pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
blob9cb57585762cd938a51ef8c71f4ed77d318a5f50
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Program.h"
31 using namespace llvm;
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36 CurVersion = 0,
38 // VALUE_SYMTAB_BLOCK abbrev id's.
39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40 VST_ENTRY_7_ABBREV,
41 VST_ENTRY_6_ABBREV,
42 VST_BBENTRY_6_ABBREV,
44 // CONSTANTS_BLOCK abbrev id's.
45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46 CONSTANTS_INTEGER_ABBREV,
47 CONSTANTS_CE_CAST_Abbrev,
48 CONSTANTS_NULL_Abbrev,
50 // FUNCTION_BLOCK abbrev id's.
51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52 FUNCTION_INST_BINOP_ABBREV,
53 FUNCTION_INST_BINOP_FLAGS_ABBREV,
54 FUNCTION_INST_CAST_ABBREV,
55 FUNCTION_INST_RET_VOID_ABBREV,
56 FUNCTION_INST_RET_VAL_ABBREV,
57 FUNCTION_INST_UNREACHABLE_ABBREV
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62 switch (Opcode) {
63 default: llvm_unreachable("Unknown cast instruction!");
64 case Instruction::Trunc : return bitc::CAST_TRUNC;
65 case Instruction::ZExt : return bitc::CAST_ZEXT;
66 case Instruction::SExt : return bitc::CAST_SEXT;
67 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
68 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
69 case Instruction::UIToFP : return bitc::CAST_UITOFP;
70 case Instruction::SIToFP : return bitc::CAST_SITOFP;
71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72 case Instruction::FPExt : return bitc::CAST_FPEXT;
73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75 case Instruction::BitCast : return bitc::CAST_BITCAST;
79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80 switch (Opcode) {
81 default: llvm_unreachable("Unknown binary instruction!");
82 case Instruction::Add:
83 case Instruction::FAdd: return bitc::BINOP_ADD;
84 case Instruction::Sub:
85 case Instruction::FSub: return bitc::BINOP_SUB;
86 case Instruction::Mul:
87 case Instruction::FMul: return bitc::BINOP_MUL;
88 case Instruction::UDiv: return bitc::BINOP_UDIV;
89 case Instruction::FDiv:
90 case Instruction::SDiv: return bitc::BINOP_SDIV;
91 case Instruction::URem: return bitc::BINOP_UREM;
92 case Instruction::FRem:
93 case Instruction::SRem: return bitc::BINOP_SREM;
94 case Instruction::Shl: return bitc::BINOP_SHL;
95 case Instruction::LShr: return bitc::BINOP_LSHR;
96 case Instruction::AShr: return bitc::BINOP_ASHR;
97 case Instruction::And: return bitc::BINOP_AND;
98 case Instruction::Or: return bitc::BINOP_OR;
99 case Instruction::Xor: return bitc::BINOP_XOR;
105 static void WriteStringRecord(unsigned Code, const std::string &Str,
106 unsigned AbbrevToUse, BitstreamWriter &Stream) {
107 SmallVector<unsigned, 64> Vals;
109 // Code: [strchar x N]
110 for (unsigned i = 0, e = Str.size(); i != e; ++i)
111 Vals.push_back(Str[i]);
113 // Emit the finished record.
114 Stream.EmitRecord(Code, Vals, AbbrevToUse);
117 // Emit information about parameter attributes.
118 static void WriteAttributeTable(const ValueEnumerator &VE,
119 BitstreamWriter &Stream) {
120 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
121 if (Attrs.empty()) return;
123 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125 SmallVector<uint64_t, 64> Record;
126 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
127 const AttrListPtr &A = Attrs[i];
128 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
129 const AttributeWithIndex &PAWI = A.getSlot(i);
130 Record.push_back(PAWI.Index);
132 // FIXME: remove in LLVM 3.0
133 // Store the alignment in the bitcode as a 16-bit raw value instead of a
134 // 5-bit log2 encoded value. Shift the bits above the alignment up by
135 // 11 bits.
136 uint64_t FauxAttr = PAWI.Attrs & 0xffff;
137 if (PAWI.Attrs & Attribute::Alignment)
138 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
139 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141 Record.push_back(FauxAttr);
144 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
145 Record.clear();
148 Stream.ExitBlock();
151 /// WriteTypeTable - Write out the type table for a module.
152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
153 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
156 SmallVector<uint64_t, 64> TypeVals;
158 // Abbrev for TYPE_CODE_POINTER.
159 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162 Log2_32_Ceil(VE.getTypes().size()+1)));
163 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
164 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166 // Abbrev for TYPE_CODE_FUNCTION.
167 Abbv = new BitCodeAbbrev();
168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
170 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173 Log2_32_Ceil(VE.getTypes().size()+1)));
174 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176 // Abbrev for TYPE_CODE_STRUCT.
177 Abbv = new BitCodeAbbrev();
178 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
182 Log2_32_Ceil(VE.getTypes().size()+1)));
183 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185 // Abbrev for TYPE_CODE_ARRAY.
186 Abbv = new BitCodeAbbrev();
187 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190 Log2_32_Ceil(VE.getTypes().size()+1)));
191 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193 // Emit an entry count so the reader can reserve space.
194 TypeVals.push_back(TypeList.size());
195 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
196 TypeVals.clear();
198 // Loop over all of the types, emitting each in turn.
