
4263 Ops[0] = DAG.getConstant(30, MVT::i32);
4264 Ops[1] = InFlag;
4265 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4266 InFlag = Result.getValue(0);
4268 NodeTys.clear();
4269 NodeTys.push_back(MVT::f64); // result of add
4270 NodeTys.push_back(MVT::Flag); // Returns a flag
4271 Ops[0] = Lo;
4272 Ops[1] = Hi;
4273 Ops[2] = InFlag;
4274 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4275 FPreg = Result.getValue(0);
4276 InFlag = Result.getValue(1);
4278 NodeTys.clear();
4279 NodeTys.push_back(MVT::f64);
4280 Ops[0] = DAG.getConstant(1, MVT::i32);
4281 Ops[1] = MFFSreg;
4282 Ops[2] = FPreg;
4283 Ops[3] = InFlag;
4284 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4285 FPreg = Result.getValue(0);
4287 // We know the low half is about to be thrown away, so just use something
4288 // convenient.
4289 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4290 FPreg, FPreg));
4291 return;
4293 case ISD::FP_TO_SINT:
4294 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4295 return;
4300 //===----------------------------------------------------------------------===//
4301 // Other Lowering Code
4302 //===----------------------------------------------------------------------===//
4304 MachineBasicBlock *
4305 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4306 bool is64bit, unsigned BinOpcode) const {
4307 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4308 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4310 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4311 MachineFunction *F = BB->getParent();
4312 MachineFunction::iterator It = BB;
4313 ++It;
4315 unsigned dest = MI->getOperand(0).getReg();
4316 unsigned ptrA = MI->getOperand(1).getReg();
4317 unsigned ptrB = MI->getOperand(2).getReg();
4318 unsigned incr = MI->getOperand(3).getReg();
4319 DebugLoc dl = MI->getDebugLoc();
4321 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4322 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4323 F->insert(It, loopMBB);
4324 F->insert(It, exitMBB);
4325 exitMBB->transferSuccessors(BB);
4327 MachineRegisterInfo &RegInfo = F->getRegInfo();
4328 unsigned TmpReg = (!BinOpcode) ? incr :
4329 RegInfo.createVirtualRegister(
4330 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4331 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4333 // thisMBB:
4334 // ...
4335 // fallthrough --> loopMBB
4336 BB->addSuccessor(loopMBB);
4338 // loopMBB:
4339 // l[wd]arx dest, ptr
4340 // add r0, dest, incr
4341 // st[wd]cx. r0, ptr
4342 // bne- loopMBB
4343 // fallthrough --> exitMBB
4344 BB = loopMBB;
4345 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4346 .addReg(ptrA).addReg(ptrB);
4347 if (BinOpcode)
4348 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4349 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4350 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4351 BuildMI(BB, dl, TII->get(PPC::BCC))
4352 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4353 BB->addSuccessor(loopMBB);
4354 BB->addSuccessor(exitMBB);
4356 // exitMBB:
4357 // ...
4358 BB = exitMBB;
4359 return BB;
4362 MachineBasicBlock *
4363 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4364 MachineBasicBlock *BB,
4365 bool is8bit, // operation
4366 unsigned BinOpcode) const {
4367 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4368 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4369 // In 64 bit mode we have to use 64 bits for addresses, even though the
4370 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
4371 // registers without caring whether they're 32 or 64, but here we're
4372 // doing actual arithmetic on the addresses.
4373 bool is64bit = PPCSubTarget.isPPC64();
4375 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4376 MachineFunction *F = BB->getParent();
4377 MachineFunction::iterator It = BB;
4378 ++It;
4380 unsigned dest = MI->getOperand(0).getReg();
4381 unsigned ptrA = MI->getOperand(1).getReg();
4382 unsigned ptrB = MI->getOperand(2).getReg();
4383 unsigned incr = MI->getOperand(3).getReg();
4384 DebugLoc dl = MI->getDebugLoc();
4386 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4387 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4388 F->insert(It, loopMBB);
4389 F->insert(It, exitMBB);
4390 exitMBB->transferSuccessors(BB);
4392 MachineRegisterInfo &RegInfo = F->getRegInfo();
4393 const TargetRegisterClass *RC =
4394 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4395 (const TargetRegisterClass *) &PPC::GPRCRegClass;
4396 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4397 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4398 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4399 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4400 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4401 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4402 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4403 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4404 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4405 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4406 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4407 unsigned Ptr1Reg;
4408 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4410 // thisMBB:
4411 // ...
