1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
24 #include "llvm/ADT/SmallPtrSet.h"
28 char LoopInfo::ID
= 0;
29 static RegisterPass
<LoopInfo
>
30 X("loops", "Natural Loop Information", true, true);
32 //===----------------------------------------------------------------------===//
33 // Loop implementation
36 /// isLoopInvariant - Return true if the specified value is loop invariant
38 bool Loop::isLoopInvariant(Value
*V
) const {
39 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
40 return isLoopInvariant(I
);
41 return true; // All non-instructions are loop invariant
44 /// isLoopInvariant - Return true if the specified instruction is
47 bool Loop::isLoopInvariant(Instruction
*I
) const {
48 return !contains(I
->getParent());
51 /// makeLoopInvariant - If the given value is an instruciton inside of the
52 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
53 /// Return true if the value after any hoisting is loop invariant. This
54 /// function can be used as a slightly more aggressive replacement for
57 /// If InsertPt is specified, it is the point to hoist instructions to.
58 /// If null, the terminator of the loop preheader is used.
60 bool Loop::makeLoopInvariant(Value
*V
, bool &Changed
,
61 Instruction
*InsertPt
) const {
62 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
63 return makeLoopInvariant(I
, Changed
, InsertPt
);
64 return true; // All non-instructions are loop-invariant.
67 /// makeLoopInvariant - If the given instruction is inside of the
68 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
69 /// Return true if the instruction after any hoisting is loop invariant. This
70 /// function can be used as a slightly more aggressive replacement for
73 /// If InsertPt is specified, it is the point to hoist instructions to.
74 /// If null, the terminator of the loop preheader is used.
76 bool Loop::makeLoopInvariant(Instruction
*I
, bool &Changed
,
77 Instruction
*InsertPt
) const {
78 // Test if the value is already loop-invariant.
79 if (isLoopInvariant(I
))
81 if (!I
->isSafeToSpeculativelyExecute())
83 if (I
->mayReadFromMemory())
85 // Determine the insertion point, unless one was given.
87 BasicBlock
*Preheader
= getLoopPreheader();
88 // Without a preheader, hoisting is not feasible.
91 InsertPt
= Preheader
->getTerminator();
93 // Don't hoist instructions with loop-variant operands.
94 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
95 if (!makeLoopInvariant(I
->getOperand(i
), Changed
, InsertPt
))
98 I
->moveBefore(InsertPt
);
103 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
104 /// induction variable: an integer recurrence that starts at 0 and increments
105 /// by one each time through the loop. If so, return the phi node that
106 /// corresponds to it.
108 /// The IndVarSimplify pass transforms loops to have a canonical induction
111 PHINode
*Loop::getCanonicalInductionVariable() const {
112 BasicBlock
*H
= getHeader();
114 BasicBlock
*Incoming
= 0, *Backedge
= 0;
115 typedef GraphTraits
<Inverse
<BasicBlock
*> > InvBlockTraits
;
116 InvBlockTraits::ChildIteratorType PI
= InvBlockTraits::child_begin(H
);
117 assert(PI
!= InvBlockTraits::child_end(H
) &&
118 "Loop must have at least one backedge!");
120 if (PI
== InvBlockTraits::child_end(H
)) return 0; // dead loop
122 if (PI
!= InvBlockTraits::child_end(H
)) return 0; // multiple backedges?
124 if (contains(Incoming
)) {
125 if (contains(Backedge
))
127 std::swap(Incoming
, Backedge
);
128 } else if (!contains(Backedge
))
131 // Loop over all of the PHI nodes, looking for a canonical indvar.
132 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
133 PHINode
*PN
= cast
<PHINode
>(I
);
134 if (ConstantInt
*CI
=
135 dyn_cast
<ConstantInt
>(PN
->getIncomingValueForBlock(Incoming
)))
136 if (CI
->isNullValue())
137 if (Instruction
*Inc
=
138 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
139 if (Inc
->getOpcode() == Instruction::Add
&&
140 Inc
->getOperand(0) == PN
)
141 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
142 if (CI
->equalsInt(1))
148 /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
149 /// the canonical induction variable value for the "next" iteration of the
150 /// loop. This always succeeds if getCanonicalInductionVariable succeeds.