199 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
200 const Type *T = TypeList[i].first;
201 int AbbrevToUse = 0;
202 unsigned Code = 0;
204 switch (T->getTypeID()) {
205 default: llvm_unreachable("Unknown type!");
206 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
207 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
208 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
209 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
210 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
211 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
212 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
213 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
214 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
215 case Type::IntegerTyID:
216 // INTEGER: [width]
217 Code = bitc::TYPE_CODE_INTEGER;
218 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
219 break;
220 case Type::PointerTyID: {
221 const PointerType *PTy = cast<PointerType>(T);
222 // POINTER: [pointee type, address space]
223 Code = bitc::TYPE_CODE_POINTER;
224 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
225 unsigned AddressSpace = PTy->getAddressSpace();
226 TypeVals.push_back(AddressSpace);
227 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
228 break;
230 case Type::FunctionTyID: {
231 const FunctionType *FT = cast<FunctionType>(T);
232 // FUNCTION: [isvararg, attrid, retty, paramty x N]
233 Code = bitc::TYPE_CODE_FUNCTION;
234 TypeVals.push_back(FT->isVarArg());
235 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
236 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
237 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
238 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
239 AbbrevToUse = FunctionAbbrev;
240 break;
242 case Type::StructTyID: {
243 const StructType *ST = cast<StructType>(T);
244 // STRUCT: [ispacked, eltty x N]
245 Code = bitc::TYPE_CODE_STRUCT;
246 TypeVals.push_back(ST->isPacked());
247 // Output all of the element types.
248 for (StructType::element_iterator I = ST->element_begin(),
249 E = ST->element_end(); I != E; ++I)
250 TypeVals.push_back(VE.getTypeID(*I));
251 AbbrevToUse = StructAbbrev;
252 break;
254 case Type::ArrayTyID: {
255 const ArrayType *AT = cast<ArrayType>(T);
256 // ARRAY: [numelts, eltty]
257 Code = bitc::TYPE_CODE_ARRAY;
258 TypeVals.push_back(AT->getNumElements());
259 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
260 AbbrevToUse = ArrayAbbrev;
261 break;
263 case Type::VectorTyID: {
264 const VectorType *VT = cast<VectorType>(T);
265 // VECTOR [numelts, eltty]
266 Code = bitc::TYPE_CODE_VECTOR;
267 TypeVals.push_back(VT->getNumElements());
268 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
269 break;
273 // Emit the finished record.
274 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
275 TypeVals.clear();
278 Stream.ExitBlock();
281 static unsigned getEncodedLinkage(const GlobalValue *GV) {
282 switch (GV->getLinkage()) {
283 default: llvm_unreachable("Invalid linkage!");
284 case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
285 case GlobalValue::ExternalLinkage: return 0;
286 case GlobalValue::WeakAnyLinkage: return 1;
287 case GlobalValue::AppendingLinkage: return 2;
288 case GlobalValue::InternalLinkage: return 3;
289 case GlobalValue::LinkOnceAnyLinkage: return 4;
290 case GlobalValue::DLLImportLinkage: return 5;
291 case GlobalValue::DLLExportLinkage: return 6;
292 case GlobalValue::ExternalWeakLinkage: return 7;
293 case GlobalValue::CommonLinkage: return 8;
294 case GlobalValue::PrivateLinkage: return 9;
295 case GlobalValue::WeakODRLinkage: return 10;
296 case GlobalValue::LinkOnceODRLinkage: return 11;
297 case GlobalValue::AvailableExternallyLinkage: return 12;
298 case GlobalValue::LinkerPrivateLinkage: return 13;
302 static unsigned getEncodedVisibility(const GlobalValue *GV) {
303 switch (GV->getVisibility()) {
304 default: llvm_unreachable("Invalid visibility!");
305 case GlobalValue::DefaultVisibility: return 0;
306 case GlobalValue::HiddenVisibility: return 1;
307 case GlobalValue::ProtectedVisibility: return 2;
311 // Emit top-level description of module, including target triple, inline asm,
312 // descriptors for global variables, and function prototype info.
313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
314 BitstreamWriter &Stream) {
315 // Emit the list of dependent libraries for the Module.
316 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
317 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319 // Emit various pieces of data attached to a module.
320 if (!M->getTargetTriple().empty())
321 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
322 0/*TODO*/, Stream);
323 if (!M->getDataLayout().empty())
324 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
325 0/*TODO*/, Stream);
326 if (!M->getModuleInlineAsm().empty())
327 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
328 0/*TODO*/, Stream);
330 // Emit information about sections and GC, computing how many there are. Also
331 // compute the maximum alignment value.
332 std::map<std::string, unsigned> SectionMap;
333 std::map<std::string, unsigned> GCMap;
334 unsigned MaxAlignment = 0;
335 unsigned MaxGlobalType = 0;
336 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
337 GV != E; ++GV) {
338 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
339 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341 if (!GV->hasSection()) continue;
342 // Give section names unique ID's.
343 unsigned &Entry = SectionMap[GV->getSection()];
344 if (Entry != 0) continue;
345 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
346 0/*TODO*/, Stream);
347 Entry = SectionMap.size();
349 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
350 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
351 if (F->hasSection()) {
352 // Give section names unique ID's.
353 unsigned &Entry = SectionMap[F->getSection()];
354 if (!Entry) {
355 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
356 0/*TODO*/, Stream);
357 Entry = SectionMap.size();
360 if (F->hasGC()) {
361 // Same for GC names.
362 unsigned &Entry = GCMap[F->getGC()];
363 if (!Entry) {
364 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
365 0/*TODO*/, Stream);
366 Entry = GCMap.size();
371 // Emit abbrev for globals, now that we know # sections and max alignment.
372 unsigned SimpleGVarAbbrev = 0;
373 if (!M->global_empty()) {
374 // Add an abbrev for common globals with no visibility or thread localness.
