pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Analysis / IPA / Andersens.cpp
blob9de1fcc5c199f5344e6b7a4ec9b9ce69400f8c60
1 //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an implementation of Andersen's interprocedural alias
11 // analysis
13 // In pointer analysis terms, this is a subset-based, flow-insensitive,
14 // field-sensitive, and context-insensitive algorithm pointer algorithm.
16 // This algorithm is implemented as three stages:
17 // 1. Object identification.
18 // 2. Inclusion constraint identification.
19 // 3. Offline constraint graph optimization
20 // 4. Inclusion constraint solving.
22 // The object identification stage identifies all of the memory objects in the
23 // program, which includes globals, heap allocated objects, and stack allocated
24 // objects.
26 // The inclusion constraint identification stage finds all inclusion constraints
27 // in the program by scanning the program, looking for pointer assignments and
28 // other statements that effect the points-to graph. For a statement like "A =
29 // B", this statement is processed to indicate that A can point to anything that
30 // B can point to. Constraints can handle copies, loads, and stores, and
31 // address taking.
33 // The offline constraint graph optimization portion includes offline variable
34 // substitution algorithms intended to compute pointer and location
35 // equivalences. Pointer equivalences are those pointers that will have the
36 // same points-to sets, and location equivalences are those variables that
37 // always appear together in points-to sets. It also includes an offline
38 // cycle detection algorithm that allows cycles to be collapsed sooner
39 // during solving.
41 // The inclusion constraint solving phase iteratively propagates the inclusion
42 // constraints until a fixed point is reached. This is an O(N^3) algorithm.
44 // Function constraints are handled as if they were structs with X fields.
45 // Thus, an access to argument X of function Y is an access to node index
46 // getNode(Y) + X. This representation allows handling of indirect calls
47 // without any issues. To wit, an indirect call Y(a,b) is equivalent to
48 // *(Y + 1) = a, *(Y + 2) = b.
49 // The return node for a function is always located at getNode(F) +
50 // CallReturnPos. The arguments start at getNode(F) + CallArgPos.
52 // Future Improvements:
53 // Use of BDD's.
54 //===----------------------------------------------------------------------===//
56 #define DEBUG_TYPE "anders-aa"
57 #include "llvm/Constants.h"
58 #include "llvm/DerivedTypes.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/Module.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/InstIterator.h"
65 #include "llvm/Support/InstVisitor.h"
66 #include "llvm/Analysis/AliasAnalysis.h"
67 #include "llvm/Analysis/Passes.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/System/Atomic.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/ADT/SparseBitVector.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include <algorithm>
74 #include <set>
75 #include <list>
76 #include <map>
77 #include <stack>
78 #include <vector>
79 #include <queue>
81 // Determining the actual set of nodes the universal set can consist of is very
82 // expensive because it means propagating around very large sets. We rely on
83 // other analysis being able to determine which nodes can never be pointed to in
84 // order to disambiguate further than "points-to anything".
85 #define FULL_UNIVERSAL 0
87 using namespace llvm;
88 #ifndef NDEBUG
89 STATISTIC(NumIters , "Number of iterations to reach convergence");
90 #endif
91 STATISTIC(NumConstraints, "Number of constraints");
92 STATISTIC(NumNodes , "Number of nodes");
93 STATISTIC(NumUnified , "Number of variables unified");
94 STATISTIC(NumErased , "Number of redundant constraints erased");
96 static const unsigned SelfRep = (unsigned)-1;
97 static const unsigned Unvisited = (unsigned)-1;
98 // Position of the function return node relative to the function node.
99 static const unsigned CallReturnPos = 1;
100 // Position of the function call node relative to the function node.
101 static const unsigned CallFirstArgPos = 2;
103 namespace {
104 struct BitmapKeyInfo {
105 static inline SparseBitVector<> *getEmptyKey() {
106 return reinterpret_cast<SparseBitVector<> *>(-1);
108 static inline SparseBitVector<> *getTombstoneKey() {
109 return reinterpret_cast<SparseBitVector<> *>(-2);
111 static unsigned getHashValue(const SparseBitVector<> *bitmap) {
112 return bitmap->getHashValue();
114 static bool isEqual(const SparseBitVector<> *LHS,
115 const SparseBitVector<> *RHS) {
116 if (LHS == RHS)
117 return true;
118 else if (LHS == getEmptyKey() || RHS == getEmptyKey()
119 || LHS == getTombstoneKey() || RHS == getTombstoneKey())
120 return false;
122 return *LHS == *RHS;
125 static bool isPod() { return true; }
128 class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis,
129 private InstVisitor<Andersens> {
130 struct Node;
132 /// Constraint - Objects of this structure are used to represent the various
133 /// constraints identified by the algorithm. The constraints are 'copy',
134 /// for statements like "A = B", 'load' for statements like "A = *B",
135 /// 'store' for statements like "*A = B", and AddressOf for statements like
136 /// A = alloca; The Offset is applied as *(A + K) = B for stores,
137 /// A = *(B + K) for loads, and A = B + K for copies. It is
138 /// illegal on addressof constraints (because it is statically
139 /// resolvable to A = &C where C = B + K)
141 struct Constraint {
142 enum ConstraintType { Copy, Load, Store, AddressOf } Type;
143 unsigned Dest;
144 unsigned Src;
145 unsigned Offset;
147 Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
148 : Type(Ty), Dest(D), Src(S), Offset(O) {
149 assert((Offset == 0 || Ty != AddressOf) &&
150 "Offset is illegal on addressof constraints");
153 bool operator==(const Constraint &RHS) const {
154 return RHS.Type == Type
155 && RHS.Dest == Dest
156 && RHS.Src == Src
157 && RHS.Offset == Offset;
160 bool operator!=(const Constraint &RHS) const {
161 return !(*this == RHS);
164 bool operator<(const Constraint &RHS) const {
165 if (RHS.Type != Type)
166 return RHS.Type < Type;
167 else if (RHS.Dest != Dest)
168 return RHS.Dest < Dest;
169 else if (RHS.Src != Src)
170 return RHS.Src < Src;
171 return RHS.Offset < Offset;
175 // Information DenseSet requires implemented in order to be able to do
176 // it's thing
177 struct PairKeyInfo {
178 static inline std::pair<unsigned, unsigned> getEmptyKey() {
179 return std::make_pair(~0U, ~0U);
181 static inline std::pair<unsigned, unsigned> getTombstoneKey() {
182 return std::make_pair(~0U - 1, ~0U - 1);
184 static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
185 return P.first ^ P.second;
187 static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
188 const std::pair<unsigned, unsigned> &RHS) {
189 return LHS == RHS;
193 struct ConstraintKeyInfo {
194 static inline Constraint getEmptyKey() {
195 return Constraint(Constraint::Copy, ~0U, ~0U, ~0U);
197 static inline Constraint getTombstoneKey() {
198 return Constraint(Constraint::Copy, ~0U - 1, ~0U - 1, ~0U - 1);
200 static unsigned getHashValue(const Constraint &C) {
201 return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
203 static bool isEqual(const Constraint &LHS,
204 const Constraint &RHS) {
205 return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
206 && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
210 // Node class - This class is used to represent a node in the constraint
211 // graph. Due to various optimizations, it is not always the case that
212 // there is a mapping from a Node to a Value. In particular, we add
213 // artificial Node's that represent the set of pointed-to variables shared
214 // for each location equivalent Node.
215 struct Node {
216 private:
217 static volatile sys::cas_flag Counter;
219 public:
220 Value *Val;
221 SparseBitVector<> *Edges;
222 SparseBitVector<> *PointsTo;
223 SparseBitVector<> *OldPointsTo;
224 std::list<Constraint> Constraints;
226 // Pointer and location equivalence labels
227 unsigned PointerEquivLabel;
228 unsigned LocationEquivLabel;
229 // Predecessor edges, both real and implicit
230 SparseBitVector<> *PredEdges;
231 SparseBitVector<> *ImplicitPredEdges;
232 // Set of nodes that point to us, only use for location equivalence.
233 SparseBitVector<> *PointedToBy;
234 // Number of incoming edges, used during variable substitution to early
235 // free the points-to sets
236 unsigned NumInEdges;
237 // True if our points-to set is in the Set2PEClass map
238 bool StoredInHash;
239 // True if our node has no indirect constraints (complex or otherwise)
240 bool Direct;
241 // True if the node is address taken, *or* it is part of a group of nodes
242 // that must be kept together. This is set to true for functions and
243 // their arg nodes, which must be kept at the same position relative to
244 // their base function node.
245 bool AddressTaken;
247 // Nodes in cycles (or in equivalence classes) are united together using a
248 // standard union-find representation with path compression. NodeRep
249 // gives the index into GraphNodes for the representative Node.
250 unsigned NodeRep;
252 // Modification timestamp. Assigned from Counter.
253 // Used for work list prioritization.
254 unsigned Timestamp;
256 explicit Node(bool direct = true) :
257 Val(0), Edges(0), PointsTo(0), OldPointsTo(0),
258 PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
259 ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
260 StoredInHash(false), Direct(direct), AddressTaken(false),
261 NodeRep(SelfRep), Timestamp(0) { }
263 Node *setValue(Value *V) {
264 assert(Val == 0 && "Value already set for this node!");
265 Val = V;
266 return this;
269 /// getValue - Return the LLVM value corresponding to this node.
271 Value *getValue() const { return Val; }
273 /// addPointerTo - Add a pointer to the list of pointees of this node,
274 /// returning true if this caused a new pointer to be added, or false if
275 /// we already knew about the points-to relation.
276 bool addPointerTo(unsigned Node) {
277 return PointsTo->test_and_set(Node);
280 /// intersects - Return true if the points-to set of this node intersects
281 /// with the points-to set of the specified node.
282 bool intersects(Node *N) const;
284 /// intersectsIgnoring - Return true if the points-to set of this node
285 /// intersects with the points-to set of the specified node on any nodes
286 /// except for the specified node to ignore.
287 bool intersectsIgnoring(Node *N, unsigned) const;
289 // Timestamp a node (used for work list prioritization)
290 void Stamp() {
291 Timestamp = sys::AtomicIncrement(&Counter);
292 --Timestamp;
295 bool isRep() const {
296 return( (int) NodeRep < 0 );
300 struct WorkListElement {
301 Node* node;
302 unsigned Timestamp;
303 WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}
305 // Note that we reverse the sense of the comparison because we
306 // actually want to give low timestamps the priority over high,
307 // whereas priority is typically interpreted as a greater value is
308 // given high priority.
309 bool operator<(const WorkListElement& that) const {
310 return( this->Timestamp > that.Timestamp );
314 // Priority-queue based work list specialized for Nodes.
315 class WorkList {
316 std::priority_queue<WorkListElement> Q;
318 public:
319 void insert(Node* n) {
320 Q.push( WorkListElement(n, n->Timestamp) );
323 // We automatically discard non-representative nodes and nodes
324 // that were in the work list twice (we keep a copy of the
325 // timestamp in the work list so we can detect this situation by
326 // comparing against the node's current timestamp).
327 Node* pop() {
328 while( !Q.empty() ) {
329 WorkListElement x = Q.top(); Q.pop();
330 Node* INode = x.node;
332 if( INode->isRep() &&
333 INode->Timestamp == x.Timestamp ) {
334 return(x.node);
337 return(0);
340 bool empty() {
341 return Q.empty();
345 /// GraphNodes - This vector is populated as part of the object
346 /// identification stage of the analysis, which populates this vector with a
347 /// node for each memory object and fills in the ValueNodes map.
348 std::vector<Node> GraphNodes;
350 /// ValueNodes - This map indicates the Node that a particular Value* is
351 /// represented by. This contains entries for all pointers.
352 DenseMap<Value*, unsigned> ValueNodes;
354 /// ObjectNodes - This map contains entries for each memory object in the
355 /// program: globals, alloca's and mallocs.
356 DenseMap<Value*, unsigned> ObjectNodes;
358 /// ReturnNodes - This map contains an entry for each function in the
359 /// program that returns a value.
360 DenseMap<Function*, unsigned> ReturnNodes;
362 /// VarargNodes - This map contains the entry used to represent all pointers
363 /// passed through the varargs portion of a function call for a particular
364 /// function. An entry is not present in this map for functions that do not
365 /// take variable arguments.
