1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the target-independent ELF writer. This file writes out
11 // the ELF file in the following order:
14 // #2. '.text' section
15 // #3. '.data' section
16 // #4. '.bss' section (conceptual position in file)
18 // #X. '.shstrtab' section
21 // The entries in the section table are laid out as:
22 // #0. Null entry [required]
23 // #1. ".text" entry - the program code
24 // #2. ".data" entry - global variables with initializers. [ if needed ]
25 // #3. ".bss" entry - global variables without initializers. [ if needed ]
27 // #N. ".shstrtab" entry - String table for the section names.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "elfwriter"
33 #include "ELFWriter.h"
34 #include "ELFCodeEmitter.h"
35 #include "llvm/Constants.h"
36 #include "llvm/Module.h"
37 #include "llvm/PassManager.h"
38 #include "llvm/DerivedTypes.h"
39 #include "llvm/CodeGen/BinaryObject.h"
40 #include "llvm/CodeGen/FileWriters.h"
41 #include "llvm/CodeGen/MachineCodeEmitter.h"
42 #include "llvm/CodeGen/ObjectCodeEmitter.h"
43 #include "llvm/CodeGen/MachineCodeEmitter.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCSectionELF.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/Target/TargetData.h"
49 #include "llvm/Target/TargetELFWriterInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Mangler.h"
56 #include "llvm/Support/raw_ostream.h"
60 char ELFWriter::ID
= 0;
62 /// AddELFWriter - Add the ELF writer to the function pass manager
63 ObjectCodeEmitter
*llvm::AddELFWriter(PassManagerBase
&PM
,
66 ELFWriter
*EW
= new ELFWriter(O
, TM
);
68 return EW
->getObjectCodeEmitter();
71 //===----------------------------------------------------------------------===//
72 // ELFWriter Implementation
73 //===----------------------------------------------------------------------===//
75 ELFWriter::ELFWriter(raw_ostream
&o
, TargetMachine
&tm
)
76 : MachineFunctionPass(&ID
), O(o
), TM(tm
),
77 OutContext(*new MCContext()),
78 TLOF(TM
.getTargetLowering()->getObjFileLowering()),
79 is64Bit(TM
.getTargetData()->getPointerSizeInBits() == 64),
80 isLittleEndian(TM
.getTargetData()->isLittleEndian()),
81 ElfHdr(isLittleEndian
, is64Bit
) {
83 MAI
= TM
.getMCAsmInfo();
84 TEW
= TM
.getELFWriterInfo();
86 // Create the object code emitter object for this target.
87 ElfCE
= new ELFCodeEmitter(*this);
89 // Inital number of sections
93 ELFWriter::~ELFWriter() {
97 while(!SymbolList
.empty()) {
98 delete SymbolList
.back();
99 SymbolList
.pop_back();
102 while(!PrivateSyms
.empty()) {
103 delete PrivateSyms
.back();
104 PrivateSyms
.pop_back();
107 while(!SectionList
.empty()) {
108 delete SectionList
.back();
109 SectionList
.pop_back();
112 // Release the name mangler object.
113 delete Mang
; Mang
= 0;
116 // doInitialization - Emit the file header and all of the global variables for
117 // the module to the ELF file.
118 bool ELFWriter::doInitialization(Module
&M
) {
119 // Initialize TargetLoweringObjectFile.
120 const_cast<TargetLoweringObjectFile
&>(TLOF
).Initialize(OutContext
, TM
);
122 Mang
= new Mangler(M
);
126 // Fields e_shnum e_shstrndx are only known after all section have
127 // been emitted. They locations in the ouput buffer are recorded so
128 // to be patched up later.
132 // emitWord method behaves differently for ELF32 and ELF64, writing
133 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
135 ElfHdr
.emitByte(0x7f); // e_ident[EI_MAG0]
136 ElfHdr
.emitByte('E'); // e_ident[EI_MAG1]
137 ElfHdr
.emitByte('L'); // e_ident[EI_MAG2]
138 ElfHdr
.emitByte('F'); // e_ident[EI_MAG3]
140 ElfHdr
.emitByte(TEW
->getEIClass()); // e_ident[EI_CLASS]
141 ElfHdr
.emitByte(TEW
->getEIData()); // e_ident[EI_DATA]
142 ElfHdr
.emitByte(EV_CURRENT
); // e_ident[EI_VERSION]
143 ElfHdr
.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
145 ElfHdr
.emitWord16(ET_REL
); // e_type
146 ElfHdr
.emitWord16(TEW
->getEMachine()); // e_machine = target
147 ElfHdr
.emitWord32(EV_CURRENT
); // e_version
148 ElfHdr
.emitWord(0); // e_entry, no entry point in .o file
149 ElfHdr
.emitWord(0); // e_phoff, no program header for .o
150 ELFHdr_e_shoff_Offset
= ElfHdr
.size();
151 ElfHdr
.emitWord(0); // e_shoff = sec hdr table off in bytes
152 ElfHdr
.emitWord32(TEW
->getEFlags()); // e_flags = whatever the target wants
153 ElfHdr
.emitWord16(TEW
->getHdrSize()); // e_ehsize = ELF header size
154 ElfHdr
.emitWord16(0); // e_phentsize = prog header entry size
155 ElfHdr
.emitWord16(0); // e_phnum = # prog header entries = 0
157 // e_shentsize = Section header entry size
158 ElfHdr
.emitWord16(TEW
->getSHdrSize());
160 // e_shnum = # of section header ents
161 ELFHdr_e_shnum_Offset
= ElfHdr
.size();
162 ElfHdr
.emitWord16(0); // Placeholder
164 // e_shstrndx = Section # of '.shstrtab'
165 ELFHdr_e_shstrndx_Offset
= ElfHdr
.size();
166 ElfHdr
.emitWord16(0); // Placeholder
168 // Add the null section, which is required to be first in the file.