375 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
376 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378 Log2_32_Ceil(MaxGlobalType+1)));
379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
382 if (MaxAlignment == 0) // Alignment.
383 Abbv->Add(BitCodeAbbrevOp(0));
384 else {
385 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
387 Log2_32_Ceil(MaxEncAlignment+1)));
389 if (SectionMap.empty()) // Section.
390 Abbv->Add(BitCodeAbbrevOp(0));
391 else
392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
393 Log2_32_Ceil(SectionMap.size()+1)));
394 // Don't bother emitting vis + thread local.
395 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
398 // Emit the global variable information.
399 SmallVector<unsigned, 64> Vals;
400 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
401 GV != E; ++GV) {
402 unsigned AbbrevToUse = 0;
404 // GLOBALVAR: [type, isconst, initid,
405 // linkage, alignment, section, visibility, threadlocal]
406 Vals.push_back(VE.getTypeID(GV->getType()));
407 Vals.push_back(GV->isConstant());
408 Vals.push_back(GV->isDeclaration() ? 0 :
409 (VE.getValueID(GV->getInitializer()) + 1));
410 Vals.push_back(getEncodedLinkage(GV));
411 Vals.push_back(Log2_32(GV->getAlignment())+1);
412 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
413 if (GV->isThreadLocal() ||
414 GV->getVisibility() != GlobalValue::DefaultVisibility) {
415 Vals.push_back(getEncodedVisibility(GV));
416 Vals.push_back(GV->isThreadLocal());
417 } else {
418 AbbrevToUse = SimpleGVarAbbrev;
421 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
422 Vals.clear();
425 // Emit the function proto information.
426 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
427 // FUNCTION: [type, callingconv, isproto, paramattr,
428 // linkage, alignment, section, visibility, gc]
429 Vals.push_back(VE.getTypeID(F->getType()));
430 Vals.push_back(F->getCallingConv());
431 Vals.push_back(F->isDeclaration());
432 Vals.push_back(getEncodedLinkage(F));
433 Vals.push_back(VE.getAttributeID(F->getAttributes()));
434 Vals.push_back(Log2_32(F->getAlignment())+1);
435 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
436 Vals.push_back(getEncodedVisibility(F));
437 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439 unsigned AbbrevToUse = 0;
440 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
441 Vals.clear();
445 // Emit the alias information.
446 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
447 AI != E; ++AI) {
448 Vals.push_back(VE.getTypeID(AI->getType()));
449 Vals.push_back(VE.getValueID(AI->getAliasee()));
450 Vals.push_back(getEncodedLinkage(AI));
451 Vals.push_back(getEncodedVisibility(AI));
452 unsigned AbbrevToUse = 0;
453 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
454 Vals.clear();
458 static uint64_t GetOptimizationFlags(const Value *V) {
459 uint64_t Flags = 0;
461 if (const OverflowingBinaryOperator *OBO =
462 dyn_cast<OverflowingBinaryOperator>(V)) {
463 if (OBO->hasNoSignedWrap())
464 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
465 if (OBO->hasNoUnsignedWrap())
466 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
467 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
468 if (Div->isExact())
469 Flags |= 1 << bitc::SDIV_EXACT;
472 return Flags;
475 static void WriteMDNode(const MDNode *N,
476 const ValueEnumerator &VE,
477 BitstreamWriter &Stream,
478 SmallVector<uint64_t, 64> &Record) {
479 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
480 if (N->getElement(i)) {
481 Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
482 Record.push_back(VE.getValueID(N->getElement(i)));
483 } else {
484 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
485 Record.push_back(0);
488 Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
489 Record.clear();
492 static void WriteModuleMetadata(const ValueEnumerator &VE,
493 BitstreamWriter &Stream) {
494 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
495 bool StartedMetadataBlock = false;
496 unsigned MDSAbbrev = 0;
497 SmallVector<uint64_t, 64> Record;
498 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
501 if (!StartedMetadataBlock) {
502 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
503 StartedMetadataBlock = true;
505 WriteMDNode(N, VE, Stream, Record);
506 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
507 if (!StartedMetadataBlock) {
508 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510 // Abbrev for METADATA_STRING.
511 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
512 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
515 MDSAbbrev = Stream.EmitAbbrev(Abbv);
516 StartedMetadataBlock = true;
519 // Code: [strchar x N]
520 const char *StrBegin = MDS->begin();
521 for (unsigned i = 0, e = MDS->length(); i != e; ++i)
522 Record.push_back(StrBegin[i]);
524 // Emit the finished record.
525 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
526 Record.clear();
527 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
528 if (!StartedMetadataBlock) {
529 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
530 StartedMetadataBlock = true;
533 // Write name.
534 std::string Str = NMD->getNameStr();
535 const char *StrBegin = Str.c_str();
536 for (unsigned i = 0, e = Str.length(); i != e; ++i)
537 Record.push_back(StrBegin[i]);
538 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
539 Record.clear();
541 // Write named metadata elements.
542 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
543 if (NMD->getElement(i))
544 Record.push_back(VE.getValueID(NMD->getElement(i)));
545 else
546 Record.push_back(0);
548 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
549 Record.clear();
553 if (StartedMetadataBlock)
554 Stream.ExitBlock();
557 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
558 const ValueEnumerator &VE,
559 BitstreamWriter &Stream, bool isGlobal) {
560 if (FirstVal == LastVal) return;
562 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
564 unsigned AggregateAbbrev = 0;
565 unsigned String8Abbrev = 0;
566 unsigned CString7Abbrev = 0;
567 unsigned CString6Abbrev = 0;
568 // If this is a constant pool for the module, emit module-specific abbrevs.