366 DenseMap<Function*, unsigned> VarargNodes;
369 /// Constraints - This vector contains a list of all of the constraints
370 /// identified by the program.
371 std::vector<Constraint> Constraints;
373 // Map from graph node to maximum K value that is allowed (for functions,
374 // this is equivalent to the number of arguments + CallFirstArgPos)
375 std::map<unsigned, unsigned> MaxK;
377 /// This enum defines the GraphNodes indices that correspond to important
378 /// fixed sets.
379 enum {
380 UniversalSet = 0,
381 NullPtr = 1,
382 NullObject = 2,
383 NumberSpecialNodes
385 // Stack for Tarjan's
386 std::stack<unsigned> SCCStack;
387 // Map from Graph Node to DFS number
388 std::vector<unsigned> Node2DFS;
389 // Map from Graph Node to Deleted from graph.
390 std::vector<bool> Node2Deleted;
391 // Same as Node Maps, but implemented as std::map because it is faster to
392 // clear
393 std::map<unsigned, unsigned> Tarjan2DFS;
394 std::map<unsigned, bool> Tarjan2Deleted;
395 // Current DFS number
396 unsigned DFSNumber;
398 // Work lists.
399 WorkList w1, w2;
400 WorkList *CurrWL, *NextWL; // "current" and "next" work lists
402 // Offline variable substitution related things
404 // Temporary rep storage, used because we can't collapse SCC's in the
405 // predecessor graph by uniting the variables permanently, we can only do so
406 // for the successor graph.
407 std::vector<unsigned> VSSCCRep;
408 // Mapping from node to whether we have visited it during SCC finding yet.
409 std::vector<bool> Node2Visited;
410 // During variable substitution, we create unknowns to represent the unknown
411 // value that is a dereference of a variable. These nodes are known as
412 // "ref" nodes (since they represent the value of dereferences).
413 unsigned FirstRefNode;
414 // During HVN, we create represent address taken nodes as if they were
415 // unknown (since HVN, unlike HU, does not evaluate unions).
416 unsigned FirstAdrNode;
417 // Current pointer equivalence class number
418 unsigned PEClass;
419 // Mapping from points-to sets to equivalence classes
420 typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
421 BitVectorMap Set2PEClass;
422 // Mapping from pointer equivalences to the representative node. -1 if we
423 // have no representative node for this pointer equivalence class yet.
424 std::vector<int> PEClass2Node;
425 // Mapping from pointer equivalences to representative node. This includes
426 // pointer equivalent but not location equivalent variables. -1 if we have
427 // no representative node for this pointer equivalence class yet.
428 std::vector<int> PENLEClass2Node;
429 // Union/Find for HCD
430 std::vector<unsigned> HCDSCCRep;
431 // HCD's offline-detected cycles; "Statically DeTected"
432 // -1 if not part of such a cycle, otherwise a representative node.
433 std::vector<int> SDT;
434 // Whether to use SDT (UniteNodes can use it during solving, but not before)
435 bool SDTActive;
437 public:
438 static char ID;
439 Andersens() : ModulePass(&ID) {}
441 bool runOnModule(Module &M) {
442 InitializeAliasAnalysis(this);
443 IdentifyObjects(M);
444 CollectConstraints(M);
445 #undef DEBUG_TYPE
446 #define DEBUG_TYPE "anders-aa-constraints"
447 DEBUG(PrintConstraints());
448 #undef DEBUG_TYPE
449 #define DEBUG_TYPE "anders-aa"
450 SolveConstraints();
451 DEBUG(PrintPointsToGraph());
453 // Free the constraints list, as we don't need it to respond to alias
454 // requests.
455 std::vector<Constraint>().swap(Constraints);
456 //These are needed for Print() (-analyze in opt)
457 //ObjectNodes.clear();
458 //ReturnNodes.clear();
459 //VarargNodes.clear();
460 return false;
463 void releaseMemory() {
464 // FIXME: Until we have transitively required passes working correctly,
465 // this cannot be enabled! Otherwise, using -count-aa with the pass
466 // causes memory to be freed too early. :(
467 #if 0
468 // The memory objects and ValueNodes data structures at the only ones that
469 // are still live after construction.
470 std::vector<Node>().swap(GraphNodes);
471 ValueNodes.clear();
472 #endif
475 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
476 AliasAnalysis::getAnalysisUsage(AU);
477 AU.setPreservesAll(); // Does not transform code
480 //------------------------------------------------
481 // Implement the AliasAnalysis API
483 AliasResult alias(const Value *V1, unsigned V1Size,
484 const Value *V2, unsigned V2Size);
485 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
486 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
487 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
488 bool pointsToConstantMemory(const Value *P);
490 virtual void deleteValue(Value *V) {
491 ValueNodes.erase(V);
492 getAnalysis<AliasAnalysis>().deleteValue(V);
495 virtual void copyValue(Value *From, Value *To) {
496 ValueNodes[To] = ValueNodes[From];
497 getAnalysis<AliasAnalysis>().copyValue(From, To);
500 private:
501 /// getNode - Return the node corresponding to the specified pointer scalar.
503 unsigned getNode(Value *V) {
504 if (Constant *C = dyn_cast<Constant>(V))
505 if (!isa<GlobalValue>(C))
506 return getNodeForConstantPointer(C);
508 DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
509 if (I == ValueNodes.end()) {
510 #ifndef NDEBUG
511 V->dump();
512 #endif
513 llvm_unreachable("Value does not have a node in the points-to graph!");
515 return I->second;
518 /// getObject - Return the node corresponding to the memory object for the
519 /// specified global or allocation instruction.
520 unsigned getObject(Value *V) const {
521 DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V);
522 assert(I != ObjectNodes.end() &&
523 "Value does not have an object in the points-to graph!");
524 return I->second;
527 /// getReturnNode - Return the node representing the return value for the
528 /// specified function.
529 unsigned getReturnNode(Function *F) const {
530 DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F);
531 assert(I != ReturnNodes.end() && "Function does not return a value!");
532 return I->second;
535 /// getVarargNode - Return the node representing the variable arguments
536 /// formal for the specified function.
537 unsigned getVarargNode(Function *F) const {
538 DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F);
539 assert(I != VarargNodes.end() && "Function does not take var args!");
540 return I->second;
543 /// getNodeValue - Get the node for the specified LLVM value and set the
544 /// value for it to be the specified value.
545 unsigned getNodeValue(Value &V) {
546 unsigned Index = getNode(&V);
547 GraphNodes[Index].setValue(&V);
548 return Index;
551 unsigned UniteNodes(unsigned First, unsigned Second,
552 bool UnionByRank = true);
553 unsigned FindNode(unsigned Node);
554 unsigned FindNode(unsigned Node) const;
556 void IdentifyObjects(Module &M);
557 void CollectConstraints(Module &M);
558 bool AnalyzeUsesOfFunction(Value *);
559 void CreateConstraintGraph();
560 void OptimizeConstraints();
561 unsigned FindEquivalentNode(unsigned, unsigned);
562 void ClumpAddressTaken();
563 void RewriteConstraints();
564 void HU();
565 void HVN();
566 void HCD();
567 void Search(unsigned Node);
568 void UnitePointerEquivalences();
569 void SolveConstraints();
570 bool QueryNode(unsigned Node);
571 void Condense(unsigned Node);
572 void HUValNum(unsigned Node);
573 void HVNValNum(unsigned Node);
574 unsigned getNodeForConstantPointer(Constant *C);
575 unsigned getNodeForConstantPointerTarget(Constant *C);
576 void AddGlobalInitializerConstraints(unsigned, Constant *C);
578 void AddConstraintsForNonInternalLinkage(Function *F);
579 void AddConstraintsForCall(CallSite CS, Function *F);
580 bool AddConstraintsForExternalCall(CallSite CS, Function *F);
583 void PrintNode(const Node *N) const;
584 void PrintConstraints() const ;
585 void PrintConstraint(const Constraint &) const;
586 void PrintLabels() const;
587 void PrintPointsToGraph() const;
589 //===------------------------------------------------------------------===//
590 // Instruction visitation methods for adding constraints
592 friend class InstVisitor<Andersens>;
593 void visitReturnInst(ReturnInst &RI);
594 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
595 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
596 void visitCallSite(CallSite CS);
597 void visitAllocationInst(AllocationInst &AI);
598 void visitLoadInst(LoadInst &LI);
599 void visitStoreInst(StoreInst &SI);
600 void visitGetElementPtrInst(GetElementPtrInst &GEP);
601 void visitPHINode(PHINode &PN);
602 void visitCastInst(CastInst &CI);
603 void visitICmpInst(ICmpInst &ICI) {} // NOOP!
604 void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
605 void visitSelectInst(SelectInst &SI);
606 void visitVAArg(VAArgInst &I);
607 void visitInstruction(Instruction &I);
609 //===------------------------------------------------------------------===//
610 // Implement Analyize interface
612 void print(raw_ostream &O, const Module*) const {
613 PrintPointsToGraph();
618 char Andersens::ID = 0;
619 static RegisterPass<Andersens>
620 X("anders-aa", "Andersen's Interprocedural Alias Analysis (experimental)",
621 false, true);
622 static RegisterAnalysisGroup<AliasAnalysis> Y(X);
624 // Initialize Timestamp Counter (static).
625 volatile llvm::sys::cas_flag Andersens::Node::Counter = 0;
627 ModulePass *llvm::createAndersensPass() { return new Andersens(); }
629 //===----------------------------------------------------------------------===//
630 // AliasAnalysis Interface Implementation
631 //===----------------------------------------------------------------------===//
633 AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
634 const Value *V2, unsigned V2Size) {
635 Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
636 Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];
638 // Check to see if the two pointers are known to not alias. They don't alias
639 // if their points-to sets do not intersect.
640 if (!N1->intersectsIgnoring(N2, NullObject))
641 return NoAlias;
643 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
646 AliasAnalysis::ModRefResult
647 Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
648 // The only thing useful that we can contribute for mod/ref information is
649 // when calling external function calls: if we know that memory never escapes
650 // from the program, it cannot be modified by an external call.
652 // NOTE: This is not really safe, at least not when the entire program is not
653 // available. The deal is that the external function could call back into the
654 // program and modify stuff. We ignore this technical niggle for now. This
655 // is, after all, a "research quality" implementation of Andersen's analysis.
656 if (Function *F = CS.getCalledFunction())
657 if (F->isDeclaration()) {
658 Node *N1 = &GraphNodes[FindNode(getNode(P))];
660 if (N1->PointsTo->empty())
661 return NoModRef;
662 #if FULL_UNIVERSAL
663 if (!UniversalSet->PointsTo->test(FindNode(getNode(P))))
664 return NoModRef; // Universal set does not contain P
665 #else
666 if (!N1->PointsTo->test(UniversalSet))
667 return NoModRef; // P doesn't point to the universal set.
668 #endif
671 return AliasAnalysis::getModRefInfo(CS, P, Size);
674 AliasAnalysis::ModRefResult
675 Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
676 return AliasAnalysis::getModRefInfo(CS1,CS2);
679 /// getMustAlias - We can provide must alias information if we know that a
680 /// pointer can only point to a specific function or the null pointer.
681 /// Unfortunately we cannot determine must-alias information for global
682 /// variables or any other memory memory objects because we do not track whether
683 /// a pointer points to the beginning of an object or a field of it.
684 void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
685 Node *N = &GraphNodes[FindNode(getNode(P))];
686 if (N->PointsTo->count() == 1) {
687 Node *Pointee = &GraphNodes[N->PointsTo->find_first()];
688 // If a function is the only object in the points-to set, then it must be
689 // the destination. Note that we can't handle global variables here,
690 // because we don't know if the pointer is actually pointing to a field of
691 // the global or to the beginning of it.
692 if (Value *V = Pointee->getValue()) {
693 if (Function *F = dyn_cast<Function>(V))
694 RetVals.push_back(F);
695 } else {
696 // If the object in the points-to set is the null object, then the null
697 // pointer is a must alias.
698 if (Pointee == &GraphNodes[NullObject])
699 RetVals.push_back(Constant::getNullValue(P->getType()));
702 AliasAnalysis::getMustAliases(P, RetVals);
705 /// pointsToConstantMemory - If we can determine that this pointer only points
706 /// to constant memory, return true. In practice, this means that if the
707 /// pointer can only point to constant globals, functions, or the null pointer,
708 /// return true.