171 // The first entry in the symtab is the null symbol and the second
172 // is a local symbol containing the module/file name
173 SymbolList
.push_back(new ELFSym());
174 SymbolList
.push_back(ELFSym::getFileSym());
179 // AddPendingGlobalSymbol - Add a global to be processed and to
180 // the global symbol lookup, use a zero index because the table
181 // index will be determined later.
182 void ELFWriter::AddPendingGlobalSymbol(const GlobalValue
*GV
,
183 bool AddToLookup
/* = false */) {
184 PendingGlobals
.insert(GV
);
186 GblSymLookup
[GV
] = 0;
189 // AddPendingExternalSymbol - Add the external to be processed
190 // and to the external symbol lookup, use a zero index because
191 // the symbol table index will be determined later.
192 void ELFWriter::AddPendingExternalSymbol(const char *External
) {
193 PendingExternals
.insert(External
);
194 ExtSymLookup
[External
] = 0;
197 ELFSection
&ELFWriter::getDataSection() {
198 const MCSectionELF
*Data
= (const MCSectionELF
*)TLOF
.getDataSection();
199 return getSection(Data
->getSectionName(), Data
->getType(),
200 Data
->getFlags(), 4);
203 ELFSection
&ELFWriter::getBSSSection() {
204 const MCSectionELF
*BSS
= (const MCSectionELF
*)TLOF
.getBSSSection();
205 return getSection(BSS
->getSectionName(), BSS
->getType(), BSS
->getFlags(), 4);
208 // getCtorSection - Get the static constructor section
209 ELFSection
&ELFWriter::getCtorSection() {
210 const MCSectionELF
*Ctor
= (const MCSectionELF
*)TLOF
.getStaticCtorSection();
211 return getSection(Ctor
->getSectionName(), Ctor
->getType(), Ctor
->getFlags());
214 // getDtorSection - Get the static destructor section
215 ELFSection
&ELFWriter::getDtorSection() {
216 const MCSectionELF
*Dtor
= (const MCSectionELF
*)TLOF
.getStaticDtorSection();
217 return getSection(Dtor
->getSectionName(), Dtor
->getType(), Dtor
->getFlags());
220 // getTextSection - Get the text section for the specified function
221 ELFSection
&ELFWriter::getTextSection(Function
*F
) {
222 const MCSectionELF
*Text
=
223 (const MCSectionELF
*)TLOF
.SectionForGlobal(F
, Mang
, TM
);
224 return getSection(Text
->getSectionName(), Text
->getType(), Text
->getFlags());
227 // getJumpTableSection - Get a read only section for constants when
228 // emitting jump tables. TODO: add PIC support
229 ELFSection
&ELFWriter::getJumpTableSection() {
230 const MCSectionELF
*JT
=
231 (const MCSectionELF
*)TLOF
.getSectionForConstant(SectionKind::getReadOnly());
232 return getSection(JT
->getSectionName(), JT
->getType(), JT
->getFlags(),
233 TM
.getTargetData()->getPointerABIAlignment());
236 // getConstantPoolSection - Get a constant pool section based on the machine
237 // constant pool entry type and relocation info.
238 ELFSection
&ELFWriter::getConstantPoolSection(MachineConstantPoolEntry
&CPE
) {
240 switch (CPE
.getRelocationInfo()) {
241 default: llvm_unreachable("Unknown section kind");
242 case 2: Kind
= SectionKind::getReadOnlyWithRel(); break;
244 Kind
= SectionKind::getReadOnlyWithRelLocal();
247 switch (TM
.getTargetData()->getTypeAllocSize(CPE
.getType())) {
248 case 4: Kind
= SectionKind::getMergeableConst4(); break;
249 case 8: Kind
= SectionKind::getMergeableConst8(); break;
250 case 16: Kind
= SectionKind::getMergeableConst16(); break;
251 default: Kind
= SectionKind::getMergeableConst(); break;
255 const MCSectionELF
*CPSect
=
256 (const MCSectionELF
*)TLOF
.getSectionForConstant(Kind
);
257 return getSection(CPSect
->getSectionName(), CPSect
->getType(),
258 CPSect
->getFlags(), CPE
.getAlignment());
261 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
262 // is true if the relocation section contains entries with addends.