152 Instruction
*Loop::getCanonicalInductionVariableIncrement() const {
153 if (PHINode
*PN
= getCanonicalInductionVariable()) {
154 bool P1InLoop
= contains(PN
->getIncomingBlock(1));
155 return cast
<Instruction
>(PN
->getIncomingValue(P1InLoop
));
160 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
161 /// times the loop will be executed. Note that this means that the backedge
162 /// of the loop executes N-1 times. If the trip-count cannot be determined,
163 /// this returns null.
165 /// The IndVarSimplify pass transforms loops to have a form that this
166 /// function easily understands.
168 Value
*Loop::getTripCount() const {
169 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
170 // canonical induction variable and V is the trip count of the loop.
171 Instruction
*Inc
= getCanonicalInductionVariableIncrement();
172 if (Inc
== 0) return 0;
173 PHINode
*IV
= cast
<PHINode
>(Inc
->getOperand(0));
175 BasicBlock
*BackedgeBlock
=
176 IV
->getIncomingBlock(contains(IV
->getIncomingBlock(1)));
178 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BackedgeBlock
->getTerminator()))
179 if (BI
->isConditional()) {
180 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
181 if (ICI
->getOperand(0) == Inc
) {
182 if (BI
->getSuccessor(0) == getHeader()) {
183 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
184 return ICI
->getOperand(1);
185 } else if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
) {
186 return ICI
->getOperand(1);
195 /// getSmallConstantTripCount - Returns the trip count of this loop as a
196 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
197 /// of not constant. Will also return 0 if the trip count is very large
199 unsigned Loop::getSmallConstantTripCount() const {
200 Value
* TripCount
= this->getTripCount();
202 if (ConstantInt
*TripCountC
= dyn_cast
<ConstantInt
>(TripCount
)) {
203 // Guard against huge trip counts.
204 if (TripCountC
->getValue().getActiveBits() <= 32) {
205 return (unsigned)TripCountC
->getZExtValue();
212 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
213 /// trip count of this loop as a normal unsigned value, if possible. This
214 /// means that the actual trip count is always a multiple of the returned
215 /// value (don't forget the trip count could very well be zero as well!).
217 /// Returns 1 if the trip count is unknown or not guaranteed to be the
218 /// multiple of a constant (which is also the case if the trip count is simply
219 /// constant, use getSmallConstantTripCount for that case), Will also return 1
220 /// if the trip count is very large (>= 2^32).
221 unsigned Loop::getSmallConstantTripMultiple() const {
222 Value
* TripCount
= this->getTripCount();
223 // This will hold the ConstantInt result, if any
224 ConstantInt
*Result
= NULL
;
226 // See if the trip count is constant itself
227 Result
= dyn_cast
<ConstantInt
>(TripCount
);
228 // if not, see if it is a multiplication
230 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TripCount
)) {
231 switch (BO
->getOpcode()) {
232 case BinaryOperator::Mul
:
233 Result
= dyn_cast
<ConstantInt
>(BO
->getOperand(1));
240 // Guard against huge trip counts.
241 if (Result
&& Result
->getValue().getActiveBits() <= 32) {
242 return (unsigned)Result
->getZExtValue();
248 /// isLCSSAForm - Return true if the Loop is in LCSSA form
249 bool Loop::isLCSSAForm() const {
250 // Sort the blocks vector so that we can use binary search to do quick
252 SmallPtrSet
<BasicBlock
*, 16> LoopBBs(block_begin(), block_end());
254 for (block_iterator BI
= block_begin(), E
= block_end(); BI
!= E
; ++BI
) {
255 BasicBlock
*BB
= *BI
;
256 for (BasicBlock ::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;++I
)
257 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
259 BasicBlock
*UserBB
= cast
<Instruction
>(*UI
)->getParent();
260 if (PHINode
*P
= dyn_cast
<PHINode
>(*UI
)) {
261 UserBB
= P
->getIncomingBlock(UI
);
264 // Check the current block, as a fast-path. Most values are used in
265 // the same block they are defined in.