569 if (isGlobal) {
570 // Abbrev for CST_CODE_AGGREGATE.
571 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
572 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
575 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
577 // Abbrev for CST_CODE_STRING.
578 Abbv = new BitCodeAbbrev();
579 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
582 String8Abbrev = Stream.EmitAbbrev(Abbv);
583 // Abbrev for CST_CODE_CSTRING.
584 Abbv = new BitCodeAbbrev();
585 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
588 CString7Abbrev = Stream.EmitAbbrev(Abbv);
589 // Abbrev for CST_CODE_CSTRING.
590 Abbv = new BitCodeAbbrev();
591 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
594 CString6Abbrev = Stream.EmitAbbrev(Abbv);
597 SmallVector<uint64_t, 64> Record;
599 const ValueEnumerator::ValueList &Vals = VE.getValues();
600 const Type *LastTy = 0;
601 for (unsigned i = FirstVal; i != LastVal; ++i) {
602 const Value *V = Vals[i].first;
603 // If we need to switch types, do so now.
604 if (V->getType() != LastTy) {
605 LastTy = V->getType();
606 Record.push_back(VE.getTypeID(LastTy));
607 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
608 CONSTANTS_SETTYPE_ABBREV);
609 Record.clear();
612 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
613 Record.push_back(unsigned(IA->hasSideEffects()));
615 // Add the asm string.
616 const std::string &AsmStr = IA->getAsmString();
617 Record.push_back(AsmStr.size());
618 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
619 Record.push_back(AsmStr[i]);
621 // Add the constraint string.
622 const std::string &ConstraintStr = IA->getConstraintString();
623 Record.push_back(ConstraintStr.size());
624 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
625 Record.push_back(ConstraintStr[i]);
626 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
627 Record.clear();
628 continue;
630 const Constant *C = cast<Constant>(V);
631 unsigned Code = -1U;
632 unsigned AbbrevToUse = 0;
633 if (C->isNullValue()) {
634 Code = bitc::CST_CODE_NULL;
635 } else if (isa<UndefValue>(C)) {
636 Code = bitc::CST_CODE_UNDEF;
637 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
638 if (IV->getBitWidth() <= 64) {
639 int64_t V = IV->getSExtValue();
640 if (V >= 0)
641 Record.push_back(V << 1);
642 else
643 Record.push_back((-V << 1) | 1);
644 Code = bitc::CST_CODE_INTEGER;
645 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
646 } else { // Wide integers, > 64 bits in size.
647 // We have an arbitrary precision integer value to write whose
648 // bit width is > 64. However, in canonical unsigned integer
649 // format it is likely that the high bits are going to be zero.
650 // So, we only write the number of active words.
651 unsigned NWords = IV->getValue().getActiveWords();
652 const uint64_t *RawWords = IV->getValue().getRawData();
653 for (unsigned i = 0; i != NWords; ++i) {
654 int64_t V = RawWords[i];
655 if (V >= 0)
656 Record.push_back(V << 1);
657 else
658 Record.push_back((-V << 1) | 1);
660 Code = bitc::CST_CODE_WIDE_INTEGER;
662 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
663 Code = bitc::CST_CODE_FLOAT;
664 const Type *Ty = CFP->getType();
665 if (Ty == Type::getFloatTy(Ty->getContext()) ||
666 Ty == Type::getDoubleTy(Ty->getContext())) {
667 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
668 } else if (Ty == Type::getX86_FP80Ty(Ty->getContext())) {
669 // api needed to prevent premature destruction
670 // bits are not in the same order as a normal i80 APInt, compensate.
671 APInt api = CFP->getValueAPF().bitcastToAPInt();
672 const uint64_t *p = api.getRawData();
673 Record.push_back((p[1] << 48) | (p[0] >> 16));
674 Record.push_back(p[0] & 0xffffLL);
675 } else if (Ty == Type::getFP128Ty(Ty->getContext()) ||
676 Ty == Type::getPPC_FP128Ty(Ty->getContext())) {
677 APInt api = CFP->getValueAPF().bitcastToAPInt();
678 const uint64_t *p = api.getRawData();
679 Record.push_back(p[0]);
680 Record.push_back(p[1]);
681 } else {
682 assert (0 && "Unknown FP type!");
684 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
685 // Emit constant strings specially.
686 unsigned NumOps = C->getNumOperands();
687 // If this is a null-terminated string, use the denser CSTRING encoding.
688 if (C->getOperand(NumOps-1)->isNullValue()) {
689 Code = bitc::CST_CODE_CSTRING;
690 --NumOps; // Don't encode the null, which isn't allowed by char6.