710 bool Andersens::pointsToConstantMemory(const Value *P) {
711 Node *N = &GraphNodes[FindNode(getNode(const_cast<Value*>(P)))];
712 unsigned i;
714 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
715 bi != N->PointsTo->end();
716 ++bi) {
717 i = *bi;
718 Node *Pointee = &GraphNodes[i];
719 if (Value *V = Pointee->getValue()) {
720 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
721 !cast<GlobalVariable>(V)->isConstant()))
722 return AliasAnalysis::pointsToConstantMemory(P);
723 } else {
724 if (i != NullObject)
725 return AliasAnalysis::pointsToConstantMemory(P);
729 return true;
732 //===----------------------------------------------------------------------===//
733 // Object Identification Phase
734 //===----------------------------------------------------------------------===//
736 /// IdentifyObjects - This stage scans the program, adding an entry to the
737 /// GraphNodes list for each memory object in the program (global stack or
738 /// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
740 void Andersens::IdentifyObjects(Module &M) {
741 unsigned NumObjects = 0;
743 // Object #0 is always the universal set: the object that we don't know
744 // anything about.
745 assert(NumObjects == UniversalSet && "Something changed!");
746 ++NumObjects;
748 // Object #1 always represents the null pointer.
749 assert(NumObjects == NullPtr && "Something changed!");
750 ++NumObjects;
752 // Object #2 always represents the null object (the object pointed to by null)
753 assert(NumObjects == NullObject && "Something changed!");
754 ++NumObjects;
756 // Add all the globals first.
757 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
758 I != E; ++I) {
759 ObjectNodes[I] = NumObjects++;
760 ValueNodes[I] = NumObjects++;
763 // Add nodes for all of the functions and the instructions inside of them.
764 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
765 // The function itself is a memory object.
766 unsigned First = NumObjects;
767 ValueNodes[F] = NumObjects++;
768 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
769 ReturnNodes[F] = NumObjects++;
770 if (F->getFunctionType()->isVarArg())
771 VarargNodes[F] = NumObjects++;
774 // Add nodes for all of the incoming pointer arguments.
775 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
776 I != E; ++I)
778 if (isa<PointerType>(I->getType()))
779 ValueNodes[I] = NumObjects++;
781 MaxK[First] = NumObjects - First;
783 // Scan the function body, creating a memory object for each heap/stack
784 // allocation in the body of the function and a node to represent all
785 // pointer values defined by instructions and used as operands.
786 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
787 // If this is an heap or stack allocation, create a node for the memory
788 // object.
789 if (isa<PointerType>(II->getType())) {
790 ValueNodes[&*II] = NumObjects++;
791 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
792 ObjectNodes[AI] = NumObjects++;
795 // Calls to inline asm need to be added as well because the callee isn't
796 // referenced anywhere else.
797 if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
798 Value *Callee = CI->getCalledValue();
799 if (isa<InlineAsm>(Callee))
800 ValueNodes[Callee] = NumObjects++;
805 // Now that we know how many objects to create, make them all now!
806 GraphNodes.resize(NumObjects);
807 NumNodes += NumObjects;
810 //===----------------------------------------------------------------------===//
811 // Constraint Identification Phase
812 //===----------------------------------------------------------------------===//
814 /// getNodeForConstantPointer - Return the node corresponding to the constant
815 /// pointer itself.
816 unsigned Andersens::getNodeForConstantPointer(Constant *C) {
817 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
819 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
820 return NullPtr;
821 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
822 return getNode(GV);
823 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
824 switch (CE->getOpcode()) {
825 case Instruction::GetElementPtr:
826 return getNodeForConstantPointer(CE->getOperand(0));
827 case Instruction::IntToPtr:
828 return UniversalSet;
829 case Instruction::BitCast:
830 return getNodeForConstantPointer(CE->getOperand(0));
831 default:
832 errs() << "Constant Expr not yet handled: " << *CE << "\n";
833 llvm_unreachable(0);
835 } else {
836 llvm_unreachable("Unknown constant pointer!");
838 return 0;
841 /// getNodeForConstantPointerTarget - Return the node POINTED TO by the
842 /// specified constant pointer.
843 unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
844 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
846 if (isa<ConstantPointerNull>(C))
847 return NullObject;
848 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
849 return getObject(GV);
850 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
851 switch (CE->getOpcode()) {
852 case Instruction::GetElementPtr:
853 return getNodeForConstantPointerTarget(CE->getOperand(0));
854 case Instruction::IntToPtr:
855 return UniversalSet;
856 case Instruction::BitCast:
857 return getNodeForConstantPointerTarget(CE->getOperand(0));
858 default:
859 errs() << "Constant Expr not yet handled: " << *CE << "\n";
860 llvm_unreachable(0);
862 } else {
863 llvm_unreachable("Unknown constant pointer!");
865 return 0;
868 /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
869 /// object N, which contains values indicated by C.
870 void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
871 Constant *C) {
872 if (C->getType()->isSingleValueType()) {
873 if (isa<PointerType>(C->getType()))
874 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
875 getNodeForConstantPointer(C)));
876 } else if (C->isNullValue()) {
877 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
878 NullObject));
879 return;
880 } else if (!isa<UndefValue>(C)) {
881 // If this is an array or struct, include constraints for each element.
882 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
883 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
884 AddGlobalInitializerConstraints(NodeIndex,
885 cast<Constant>(C->getOperand(i)));
889 /// AddConstraintsForNonInternalLinkage - If this function does not have
890 /// internal linkage, realize that we can't trust anything passed into or
891 /// returned by this function.
892 void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
893 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
894 if (isa<PointerType>(I->getType()))
895 // If this is an argument of an externally accessible function, the
896 // incoming pointer might point to anything.
897 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
898 UniversalSet));
901 /// AddConstraintsForCall - If this is a call to a "known" function, add the
902 /// constraints and return true. If this is a call to an unknown function,
903 /// return false.
904 bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
905 assert(F->isDeclaration() && "Not an external function!");
907 // These functions don't induce any points-to constraints.
908 if (F->getName() == "atoi" || F->getName() == "atof" ||
909 F->getName() == "atol" || F->getName() == "atoll" ||
910 F->getName() == "remove" || F->getName() == "unlink" ||
911 F->getName() == "rename" || F->getName() == "memcmp" ||
912 F->getName() == "llvm.memset" ||
913 F->getName() == "strcmp" || F->getName() == "strncmp" ||
914 F->getName() == "execl" || F->getName() == "execlp" ||
915 F->getName() == "execle" || F->getName() == "execv" ||
916 F->getName() == "execvp" || F->getName() == "chmod" ||
917 F->getName() == "puts" || F->getName() == "write" ||
918 F->getName() == "open" || F->getName() == "create" ||
919 F->getName() == "truncate" || F->getName() == "chdir" ||
920 F->getName() == "mkdir" || F->getName() == "rmdir" ||
921 F->getName() == "read" || F->getName() == "pipe" ||
922 F->getName() == "wait" || F->getName() == "time" ||
923 F->getName() == "stat" || F->getName() == "fstat" ||
924 F->getName() == "lstat" || F->getName() == "strtod" ||
925 F->getName() == "strtof" || F->getName() == "strtold" ||
926 F->getName() == "fopen" || F->getName() == "fdopen" ||
927 F->getName() == "freopen" ||
928 F->getName() == "fflush" || F->getName() == "feof" ||
929 F->getName() == "fileno" || F->getName() == "clearerr" ||
930 F->getName() == "rewind" || F->getName() == "ftell" ||
931 F->getName() == "ferror" || F->getName() == "fgetc" ||
932 F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
933 F->getName() == "fwrite" || F->getName() == "fread" ||
934 F->getName() == "fgets" || F->getName() == "ungetc" ||
935 F->getName() == "fputc" ||
936 F->getName() == "fputs" || F->getName() == "putc" ||
937 F->getName() == "ftell" || F->getName() == "rewind" ||
938 F->getName() == "_IO_putc" || F->getName() == "fseek" ||
939 F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
940 F->getName() == "printf" || F->getName() == "fprintf" ||
941 F->getName() == "sprintf" || F->getName() == "vprintf" ||
942 F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
943 F->getName() == "scanf" || F->getName() == "fscanf" ||
944 F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
945 F->getName() == "modf")
946 return true;
949 // These functions do induce points-to edges.
950 if (F->getName() == "llvm.memcpy" ||
951 F->getName() == "llvm.memmove" ||
952 F->getName() == "memmove") {
954 const FunctionType *FTy = F->getFunctionType();
955 if (FTy->getNumParams() > 1 &&
956 isa<PointerType>(FTy->getParamType(0)) &&
957 isa<PointerType>(FTy->getParamType(1))) {
959 // *Dest = *Src, which requires an artificial graph node to represent the
960 // constraint. It is broken up into *Dest = temp, temp = *Src
961 unsigned FirstArg = getNode(CS.getArgument(0));
962 unsigned SecondArg = getNode(CS.getArgument(1));
963 unsigned TempArg = GraphNodes.size();
964 GraphNodes.push_back(Node());
965 Constraints.push_back(Constraint(Constraint::Store,
966 FirstArg, TempArg));
967 Constraints.push_back(Constraint(Constraint::Load,
968 TempArg, SecondArg));
969 // In addition, Dest = Src
970 Constraints.push_back(Constraint(Constraint::Copy,
971 FirstArg, SecondArg));
972 return true;
976 // Result = Arg0
977 if (F->getName() == "realloc" || F->getName() == "strchr" ||
978 F->getName() == "strrchr" || F->getName() == "strstr" ||
979 F->getName() == "strtok") {
980 const FunctionType *FTy = F->getFunctionType();
981 if (FTy->getNumParams() > 0 &&
982 isa<PointerType>(FTy->getParamType(0))) {
983 Constraints.push_back(Constraint(Constraint::Copy,
984 getNode(CS.getInstruction()),
985 getNode(CS.getArgument(0))));
986 return true;
990 return false;
995 /// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
996 /// If this is used by anything complex (i.e., the address escapes), return
997 /// true.
998 bool Andersens::AnalyzeUsesOfFunction(Value *V) {
1000 if (!isa<PointerType>(V->getType())) return true;
1002 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
1003 if (isa<LoadInst>(*UI)) {
1004 return false;
1005 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1006 if (V == SI->getOperand(1)) {
1007 return false;
1008 } else if (SI->getOperand(1)) {
1009 return true; // Storing the pointer
1011 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1012 if (AnalyzeUsesOfFunction(GEP)) return true;
1013 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
1014 // Make sure that this is just the function being called, not that it is
1015 // passing into the function.
1016 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1017 if (CI->getOperand(i) == V) return true;
1018 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
1019 // Make sure that this is just the function being called, not that it is
1020 // passing into the function.
1021 for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
1022 if (II->getOperand(i) == V) return true;
1023 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
1024 if (CE->getOpcode() == Instruction::GetElementPtr ||
1025 CE->getOpcode() == Instruction::BitCast) {
1026 if (AnalyzeUsesOfFunction(CE))
1027 return true;
1028 } else {
1029 return true;
1031 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
1032 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1033 return true; // Allow comparison against null.
1034 } else if (isa<FreeInst>(*UI)) {
1035 return false;
1036 } else {
1037 return true;
1039 return false;
1042 /// CollectConstraints - This stage scans the program, adding a constraint to
1043 /// the Constraints list for each instruction in the program that induces a
1044 /// constraint, and setting up the initial points-to graph.
1046 void Andersens::CollectConstraints(Module &M) {
1047 // First, the universal set points to itself.
1048 Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
1049 UniversalSet));
1050 Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
1051 UniversalSet));
1053 // Next, the null pointer points to the null object.
1054 Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));
1056 // Next, add any constraints on global variables and their initializers.
1057 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1058 I != E; ++I) {
1059 // Associate the address of the global object as pointing to the memory for
1060 // the global: &G = <G memory>
1061 unsigned ObjectIndex = getObject(I);
1062 Node *Object = &GraphNodes[ObjectIndex];
1063 Object->setValue(I);
1064 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
1065 ObjectIndex));
1067 if (I->hasDefinitiveInitializer()) {
1068 AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
1069 } else {
1070 // If it doesn't have an initializer (i.e. it's defined in another
1071 // translation unit), it points to the universal set.
1072 Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
1073 UniversalSet));
1077 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1078 // Set up the return value node.