266 if (UserBB
!= BB
&& !LoopBBs
.count(UserBB
))
274 /// isLoopSimplifyForm - Return true if the Loop is in the form that
275 /// the LoopSimplify form transforms loops to, which is sometimes called
277 bool Loop::isLoopSimplifyForm() const {
278 // Normal-form loops have a preheader.
279 if (!getLoopPreheader())
281 // Normal-form loops have a single backedge.
284 // Each predecessor of each exit block of a normal loop is contained
286 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
287 getExitBlocks(ExitBlocks
);
288 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
289 for (pred_iterator PI
= pred_begin(ExitBlocks
[i
]),
290 PE
= pred_end(ExitBlocks
[i
]); PI
!= PE
; ++PI
)
293 // All the requirements are met.
297 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
298 /// These are the blocks _outside of the current loop_ which are branched to.
299 /// This assumes that loop is in canonical form.
302 Loop::getUniqueExitBlocks(SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) const {
303 assert(isLoopSimplifyForm() &&
304 "getUniqueExitBlocks assumes the loop is in canonical form!");
306 // Sort the blocks vector so that we can use binary search to do quick
308 SmallVector
<BasicBlock
*, 128> LoopBBs(block_begin(), block_end());
309 std::sort(LoopBBs
.begin(), LoopBBs
.end());
311 SmallVector
<BasicBlock
*, 32> switchExitBlocks
;
313 for (block_iterator BI
= block_begin(), BE
= block_end(); BI
!= BE
; ++BI
) {
315 BasicBlock
*current
= *BI
;
316 switchExitBlocks
.clear();
318 typedef GraphTraits
<BasicBlock
*> BlockTraits
;
319 typedef GraphTraits
<Inverse
<BasicBlock
*> > InvBlockTraits
;
320 for (BlockTraits::ChildIteratorType I
=
321 BlockTraits::child_begin(*BI
), E
= BlockTraits::child_end(*BI
);
323 // If block is inside the loop then it is not a exit block.
324 if (std::binary_search(LoopBBs
.begin(), LoopBBs
.end(), *I
))
327 InvBlockTraits::ChildIteratorType PI
= InvBlockTraits::child_begin(*I
);
328 BasicBlock
*firstPred
= *PI
;
330 // If current basic block is this exit block's first predecessor
331 // then only insert exit block in to the output ExitBlocks vector.
332 // This ensures that same exit block is not inserted twice into
333 // ExitBlocks vector.
334 if (current
!= firstPred
)
337 // If a terminator has more then two successors, for example SwitchInst,
338 // then it is possible that there are multiple edges from current block
339 // to one exit block.
340 if (std::distance(BlockTraits::child_begin(current
),
341 BlockTraits::child_end(current
)) <= 2) {
342 ExitBlocks
.push_back(*I
);
346 // In case of multiple edges from current block to exit block, collect
347 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
349 if (std::find(switchExitBlocks
.begin(), switchExitBlocks
.end(), *I
)
350 == switchExitBlocks
.end()) {
351 switchExitBlocks
.push_back(*I
);
352 ExitBlocks
.push_back(*I
);
358 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
359 /// block, return that block. Otherwise return null.
360 BasicBlock
*Loop::getUniqueExitBlock() const {
361 SmallVector
<BasicBlock
*, 8> UniqueExitBlocks
;
362 getUniqueExitBlocks(UniqueExitBlocks
);
363 if (UniqueExitBlocks
.size() == 1)
364 return UniqueExitBlocks
[0];
368 //===----------------------------------------------------------------------===//
369 // LoopInfo implementation
371 bool LoopInfo::runOnFunction(Function
&) {
373 LI
.Calculate(getAnalysis
<DominatorTree
>().getBase()); // Update
377 void LoopInfo::verifyAnalysis() const {
378 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
379 assert(!(*I
)->getParentLoop() && "Top-level loop has a parent!");
380 (*I
)->verifyLoopNest();
384 void LoopInfo::getAnalysisUsage(AnalysisUsage
&AU
) const {
385 AU
.setPreservesAll();
386 AU
.addRequired
<DominatorTree
>();
389 void LoopInfo::print(raw_ostream
&OS
, const Module
*) const {