691 } else {
692 Code = bitc::CST_CODE_STRING;
693 AbbrevToUse = String8Abbrev;
695 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
696 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
697 for (unsigned i = 0; i != NumOps; ++i) {
698 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
699 Record.push_back(V);
700 isCStr7 &= (V & 128) == 0;
701 if (isCStrChar6)
702 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
705 if (isCStrChar6)
706 AbbrevToUse = CString6Abbrev;
707 else if (isCStr7)
708 AbbrevToUse = CString7Abbrev;
709 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
710 isa<ConstantVector>(V)) {
711 Code = bitc::CST_CODE_AGGREGATE;
712 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
713 Record.push_back(VE.getValueID(C->getOperand(i)));
714 AbbrevToUse = AggregateAbbrev;
715 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
716 switch (CE->getOpcode()) {
717 default:
718 if (Instruction::isCast(CE->getOpcode())) {
719 Code = bitc::CST_CODE_CE_CAST;
720 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
721 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
722 Record.push_back(VE.getValueID(C->getOperand(0)));
723 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
724 } else {
725 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
726 Code = bitc::CST_CODE_CE_BINOP;
727 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
728 Record.push_back(VE.getValueID(C->getOperand(0)));
729 Record.push_back(VE.getValueID(C->getOperand(1)));
730 uint64_t Flags = GetOptimizationFlags(CE);
731 if (Flags != 0)
732 Record.push_back(Flags);
734 break;
735 case Instruction::GetElementPtr:
736 Code = bitc::CST_CODE_CE_GEP;
737 if (cast<GEPOperator>(C)->isInBounds())
738 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
739 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
740 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
741 Record.push_back(VE.getValueID(C->getOperand(i)));
743 break;
744 case Instruction::Select:
745 Code = bitc::CST_CODE_CE_SELECT;
746 Record.push_back(VE.getValueID(C->getOperand(0)));
747 Record.push_back(VE.getValueID(C->getOperand(1)));
748 Record.push_back(VE.getValueID(C->getOperand(2)));
749 break;
750 case Instruction::ExtractElement:
751 Code = bitc::CST_CODE_CE_EXTRACTELT;
752 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
753 Record.push_back(VE.getValueID(C->getOperand(0)));
754 Record.push_back(VE.getValueID(C->getOperand(1)));
755 break;
756 case Instruction::InsertElement:
757 Code = bitc::CST_CODE_CE_INSERTELT;
758 Record.push_back(VE.getValueID(C->getOperand(0)));
759 Record.push_back(VE.getValueID(C->getOperand(1)));
760 Record.push_back(VE.getValueID(C->getOperand(2)));
761 break;
762 case Instruction::ShuffleVector:
763 // If the return type and argument types are the same, this is a
764 // standard shufflevector instruction. If the types are different,
765 // then the shuffle is widening or truncating the input vectors, and
766 // the argument type must also be encoded.
767 if (C->getType() == C->getOperand(0)->getType()) {
768 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
769 } else {
770 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
771 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
773 Record.push_back(VE.getValueID(C->getOperand(0)));
774 Record.push_back(VE.getValueID(C->getOperand(1)));
775 Record.push_back(VE.getValueID(C->getOperand(2)));
776 break;
777 case Instruction::ICmp:
778 case Instruction::FCmp:
779 Code = bitc::CST_CODE_CE_CMP;
780 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
781 Record.push_back(VE.getValueID(C->getOperand(0)));
782 Record.push_back(VE.getValueID(C->getOperand(1)));
783 Record.push_back(CE->getPredicate());
784 break;
786 } else {
787 llvm_unreachable("Unknown constant!");
789 Stream.EmitRecord(Code, Record, AbbrevToUse);
790 Record.clear();
793 Stream.ExitBlock();
796 static void WriteModuleConstants(const ValueEnumerator &VE,
797 BitstreamWriter &Stream) {
798 const ValueEnumerator::ValueList &Vals = VE.getValues();
800 // Find the first constant to emit, which is the first non-globalvalue value.
801 // We know globalvalues have been emitted by WriteModuleInfo.
802 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
803 if (!isa<GlobalValue>(Vals[i].first)) {
804 WriteConstants(i, Vals.size(), VE, Stream, true);
805 return;
810 /// PushValueAndType - The file has to encode both the value and type id for
811 /// many values, because we need to know what type to create for forward
812 /// references. However, most operands are not forward references, so this type
813 /// field is not needed.
815 /// This function adds V's value ID to Vals. If the value ID is higher than the
816 /// instruction ID, then it is a forward reference, and it also includes the
817 /// type ID.
818 static bool PushValueAndType(const Value *V, unsigned InstID,
819 SmallVector<unsigned, 64> &Vals,
820 ValueEnumerator &VE) {
821 unsigned ValID = VE.getValueID(V);
822 Vals.push_back(ValID);
823 if (ValID >= InstID) {
824 Vals.push_back(VE.getTypeID(V->getType()));
825 return true;
827 return false;
830 /// WriteInstruction - Emit an instruction to the specified stream.