263 ELFSection
&ELFWriter::getRelocSection(ELFSection
&S
) {
264 unsigned SectionType
= TEW
->hasRelocationAddend() ?
265 ELFSection::SHT_RELA
: ELFSection::SHT_REL
;
267 std::string
SectionName(".rel");
268 if (TEW
->hasRelocationAddend())
269 SectionName
.append("a");
270 SectionName
.append(S
.getName());
272 return getSection(SectionName
, SectionType
, 0, TEW
->getPrefELFAlignment());
275 // getGlobalELFVisibility - Returns the ELF specific visibility type
276 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue
*GV
) {
277 switch (GV
->getVisibility()) {
279 llvm_unreachable("unknown visibility type");
280 case GlobalValue::DefaultVisibility
:
281 return ELFSym::STV_DEFAULT
;
282 case GlobalValue::HiddenVisibility
:
283 return ELFSym::STV_HIDDEN
;
284 case GlobalValue::ProtectedVisibility
:
285 return ELFSym::STV_PROTECTED
;
290 // getGlobalELFBinding - Returns the ELF specific binding type
291 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue
*GV
) {
292 if (GV
->hasInternalLinkage())
293 return ELFSym::STB_LOCAL
;
295 if (GV
->isWeakForLinker() && !GV
->hasCommonLinkage())
296 return ELFSym::STB_WEAK
;
298 return ELFSym::STB_GLOBAL
;
301 // getGlobalELFType - Returns the ELF specific type for a global
302 unsigned ELFWriter::getGlobalELFType(const GlobalValue
*GV
) {
303 if (GV
->isDeclaration())
304 return ELFSym::STT_NOTYPE
;
306 if (isa
<Function
>(GV
))
307 return ELFSym::STT_FUNC
;
309 return ELFSym::STT_OBJECT
;
312 // IsELFUndefSym - True if the global value must be marked as a symbol
313 // which points to a SHN_UNDEF section. This means that the symbol has
314 // no definition on the module.
315 static bool IsELFUndefSym(const GlobalValue
*GV
) {
316 return GV
->isDeclaration() || (isa
<Function
>(GV
));
319 // AddToSymbolList - Update the symbol lookup and If the symbol is
320 // private add it to PrivateSyms list, otherwise to SymbolList.
321 void ELFWriter::AddToSymbolList(ELFSym
*GblSym
) {
322 assert(GblSym
->isGlobalValue() && "Symbol must be a global value");
324 const GlobalValue
*GV
= GblSym
->getGlobalValue();
325 if (GV
->hasPrivateLinkage()) {
326 // For a private symbols, keep track of the index inside
327 // the private list since it will never go to the symbol
328 // table and won't be patched up later.
329 PrivateSyms
.push_back(GblSym
);
330 GblSymLookup
[GV
] = PrivateSyms
.size()-1;
332 // Non private symbol are left with zero indices until
333 // they are patched up during the symbol table emition
334 // (where the indicies are created).
335 SymbolList
.push_back(GblSym
);
336 GblSymLookup
[GV
] = 0;
340 // EmitGlobal - Choose the right section for global and emit it
341 void ELFWriter::EmitGlobal(const GlobalValue
*GV
) {
343 // Check if the referenced symbol is already emitted
344 if (GblSymLookup
.find(GV
) != GblSymLookup
.end())
347 // Handle ELF Bind, Visibility and Type for the current symbol
348 unsigned SymBind
= getGlobalELFBinding(GV
);
349 unsigned SymType
= getGlobalELFType(GV
);
350 bool IsUndefSym
= IsELFUndefSym(GV
);
352 ELFSym
*GblSym
= IsUndefSym
? ELFSym::getUndefGV(GV
, SymBind
)
353 : ELFSym::getGV(GV
, SymBind
, SymType
, getGlobalELFVisibility(GV
));
356 assert(isa
<GlobalVariable
>(GV
) && "GV not a global variable!");
357 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
359 // Handle special llvm globals
360 if (EmitSpecialLLVMGlobal(GVar
))
363 // Get the ELF section where this global belongs from TLOF
364 const MCSectionELF
*S
=
365 (const MCSectionELF
*)TLOF
.SectionForGlobal(GV
, Mang
, TM
);
367 getSection(S
->getSectionName(), S
->getType(), S
->getFlags());
368 SectionKind Kind
= S
->getKind();
370 // The symbol align should update the section alignment if needed
371 const TargetData
*TD
= TM
.getTargetData();
372 unsigned Align
= TD
->getPreferredAlignment(GVar
);
373 unsigned Size
= TD
->getTypeAllocSize(GVar
->getInitializer()->getType());
376 if (S
->HasCommonSymbols()) { // Symbol must go to a common section
377 GblSym
->SectionIdx
= ELFSection::SHN_COMMON
;
379 // A new linkonce section is created for each global in the
380 // common section, the default alignment is 1 and the symbol
381 // value contains its alignment.