1079 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
1080 GraphNodes[getReturnNode(F)].setValue(F);
1081 if (F->getFunctionType()->isVarArg())
1082 GraphNodes[getVarargNode(F)].setValue(F);
1084 // Set up incoming argument nodes.
1085 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1086 I != E; ++I)
1087 if (isa<PointerType>(I->getType()))
1088 getNodeValue(*I);
1090 // At some point we should just add constraints for the escaping functions
1091 // at solve time, but this slows down solving. For now, we simply mark
1092 // address taken functions as escaping and treat them as external.
1093 if (!F->hasLocalLinkage() || AnalyzeUsesOfFunction(F))
1094 AddConstraintsForNonInternalLinkage(F);
1096 if (!F->isDeclaration()) {
1097 // Scan the function body, creating a memory object for each heap/stack
1098 // allocation in the body of the function and a node to represent all
1099 // pointer values defined by instructions and used as operands.
1100 visit(F);
1101 } else {
1102 // External functions that return pointers return the universal set.
1103 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
1104 Constraints.push_back(Constraint(Constraint::Copy,
1105 getReturnNode(F),
1106 UniversalSet));
1108 // Any pointers that are passed into the function have the universal set
1109 // stored into them.
1110 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1111 I != E; ++I)
1112 if (isa<PointerType>(I->getType())) {
1113 // Pointers passed into external functions could have anything stored
1114 // through them.
1115 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
1116 UniversalSet));
1117 // Memory objects passed into external function calls can have the
1118 // universal set point to them.
1119 #if FULL_UNIVERSAL
1120 Constraints.push_back(Constraint(Constraint::Copy,
1121 UniversalSet,
1122 getNode(I)));
1123 #else
1124 Constraints.push_back(Constraint(Constraint::Copy,
1125 getNode(I),
1126 UniversalSet));
1127 #endif
1130 // If this is an external varargs function, it can also store pointers
1131 // into any pointers passed through the varargs section.
1132 if (F->getFunctionType()->isVarArg())
1133 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
1134 UniversalSet));
1137 NumConstraints += Constraints.size();
1141 void Andersens::visitInstruction(Instruction &I) {
1142 #ifdef NDEBUG
1143 return; // This function is just a big assert.
1144 #endif
1145 if (isa<BinaryOperator>(I))
1146 return;
1147 // Most instructions don't have any effect on pointer values.
1148 switch (I.getOpcode()) {
1149 case Instruction::Br:
1150 case Instruction::Switch:
1151 case Instruction::Unwind:
1152 case Instruction::Unreachable:
1153 case Instruction::Free:
1154 case Instruction::ICmp:
1155 case Instruction::FCmp:
1156 return;
1157 default:
1158 // Is this something we aren't handling yet?
1159 errs() << "Unknown instruction: " << I;
1160 llvm_unreachable(0);
1164 void Andersens::visitAllocationInst(AllocationInst &AI) {
1165 unsigned ObjectIndex = getObject(&AI);
1166 GraphNodes[ObjectIndex].setValue(&AI);
1167 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI),
1168 ObjectIndex));
1171 void Andersens::visitReturnInst(ReturnInst &RI) {
1172 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
1173 // return V --> <Copy/retval{F}/v>
1174 Constraints.push_back(Constraint(Constraint::Copy,
1175 getReturnNode(RI.getParent()->getParent()),
1176 getNode(RI.getOperand(0))));
1179 void Andersens::visitLoadInst(LoadInst &LI) {
1180 if (isa<PointerType>(LI.getType()))
1181 // P1 = load P2 --> <Load/P1/P2>
1182 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
1183 getNode(LI.getOperand(0))));
1186 void Andersens::visitStoreInst(StoreInst &SI) {
1187 if (isa<PointerType>(SI.getOperand(0)->getType()))
1188 // store P1, P2 --> <Store/P2/P1>
1189 Constraints.push_back(Constraint(Constraint::Store,
1190 getNode(SI.getOperand(1)),
1191 getNode(SI.getOperand(0))));
1194 void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1195 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
1196 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
1197 getNode(GEP.getOperand(0))));
1200 void Andersens::visitPHINode(PHINode &PN) {
1201 if (isa<PointerType>(PN.getType())) {
1202 unsigned PNN = getNodeValue(PN);
1203 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1204 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
1205 Constraints.push_back(Constraint(Constraint::Copy, PNN,
1206 getNode(PN.getIncomingValue(i))));
1210 void Andersens::visitCastInst(CastInst &CI) {
1211 Value *Op = CI.getOperand(0);
1212 if (isa<PointerType>(CI.getType())) {
1213 if (isa<PointerType>(Op->getType())) {
1214 // P1 = cast P2 --> <Copy/P1/P2>
1215 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
1216 getNode(CI.getOperand(0))));
1217 } else {
1218 // P1 = cast int --> <Copy/P1/Univ>
1219 #if 0
1220 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
1221 UniversalSet));
1222 #else
1223 getNodeValue(CI);
1224 #endif
1226 } else if (isa<PointerType>(Op->getType())) {
1227 // int = cast P1 --> <Copy/Univ/P1>
1228 #if 0
1229 Constraints.push_back(Constraint(Constraint::Copy,
1230 UniversalSet,
1231 getNode(CI.getOperand(0))));
1232 #else
1233 getNode(CI.getOperand(0));
1234 #endif
1238 void Andersens::visitSelectInst(SelectInst &SI) {
1239 if (isa<PointerType>(SI.getType())) {
1240 unsigned SIN = getNodeValue(SI);
1241 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
1242 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1243 getNode(SI.getOperand(1))));
1244 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1245 getNode(SI.getOperand(2))));
1249 void Andersens::visitVAArg(VAArgInst &I) {
1250 llvm_unreachable("vaarg not handled yet!");
1253 /// AddConstraintsForCall - Add constraints for a call with actual arguments
1254 /// specified by CS to the function specified by F. Note that the types of
1255 /// arguments might not match up in the case where this is an indirect call and
1256 /// the function pointer has been casted. If this is the case, do something
1257 /// reasonable.
1258 void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
1259 Value *CallValue = CS.getCalledValue();
1260 bool IsDeref = F == NULL;
1262 // If this is a call to an external function, try to handle it directly to get
1263 // some taste of context sensitivity.
1264 if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
1265 return;
1267 if (isa<PointerType>(CS.getType())) {
1268 unsigned CSN = getNode(CS.getInstruction());
1269 if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
1270 if (IsDeref)
1271 Constraints.push_back(Constraint(Constraint::Load, CSN,
1272 getNode(CallValue), CallReturnPos));
1273 else
1274 Constraints.push_back(Constraint(Constraint::Copy, CSN,
1275 getNode(CallValue) + CallReturnPos));
1276 } else {
1277 // If the function returns a non-pointer value, handle this just like we
1278 // treat a nonpointer cast to pointer.
1279 Constraints.push_back(Constraint(Constraint::Copy, CSN,
1280 UniversalSet));
1282 } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
1283 #if FULL_UNIVERSAL
1284 Constraints.push_back(Constraint(Constraint::Copy,
1285 UniversalSet,
1286 getNode(CallValue) + CallReturnPos));
1287 #else
1288 Constraints.push_back(Constraint(Constraint::Copy,
1289 getNode(CallValue) + CallReturnPos,
1290 UniversalSet));
1291 #endif
1296 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
1297 bool external = !F || F->isDeclaration();
1298 if (F) {
1299 // Direct Call
1300 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1301 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
1303 #if !FULL_UNIVERSAL
1304 if (external && isa<PointerType>((*ArgI)->getType()))
1306 // Add constraint that ArgI can now point to anything due to
1307 // escaping, as can everything it points to. The second portion of
1308 // this should be taken care of by universal = *universal
1309 Constraints.push_back(Constraint(Constraint::Copy,
1310 getNode(*ArgI),
1311 UniversalSet));
1313 #endif
1314 if (isa<PointerType>(AI->getType())) {
1315 if (isa<PointerType>((*ArgI)->getType())) {
1316 // Copy the actual argument into the formal argument.
1317 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1318 getNode(*ArgI)));
1319 } else {
1320 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1321 UniversalSet));
1323 } else if (isa<PointerType>((*ArgI)->getType())) {
1324 #if FULL_UNIVERSAL
1325 Constraints.push_back(Constraint(Constraint::Copy,
1326 UniversalSet,
1327 getNode(*ArgI)));
1328 #else
1329 Constraints.push_back(Constraint(Constraint::Copy,
1330 getNode(*ArgI),
1331 UniversalSet));
1332 #endif
1335 } else {
1336 //Indirect Call
1337 unsigned ArgPos = CallFirstArgPos;
1338 for (; ArgI != ArgE; ++ArgI) {
1339 if (isa<PointerType>((*ArgI)->getType())) {
1340 // Copy the actual argument into the formal argument.
1341 Constraints.push_back(Constraint(Constraint::Store,
1342 getNode(CallValue),
1343 getNode(*ArgI), ArgPos++));
1344 } else {
1345 Constraints.push_back(Constraint(Constraint::Store,
1346 getNode (CallValue),
1347 UniversalSet, ArgPos++));
1351 // Copy all pointers passed through the varargs section to the varargs node.
1352 if (F && F->getFunctionType()->isVarArg())
1353 for (; ArgI != ArgE; ++ArgI)
1354 if (isa<PointerType>((*ArgI)->getType()))
1355 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
1356 getNode(*ArgI)));
1357 // If more arguments are passed in than we track, just drop them on the floor.
1360 void Andersens::visitCallSite(CallSite CS) {
1361 if (isa<PointerType>(CS.getType()))
1362 getNodeValue(*CS.getInstruction());
1364 if (Function *F = CS.getCalledFunction()) {
1365 AddConstraintsForCall(CS, F);
1366 } else {
1367 AddConstraintsForCall(CS, NULL);
1371 //===----------------------------------------------------------------------===//
1372 // Constraint Solving Phase
1373 //===----------------------------------------------------------------------===//
1375 /// intersects - Return true if the points-to set of this node intersects
1376 /// with the points-to set of the specified node.
1377 bool Andersens::Node::intersects(Node *N) const {
1378 return PointsTo->intersects(N->PointsTo);
1381 /// intersectsIgnoring - Return true if the points-to set of this node
1382 /// intersects with the points-to set of the specified node on any nodes
1383 /// except for the specified node to ignore.
1384 bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
1385 // TODO: If we are only going to call this with the same value for Ignoring,
1386 // we should move the special values out of the points-to bitmap.
1387 bool WeHadIt = PointsTo->test(Ignoring);
1388 bool NHadIt = N->PointsTo->test(Ignoring);
1389 bool Result = false;
1390 if (WeHadIt)
1391 PointsTo->reset(Ignoring);
1392 if (NHadIt)
1393 N->PointsTo->reset(Ignoring);
1394 Result = PointsTo->intersects(N->PointsTo);
1395 if (WeHadIt)
1396 PointsTo->set(Ignoring);
1397 if (NHadIt)
1398 N->PointsTo->set(Ignoring);
1399 return Result;
1403 /// Clump together address taken variables so that the points-to sets use up
1404 /// less space and can be operated on faster.
1406 void Andersens::ClumpAddressTaken() {
1407 #undef DEBUG_TYPE
1408 #define DEBUG_TYPE "anders-aa-renumber"
1409 std::vector<unsigned> Translate;
1410 std::vector<Node> NewGraphNodes;
1412 Translate.resize(GraphNodes.size());
1413 unsigned NewPos = 0;
1415 for (unsigned i = 0; i < Constraints.size(); ++i) {
1416 Constraint &C = Constraints[i];
1417 if (C.Type == Constraint::AddressOf) {
1418 GraphNodes[C.Src].AddressTaken = true;
1421 for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
1422 unsigned Pos = NewPos++;
1423 Translate[i] = Pos;
1424 NewGraphNodes.push_back(GraphNodes[i]);
1425 DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
1428 // I believe this ends up being faster than making two vectors and splicing
1429 // them.