4412 // fallthrough --> loopMBB
4413 BB->addSuccessor(loopMBB);
4415 // The 4-byte load must be aligned, while a char or short may be
4416 // anywhere in the word. Hence all this nasty bookkeeping code.
4417 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4418 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4419 // xori shift, shift1, 24 [16]
4420 // rlwinm ptr, ptr1, 0, 0, 29
4421 // slw incr2, incr, shift
4422 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4423 // slw mask, mask2, shift
4424 // loopMBB:
4425 // lwarx tmpDest, ptr
4426 // add tmp, tmpDest, incr2
4427 // andc tmp2, tmpDest, mask
4428 // and tmp3, tmp, mask
4429 // or tmp4, tmp3, tmp2
4430 // stwcx. tmp4, ptr
4431 // bne- loopMBB
4432 // fallthrough --> exitMBB
4433 // srw dest, tmpDest, shift
4435 if (ptrA!=PPC::R0) {
4436 Ptr1Reg = RegInfo.createVirtualRegister(RC);
4437 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4438 .addReg(ptrA).addReg(ptrB);
4439 } else {
4440 Ptr1Reg = ptrB;
4442 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4443 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4444 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4445 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4446 if (is64bit)
4447 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4448 .addReg(Ptr1Reg).addImm(0).addImm(61);
4449 else
4450 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4451 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4452 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4453 .addReg(incr).addReg(ShiftReg);
4454 if (is8bit)
4455 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4456 else {
4457 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4458 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4460 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4461 .addReg(Mask2Reg).addReg(ShiftReg);
4463 BB = loopMBB;
4464 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4465 .addReg(PPC::R0).addReg(PtrReg);
4466 if (BinOpcode)
4467 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4468 .addReg(Incr2Reg).addReg(TmpDestReg);
4469 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4470 .addReg(TmpDestReg).addReg(MaskReg);
4471 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4472 .addReg(TmpReg).addReg(MaskReg);
4473 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4474 .addReg(Tmp3Reg).addReg(Tmp2Reg);
4475 BuildMI(BB, dl, TII->get(PPC::STWCX))
4476 .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4477 BuildMI(BB, dl, TII->get(PPC::BCC))
4478 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4479 BB->addSuccessor(loopMBB);
4480 BB->addSuccessor(exitMBB);
4482 // exitMBB:
4483 // ...
4484 BB = exitMBB;
4485 BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4486 return BB;
4489 MachineBasicBlock *
4490 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4491 MachineBasicBlock *BB) const {
4492 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4494 // To "insert" these instructions we actually have to insert their
4495 // control-flow patterns.
4496 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4497 MachineFunction::iterator It = BB;
4498 ++It;
4500 MachineFunction *F = BB->getParent();
4502 if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4503 MI->getOpcode() == PPC::SELECT_CC_I8 ||
4504 MI->getOpcode() == PPC::SELECT_CC_F4 ||
4505 MI->getOpcode() == PPC::SELECT_CC_F8 ||
4506 MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4508 // The incoming instruction knows the destination vreg to set, the
4509 // condition code register to branch on, the true/false values to
4510 // select between, and a branch opcode to use.
4512 // thisMBB:
4513 // ...
4514 // TrueVal = ...
4515 // cmpTY ccX, r1, r2
4516 // bCC copy1MBB
4517 // fallthrough --> copy0MBB
4518 MachineBasicBlock *thisMBB = BB;
4519 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4520 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4521 unsigned SelectPred = MI->getOperand(4).getImm();
4522 DebugLoc dl = MI->getDebugLoc();
4523 BuildMI(BB, dl, TII->get(PPC::BCC))
4524 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4525 F->insert(It, copy0MBB);
4526 F->insert(It, sinkMBB);
4527 // Update machine-CFG edges by transferring all successors of the current
4528 // block to the new block which will contain the Phi node for the select.