383 GblSym
->Value
= Align
;
385 } else if (Kind
.isBSS() || Kind
.isThreadBSS()) { // Symbol goes to BSS.
386 GblSym
->SectionIdx
= ES
.SectionIdx
;
388 // Update the size with alignment and the next object can
389 // start in the right offset in the section
390 if (Align
) ES
.Size
= (ES
.Size
+ Align
-1) & ~(Align
-1);
391 ES
.Align
= std::max(ES
.Align
, Align
);
393 // GblSym->Value should contain the virtual offset inside the section.
394 // Virtual because the BSS space is not allocated on ELF objects
395 GblSym
->Value
= ES
.Size
;
398 } else { // The symbol must go to some kind of data section
399 GblSym
->SectionIdx
= ES
.SectionIdx
;
401 // GblSym->Value should contain the symbol offset inside the section,
402 // and all symbols should start on their required alignment boundary
403 ES
.Align
= std::max(ES
.Align
, Align
);
404 ES
.emitAlignment(Align
);
405 GblSym
->Value
= ES
.size();
407 // Emit the global to the data section 'ES'
408 EmitGlobalConstant(GVar
->getInitializer(), ES
);
412 AddToSymbolList(GblSym
);
415 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct
*CVS
,
418 // Print the fields in successive locations. Pad to align if needed!
419 const TargetData
*TD
= TM
.getTargetData();
420 unsigned Size
= TD
->getTypeAllocSize(CVS
->getType());
421 const StructLayout
*cvsLayout
= TD
->getStructLayout(CVS
->getType());
422 uint64_t sizeSoFar
= 0;
423 for (unsigned i
= 0, e
= CVS
->getNumOperands(); i
!= e
; ++i
) {
424 const Constant
* field
= CVS
->getOperand(i
);
426 // Check if padding is needed and insert one or more 0s.
427 uint64_t fieldSize
= TD
->getTypeAllocSize(field
->getType());
428 uint64_t padSize
= ((i
== e
-1 ? Size
: cvsLayout
->getElementOffset(i
+1))
429 - cvsLayout
->getElementOffset(i
)) - fieldSize
;
430 sizeSoFar
+= fieldSize
+ padSize
;
432 // Now print the actual field value.
433 EmitGlobalConstant(field
, GblS
);
435 // Insert padding - this may include padding to increase the size of the
436 // current field up to the ABI size (if the struct is not packed) as well
437 // as padding to ensure that the next field starts at the right offset.
438 GblS
.emitZeros(padSize
);
440 assert(sizeSoFar
== cvsLayout
->getSizeInBytes() &&
441 "Layout of constant struct may be incorrect!");
444 void ELFWriter::EmitGlobalConstant(const Constant
*CV
, ELFSection
&GblS
) {
445 const TargetData
*TD
= TM
.getTargetData();
446 unsigned Size
= TD
->getTypeAllocSize(CV
->getType());
448 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
)) {
449 for (unsigned i
= 0, e
= CVA
->getNumOperands(); i
!= e
; ++i
)
450 EmitGlobalConstant(CVA
->getOperand(i
), GblS
);
452 } else if (isa
<ConstantAggregateZero
>(CV
)) {
453 GblS
.emitZeros(Size
);
455 } else if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
)) {
456 EmitGlobalConstantStruct(CVS
, GblS
);
458 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
459 APInt Val
= CFP
->getValueAPF().bitcastToAPInt();
460 if (CFP
->getType() == Type::getDoubleTy(CV
->getContext()))
461 GblS
.emitWord64(Val
.getZExtValue());
462 else if (CFP
->getType() == Type::getFloatTy(CV
->getContext()))
463 GblS
.emitWord32(Val
.getZExtValue());
464 else if (CFP
->getType() == Type::getX86_FP80Ty(CV
->getContext())) {
466 TD
->getTypeAllocSize(Type::getX86_FP80Ty(CV
->getContext()))-
467 TD
->getTypeStoreSize(Type::getX86_FP80Ty(CV
->getContext()));
468 GblS
.emitWordFP80(Val
.getRawData(), PadSize
);
469 } else if (CFP
->getType() == Type::getPPC_FP128Ty(CV
->getContext()))
470 llvm_unreachable("PPC_FP128Ty global emission not implemented");
472 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
474 GblS
.emitByte(CI
->getZExtValue());
476 GblS
.emitWord16(CI
->getZExtValue());
478 GblS
.emitWord32(CI
->getZExtValue());
480 EmitGlobalConstantLargeInt(CI
, GblS
);
482 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
483 const VectorType
*PTy
= CP
->getType();
484 for (unsigned I
= 0, E
= PTy
->getNumElements(); I
< E
; ++I
)
485 EmitGlobalConstant(CP
->getOperand(I
), GblS
);
487 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
488 // Resolve a constant expression which returns a (Constant, Offset)
489 // pair. If 'Res.first' is a GlobalValue, emit a relocation with
490 // the offset 'Res.second', otherwise emit a global constant like
491 // it is always done for not contant expression types.