1430 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1431 if (GraphNodes[i].AddressTaken) {
1432 unsigned Pos = NewPos++;
1433 Translate[i] = Pos;
1434 NewGraphNodes.push_back(GraphNodes[i]);
1435 DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
1439 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1440 if (!GraphNodes[i].AddressTaken) {
1441 unsigned Pos = NewPos++;
1442 Translate[i] = Pos;
1443 NewGraphNodes.push_back(GraphNodes[i]);
1444 DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
1448 for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
1449 Iter != ValueNodes.end();
1450 ++Iter)
1451 Iter->second = Translate[Iter->second];
1453 for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
1454 Iter != ObjectNodes.end();
1455 ++Iter)
1456 Iter->second = Translate[Iter->second];
1458 for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
1459 Iter != ReturnNodes.end();
1460 ++Iter)
1461 Iter->second = Translate[Iter->second];
1463 for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
1464 Iter != VarargNodes.end();
1465 ++Iter)
1466 Iter->second = Translate[Iter->second];
1468 for (unsigned i = 0; i < Constraints.size(); ++i) {
1469 Constraint &C = Constraints[i];
1470 C.Src = Translate[C.Src];
1471 C.Dest = Translate[C.Dest];
1474 GraphNodes.swap(NewGraphNodes);
1475 #undef DEBUG_TYPE
1476 #define DEBUG_TYPE "anders-aa"
1479 /// The technique used here is described in "Exploiting Pointer and Location
1480 /// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1481 /// Analysis Symposium (SAS), August 2007." It is known as the "HVN" algorithm,
1482 /// and is equivalent to value numbering the collapsed constraint graph without
1483 /// evaluating unions. This is used as a pre-pass to HU in order to resolve
1484 /// first order pointer dereferences and speed up/reduce memory usage of HU.
1485 /// Running both is equivalent to HRU without the iteration
1486 /// HVN in more detail:
1487 /// Imagine the set of constraints was simply straight line code with no loops
1488 /// (we eliminate cycles, so there are no loops), such as:
1489 /// E = &D
1490 /// E = &C
1491 /// E = F
1492 /// F = G
1493 /// G = F
1494 /// Applying value numbering to this code tells us:
1495 /// G == F == E
1497 /// For HVN, this is as far as it goes. We assign new value numbers to every
1498 /// "address node", and every "reference node".
1499 /// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
1500 /// cycle must have the same value number since the = operation is really
1501 /// inclusion, not overwrite), and value number nodes we receive points-to sets
1502 /// before we value our own node.
1503 /// The advantage of HU over HVN is that HU considers the inclusion property, so
1504 /// that if you have
1505 /// E = &D
1506 /// E = &C
1507 /// E = F
1508 /// F = G
1509 /// F = &D
1510 /// G = F
1511 /// HU will determine that G == F == E. HVN will not, because it cannot prove
1512 /// that the points to information ends up being the same because they all
1513 /// receive &D from E anyway.
1515 void Andersens::HVN() {
1516 DEBUG(errs() << "Beginning HVN\n");
1517 // Build a predecessor graph. This is like our constraint graph with the
1518 // edges going in the opposite direction, and there are edges for all the
1519 // constraints, instead of just copy constraints. We also build implicit
1520 // edges for constraints are implied but not explicit. I.E for the constraint
1521 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1522 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1523 Constraint &C = Constraints[i];
1524 if (C.Type == Constraint::AddressOf) {
1525 GraphNodes[C.Src].AddressTaken = true;
1526 GraphNodes[C.Src].Direct = false;
1528 // Dest = &src edge
1529 unsigned AdrNode = C.Src + FirstAdrNode;
1530 if (!GraphNodes[C.Dest].PredEdges)
1531 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1532 GraphNodes[C.Dest].PredEdges->set(AdrNode);
1534 // *Dest = src edge
1535 unsigned RefNode = C.Dest + FirstRefNode;
1536 if (!GraphNodes[RefNode].ImplicitPredEdges)
1537 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1538 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1539 } else if (C.Type == Constraint::Load) {
1540 if (C.Offset == 0) {
1541 // dest = *src edge
1542 if (!GraphNodes[C.Dest].PredEdges)
1543 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1544 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1545 } else {
1546 GraphNodes[C.Dest].Direct = false;
1548 } else if (C.Type == Constraint::Store) {
1549 if (C.Offset == 0) {
1550 // *dest = src edge
1551 unsigned RefNode = C.Dest + FirstRefNode;
1552 if (!GraphNodes[RefNode].PredEdges)
1553 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1554 GraphNodes[RefNode].PredEdges->set(C.Src);
1556 } else {
1557 // Dest = Src edge and *Dest = *Src edge
1558 if (!GraphNodes[C.Dest].PredEdges)
1559 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1560 GraphNodes[C.Dest].PredEdges->set(C.Src);
1561 unsigned RefNode = C.Dest + FirstRefNode;
1562 if (!GraphNodes[RefNode].ImplicitPredEdges)
1563 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1564 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1567 PEClass = 1;
1568 // Do SCC finding first to condense our predecessor graph
1569 DFSNumber = 0;
1570 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1571 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1572 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1574 for (unsigned i = 0; i < FirstRefNode; ++i) {
1575 unsigned Node = VSSCCRep[i];
1576 if (!Node2Visited[Node])
1577 HVNValNum(Node);
1579 for (BitVectorMap::iterator Iter = Set2PEClass.begin();
1580 Iter != Set2PEClass.end();
1581 ++Iter)
1582 delete Iter->first;
1583 Set2PEClass.clear();
1584 Node2DFS.clear();
1585 Node2Deleted.clear();
1586 Node2Visited.clear();
1587 DEBUG(errs() << "Finished HVN\n");
1591 /// This is the workhorse of HVN value numbering. We combine SCC finding at the
1592 /// same time because it's easy.
1593 void Andersens::HVNValNum(unsigned NodeIndex) {
1594 unsigned MyDFS = DFSNumber++;
1595 Node *N = &GraphNodes[NodeIndex];
1596 Node2Visited[NodeIndex] = true;
1597 Node2DFS[NodeIndex] = MyDFS;
1599 // First process all our explicit edges
1600 if (N->PredEdges)
1601 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1602 Iter != N->PredEdges->end();
1603 ++Iter) {
1604 unsigned j = VSSCCRep[*Iter];
1605 if (!Node2Deleted[j]) {
1606 if (!Node2Visited[j])
1607 HVNValNum(j);
1608 if (Node2DFS[NodeIndex] > Node2DFS[j])
1609 Node2DFS[NodeIndex] = Node2DFS[j];
1613 // Now process all the implicit edges
1614 if (N->ImplicitPredEdges)
1615 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1616 Iter != N->ImplicitPredEdges->end();
1617 ++Iter) {
1618 unsigned j = VSSCCRep[*Iter];
1619 if (!Node2Deleted[j]) {
1620 if (!Node2Visited[j])
1621 HVNValNum(j);
1622 if (Node2DFS[NodeIndex] > Node2DFS[j])
1623 Node2DFS[NodeIndex] = Node2DFS[j];
1627 // See if we found any cycles
1628 if (MyDFS == Node2DFS[NodeIndex]) {
1629 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1630 unsigned CycleNodeIndex = SCCStack.top();
1631 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1632 VSSCCRep[CycleNodeIndex] = NodeIndex;
1633 // Unify the nodes
1634 N->Direct &= CycleNode->Direct;
1636 if (CycleNode->PredEdges) {
1637 if (!N->PredEdges)
1638 N->PredEdges = new SparseBitVector<>;
1639 *(N->PredEdges) |= CycleNode->PredEdges;
1640 delete CycleNode->PredEdges;
1641 CycleNode->PredEdges = NULL;
1643 if (CycleNode->ImplicitPredEdges) {
1644 if (!N->ImplicitPredEdges)
1645 N->ImplicitPredEdges = new SparseBitVector<>;
1646 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1647 delete CycleNode->ImplicitPredEdges;
1648 CycleNode->ImplicitPredEdges = NULL;
1651 SCCStack.pop();
1654 Node2Deleted[NodeIndex] = true;
1656 if (!N->Direct) {
1657 GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
1658 return;
1661 // Collect labels of successor nodes
1662 bool AllSame = true;
1663 unsigned First = ~0;
1664 SparseBitVector<> *Labels = new SparseBitVector<>;
1665 bool Used = false;
1667 if (N->PredEdges)
1668 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1669 Iter != N->PredEdges->end();
1670 ++Iter) {
1671 unsigned j = VSSCCRep[*Iter];
1672 unsigned Label = GraphNodes[j].PointerEquivLabel;
1673 // Ignore labels that are equal to us or non-pointers
1674 if (j == NodeIndex || Label == 0)
1675 continue;
1676 if (First == (unsigned)~0)
1677 First = Label;
1678 else if (First != Label)
1679 AllSame = false;
1680 Labels->set(Label);
1683 // We either have a non-pointer, a copy of an existing node, or a new node.
1684 // Assign the appropriate pointer equivalence label.
1685 if (Labels->empty()) {
1686 GraphNodes[NodeIndex].PointerEquivLabel = 0;
1687 } else if (AllSame) {
1688 GraphNodes[NodeIndex].PointerEquivLabel = First;
1689 } else {
1690 GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
1691 if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
1692 unsigned EquivClass = PEClass++;
1693 Set2PEClass[Labels] = EquivClass;
1694 GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
1695 Used = true;
1698 if (!Used)
1699 delete Labels;
1700 } else {
1701 SCCStack.push(NodeIndex);
1705 /// The technique used here is described in "Exploiting Pointer and Location
1706 /// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1707 /// Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm,
1708 /// and is equivalent to value numbering the collapsed constraint graph
1709 /// including evaluating unions.
1710 void Andersens::HU() {
1711 DEBUG(errs() << "Beginning HU\n");
1712 // Build a predecessor graph. This is like our constraint graph with the
1713 // edges going in the opposite direction, and there are edges for all the
1714 // constraints, instead of just copy constraints. We also build implicit
1715 // edges for constraints are implied but not explicit. I.E for the constraint
1716 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1717 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1718 Constraint &C = Constraints[i];
1719 if (C.Type == Constraint::AddressOf) {
1720 GraphNodes[C.Src].AddressTaken = true;
1721 GraphNodes[C.Src].Direct = false;
1723 GraphNodes[C.Dest].PointsTo->set(C.Src);
1724 // *Dest = src edge
1725 unsigned RefNode = C.Dest + FirstRefNode;
1726 if (!GraphNodes[RefNode].ImplicitPredEdges)
1727 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1728 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1729 GraphNodes[C.Src].PointedToBy->set(C.Dest);
1730 } else if (C.Type == Constraint::Load) {
1731 if (C.Offset == 0) {
1732 // dest = *src edge
1733 if (!GraphNodes[C.Dest].PredEdges)
1734 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1735 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1736 } else {
1737 GraphNodes[C.Dest].Direct = false;
1739 } else if (C.Type == Constraint::Store) {
1740 if (C.Offset == 0) {
1741 // *dest = src edge
1742 unsigned RefNode = C.Dest + FirstRefNode;
1743 if (!GraphNodes[RefNode].PredEdges)
1744 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1745 GraphNodes[RefNode].PredEdges->set(C.Src);
1747 } else {
1748 // Dest = Src edge and *Dest = *Src edg
1749 if (!GraphNodes[C.Dest].PredEdges)
1750 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1751 GraphNodes[C.Dest].PredEdges->set(C.Src);
1752 unsigned RefNode = C.Dest + FirstRefNode;
1753 if (!GraphNodes[RefNode].ImplicitPredEdges)
1754 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1755 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1758 PEClass = 1;
1759 // Do SCC finding first to condense our predecessor graph
1760 DFSNumber = 0;
1761 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1762 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1763 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1765 for (unsigned i = 0; i < FirstRefNode; ++i) {
1766 if (FindNode(i) == i) {
1767 unsigned Node = VSSCCRep[i];
1768 if (!Node2Visited[Node])
1769 Condense(Node);
1773 // Reset tables for actual labeling
1774 Node2DFS.clear();
1775 Node2Visited.clear();
1776 Node2Deleted.clear();
1777 // Pre-grow our densemap so that we don't get really bad behavior
1778 Set2PEClass.resize(GraphNodes.size());
1780 // Visit the condensed graph and generate pointer equivalence labels.