4529 sinkMBB->transferSuccessors(BB);
4530 // Next, add the true and fallthrough blocks as its successors.
4531 BB->addSuccessor(copy0MBB);
4532 BB->addSuccessor(sinkMBB);
4534 // copy0MBB:
4535 // %FalseValue = ...
4536 // # fallthrough to sinkMBB
4537 BB = copy0MBB;
4539 // Update machine-CFG edges
4540 BB->addSuccessor(sinkMBB);
4542 // sinkMBB:
4543 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4544 // ...
4545 BB = sinkMBB;
4546 BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4547 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4548 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4550 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4551 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4552 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4553 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4554 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4555 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4556 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4557 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4559 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4560 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4561 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4562 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4563 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4564 BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4565 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4566 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4568 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4569 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4570 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4571 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4572 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4573 BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4574 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4575 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4577 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4578 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4579 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4580 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4581 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4582 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4583 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4584 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4586 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4587 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4588 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4589 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4590 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4591 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4592 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4593 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4595 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4596 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4597 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4598 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4599 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4600 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4601 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4602 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4604 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4605 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4606 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4607 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4608 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4609 BB = EmitAtomicBinary(MI, BB, false, 0);
4610 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4611 BB = EmitAtomicBinary(MI, BB, true, 0);
4613 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4614 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4615 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4617 unsigned dest = MI->getOperand(0).getReg();
4618 unsigned ptrA = MI->getOperand(1).getReg();
4619 unsigned ptrB = MI->getOperand(2).getReg();
4620 unsigned oldval = MI->getOperand(3).getReg();
4621 unsigned newval = MI->getOperand(4).getReg();
4622 DebugLoc dl = MI->getDebugLoc();
4624 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4625 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4626 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4627 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4628 F->insert(It, loop1MBB);
4629 F->insert(It, loop2MBB);
4630 F->insert(It, midMBB);
4631 F->insert(It, exitMBB);
4632 exitMBB->transferSuccessors(BB);
4634 // thisMBB:
4635 // ...
4636 // fallthrough --> loopMBB
4637 BB->addSuccessor(loop1MBB);
4639 // loop1MBB:
4640 // l[wd]arx dest, ptr
4641 // cmp[wd] dest, oldval
4642 // bne- midMBB
4643 // loop2MBB:
4644 // st[wd]cx. newval, ptr
4645 // bne- loopMBB
4646 // b exitBB
4647 // midMBB:
4648 // st[wd]cx. dest, ptr
4649 // exitBB:
4650 BB = loop1MBB;
4651 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4652 .addReg(ptrA).addReg(ptrB);
4653 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4654 .addReg(oldval).addReg(dest);
4655 BuildMI(BB, dl, TII->get(PPC::BCC))
4656 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4657 BB->addSuccessor(loop2MBB);
4658 BB->addSuccessor(midMBB);
4660 BB = loop2MBB;
4661 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4662 .addReg(newval).addReg(ptrA).addReg(ptrB);
4663 BuildMI(BB, dl, TII->get(PPC::BCC))
4664 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4665 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4666 BB->addSuccessor(loop1MBB);
4667 BB->addSuccessor(exitMBB);
4669 BB = midMBB;
4670 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4671 .addReg(dest).addReg(ptrA).addReg(ptrB);
4672 BB->addSuccessor(exitMBB);
4674 // exitMBB:
4675 // ...
4676 BB = exitMBB;
4677 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4678 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4679 // We must use 64-bit registers for addresses when targeting 64-bit,
4680 // since we're actually doing arithmetic on them. Other registers
4681 // can be 32-bit.