831 static void WriteInstruction(const Instruction &I, unsigned InstID,
832 ValueEnumerator &VE, BitstreamWriter &Stream,
833 SmallVector<unsigned, 64> &Vals) {
834 unsigned Code = 0;
835 unsigned AbbrevToUse = 0;
836 switch (I.getOpcode()) {
837 default:
838 if (Instruction::isCast(I.getOpcode())) {
839 Code = bitc::FUNC_CODE_INST_CAST;
840 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
841 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
842 Vals.push_back(VE.getTypeID(I.getType()));
843 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
844 } else {
845 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
846 Code = bitc::FUNC_CODE_INST_BINOP;
847 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
848 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
849 Vals.push_back(VE.getValueID(I.getOperand(1)));
850 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
851 uint64_t Flags = GetOptimizationFlags(&I);
852 if (Flags != 0) {
853 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
854 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
855 Vals.push_back(Flags);
858 break;
860 case Instruction::GetElementPtr:
861 Code = bitc::FUNC_CODE_INST_GEP;
862 if (cast<GEPOperator>(&I)->isInBounds())
863 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
864 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
865 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
866 break;
867 case Instruction::ExtractValue: {
868 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
869 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
870 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
871 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
872 Vals.push_back(*i);
873 break;
875 case Instruction::InsertValue: {
876 Code = bitc::FUNC_CODE_INST_INSERTVAL;
877 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
878 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
879 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
880 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
881 Vals.push_back(*i);
882 break;
884 case Instruction::Select:
885 Code = bitc::FUNC_CODE_INST_VSELECT;
886 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
887 Vals.push_back(VE.getValueID(I.getOperand(2)));
888 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
889 break;
890 case Instruction::ExtractElement:
891 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
892 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
893 Vals.push_back(VE.getValueID(I.getOperand(1)));
894 break;
895 case Instruction::InsertElement:
896 Code = bitc::FUNC_CODE_INST_INSERTELT;
897 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
898 Vals.push_back(VE.getValueID(I.getOperand(1)));
899 Vals.push_back(VE.getValueID(I.getOperand(2)));
900 break;
901 case Instruction::ShuffleVector:
902 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
903 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
904 Vals.push_back(VE.getValueID(I.getOperand(1)));
905 Vals.push_back(VE.getValueID(I.getOperand(2)));
906 break;
907 case Instruction::ICmp:
908 case Instruction::FCmp:
909 // compare returning Int1Ty or vector of Int1Ty
910 Code = bitc::FUNC_CODE_INST_CMP2;
911 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
912 Vals.push_back(VE.getValueID(I.getOperand(1)));
913 Vals.push_back(cast<CmpInst>(I).getPredicate());
914 break;
916 case Instruction::Ret:
918 Code = bitc::FUNC_CODE_INST_RET;
919 unsigned NumOperands = I.getNumOperands();
920 if (NumOperands == 0)
921 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
922 else if (NumOperands == 1) {
923 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
924 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
925 } else {
926 for (unsigned i = 0, e = NumOperands; i != e; ++i)
927 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
930 break;
931 case Instruction::Br:
933 Code = bitc::FUNC_CODE_INST_BR;
934 BranchInst &II(cast<BranchInst>(I));
935 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
936 if (II.isConditional()) {
937 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
938 Vals.push_back(VE.getValueID(II.getCondition()));
941 break;
942 case Instruction::Switch:
943 Code = bitc::FUNC_CODE_INST_SWITCH;
944 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
945 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
946 Vals.push_back(VE.getValueID(I.getOperand(i)));
947 break;
948 case Instruction::Invoke: {
949 const InvokeInst *II = cast<InvokeInst>(&I);
950 const Value *Callee(II->getCalledValue());
951 const PointerType *PTy = cast<PointerType>(Callee->getType());
952 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
953 Code = bitc::FUNC_CODE_INST_INVOKE;
955 Vals.push_back(VE.getAttributeID(II->getAttributes()));
956 Vals.push_back(II->getCallingConv());
957 Vals.push_back(VE.getValueID(II->getNormalDest()));
958 Vals.push_back(VE.getValueID(II->getUnwindDest()));
959 PushValueAndType(Callee, InstID, Vals, VE);
961 // Emit value #'s for the fixed parameters.
962 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
963 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
965 // Emit type/value pairs for varargs params.
966 if (FTy->isVarArg()) {
967 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
968 i != e; ++i)
969 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
971 break;
973 case Instruction::Unwind:
974 Code = bitc::FUNC_CODE_INST_UNWIND;
975 break;
976 case Instruction::Unreachable:
977 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
978 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
979 break;
981 case Instruction::PHI:
982 Code = bitc::FUNC_CODE_INST_PHI;
983 Vals.push_back(VE.getTypeID(I.getType()));
984 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
985 Vals.push_back(VE.getValueID(I.getOperand(i)));
986 break;
988 case Instruction::Malloc:
989 Code = bitc::FUNC_CODE_INST_MALLOC;
990 Vals.push_back(VE.getTypeID(I.getType()));
991 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
992 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
993 break;
995 case Instruction::Free:
996 Code = bitc::FUNC_CODE_INST_FREE;
997 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
998 break;
1000 case Instruction::Alloca:
1001 Code = bitc::FUNC_CODE_INST_ALLOCA;
1002 Vals.push_back(VE.getTypeID(I.getType()));
1003 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1004 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1005 break;
1007 case Instruction::Load:
1008 Code = bitc::FUNC_CODE_INST_LOAD;
1009 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1010 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1012 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1013 Vals.push_back(cast<LoadInst>(I).isVolatile());
1014 break;
1015 case Instruction::Store:
1016 Code = bitc::FUNC_CODE_INST_STORE2;
1017 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1018 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1019 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1020 Vals.push_back(cast<StoreInst>(I).isVolatile());
1021 break;
1022 case Instruction::Call: {
1023 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1024 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1026 Code = bitc::FUNC_CODE_INST_CALL;
1028 const CallInst *CI = cast<CallInst>(&I);
1029 Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1030 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1031 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
1033 // Emit value #'s for the fixed parameters.
1034 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1035 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
1037 // Emit type/value pairs for varargs params.
1038 if (FTy->isVarArg()) {
1039 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1040 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1041 i != e; ++i)
1042 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
1044 break;
1046 case Instruction::VAArg:
1047 Code = bitc::FUNC_CODE_INST_VAARG;
1048 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1049 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1050 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1051 break;
1054 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1055 Vals.clear();
1058 // Emit names for globals/functions etc.
1059 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1060 const ValueEnumerator &VE,
1061 BitstreamWriter &Stream) {
1062 if (VST.empty()) return;
1063 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1065 // FIXME: Set up the abbrev, we know how many values there are!
1066 // FIXME: We know if the type names can use 7-bit ascii.
1067 SmallVector<unsigned, 64> NameVals;
1069 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1070 SI != SE; ++SI) {
1072 const ValueName &Name = *SI;
1074 // Figure out the encoding to use for the name.