1781 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1782 for (unsigned i = 0; i < FirstRefNode; ++i) {
1783 if (FindNode(i) == i) {
1784 unsigned Node = VSSCCRep[i];
1785 if (!Node2Visited[Node])
1786 HUValNum(Node);
1789 // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
1790 Set2PEClass.clear();
1791 DEBUG(errs() << "Finished HU\n");
1795 /// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
1796 void Andersens::Condense(unsigned NodeIndex) {
1797 unsigned MyDFS = DFSNumber++;
1798 Node *N = &GraphNodes[NodeIndex];
1799 Node2Visited[NodeIndex] = true;
1800 Node2DFS[NodeIndex] = MyDFS;
1802 // First process all our explicit edges
1803 if (N->PredEdges)
1804 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1805 Iter != N->PredEdges->end();
1806 ++Iter) {
1807 unsigned j = VSSCCRep[*Iter];
1808 if (!Node2Deleted[j]) {
1809 if (!Node2Visited[j])
1810 Condense(j);
1811 if (Node2DFS[NodeIndex] > Node2DFS[j])
1812 Node2DFS[NodeIndex] = Node2DFS[j];
1816 // Now process all the implicit edges
1817 if (N->ImplicitPredEdges)
1818 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1819 Iter != N->ImplicitPredEdges->end();
1820 ++Iter) {
1821 unsigned j = VSSCCRep[*Iter];
1822 if (!Node2Deleted[j]) {
1823 if (!Node2Visited[j])
1824 Condense(j);
1825 if (Node2DFS[NodeIndex] > Node2DFS[j])
1826 Node2DFS[NodeIndex] = Node2DFS[j];
1830 // See if we found any cycles
1831 if (MyDFS == Node2DFS[NodeIndex]) {
1832 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1833 unsigned CycleNodeIndex = SCCStack.top();
1834 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1835 VSSCCRep[CycleNodeIndex] = NodeIndex;
1836 // Unify the nodes
1837 N->Direct &= CycleNode->Direct;
1839 *(N->PointsTo) |= CycleNode->PointsTo;
1840 delete CycleNode->PointsTo;
1841 CycleNode->PointsTo = NULL;
1842 if (CycleNode->PredEdges) {
1843 if (!N->PredEdges)
1844 N->PredEdges = new SparseBitVector<>;
1845 *(N->PredEdges) |= CycleNode->PredEdges;
1846 delete CycleNode->PredEdges;
1847 CycleNode->PredEdges = NULL;
1849 if (CycleNode->ImplicitPredEdges) {
1850 if (!N->ImplicitPredEdges)
1851 N->ImplicitPredEdges = new SparseBitVector<>;
1852 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1853 delete CycleNode->ImplicitPredEdges;
1854 CycleNode->ImplicitPredEdges = NULL;
1856 SCCStack.pop();
1859 Node2Deleted[NodeIndex] = true;
1861 // Set up number of incoming edges for other nodes
1862 if (N->PredEdges)
1863 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1864 Iter != N->PredEdges->end();
1865 ++Iter)
1866 ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
1867 } else {
1868 SCCStack.push(NodeIndex);
1872 void Andersens::HUValNum(unsigned NodeIndex) {
1873 Node *N = &GraphNodes[NodeIndex];
1874 Node2Visited[NodeIndex] = true;
1876 // Eliminate dereferences of non-pointers for those non-pointers we have
1877 // already identified. These are ref nodes whose non-ref node:
1878 // 1. Has already been visited determined to point to nothing (and thus, a
1879 // dereference of it must point to nothing)
1880 // 2. Any direct node with no predecessor edges in our graph and with no
1881 // points-to set (since it can't point to anything either, being that it
1882 // receives no points-to sets and has none).
1883 if (NodeIndex >= FirstRefNode) {
1884 unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
1885 if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
1886 || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
1887 && GraphNodes[j].PointsTo->empty())){
1888 return;
1891 // Process all our explicit edges
1892 if (N->PredEdges)
1893 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1894 Iter != N->PredEdges->end();
1895 ++Iter) {
1896 unsigned j = VSSCCRep[*Iter];
1897 if (!Node2Visited[j])
1898 HUValNum(j);
1900 // If this edge turned out to be the same as us, or got no pointer
1901 // equivalence label (and thus points to nothing) , just decrement our
1902 // incoming edges and continue.
1903 if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
1904 --GraphNodes[j].NumInEdges;
1905 continue;
1908 *(N->PointsTo) |= GraphNodes[j].PointsTo;
1910 // If we didn't end up storing this in the hash, and we're done with all
1911 // the edges, we don't need the points-to set anymore.
1912 --GraphNodes[j].NumInEdges;
1913 if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
1914 delete GraphNodes[j].PointsTo;
1915 GraphNodes[j].PointsTo = NULL;
1918 // If this isn't a direct node, generate a fresh variable.
1919 if (!N->Direct) {
1920 N->PointsTo->set(FirstRefNode + NodeIndex);
1923 // See If we have something equivalent to us, if not, generate a new
1924 // equivalence class.
1925 if (N->PointsTo->empty()) {
1926 delete N->PointsTo;
1927 N->PointsTo = NULL;
1928 } else {
1929 if (N->Direct) {
1930 N->PointerEquivLabel = Set2PEClass[N->PointsTo];
1931 if (N->PointerEquivLabel == 0) {
1932 unsigned EquivClass = PEClass++;
1933 N->StoredInHash = true;
1934 Set2PEClass[N->PointsTo] = EquivClass;
1935 N->PointerEquivLabel = EquivClass;
1937 } else {
1938 N->PointerEquivLabel = PEClass++;
1943 /// Rewrite our list of constraints so that pointer equivalent nodes are
1944 /// replaced by their the pointer equivalence class representative.
1945 void Andersens::RewriteConstraints() {
1946 std::vector<Constraint> NewConstraints;
1947 DenseSet<Constraint, ConstraintKeyInfo> Seen;
1949 PEClass2Node.clear();
1950 PENLEClass2Node.clear();
1952 // We may have from 1 to Graphnodes + 1 equivalence classes.
1953 PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
1954 PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);
1956 // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
1957 // nodes, and rewriting constraints to use the representative nodes.
1958 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1959 Constraint &C = Constraints[i];
1960 unsigned RHSNode = FindNode(C.Src);
1961 unsigned LHSNode = FindNode(C.Dest);
1962 unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
1963 unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;
1965 // First we try to eliminate constraints for things we can prove don't point
1966 // to anything.
1967 if (LHSLabel == 0) {
1968 DEBUG(PrintNode(&GraphNodes[LHSNode]));
1969 DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
1970 continue;
1972 if (RHSLabel == 0) {
1973 DEBUG(PrintNode(&GraphNodes[RHSNode]));
1974 DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
1975 continue;
1977 // This constraint may be useless, and it may become useless as we translate
1978 // it.
1979 if (C.Src == C.Dest && C.Type == Constraint::Copy)
1980 continue;
1982 C.Src = FindEquivalentNode(RHSNode, RHSLabel);
1983 C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
1984 if ((C.Src == C.Dest && C.Type == Constraint::Copy)
1985 || Seen.count(C))
1986 continue;
1988 Seen.insert(C);
1989 NewConstraints.push_back(C);
1991 Constraints.swap(NewConstraints);
1992 PEClass2Node.clear();
1995 /// See if we have a node that is pointer equivalent to the one being asked
1996 /// about, and if so, unite them and return the equivalent node. Otherwise,
1997 /// return the original node.
1998 unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
1999 unsigned NodeLabel) {
2000 if (!GraphNodes[NodeIndex].AddressTaken) {
2001 if (PEClass2Node[NodeLabel] != -1) {
2002 // We found an existing node with the same pointer label, so unify them.
2003 // We specifically request that Union-By-Rank not be used so that
2004 // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
2005 return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
2006 } else {
2007 PEClass2Node[NodeLabel] = NodeIndex;
2008 PENLEClass2Node[NodeLabel] = NodeIndex;
2010 } else if (PENLEClass2Node[NodeLabel] == -1) {
2011 PENLEClass2Node[NodeLabel] = NodeIndex;
2014 return NodeIndex;
2017 void Andersens::PrintLabels() const {
2018 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2019 if (i < FirstRefNode) {
2020 PrintNode(&GraphNodes[i]);
2021 } else if (i < FirstAdrNode) {
2022 DEBUG(errs() << "REF(");
2023 PrintNode(&GraphNodes[i-FirstRefNode]);
2024 DEBUG(errs() <<")");
2025 } else {
2026 DEBUG(errs() << "ADR(");
2027 PrintNode(&GraphNodes[i-FirstAdrNode]);
2028 DEBUG(errs() <<")");
2031 DEBUG(errs() << " has pointer label " << GraphNodes[i].PointerEquivLabel
2032 << " and SCC rep " << VSSCCRep[i]
2033 << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
2034 << "\n");
2038 /// The technique used here is described in "The Ant and the
2039 /// Grasshopper: Fast and Accurate Pointer Analysis for Millions of
2040 /// Lines of Code. In Programming Language Design and Implementation
2041 /// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle
2042 /// Detection) algorithm. It is called a hybrid because it performs an
2043 /// offline analysis and uses its results during the solving (online)
2044 /// phase. This is just the offline portion; the results of this
2045 /// operation are stored in SDT and are later used in SolveContraints()
2046 /// and UniteNodes().
2047 void Andersens::HCD() {
2048 DEBUG(errs() << "Starting HCD.\n");
2049 HCDSCCRep.resize(GraphNodes.size());
2051 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2052 GraphNodes[i].Edges = new SparseBitVector<>;
2053 HCDSCCRep[i] = i;
2056 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2057 Constraint &C = Constraints[i];
2058 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2059 if (C.Type == Constraint::AddressOf) {
2060 continue;
2061 } else if (C.Type == Constraint::Load) {
2062 if( C.Offset == 0 )
2063 GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode);
2064 } else if (C.Type == Constraint::Store) {
2065 if( C.Offset == 0 )
2066 GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src);
2067 } else {
2068 GraphNodes[C.Dest].Edges->set(C.Src);
2072 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2073 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2074 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
2075 SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1);
2077 DFSNumber = 0;
2078 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2079 unsigned Node = HCDSCCRep[i];
2080 if (!Node2Deleted[Node])
2081 Search(Node);
2084 for (unsigned i = 0; i < GraphNodes.size(); ++i)
2085 if (GraphNodes[i].Edges != NULL) {
2086 delete GraphNodes[i].Edges;
2087 GraphNodes[i].Edges = NULL;
2090 while( !SCCStack.empty() )
2091 SCCStack.pop();
2093 Node2DFS.clear();
2094 Node2Visited.clear();
2095 Node2Deleted.clear();
2096 HCDSCCRep.clear();
2097 DEBUG(errs() << "HCD complete.\n");
2100 // Component of HCD:
2101 // Use Nuutila's variant of Tarjan's algorithm to detect
2102 // Strongly-Connected Components (SCCs). For non-trivial SCCs
2103 // containing ref nodes, insert the appropriate information in SDT.
2104 void Andersens::Search(unsigned Node) {
2105 unsigned MyDFS = DFSNumber++;
2107 Node2Visited[Node] = true;
2108 Node2DFS[Node] = MyDFS;
2110 for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(),
2111 End = GraphNodes[Node].Edges->end();
2112 Iter != End;
2113 ++Iter) {
2114 unsigned J = HCDSCCRep[*Iter];
2115 assert(GraphNodes[J].isRep() && "Debug check; must be representative");
2116 if (!Node2Deleted[J]) {
2117 if (!Node2Visited[J])
2118 Search(J);
2119 if (Node2DFS[Node] > Node2DFS[J])
2120 Node2DFS[Node] = Node2DFS[J];
2124 if( MyDFS != Node2DFS[Node] ) {
2125 SCCStack.push(Node);
2126 return;
2129 // This node is the root of a SCC, so process it.
2131 // If the SCC is "non-trivial" (not a singleton) and contains a reference
2132 // node, we place this SCC into SDT. We unite the nodes in any case.
2133 if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
2134 SparseBitVector<> SCC;
2136 SCC.set(Node);
2138 bool Ref = (Node >= FirstRefNode);
2140 Node2Deleted[Node] = true;
2142 do {
2143 unsigned P = SCCStack.top(); SCCStack.pop();
2144 Ref |= (P >= FirstRefNode);
2145 SCC.set(P);
2146 HCDSCCRep[P] = Node;
2147 } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS);
2149 if (Ref) {
2150 unsigned Rep = SCC.find_first();
2151 assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!");
2153 SparseBitVector<>::iterator i = SCC.begin();
2155 // Skip over the non-ref nodes
2156 while( *i < FirstRefNode )
2157 ++i;
2159 while( i != SCC.end() )
2160 SDT[ (*i++) - FirstRefNode ] = Rep;
2166 /// Optimize the constraints by performing offline variable substitution and
2167 /// other optimizations.