4682 bool is64bit = PPCSubTarget.isPPC64();
4683 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4685 unsigned dest = MI->getOperand(0).getReg();
4686 unsigned ptrA = MI->getOperand(1).getReg();
4687 unsigned ptrB = MI->getOperand(2).getReg();
4688 unsigned oldval = MI->getOperand(3).getReg();
4689 unsigned newval = MI->getOperand(4).getReg();
4690 DebugLoc dl = MI->getDebugLoc();
4692 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4693 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4694 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4695 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4696 F->insert(It, loop1MBB);
4697 F->insert(It, loop2MBB);
4698 F->insert(It, midMBB);
4699 F->insert(It, exitMBB);
4700 exitMBB->transferSuccessors(BB);
4702 MachineRegisterInfo &RegInfo = F->getRegInfo();
4703 const TargetRegisterClass *RC =
4704 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4705 (const TargetRegisterClass *) &PPC::GPRCRegClass;
4706 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4707 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4708 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4709 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4710 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4711 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4712 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4713 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4714 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4715 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4716 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4717 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4718 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4719 unsigned Ptr1Reg;
4720 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4721 // thisMBB:
4722 // ...
4723 // fallthrough --> loopMBB
4724 BB->addSuccessor(loop1MBB);
4726 // The 4-byte load must be aligned, while a char or short may be
4727 // anywhere in the word. Hence all this nasty bookkeeping code.
4728 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4729 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4730 // xori shift, shift1, 24 [16]
4731 // rlwinm ptr, ptr1, 0, 0, 29
4732 // slw newval2, newval, shift
4733 // slw oldval2, oldval,shift
4734 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4735 // slw mask, mask2, shift
4736 // and newval3, newval2, mask
4737 // and oldval3, oldval2, mask
4738 // loop1MBB:
4739 // lwarx tmpDest, ptr
4740 // and tmp, tmpDest, mask
4741 // cmpw tmp, oldval3
4742 // bne- midMBB
4743 // loop2MBB:
4744 // andc tmp2, tmpDest, mask
4745 // or tmp4, tmp2, newval3
4746 // stwcx. tmp4, ptr
4747 // bne- loop1MBB
4748 // b exitBB
4749 // midMBB:
4750 // stwcx. tmpDest, ptr
4751 // exitBB:
4752 // srw dest, tmpDest, shift
4753 if (ptrA!=PPC::R0) {
4754 Ptr1Reg = RegInfo.createVirtualRegister(RC);
4755 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4756 .addReg(ptrA).addReg(ptrB);
4757 } else {
4758 Ptr1Reg = ptrB;
4760 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4761 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4762 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4763 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4764 if (is64bit)
4765 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4766 .addReg(Ptr1Reg).addImm(0).addImm(61);
4767 else
4768 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4769 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4770 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4771 .addReg(newval).addReg(ShiftReg);
4772 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4773 .addReg(oldval).addReg(ShiftReg);
4774 if (is8bit)
4775 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4776 else {
4777 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4778 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4779 .addReg(Mask3Reg).addImm(65535);
4781 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4782 .addReg(Mask2Reg).addReg(ShiftReg);
4783 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4784 .addReg(NewVal2Reg).addReg(MaskReg);
4785 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4786 .addReg(OldVal2Reg).addReg(MaskReg);
4788 BB = loop1MBB;
4789 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4790 .addReg(PPC::R0).addReg(PtrReg);
4791 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4792 .addReg(TmpDestReg).addReg(MaskReg);
4793 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4794 .addReg(TmpReg).addReg(OldVal3Reg);
4795 BuildMI(BB, dl, TII->get(PPC::BCC))
4796 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4797 BB->addSuccessor(loop2MBB);
4798 BB->addSuccessor(midMBB);
4800 BB = loop2MBB;
4801 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4802 .addReg(TmpDestReg).addReg(MaskReg);
4803 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4804 .addReg(Tmp2Reg).addReg(NewVal3Reg);
4805 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4806 .addReg(PPC::R0).addReg(PtrReg);
4807 BuildMI(BB, dl, TII->get(PPC::BCC))
4808 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4809 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4810 BB->addSuccessor(loop1MBB);
4811 BB->addSuccessor(exitMBB);
4813 BB = midMBB;
4814 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4815 .addReg(PPC::R0).addReg(PtrReg);
4816 BB->addSuccessor(exitMBB);
4818 // exitMBB:
4819 // ...