1075 bool is7Bit = true;
1076 bool isChar6 = true;
1077 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1078 C != E; ++C) {
1079 if (isChar6)
1080 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1081 if ((unsigned char)*C & 128) {
1082 is7Bit = false;
1083 break; // don't bother scanning the rest.
1087 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1089 // VST_ENTRY: [valueid, namechar x N]
1090 // VST_BBENTRY: [bbid, namechar x N]
1091 unsigned Code;
1092 if (isa<BasicBlock>(SI->getValue())) {
1093 Code = bitc::VST_CODE_BBENTRY;
1094 if (isChar6)
1095 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1096 } else {
1097 Code = bitc::VST_CODE_ENTRY;
1098 if (isChar6)
1099 AbbrevToUse = VST_ENTRY_6_ABBREV;
1100 else if (is7Bit)
1101 AbbrevToUse = VST_ENTRY_7_ABBREV;
1104 NameVals.push_back(VE.getValueID(SI->getValue()));
1105 for (const char *P = Name.getKeyData(),
1106 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1107 NameVals.push_back((unsigned char)*P);
1109 // Emit the finished record.
1110 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1111 NameVals.clear();
1113 Stream.ExitBlock();
1116 /// WriteFunction - Emit a function body to the module stream.
1117 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1118 BitstreamWriter &Stream) {
1119 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1120 VE.incorporateFunction(F);
1122 SmallVector<unsigned, 64> Vals;
1124 // Emit the number of basic blocks, so the reader can create them ahead of
1125 // time.
1126 Vals.push_back(VE.getBasicBlocks().size());
1127 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1128 Vals.clear();
1130 // If there are function-local constants, emit them now.
1131 unsigned CstStart, CstEnd;
1132 VE.getFunctionConstantRange(CstStart, CstEnd);
1133 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1135 // Keep a running idea of what the instruction ID is.
1136 unsigned InstID = CstEnd;
1138 // Finally, emit all the instructions, in order.
1139 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1140 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1141 I != E; ++I) {
1142 WriteInstruction(*I, InstID, VE, Stream, Vals);
1143 if (I->getType() != Type::getVoidTy(F.getContext()))
1144 ++InstID;
1147 // Emit names for all the instructions etc.
1148 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1150 VE.purgeFunction();
1151 Stream.ExitBlock();
1154 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1155 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1156 const ValueEnumerator &VE,
1157 BitstreamWriter &Stream) {
1158 if (TST.empty()) return;
1160 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1162 // 7-bit fixed width VST_CODE_ENTRY strings.
1163 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1164 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1166 Log2_32_Ceil(VE.getTypes().size()+1)));
1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1169 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1171 SmallVector<unsigned, 64> NameVals;
1173 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1174 TI != TE; ++TI) {
1175 // TST_ENTRY: [typeid, namechar x N]
1176 NameVals.push_back(VE.getTypeID(TI->second));
1178 const std::string &Str = TI->first;
1179 bool is7Bit = true;
1180 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1181 NameVals.push_back((unsigned char)Str[i]);
1182 if (Str[i] & 128)
1183 is7Bit = false;
1186 // Emit the finished record.
1187 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1188 NameVals.clear();
1191 Stream.ExitBlock();
1194 // Emit blockinfo, which defines the standard abbreviations etc.
1195 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1196 // We only want to emit block info records for blocks that have multiple
1197 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1198 // blocks can defined their abbrevs inline.
1199 Stream.EnterBlockInfoBlock(2);
1201 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1202 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1207 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1208 Abbv) != VST_ENTRY_8_ABBREV)
1209 llvm_unreachable("Unexpected abbrev ordering!");
1212 { // 7-bit fixed width VST_ENTRY strings.
1213 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1214 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1218 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1219 Abbv) != VST_ENTRY_7_ABBREV)
1220 llvm_unreachable("Unexpected abbrev ordering!");
1222 { // 6-bit char6 VST_ENTRY strings.
1223 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1224 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1228 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1229 Abbv) != VST_ENTRY_6_ABBREV)
1230 llvm_unreachable("Unexpected abbrev ordering!");
1232 { // 6-bit char6 VST_BBENTRY strings.
1233 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1234 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1238 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1239 Abbv) != VST_BBENTRY_6_ABBREV)
1240 llvm_unreachable("Unexpected abbrev ordering!");
1245 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1246 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1247 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1249 Log2_32_Ceil(VE.getTypes().size()+1)));
1250 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1251 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1252 llvm_unreachable("Unexpected abbrev ordering!");
1255 { // INTEGER abbrev for CONSTANTS_BLOCK.
1256 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1257 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1259 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1260 Abbv) != CONSTANTS_INTEGER_ABBREV)
1261 llvm_unreachable("Unexpected abbrev ordering!");
1264 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1265 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1266 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1269 Log2_32_Ceil(VE.getTypes().size()+1)));
1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1272 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1273 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1274 llvm_unreachable("Unexpected abbrev ordering!");
1276 { // NULL abbrev for CONSTANTS_BLOCK.
1277 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1278 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1279 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1280 Abbv) != CONSTANTS_NULL_Abbrev)
1281 llvm_unreachable("Unexpected abbrev ordering!");
1284 // FIXME: This should only use space for first class types!
1286 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1287 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1288 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1292 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1293 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1294 llvm_unreachable("Unexpected abbrev ordering!");
1296 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1297 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1298 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1302 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1303 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1304 llvm_unreachable("Unexpected abbrev ordering!");
1306 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1307 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1308 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1313 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1314 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1315 llvm_unreachable("Unexpected abbrev ordering!");
1317 { // INST_CAST abbrev for FUNCTION_BLOCK.