2168 void Andersens::OptimizeConstraints() {
2169 DEBUG(errs() << "Beginning constraint optimization\n");
2171 SDTActive = false;
2173 // Function related nodes need to stay in the same relative position and can't
2174 // be location equivalent.
2175 for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
2176 Iter != MaxK.end();
2177 ++Iter) {
2178 for (unsigned i = Iter->first;
2179 i != Iter->first + Iter->second;
2180 ++i) {
2181 GraphNodes[i].AddressTaken = true;
2182 GraphNodes[i].Direct = false;
2186 ClumpAddressTaken();
2187 FirstRefNode = GraphNodes.size();
2188 FirstAdrNode = FirstRefNode + GraphNodes.size();
2189 GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
2190 Node(false));
2191 VSSCCRep.resize(GraphNodes.size());
2192 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2193 VSSCCRep[i] = i;
2195 HVN();
2196 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2197 Node *N = &GraphNodes[i];
2198 delete N->PredEdges;
2199 N->PredEdges = NULL;
2200 delete N->ImplicitPredEdges;
2201 N->ImplicitPredEdges = NULL;
2203 #undef DEBUG_TYPE
2204 #define DEBUG_TYPE "anders-aa-labels"
2205 DEBUG(PrintLabels());
2206 #undef DEBUG_TYPE
2207 #define DEBUG_TYPE "anders-aa"
2208 RewriteConstraints();
2209 // Delete the adr nodes.
2210 GraphNodes.resize(FirstRefNode * 2);
2212 // Now perform HU
2213 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2214 Node *N = &GraphNodes[i];
2215 if (FindNode(i) == i) {
2216 N->PointsTo = new SparseBitVector<>;
2217 N->PointedToBy = new SparseBitVector<>;
2218 // Reset our labels
2220 VSSCCRep[i] = i;
2221 N->PointerEquivLabel = 0;
2223 HU();
2224 #undef DEBUG_TYPE
2225 #define DEBUG_TYPE "anders-aa-labels"
2226 DEBUG(PrintLabels());
2227 #undef DEBUG_TYPE
2228 #define DEBUG_TYPE "anders-aa"
2229 RewriteConstraints();
2230 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2231 if (FindNode(i) == i) {
2232 Node *N = &GraphNodes[i];
2233 delete N->PointsTo;
2234 N->PointsTo = NULL;
2235 delete N->PredEdges;
2236 N->PredEdges = NULL;
2237 delete N->ImplicitPredEdges;
2238 N->ImplicitPredEdges = NULL;
2239 delete N->PointedToBy;
2240 N->PointedToBy = NULL;
2244 // perform Hybrid Cycle Detection (HCD)
2245 HCD();
2246 SDTActive = true;
2248 // No longer any need for the upper half of GraphNodes (for ref nodes).
2249 GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());
2251 // HCD complete.
2253 DEBUG(errs() << "Finished constraint optimization\n");
2254 FirstRefNode = 0;
2255 FirstAdrNode = 0;
2258 /// Unite pointer but not location equivalent variables, now that the constraint
2259 /// graph is built.
2260 void Andersens::UnitePointerEquivalences() {
2261 DEBUG(errs() << "Uniting remaining pointer equivalences\n");
2262 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2263 if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
2264 unsigned Label = GraphNodes[i].PointerEquivLabel;
2266 if (Label && PENLEClass2Node[Label] != -1)
2267 UniteNodes(i, PENLEClass2Node[Label]);
2270 DEBUG(errs() << "Finished remaining pointer equivalences\n");
2271 PENLEClass2Node.clear();
2274 /// Create the constraint graph used for solving points-to analysis.
2276 void Andersens::CreateConstraintGraph() {
2277 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2278 Constraint &C = Constraints[i];
2279 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2280 if (C.Type == Constraint::AddressOf)
2281 GraphNodes[C.Dest].PointsTo->set(C.Src);
2282 else if (C.Type == Constraint::Load)
2283 GraphNodes[C.Src].Constraints.push_back(C);
2284 else if (C.Type == Constraint::Store)
2285 GraphNodes[C.Dest].Constraints.push_back(C);
2286 else if (C.Offset != 0)
2287 GraphNodes[C.Src].Constraints.push_back(C);
2288 else
2289 GraphNodes[C.Src].Edges->set(C.Dest);
2293 // Perform DFS and cycle detection.
2294 bool Andersens::QueryNode(unsigned Node) {
2295 assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
2296 unsigned OurDFS = ++DFSNumber;
2297 SparseBitVector<> ToErase;
2298 SparseBitVector<> NewEdges;
2299 Tarjan2DFS[Node] = OurDFS;
2301 // Changed denotes a change from a recursive call that we will bubble up.
2302 // Merged is set if we actually merge a node ourselves.
2303 bool Changed = false, Merged = false;
2305 for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
2306 bi != GraphNodes[Node].Edges->end();
2307 ++bi) {
2308 unsigned RepNode = FindNode(*bi);
2309 // If this edge points to a non-representative node but we are
2310 // already planning to add an edge to its representative, we have no
2311 // need for this edge anymore.
2312 if (RepNode != *bi && NewEdges.test(RepNode)){
2313 ToErase.set(*bi);
2314 continue;
2317 // Continue about our DFS.
2318 if (!Tarjan2Deleted[RepNode]){
2319 if (Tarjan2DFS[RepNode] == 0) {
2320 Changed |= QueryNode(RepNode);
2321 // May have been changed by QueryNode
2322 RepNode = FindNode(RepNode);
2324 if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
2325 Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
2328 // We may have just discovered that this node is part of a cycle, in
2329 // which case we can also erase it.
2330 if (RepNode != *bi) {
2331 ToErase.set(*bi);
2332 NewEdges.set(RepNode);
2336 GraphNodes[Node].Edges->intersectWithComplement(ToErase);
2337 GraphNodes[Node].Edges |= NewEdges;
2339 // If this node is a root of a non-trivial SCC, place it on our
2340 // worklist to be processed.
2341 if (OurDFS == Tarjan2DFS[Node]) {
2342 while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
2343 Node = UniteNodes(Node, SCCStack.top());
2345 SCCStack.pop();
2346 Merged = true;
2348 Tarjan2Deleted[Node] = true;
2350 if (Merged)
2351 NextWL->insert(&GraphNodes[Node]);
2352 } else {
2353 SCCStack.push(Node);
2356 return(Changed | Merged);
2359 /// SolveConstraints - This stage iteratively processes the constraints list
2360 /// propagating constraints (adding edges to the Nodes in the points-to graph)
2361 /// until a fixed point is reached.
2363 /// We use a variant of the technique called "Lazy Cycle Detection", which is
2364 /// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
2365 /// Analysis for Millions of Lines of Code. In Programming Language Design and
2366 /// Implementation (PLDI), June 2007."
2367 /// The paper describes performing cycle detection one node at a time, which can
2368 /// be expensive if there are no cycles, but there are long chains of nodes that
2369 /// it heuristically believes are cycles (because it will DFS from each node
2370 /// without state from previous nodes).
2371 /// Instead, we use the heuristic to build a worklist of nodes to check, then
2372 /// cycle detect them all at the same time to do this more cheaply. This
2373 /// catches cycles slightly later than the original technique did, but does it
2374 /// make significantly cheaper.
2376 void Andersens::SolveConstraints() {
2377 CurrWL = &w1;
2378 NextWL = &w2;
2380 OptimizeConstraints();
2381 #undef DEBUG_TYPE
2382 #define DEBUG_TYPE "anders-aa-constraints"
2383 DEBUG(PrintConstraints());
2384 #undef DEBUG_TYPE
2385 #define DEBUG_TYPE "anders-aa"
2387 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2388 Node *N = &GraphNodes[i];
2389 N->PointsTo = new SparseBitVector<>;
2390 N->OldPointsTo = new SparseBitVector<>;
2391 N->Edges = new SparseBitVector<>;
2393 CreateConstraintGraph();
2394 UnitePointerEquivalences();
2395 assert(SCCStack.empty() && "SCC Stack should be empty by now!");
2396 Node2DFS.clear();
2397 Node2Deleted.clear();
2398 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2399 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2400 DFSNumber = 0;
2401 DenseSet<Constraint, ConstraintKeyInfo> Seen;
2402 DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;
2404 // Order graph and add initial nodes to work list.
2405 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2406 Node *INode = &GraphNodes[i];
2408 // Add to work list if it's a representative and can contribute to the
2409 // calculation right now.
2410 if (INode->isRep() && !INode->PointsTo->empty()
2411 && (!INode->Edges->empty() || !INode->Constraints.empty())) {
2412 INode->Stamp();
2413 CurrWL->insert(INode);
2416 std::queue<unsigned int> TarjanWL;
2417 #if !FULL_UNIVERSAL
2418 // "Rep and special variables" - in order for HCD to maintain conservative
2419 // results when !FULL_UNIVERSAL, we need to treat the special variables in
2420 // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of
2421 // the analysis - it's ok to add edges from the special nodes, but never
2422 // *to* the special nodes.
2423 std::vector<unsigned int> RSV;
2424 #endif
2425 while( !CurrWL->empty() ) {
2426 DEBUG(errs() << "Starting iteration #" << ++NumIters << "\n");
2428 Node* CurrNode;
2429 unsigned CurrNodeIndex;
2431 // Actual cycle checking code. We cycle check all of the lazy cycle
2432 // candidates from the last iteration in one go.
2433 if (!TarjanWL.empty()) {
2434 DFSNumber = 0;
2436 Tarjan2DFS.clear();
2437 Tarjan2Deleted.clear();
2438 while (!TarjanWL.empty()) {
2439 unsigned int ToTarjan = TarjanWL.front();
2440 TarjanWL.pop();
2441 if (!Tarjan2Deleted[ToTarjan]
2442 && GraphNodes[ToTarjan].isRep()
2443 && Tarjan2DFS[ToTarjan] == 0)
2444 QueryNode(ToTarjan);
2448 // Add to work list if it's a representative and can contribute to the
2449 // calculation right now.
2450 while( (CurrNode = CurrWL->pop()) != NULL ) {
2451 CurrNodeIndex = CurrNode - &GraphNodes[0];
2452 CurrNode->Stamp();
2455 // Figure out the changed points to bits
2456 SparseBitVector<> CurrPointsTo;
2457 CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
2458 CurrNode->OldPointsTo);
2459 if (CurrPointsTo.empty())
2460 continue;
2462 *(CurrNode->OldPointsTo) |= CurrPointsTo;
2464 // Check the offline-computed equivalencies from HCD.
2465 bool SCC = false;
2466 unsigned Rep;
2468 if (SDT[CurrNodeIndex] >= 0) {
2469 SCC = true;
2470 Rep = FindNode(SDT[CurrNodeIndex]);
2472 #if !FULL_UNIVERSAL
2473 RSV.clear();
2474 #endif
2475 for (SparseBitVector<>::iterator bi = CurrPointsTo.begin();
2476 bi != CurrPointsTo.end(); ++bi) {
2477 unsigned Node = FindNode(*bi);
2478 #if !FULL_UNIVERSAL
2479 if (Node < NumberSpecialNodes) {
2480 RSV.push_back(Node);
2481 continue;
2483 #endif
2484 Rep = UniteNodes(Rep,Node);
2486 #if !FULL_UNIVERSAL
2487 RSV.push_back(Rep);
2488 #endif
2490 NextWL->insert(&GraphNodes[Rep]);
2492 if ( ! CurrNode->isRep() )
2493 continue;
2496 Seen.clear();
2498 /* Now process the constraints for this node. */
2499 for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
2500 li != CurrNode->Constraints.end(); ) {
2501 li->Src = FindNode(li->Src);
2502 li->Dest = FindNode(li->Dest);
2504 // Delete redundant constraints
2505 if( Seen.count(*li) ) {
2506 std::list<Constraint>::iterator lk = li; li++;
2508 CurrNode->Constraints.erase(lk);
2509 ++NumErased;
2510 continue;
2512 Seen.insert(*li);
2514 // Src and Dest will be the vars we are going to process.