4820 BB = exitMBB;
4821 BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4822 } else {
4823 llvm_unreachable("Unexpected instr type to insert");
4826 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
4827 return BB;
4830 //===----------------------------------------------------------------------===//
4831 // Target Optimization Hooks
4832 //===----------------------------------------------------------------------===//
4834 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4835 DAGCombinerInfo &DCI) const {
4836 TargetMachine &TM = getTargetMachine();
4837 SelectionDAG &DAG = DCI.DAG;
4838 DebugLoc dl = N->getDebugLoc();
4839 switch (N->getOpcode()) {
4840 default: break;
4841 case PPCISD::SHL:
4842 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4843 if (C->getZExtValue() == 0) // 0 << V -> 0.
4844 return N->getOperand(0);
4846 break;
4847 case PPCISD::SRL:
4848 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4849 if (C->getZExtValue() == 0) // 0 >>u V -> 0.
4850 return N->getOperand(0);
4852 break;
4853 case PPCISD::SRA:
4854 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4855 if (C->getZExtValue() == 0 || // 0 >>s V -> 0.
4856 C->isAllOnesValue()) // -1 >>s V -> -1.
4857 return N->getOperand(0);
4859 break;
4861 case ISD::SINT_TO_FP:
4862 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4863 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4864 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4865 // We allow the src/dst to be either f32/f64, but the intermediate
4866 // type must be i64.
4867 if (N->getOperand(0).getValueType() == MVT::i64 &&
4868 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4869 SDValue Val = N->getOperand(0).getOperand(0);
4870 if (Val.getValueType() == MVT::f32) {
4871 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4872 DCI.AddToWorklist(Val.getNode());
4875 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4876 DCI.AddToWorklist(Val.getNode());
4877 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4878 DCI.AddToWorklist(Val.getNode());
4879 if (N->getValueType(0) == MVT::f32) {
4880 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4881 DAG.getIntPtrConstant(0));
4882 DCI.AddToWorklist(Val.getNode());
4884 return Val;
4885 } else if (N->getOperand(0).getValueType() == MVT::i32) {
4886 // If the intermediate type is i32, we can avoid the load/store here
4887 // too.
4891 break;
4892 case ISD::STORE:
4893 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4894 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4895 !cast<StoreSDNode>(N)->isTruncatingStore() &&
4896 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4897 N->getOperand(1).getValueType() == MVT::i32 &&
4898 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4899 SDValue Val = N->getOperand(1).getOperand(0);
4900 if (Val.getValueType() == MVT::f32) {
4901 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4902 DCI.AddToWorklist(Val.getNode());
4904 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4905 DCI.AddToWorklist(Val.getNode());
4907 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4908 N->getOperand(2), N->getOperand(3));
4909 DCI.AddToWorklist(Val.getNode());
4910 return Val;
4913 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4914 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4915 N->getOperand(1).getNode()->hasOneUse() &&
4916 (N->getOperand(1).getValueType() == MVT::i32 ||
4917 N->getOperand(1).getValueType() == MVT::i16)) {
4918 SDValue BSwapOp = N->getOperand(1).getOperand(0);
4919 // Do an any-extend to 32-bits if this is a half-word input.
4920 if (BSwapOp.getValueType() == MVT::i16)
4921 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4923 return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4924 BSwapOp, N->getOperand(2), N->getOperand(3),
4925 DAG.getValueType(N->getOperand(1).getValueType()));
4927 break;
4928 case ISD::BSWAP:
4929 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4930 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4931 N->getOperand(0).hasOneUse() &&
4932 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4933 SDValue Load = N->getOperand(0);
4934 LoadSDNode *LD = cast<LoadSDNode>(Load);
4935 // Create the byte-swapping load.
4936 std::vector<EVT> VTs;
4937 VTs.push_back(MVT::i32);
4938 VTs.push_back(MVT::Other);
4939 SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4940 SDValue Ops[] = {
4941 LD->getChain(), // Chain
4942 LD->getBasePtr(), // Ptr
4943 MO, // MemOperand
4944 DAG.getValueType(N->getValueType(0)) // VT
4946 SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4948 // If this is an i16 load, insert the truncate.
4949 SDValue ResVal = BSLoad;
4950 if (N->getValueType(0) == MVT::i16)
4951 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4953 // First, combine the bswap away. This makes the value produced by the
4954 // load dead.