492 CstExprResTy Res
= ResolveConstantExpr(CE
);
493 const Constant
*Op
= Res
.first
;
495 if (isa
<GlobalValue
>(Op
))
496 EmitGlobalDataRelocation(cast
<const GlobalValue
>(Op
),
497 TD
->getTypeAllocSize(Op
->getType()),
500 EmitGlobalConstant(Op
, GblS
);
503 } else if (CV
->getType()->getTypeID() == Type::PointerTyID
) {
504 // Fill the data entry with zeros or emit a relocation entry
505 if (isa
<ConstantPointerNull
>(CV
))
506 GblS
.emitZeros(Size
);
508 EmitGlobalDataRelocation(cast
<const GlobalValue
>(CV
),
511 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
512 // This is a constant address for a global variable or function and
513 // therefore must be referenced using a relocation entry.
514 EmitGlobalDataRelocation(GV
, Size
, GblS
);
519 raw_string_ostream
ErrorMsg(msg
);
520 ErrorMsg
<< "Constant unimp for type: " << *CV
->getType();
521 llvm_report_error(ErrorMsg
.str());
524 // ResolveConstantExpr - Resolve the constant expression until it stop
525 // yielding other constant expressions.
526 CstExprResTy
ELFWriter::ResolveConstantExpr(const Constant
*CV
) {
527 const TargetData
*TD
= TM
.getTargetData();
529 // There ins't constant expression inside others anymore
530 if (!isa
<ConstantExpr
>(CV
))
531 return std::make_pair(CV
, 0);
533 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
534 switch (CE
->getOpcode()) {
535 case Instruction::BitCast
:
536 return ResolveConstantExpr(CE
->getOperand(0));
538 case Instruction::GetElementPtr
: {
539 const Constant
*ptrVal
= CE
->getOperand(0);
540 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
541 int64_t Offset
= TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0],
543 return std::make_pair(ptrVal
, Offset
);
545 case Instruction::IntToPtr
: {
546 Constant
*Op
= CE
->getOperand(0);
547 Op
= ConstantExpr::getIntegerCast(Op
, TD
->getIntPtrType(CV
->getContext()),
549 return ResolveConstantExpr(Op
);
551 case Instruction::PtrToInt
: {
552 Constant
*Op
= CE
->getOperand(0);
553 const Type
*Ty
= CE
->getType();
555 // We can emit the pointer value into this slot if the slot is an
556 // integer slot greater or equal to the size of the pointer.
557 if (TD
->getTypeAllocSize(Ty
) == TD
->getTypeAllocSize(Op
->getType()))
558 return ResolveConstantExpr(Op
);
560 llvm_unreachable("Integer size less then pointer size");
562 case Instruction::Add
:
563 case Instruction::Sub
: {
564 // Only handle cases where there's a constant expression with GlobalValue
565 // as first operand and ConstantInt as second, which are the cases we can
566 // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
567 // 1) Instruction::Add => (global) + CstInt
568 // 2) Instruction::Sub => (global) + -CstInt
569 const Constant
*Op0
= CE
->getOperand(0);
570 const Constant
*Op1
= CE
->getOperand(1);
571 assert(isa
<ConstantInt
>(Op1
) && "Op1 must be a ConstantInt");
573 CstExprResTy Res
= ResolveConstantExpr(Op0
);
574 assert(isa
<GlobalValue
>(Res
.first
) && "Op0 must be a GlobalValue");
576 const APInt
&RHS
= cast
<ConstantInt
>(Op1
)->getValue();
577 switch (CE
->getOpcode()) {
578 case Instruction::Add
:
579 return std::make_pair(Res
.first
, RHS
.getSExtValue());
580 case Instruction::Sub
:
581 return std::make_pair(Res
.first
, (-RHS
).getSExtValue());
586 std::string
msg(CE
->getOpcodeName());
587 raw_string_ostream
ErrorMsg(msg
);
588 ErrorMsg
<< ": Unsupported ConstantExpr type";
589 llvm_report_error(ErrorMsg
.str());
591 return std::make_pair(CV
, 0); // silence warning
594 void ELFWriter::EmitGlobalDataRelocation(const GlobalValue
*GV
, unsigned Size
,
595 ELFSection
&GblS
, int64_t Offset
) {
596 // Create the relocation entry for the global value
597 MachineRelocation MR
=
598 MachineRelocation::getGV(GblS
.getCurrentPCOffset(),
599 TEW
->getAbsoluteLabelMachineRelTy(),
600 const_cast<GlobalValue
*>(GV
),
603 // Fill the data entry with zeros
604 GblS
.emitZeros(Size
);
606 // Add the relocation entry for the current data section
607 GblS
.addRelocation(MR
);
610 void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt
*CI
,
612 const TargetData
*TD
= TM
.getTargetData();
613 unsigned BitWidth
= CI
->getBitWidth();
614 assert(isPowerOf2_32(BitWidth
) &&
615 "Non-power-of-2-sized integers not handled!");
617 const uint64_t *RawData
= CI
->getValue().getRawData();
619 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
620 Val
= (TD
->isBigEndian()) ? RawData
[e
- i
- 1] : RawData
[i
];
625 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
626 /// special global used by LLVM. If so, emit it and return true, otherwise
627 /// do nothing and return false.