1318 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1319 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1322 Log2_32_Ceil(VE.getTypes().size()+1)));
1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1324 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1325 Abbv) != FUNCTION_INST_CAST_ABBREV)
1326 llvm_unreachable("Unexpected abbrev ordering!");
1329 { // INST_RET abbrev for FUNCTION_BLOCK.
1330 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1331 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1332 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1333 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1334 llvm_unreachable("Unexpected abbrev ordering!");
1336 { // INST_RET abbrev for FUNCTION_BLOCK.
1337 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1338 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1340 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1341 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1342 llvm_unreachable("Unexpected abbrev ordering!");
1344 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1345 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1346 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1347 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1348 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1349 llvm_unreachable("Unexpected abbrev ordering!");
1352 Stream.ExitBlock();
1356 /// WriteModule - Emit the specified module to the bitstream.
1357 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1358 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1360 // Emit the version number if it is non-zero.
1361 if (CurVersion) {
1362 SmallVector<unsigned, 1> Vals;
1363 Vals.push_back(CurVersion);
1364 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1367 // Analyze the module, enumerating globals, functions, etc.
1368 ValueEnumerator VE(M);
1370 // Emit blockinfo, which defines the standard abbreviations etc.
1371 WriteBlockInfo(VE, Stream);
1373 // Emit information about parameter attributes.
1374 WriteAttributeTable(VE, Stream);
1376 // Emit information describing all of the types in the module.
1377 WriteTypeTable(VE, Stream);
1379 // Emit top-level description of module, including target triple, inline asm,
1380 // descriptors for global variables, and function prototype info.
1381 WriteModuleInfo(M, VE, Stream);
1383 // Emit constants.
1384 WriteModuleConstants(VE, Stream);
1386 // Emit metadata.
1387 WriteModuleMetadata(VE, Stream);
1389 // Emit function bodies.
1390 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1391 if (!I->isDeclaration())
1392 WriteFunction(*I, VE, Stream);
1394 // Emit the type symbol table information.
1395 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1397 // Emit names for globals/functions etc.
1398 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1400 Stream.ExitBlock();
1403 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1404 /// header and trailer to make it compatible with the system archiver. To do
1405 /// this we emit the following header, and then emit a trailer that pads the
1406 /// file out to be a multiple of 16 bytes.
1407 ///
1408 /// struct bc_header {
1409 /// uint32_t Magic; // 0x0B17C0DE
1410 /// uint32_t Version; // Version, currently always 0.
1411 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1412 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1413 /// uint32_t CPUType; // CPU specifier.
1414 /// ... potentially more later ...
1415 /// };
1416 enum {
1417 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1418 DarwinBCHeaderSize = 5*4
1421 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1422 const std::string &TT) {
1423 unsigned CPUType = ~0U;
1425 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
1426 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the
1427 // specific constants here because they are implicitly part of the Darwin ABI.
1428 enum {
1429 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1430 DARWIN_CPU_TYPE_X86 = 7,
1431 DARWIN_CPU_TYPE_POWERPC = 18
1434 if (TT.find("x86_64-") == 0)
1435 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1436 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1437 TT[4] == '-' && TT[1] - '3' < 6)
1438 CPUType = DARWIN_CPU_TYPE_X86;
1439 else if (TT.find("powerpc-") == 0)
1440 CPUType = DARWIN_CPU_TYPE_POWERPC;
1441 else if (TT.find("powerpc64-") == 0)
1442 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1444 // Traditional Bitcode starts after header.
1445 unsigned BCOffset = DarwinBCHeaderSize;
1447 Stream.Emit(0x0B17C0DE, 32);
1448 Stream.Emit(0 , 32); // Version.
1449 Stream.Emit(BCOffset , 32);
1450 Stream.Emit(0 , 32); // Filled in later.
1451 Stream.Emit(CPUType , 32);
1454 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1455 /// finalize the header.
1456 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1457 // Update the size field in the header.
1458 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1460 // If the file is not a multiple of 16 bytes, insert dummy padding.
1461 while (BufferSize & 15) {
1462 Stream.Emit(0, 8);
1463 ++BufferSize;
1468 /// WriteBitcodeToFile - Write the specified module to the specified output
1469 /// stream.
1470 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1471 std::vector<unsigned char> Buffer;
1472 BitstreamWriter Stream(Buffer);
1474 Buffer.reserve(256*1024);
1476 WriteBitcodeToStream( M, Stream );
1478 // If writing to stdout, set binary mode.
1479 if (&llvm::outs() == &Out)
1480 sys::Program::ChangeStdoutToBinary();
1482 // Write the generated bitstream to "Out".
1483 Out.write((char*)&Buffer.front(), Buffer.size());
1485 // Make sure it hits disk now.
1486 Out.flush();
1489 /// WriteBitcodeToStream - Write the specified module to the specified output
1490 /// stream.
1491 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1492 // If this is darwin, emit a file header and trailer if needed.
1493 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1494 if (isDarwin)
1495 EmitDarwinBCHeader(Stream, M->getTargetTriple());
1497 // Emit the file header.
1498 Stream.Emit((unsigned)'B', 8);
1499 Stream.Emit((unsigned)'C', 8);
1500 Stream.Emit(0x0, 4);
1501 Stream.Emit(0xC, 4);
1502 Stream.Emit(0xE, 4);
1503 Stream.Emit(0xD, 4);
1505 // Emit the module.
1506 WriteModule(M, Stream);
1508 if (isDarwin)
1509 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());