4955 DCI.CombineTo(N, ResVal);
4957 // Next, combine the load away, we give it a bogus result value but a real
4958 // chain result. The result value is dead because the bswap is dead.
4959 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4961 // Return N so it doesn't get rechecked!
4962 return SDValue(N, 0);
4965 break;
4966 case PPCISD::VCMP: {
4967 // If a VCMPo node already exists with exactly the same operands as this
4968 // node, use its result instead of this node (VCMPo computes both a CR6 and
4969 // a normal output).
4971 if (!N->getOperand(0).hasOneUse() &&
4972 !N->getOperand(1).hasOneUse() &&
4973 !N->getOperand(2).hasOneUse()) {
4975 // Scan all of the users of the LHS, looking for VCMPo's that match.
4976 SDNode *VCMPoNode = 0;
4978 SDNode *LHSN = N->getOperand(0).getNode();
4979 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4980 UI != E; ++UI)
4981 if (UI->getOpcode() == PPCISD::VCMPo &&
4982 UI->getOperand(1) == N->getOperand(1) &&
4983 UI->getOperand(2) == N->getOperand(2) &&
4984 UI->getOperand(0) == N->getOperand(0)) {
4985 VCMPoNode = *UI;
4986 break;
4989 // If there is no VCMPo node, or if the flag value has a single use, don't
4990 // transform this.
4991 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4992 break;
4994 // Look at the (necessarily single) use of the flag value. If it has a
4995 // chain, this transformation is more complex. Note that multiple things
4996 // could use the value result, which we should ignore.
4997 SDNode *FlagUser = 0;
4998 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4999 FlagUser == 0; ++UI) {
5000 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5001 SDNode *User = *UI;
5002 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5003 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5004 FlagUser = User;
5005 break;
5010 // If the user is a MFCR instruction, we know this is safe. Otherwise we
5011 // give up for right now.
5012 if (FlagUser->getOpcode() == PPCISD::MFCR)
5013 return SDValue(VCMPoNode, 0);
5015 break;
5017 case ISD::BR_CC: {
5018 // If this is a branch on an altivec predicate comparison, lower this so
5019 // that we don't have to do a MFCR: instead, branch directly on CR6. This
5020 // lowering is done pre-legalize, because the legalizer lowers the predicate
5021 // compare down to code that is difficult to reassemble.
5022 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5023 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5024 int CompareOpc;
5025 bool isDot;
5027 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5028 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5029 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5030 assert(isDot && "Can't compare against a vector result!");
5032 // If this is a comparison against something other than 0/1, then we know
5033 // that the condition is never/always true.
5034 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5035 if (Val != 0 && Val != 1) {
5036 if (CC == ISD::SETEQ) // Cond never true, remove branch.
5037 return N->getOperand(0);
5038 // Always !=, turn it into an unconditional branch.
5039 return DAG.getNode(ISD::BR, dl, MVT::Other,
5040 N->getOperand(0), N->getOperand(4));
5043 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5045 // Create the PPCISD altivec 'dot' comparison node.
5046 std::vector<EVT> VTs;
5047 SDValue Ops[] = {
5048 LHS.getOperand(2), // LHS of compare
5049 LHS.getOperand(3), // RHS of compare
5050 DAG.getConstant(CompareOpc, MVT::i32)
5052 VTs.push_back(LHS.getOperand(2).getValueType());
5053 VTs.push_back(MVT::Flag);
5054 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5056 // Unpack the result based on how the target uses it.
5057 PPC::Predicate CompOpc;
5058 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5059 default: // Can't happen, don't crash on invalid number though.
5060 case 0: // Branch on the value of the EQ bit of CR6.
5061 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5062 break;
5063 case 1: // Branch on the inverted value of the EQ bit of CR6.
5064 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5065 break;
5066 case 2: // Branch on the value of the LT bit of CR6.
5067 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5068 break;
5069 case 3: // Branch on the inverted value of the LT bit of CR6.