628 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
629 if (GV
->getName() == "llvm.used")
630 llvm_unreachable("not implemented yet");
632 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
633 if (GV
->getSection() == "llvm.metadata" ||
634 GV
->hasAvailableExternallyLinkage())
637 if (!GV
->hasAppendingLinkage()) return false;
639 assert(GV
->hasInitializer() && "Not a special LLVM global!");
641 const TargetData
*TD
= TM
.getTargetData();
642 unsigned Align
= TD
->getPointerPrefAlignment();
643 if (GV
->getName() == "llvm.global_ctors") {
644 ELFSection
&Ctor
= getCtorSection();
645 Ctor
.emitAlignment(Align
);
646 EmitXXStructorList(GV
->getInitializer(), Ctor
);
650 if (GV
->getName() == "llvm.global_dtors") {
651 ELFSection
&Dtor
= getDtorSection();
652 Dtor
.emitAlignment(Align
);
653 EmitXXStructorList(GV
->getInitializer(), Dtor
);
660 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
661 /// function pointers, ignoring the init priority.
662 void ELFWriter::EmitXXStructorList(Constant
*List
, ELFSection
&Xtor
) {
663 // Should be an array of '{ int, void ()* }' structs. The first value is the
664 // init priority, which we ignore.
665 if (!isa
<ConstantArray
>(List
)) return;
666 ConstantArray
*InitList
= cast
<ConstantArray
>(List
);
667 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
668 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
669 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
671 if (CS
->getOperand(1)->isNullValue())
672 return; // Found a null terminator, exit printing.
673 // Emit the function pointer.
674 EmitGlobalConstant(CS
->getOperand(1), Xtor
);
678 bool ELFWriter::runOnMachineFunction(MachineFunction
&MF
) {
679 // Nothing to do here, this is all done through the ElfCE object above.
683 /// doFinalization - Now that the module has been completely processed, emit
684 /// the ELF file to 'O'.
685 bool ELFWriter::doFinalization(Module
&M
) {
686 // Emit .data section placeholder
689 // Emit .bss section placeholder
692 // Build and emit data, bss and "common" sections.
693 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
697 // Emit all pending globals
698 for (PendingGblsIter I
= PendingGlobals
.begin(), E
= PendingGlobals
.end();
702 // Emit all pending externals
703 for (PendingExtsIter I
= PendingExternals
.begin(), E
= PendingExternals
.end();
705 SymbolList
.push_back(ELFSym::getExtSym(*I
));
707 // Emit non-executable stack note
708 if (MAI
->getNonexecutableStackDirective())
709 getNonExecStackSection();
711 // Emit a symbol for each section created until now, skip null section
712 for (unsigned i
= 1, e
= SectionList
.size(); i
< e
; ++i
) {
713 ELFSection
&ES
= *SectionList
[i
];
714 ELFSym
*SectionSym
= ELFSym::getSectionSym();
715 SectionSym
->SectionIdx
= ES
.SectionIdx
;
716 SymbolList
.push_back(SectionSym
);
717 ES
.Sym
= SymbolList
.back();
721 EmitStringTable(M
.getModuleIdentifier());
723 // Emit the symbol table now, if non-empty.
726 // Emit the relocation sections.
729 // Emit the sections string table.
730 EmitSectionTableStringTable();
732 // Dump the sections and section table to the .o file.
733 OutputSectionsAndSectionTable();
738 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
739 // using a 'Value' of known 'Size'
740 void ELFWriter::RelocateField(BinaryObject
&BO
, uint32_t Offset
,
741 int64_t Value
, unsigned Size
) {
743 BO
.fixWord32(Value
, Offset
);
745 BO
.fixWord64(Value
, Offset
);
747 llvm_unreachable("don't know howto patch relocatable field");
750 /// EmitRelocations - Emit relocations
751 void ELFWriter::EmitRelocations() {
753 // True if the target uses the relocation entry to hold the addend,
754 // otherwise the addend is written directly to the relocatable field.
755 bool HasRelA
= TEW
->hasRelocationAddend();
757 // Create Relocation sections for each section which needs it.