2515 // This may look a bit ugly, but what it does is allow us to process
2516 // both store and load constraints with the same code.
2517 // Load constraints say that every member of our RHS solution has K
2518 // added to it, and that variable gets an edge to LHS. We also union
2519 // RHS+K's solution into the LHS solution.
2520 // Store constraints say that every member of our LHS solution has K
2521 // added to it, and that variable gets an edge from RHS. We also union
2522 // RHS's solution into the LHS+K solution.
2523 unsigned *Src;
2524 unsigned *Dest;
2525 unsigned K = li->Offset;
2526 unsigned CurrMember;
2527 if (li->Type == Constraint::Load) {
2528 Src = &CurrMember;
2529 Dest = &li->Dest;
2530 } else if (li->Type == Constraint::Store) {
2531 Src = &li->Src;
2532 Dest = &CurrMember;
2533 } else {
2534 // TODO Handle offseted copy constraint
2535 li++;
2536 continue;
2539 // See if we can use Hybrid Cycle Detection (that is, check
2540 // if it was a statically detected offline equivalence that
2541 // involves pointers; if so, remove the redundant constraints).
2542 if( SCC && K == 0 ) {
2543 #if FULL_UNIVERSAL
2544 CurrMember = Rep;
2546 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2547 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2548 NextWL->insert(&GraphNodes[*Dest]);
2549 #else
2550 for (unsigned i=0; i < RSV.size(); ++i) {
2551 CurrMember = RSV[i];
2553 if (*Dest < NumberSpecialNodes)
2554 continue;
2555 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2556 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2557 NextWL->insert(&GraphNodes[*Dest]);
2559 #endif
2560 // since all future elements of the points-to set will be
2561 // equivalent to the current ones, the complex constraints
2562 // become redundant.
2564 std::list<Constraint>::iterator lk = li; li++;
2565 #if !FULL_UNIVERSAL
2566 // In this case, we can still erase the constraints when the
2567 // elements of the points-to sets are referenced by *Dest,
2568 // but not when they are referenced by *Src (i.e. for a Load
2569 // constraint). This is because if another special variable is
2570 // put into the points-to set later, we still need to add the
2571 // new edge from that special variable.
2572 if( lk->Type != Constraint::Load)
2573 #endif
2574 GraphNodes[CurrNodeIndex].Constraints.erase(lk);
2575 } else {
2576 const SparseBitVector<> &Solution = CurrPointsTo;
2578 for (SparseBitVector<>::iterator bi = Solution.begin();
2579 bi != Solution.end();
2580 ++bi) {
2581 CurrMember = *bi;
2583 // Need to increment the member by K since that is where we are
2584 // supposed to copy to/from. Note that in positive weight cycles,
2585 // which occur in address taking of fields, K can go past
2586 // MaxK[CurrMember] elements, even though that is all it could point
2587 // to.
2588 if (K > 0 && K > MaxK[CurrMember])
2589 continue;
2590 else
2591 CurrMember = FindNode(CurrMember + K);
2593 // Add an edge to the graph, so we can just do regular
2594 // bitmap ior next time. It may also let us notice a cycle.
2595 #if !FULL_UNIVERSAL
2596 if (*Dest < NumberSpecialNodes)
2597 continue;
2598 #endif
2599 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2600 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2601 NextWL->insert(&GraphNodes[*Dest]);
2604 li++;
2607 SparseBitVector<> NewEdges;
2608 SparseBitVector<> ToErase;
2610 // Now all we have left to do is propagate points-to info along the
2611 // edges, erasing the redundant edges.
2612 for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
2613 bi != CurrNode->Edges->end();
2614 ++bi) {
2616 unsigned DestVar = *bi;
2617 unsigned Rep = FindNode(DestVar);
2619 // If we ended up with this node as our destination, or we've already
2620 // got an edge for the representative, delete the current edge.
2621 if (Rep == CurrNodeIndex ||
2622 (Rep != DestVar && NewEdges.test(Rep))) {
2623 ToErase.set(DestVar);
2624 continue;
2627 std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
2629 // This is where we do lazy cycle detection.
2630 // If this is a cycle candidate (equal points-to sets and this
2631 // particular edge has not been cycle-checked previously), add to the
2632 // list to check for cycles on the next iteration.
2633 if (!EdgesChecked.count(edge) &&
2634 *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
2635 EdgesChecked.insert(edge);
2636 TarjanWL.push(Rep);
2638 // Union the points-to sets into the dest
2639 #if !FULL_UNIVERSAL
2640 if (Rep >= NumberSpecialNodes)
2641 #endif
2642 if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
2643 NextWL->insert(&GraphNodes[Rep]);
2645 // If this edge's destination was collapsed, rewrite the edge.
2646 if (Rep != DestVar) {
2647 ToErase.set(DestVar);
2648 NewEdges.set(Rep);
2651 CurrNode->Edges->intersectWithComplement(ToErase);
2652 CurrNode->Edges |= NewEdges;
2655 // Switch to other work list.
2656 WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
2660 Node2DFS.clear();
2661 Node2Deleted.clear();
2662 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2663 Node *N = &GraphNodes[i];
2664 delete N->OldPointsTo;
2665 delete N->Edges;
2667 SDTActive = false;
2668 SDT.clear();
2671 //===----------------------------------------------------------------------===//
2672 // Union-Find
2673 //===----------------------------------------------------------------------===//
2675 // Unite nodes First and Second, returning the one which is now the
2676 // representative node. First and Second are indexes into GraphNodes
2677 unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
2678 bool UnionByRank) {
2679 assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
2680 "Attempting to merge nodes that don't exist");
2682 Node *FirstNode = &GraphNodes[First];
2683 Node *SecondNode = &GraphNodes[Second];
2685 assert (SecondNode->isRep() && FirstNode->isRep() &&
2686 "Trying to unite two non-representative nodes!");
2687 if (First == Second)
2688 return First;
2690 if (UnionByRank) {
2691 int RankFirst = (int) FirstNode ->NodeRep;
2692 int RankSecond = (int) SecondNode->NodeRep;
2694 // Rank starts at -1 and gets decremented as it increases.
2695 // Translation: higher rank, lower NodeRep value, which is always negative.
2696 if (RankFirst > RankSecond) {
2697 unsigned t = First; First = Second; Second = t;
2698 Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
2699 } else if (RankFirst == RankSecond) {
2700 FirstNode->NodeRep = (unsigned) (RankFirst - 1);
2704 SecondNode->NodeRep = First;
2705 #if !FULL_UNIVERSAL
2706 if (First >= NumberSpecialNodes)
2707 #endif
2708 if (FirstNode->PointsTo && SecondNode->PointsTo)
2709 FirstNode->PointsTo |= *(SecondNode->PointsTo);
2710 if (FirstNode->Edges && SecondNode->Edges)
2711 FirstNode->Edges |= *(SecondNode->Edges);
2712 if (!SecondNode->Constraints.empty())
2713 FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
2714 SecondNode->Constraints);
2715 if (FirstNode->OldPointsTo) {
2716 delete FirstNode->OldPointsTo;
2717 FirstNode->OldPointsTo = new SparseBitVector<>;
2720 // Destroy interesting parts of the merged-from node.
2721 delete SecondNode->OldPointsTo;
2722 delete SecondNode->Edges;
2723 delete SecondNode->PointsTo;
2724 SecondNode->Edges = NULL;
2725 SecondNode->PointsTo = NULL;
2726 SecondNode->OldPointsTo = NULL;
2728 NumUnified++;
2729 DEBUG(errs() << "Unified Node ");
2730 DEBUG(PrintNode(FirstNode));
2731 DEBUG(errs() << " and Node ");
2732 DEBUG(PrintNode(SecondNode));
2733 DEBUG(errs() << "\n");
2735 if (SDTActive)
2736 if (SDT[Second] >= 0) {
2737 if (SDT[First] < 0)
2738 SDT[First] = SDT[Second];
2739 else {
2740 UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) );
2741 First = FindNode(First);
2745 return First;
2748 // Find the index into GraphNodes of the node representing Node, performing
2749 // path compression along the way
2750 unsigned Andersens::FindNode(unsigned NodeIndex) {
2751 assert (NodeIndex < GraphNodes.size()
2752 && "Attempting to find a node that can't exist");
2753 Node *N = &GraphNodes[NodeIndex];
2754 if (N->isRep())
2755 return NodeIndex;
2756 else
2757 return (N->NodeRep = FindNode(N->NodeRep));
2760 // Find the index into GraphNodes of the node representing Node,
2761 // don't perform path compression along the way (for Print)
2762 unsigned Andersens::FindNode(unsigned NodeIndex) const {
2763 assert (NodeIndex < GraphNodes.size()
2764 && "Attempting to find a node that can't exist");
2765 const Node *N = &GraphNodes[NodeIndex];
2766 if (N->isRep())
2767 return NodeIndex;
2768 else
2769 return FindNode(N->NodeRep);
2772 //===----------------------------------------------------------------------===//
2773 // Debugging Output
2774 //===----------------------------------------------------------------------===//
2776 void Andersens::PrintNode(const Node *N) const {
2777 if (N == &GraphNodes[UniversalSet]) {
2778 errs() << "<universal>";
2779 return;
2780 } else if (N == &GraphNodes[NullPtr]) {
2781 errs() << "<nullptr>";
2782 return;
2783 } else if (N == &GraphNodes[NullObject]) {
2784 errs() << "<null>";
2785 return;
2787 if (!N->getValue()) {
2788 errs() << "artificial" << (intptr_t) N;
2789 return;
2792 assert(N->getValue() != 0 && "Never set node label!");
2793 Value *V = N->getValue();
2794 if (Function *F = dyn_cast<Function>(V)) {
2795 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
2796 N == &GraphNodes[getReturnNode(F)]) {
2797 errs() << F->getName() << ":retval";
2798 return;
2799 } else if (F->getFunctionType()->isVarArg() &&
2800 N == &GraphNodes[getVarargNode(F)]) {
2801 errs() << F->getName() << ":vararg";
2802 return;
2806 if (Instruction *I = dyn_cast<Instruction>(V))
2807 errs() << I->getParent()->getParent()->getName() << ":";
2808 else if (Argument *Arg = dyn_cast<Argument>(V))
2809 errs() << Arg->getParent()->getName() << ":";
2811 if (V->hasName())
2812 errs() << V->getName();
2813 else
2814 errs() << "(unnamed)";
2816 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
2817 if (N == &GraphNodes[getObject(V)])
2818 errs() << "<mem>";
2820 void Andersens::PrintConstraint(const Constraint &C) const {
2821 if (C.Type == Constraint::Store) {
2822 errs() << "*";
2823 if (C.Offset != 0)
2824 errs() << "(";
2826 PrintNode(&GraphNodes[C.Dest]);
2827 if (C.Type == Constraint::Store && C.Offset != 0)
2828 errs() << " + " << C.Offset << ")";
2829 errs() << " = ";
2830 if (C.Type == Constraint::Load) {
2831 errs() << "*";
2832 if (C.Offset != 0)
2833 errs() << "(";
2835 else if (C.Type == Constraint::AddressOf)
2836 errs() << "&";
2837 PrintNode(&GraphNodes[C.Src]);
2838 if (C.Offset != 0 && C.Type != Constraint::Store)
2839 errs() << " + " << C.Offset;
2840 if (C.Type == Constraint::Load && C.Offset != 0)
2841 errs() << ")";
2842 errs() << "\n";
2845 void Andersens::PrintConstraints() const {
2846 errs() << "Constraints:\n";
2848 for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
2849 PrintConstraint(Constraints[i]);
2852 void Andersens::PrintPointsToGraph() const {
2853 errs() << "Points-to graph:\n";
2854 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
2855 const Node *N = &GraphNodes[i];
2856 if (FindNode(i) != i) {
2857 PrintNode(N);
2858 errs() << "\t--> same as ";
2859 PrintNode(&GraphNodes[FindNode(i)]);
2860 errs() << "\n";
2861 } else {
2862 errs() << "[" << (N->PointsTo->count()) << "] ";
2863 PrintNode(N);
2864 errs() << "\t--> ";
2866 bool first = true;
2867 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
2868 bi != N->PointsTo->end();
2869 ++bi) {
2870 if (!first)
2871 errs() << ", ";
2872 PrintNode(&GraphNodes[*bi]);
2873 first = false;
2875 errs() << "\n";