5070 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5071 break;
5074 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5075 DAG.getConstant(CompOpc, MVT::i32),
5076 DAG.getRegister(PPC::CR6, MVT::i32),
5077 N->getOperand(4), CompNode.getValue(1));
5079 break;
5083 return SDValue();
5086 //===----------------------------------------------------------------------===//
5087 // Inline Assembly Support
5088 //===----------------------------------------------------------------------===//
5090 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5091 const APInt &Mask,
5092 APInt &KnownZero,
5093 APInt &KnownOne,
5094 const SelectionDAG &DAG,
5095 unsigned Depth) const {
5096 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5097 switch (Op.getOpcode()) {
5098 default: break;
5099 case PPCISD::LBRX: {
5100 // lhbrx is known to have the top bits cleared out.
5101 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
5102 KnownZero = 0xFFFF0000;
5103 break;
5105 case ISD::INTRINSIC_WO_CHAIN: {
5106 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5107 default: break;
5108 case Intrinsic::ppc_altivec_vcmpbfp_p:
5109 case Intrinsic::ppc_altivec_vcmpeqfp_p:
5110 case Intrinsic::ppc_altivec_vcmpequb_p:
5111 case Intrinsic::ppc_altivec_vcmpequh_p:
5112 case Intrinsic::ppc_altivec_vcmpequw_p:
5113 case Intrinsic::ppc_altivec_vcmpgefp_p:
5114 case Intrinsic::ppc_altivec_vcmpgtfp_p:
5115 case Intrinsic::ppc_altivec_vcmpgtsb_p:
5116 case Intrinsic::ppc_altivec_vcmpgtsh_p:
5117 case Intrinsic::ppc_altivec_vcmpgtsw_p:
5118 case Intrinsic::ppc_altivec_vcmpgtub_p:
5119 case Intrinsic::ppc_altivec_vcmpgtuh_p:
5120 case Intrinsic::ppc_altivec_vcmpgtuw_p:
5121 KnownZero = ~1U; // All bits but the low one are known to be zero.
5122 break;
5129 /// getConstraintType - Given a constraint, return the type of
5130 /// constraint it is for this target.
5131 PPCTargetLowering::ConstraintType
5132 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5133 if (Constraint.size() == 1) {
5134 switch (Constraint[0]) {
5135 default: break;
5136 case 'b':
5137 case 'r':
5138 case 'f':
5139 case 'v':
5140 case 'y':
5141 return C_RegisterClass;
5144 return TargetLowering::getConstraintType(Constraint);
5147 std::pair<unsigned, const TargetRegisterClass*>
5148 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5149 EVT VT) const {
5150 if (Constraint.size() == 1) {
5151 // GCC RS6000 Constraint Letters
5152 switch (Constraint[0]) {
5153 case 'b': // R1-R31
5154 case 'r': // R0-R31
5155 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5156 return std::make_pair(0U, PPC::G8RCRegisterClass);
5157 return std::make_pair(0U, PPC::GPRCRegisterClass);
5158 case 'f':
5159 if (VT == MVT::f32)
5160 return std::make_pair(0U, PPC::F4RCRegisterClass);
5161 else if (VT == MVT::f64)
5162 return std::make_pair(0U, PPC::F8RCRegisterClass);
5163 break;
5164 case 'v':
5165 return std::make_pair(0U, PPC::VRRCRegisterClass);
5166 case 'y': // crrc
5167 return std::make_pair(0U, PPC::CRRCRegisterClass);
5171 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5175 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5176 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is true
5177 /// it means one of the asm constraint of the inline asm instruction being
5178 /// processed is 'm'.
5179 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5180 bool hasMemory,
5181 std::vector<SDValue>&Ops,
5182 SelectionDAG &DAG) const {
5183 SDValue Result(0,0);
5184 switch (Letter) {
5185 default: break;
5186 case 'I':
5187 case 'J':
5188 case 'K':
5189 case 'L':
5190 case 'M':
5191 case 'N':
5192 case 'O':
5193 case 'P': {
5194 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5195 if (!CST) return; // Must be an immediate to match.
5196 unsigned Value = CST->getZExtValue();
5197 switch (Letter) {
5198 default: llvm_unreachable("Unknown constraint letter!");
5199 case 'I': // "I" is a signed 16-bit constant.