758 for (unsigned i
=0, e
=SectionList
.size(); i
!= e
; ++i
) {
759 ELFSection
&S
= *SectionList
[i
];
761 // This section does not have relocations
762 if (!S
.hasRelocations()) continue;
763 ELFSection
&RelSec
= getRelocSection(S
);
765 // 'Link' - Section hdr idx of the associated symbol table
766 // 'Info' - Section hdr idx of the section to which the relocation applies
767 ELFSection
&SymTab
= getSymbolTableSection();
768 RelSec
.Link
= SymTab
.SectionIdx
;
769 RelSec
.Info
= S
.SectionIdx
;
770 RelSec
.EntSize
= TEW
->getRelocationEntrySize();
772 // Get the relocations from Section
773 std::vector
<MachineRelocation
> Relos
= S
.getRelocations();
774 for (std::vector
<MachineRelocation
>::iterator MRI
= Relos
.begin(),
775 MRE
= Relos
.end(); MRI
!= MRE
; ++MRI
) {
776 MachineRelocation
&MR
= *MRI
;
778 // Relocatable field offset from the section start
779 unsigned RelOffset
= MR
.getMachineCodeOffset();
781 // Symbol index in the symbol table
784 // Target specific relocation field type and size
785 unsigned RelType
= TEW
->getRelocationType(MR
.getRelocationType());
786 unsigned RelTySize
= TEW
->getRelocationTySize(RelType
);
789 // There are several machine relocations types, and each one of
790 // them needs a different approach to retrieve the symbol table index.
791 if (MR
.isGlobalValue()) {
792 const GlobalValue
*G
= MR
.getGlobalValue();
793 int64_t GlobalOffset
= MR
.getConstantVal();
794 SymIdx
= GblSymLookup
[G
];
795 if (G
->hasPrivateLinkage()) {
796 // If the target uses a section offset in the relocation:
797 // SymIdx + Addend = section sym for global + section offset
798 unsigned SectionIdx
= PrivateSyms
[SymIdx
]->SectionIdx
;
799 Addend
= PrivateSyms
[SymIdx
]->Value
+ GlobalOffset
;
800 SymIdx
= SectionList
[SectionIdx
]->getSymbolTableIndex();
802 Addend
= TEW
->getDefaultAddendForRelTy(RelType
, GlobalOffset
);
804 } else if (MR
.isExternalSymbol()) {
805 const char *ExtSym
= MR
.getExternalSymbol();
806 SymIdx
= ExtSymLookup
[ExtSym
];
807 Addend
= TEW
->getDefaultAddendForRelTy(RelType
);
809 // Get the symbol index for the section symbol
810 unsigned SectionIdx
= MR
.getConstantVal();
811 SymIdx
= SectionList
[SectionIdx
]->getSymbolTableIndex();
813 // The symbol offset inside the section
814 int64_t SymOffset
= (int64_t)MR
.getResultPointer();
816 // For pc relative relocations where symbols are defined in the same
817 // section they are referenced, ignore the relocation entry and patch
818 // the relocatable field with the symbol offset directly.
819 if (S
.SectionIdx
== SectionIdx
&& TEW
->isPCRelativeRel(RelType
)) {
820 int64_t Value
= TEW
->computeRelocation(SymOffset
, RelOffset
, RelType
);
821 RelocateField(S
, RelOffset
, Value
, RelTySize
);
825 Addend
= TEW
->getDefaultAddendForRelTy(RelType
, SymOffset
);
828 // The target without addend on the relocation symbol must be
829 // patched in the relocation place itself to contain the addend
830 // otherwise write zeros to make sure there is no garbage there
831 RelocateField(S
, RelOffset
, HasRelA
? 0 : Addend
, RelTySize
);
833 // Get the relocation entry and emit to the relocation section
834 ELFRelocation
Rel(RelOffset
, SymIdx
, RelType
, HasRelA
, Addend
);
835 EmitRelocation(RelSec
, Rel
, HasRelA
);
840 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
841 void ELFWriter::EmitRelocation(BinaryObject
&RelSec
, ELFRelocation
&Rel
,
843 RelSec
.emitWord(Rel
.getOffset());
844 RelSec
.emitWord(Rel
.getInfo(is64Bit
));
846 RelSec
.emitWord(Rel
.getAddend());
849 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
850 void ELFWriter::EmitSymbol(BinaryObject
&SymbolTable
, ELFSym
&Sym
) {
852 SymbolTable
.emitWord32(Sym
.NameIdx
);
853 SymbolTable
.emitByte(Sym
.Info
);
854 SymbolTable
.emitByte(Sym
.Other
);
855 SymbolTable
.emitWord16(Sym
.SectionIdx
);
856 SymbolTable
.emitWord64(Sym
.Value
);
857 SymbolTable
.emitWord64(Sym
.Size
);