5200 if ((short)Value == (int)Value)
5201 Result = DAG.getTargetConstant(Value, Op.getValueType());
5202 break;
5203 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
5204 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
5205 if ((short)Value == 0)
5206 Result = DAG.getTargetConstant(Value, Op.getValueType());
5207 break;
5208 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
5209 if ((Value >> 16) == 0)
5210 Result = DAG.getTargetConstant(Value, Op.getValueType());
5211 break;
5212 case 'M': // "M" is a constant that is greater than 31.
5213 if (Value > 31)
5214 Result = DAG.getTargetConstant(Value, Op.getValueType());
5215 break;
5216 case 'N': // "N" is a positive constant that is an exact power of two.
5217 if ((int)Value > 0 && isPowerOf2_32(Value))
5218 Result = DAG.getTargetConstant(Value, Op.getValueType());
5219 break;
5220 case 'O': // "O" is the constant zero.
5221 if (Value == 0)
5222 Result = DAG.getTargetConstant(Value, Op.getValueType());
5223 break;
5224 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
5225 if ((short)-Value == (int)-Value)
5226 Result = DAG.getTargetConstant(Value, Op.getValueType());
5227 break;
5229 break;
5233 if (Result.getNode()) {
5234 Ops.push_back(Result);
5235 return;
5238 // Handle standard constraint letters.
5239 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5242 // isLegalAddressingMode - Return true if the addressing mode represented
5243 // by AM is legal for this target, for a load/store of the specified type.
5244 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5245 const Type *Ty) const {
5246 // FIXME: PPC does not allow r+i addressing modes for vectors!
5248 // PPC allows a sign-extended 16-bit immediate field.
5249 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5250 return false;
5252 // No global is ever allowed as a base.
5253 if (AM.BaseGV)
5254 return false;
5256 // PPC only support r+r,
5257 switch (AM.Scale) {
5258 case 0: // "r+i" or just "i", depending on HasBaseReg.
5259 break;
5260 case 1:
5261 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
5262 return false;
5263 // Otherwise we have r+r or r+i.
5264 break;
5265 case 2:
5266 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
5267 return false;
5268 // Allow 2*r as r+r.
5269 break;
5270 default:
5271 // No other scales are supported.
5272 return false;
5275 return true;
5278 /// isLegalAddressImmediate - Return true if the integer value can be used
5279 /// as the offset of the target addressing mode for load / store of the
5280 /// given type.
5281 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5282 // PPC allows a sign-extended 16-bit immediate field.
5283 return (V > -(1 << 16) && V < (1 << 16)-1);
5286 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5287 return false;
5290 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5291 DebugLoc dl = Op.getDebugLoc();
5292 // Depths > 0 not supported yet!
5293 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5294 return SDValue();
5296 MachineFunction &MF = DAG.getMachineFunction();
5297 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5299 // Just load the return address off the stack.
5300 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5302 // Make sure the function really does not optimize away the store of the RA
5303 // to the stack.
5304 FuncInfo->setLRStoreRequired();
5305 return DAG.getLoad(getPointerTy(), dl,
5306 DAG.getEntryNode(), RetAddrFI, NULL, 0);
5309 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5310 DebugLoc dl = Op.getDebugLoc();
5311 // Depths > 0 not supported yet!
5312 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5313 return SDValue();
5315 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5316 bool isPPC64 = PtrVT == MVT::i64;
5318 MachineFunction &MF = DAG.getMachineFunction();
5319 MachineFrameInfo *MFI = MF.getFrameInfo();
5320 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5321 && MFI->getStackSize();
5323 if (isPPC64)
5324 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5325 MVT::i64);
5326 else
5327 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5328 MVT::i32);
5331 bool
5332 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5333 // The PowerPC target isn't yet aware of offsets.
5334 return false;
5337 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5338 bool isSrcConst, bool isSrcStr,
5339 SelectionDAG &DAG) const {
5340 if (this->PPCSubTarget.isPPC64()) {
5341 return MVT::i64;
5342 } else {
5343 return MVT::i32;