859 SymbolTable
.emitWord32(Sym
.NameIdx
);
860 SymbolTable
.emitWord32(Sym
.Value
);
861 SymbolTable
.emitWord32(Sym
.Size
);
862 SymbolTable
.emitByte(Sym
.Info
);
863 SymbolTable
.emitByte(Sym
.Other
);
864 SymbolTable
.emitWord16(Sym
.SectionIdx
);
868 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
869 /// Section Header Table
870 void ELFWriter::EmitSectionHeader(BinaryObject
&SHdrTab
,
871 const ELFSection
&SHdr
) {
872 SHdrTab
.emitWord32(SHdr
.NameIdx
);
873 SHdrTab
.emitWord32(SHdr
.Type
);
875 SHdrTab
.emitWord64(SHdr
.Flags
);
876 SHdrTab
.emitWord(SHdr
.Addr
);
877 SHdrTab
.emitWord(SHdr
.Offset
);
878 SHdrTab
.emitWord64(SHdr
.Size
);
879 SHdrTab
.emitWord32(SHdr
.Link
);
880 SHdrTab
.emitWord32(SHdr
.Info
);
881 SHdrTab
.emitWord64(SHdr
.Align
);
882 SHdrTab
.emitWord64(SHdr
.EntSize
);
884 SHdrTab
.emitWord32(SHdr
.Flags
);
885 SHdrTab
.emitWord(SHdr
.Addr
);
886 SHdrTab
.emitWord(SHdr
.Offset
);
887 SHdrTab
.emitWord32(SHdr
.Size
);
888 SHdrTab
.emitWord32(SHdr
.Link
);
889 SHdrTab
.emitWord32(SHdr
.Info
);
890 SHdrTab
.emitWord32(SHdr
.Align
);
891 SHdrTab
.emitWord32(SHdr
.EntSize
);
895 /// EmitStringTable - If the current symbol table is non-empty, emit the string
897 void ELFWriter::EmitStringTable(const std::string
&ModuleName
) {
898 if (!SymbolList
.size()) return; // Empty symbol table.
899 ELFSection
&StrTab
= getStringTableSection();
901 // Set the zero'th symbol to a null byte, as required.
904 // Walk on the symbol list and write symbol names into the string table.
906 for (ELFSymIter I
=SymbolList
.begin(), E
=SymbolList
.end(); I
!= E
; ++I
) {
910 if (Sym
.isGlobalValue())
911 Name
.append(Mang
->getMangledName(Sym
.getGlobalValue()));
912 else if (Sym
.isExternalSym())
913 Name
.append(Sym
.getExternalSymbol());
914 else if (Sym
.isFileType())
915 Name
.append(ModuleName
);
921 StrTab
.emitString(Name
);
923 // Keep track of the number of bytes emitted to this section.
924 Index
+= Name
.size()+1;
927 assert(Index
== StrTab
.size());
931 // SortSymbols - On the symbol table local symbols must come before
932 // all other symbols with non-local bindings. The return value is
933 // the position of the first non local symbol.
934 unsigned ELFWriter::SortSymbols() {
935 unsigned FirstNonLocalSymbol
;
936 std::vector
<ELFSym
*> LocalSyms
, OtherSyms
;
938 for (ELFSymIter I
=SymbolList
.begin(), E
=SymbolList
.end(); I
!= E
; ++I
) {
939 if ((*I
)->isLocalBind())
940 LocalSyms
.push_back(*I
);
942 OtherSyms
.push_back(*I
);
945 FirstNonLocalSymbol
= LocalSyms
.size();
947 for (unsigned i
= 0; i
< FirstNonLocalSymbol
; ++i
)
948 SymbolList
.push_back(LocalSyms
[i
]);
950 for (ELFSymIter I
=OtherSyms
.begin(), E
=OtherSyms
.end(); I
!= E
; ++I
)
951 SymbolList
.push_back(*I
);
956 return FirstNonLocalSymbol
;
959 /// EmitSymbolTable - Emit the symbol table itself.
960 void ELFWriter::EmitSymbolTable() {
961 if (!SymbolList
.size()) return; // Empty symbol table.
963 // Now that we have emitted the string table and know the offset into the
964 // string table of each symbol, emit the symbol table itself.
965 ELFSection
&SymTab
= getSymbolTableSection();
966 SymTab
.Align
= TEW
->getPrefELFAlignment();
968 // Section Index of .strtab.
969 SymTab
.Link
= getStringTableSection().SectionIdx
;
971 // Size of each symtab entry.
972 SymTab
.EntSize
= TEW
->getSymTabEntrySize();
974 // Reorder the symbol table with local symbols first!
975 unsigned FirstNonLocalSymbol
= SortSymbols();
977 // Emit all the symbols to the symbol table.
978 for (unsigned i
= 0, e
= SymbolList
.size(); i
< e
; ++i
) {
979 ELFSym
&Sym
= *SymbolList
[i
];
981 // Emit symbol to the symbol table
982 EmitSymbol(SymTab
, Sym
);
984 // Record the symbol table index for each symbol
985 if (Sym
.isGlobalValue())
986 GblSymLookup
[Sym
.getGlobalValue()] = i
;
987 else if (Sym
.isExternalSym())
988 ExtSymLookup
[Sym
.getExternalSymbol()] = i
;
990 // Keep track on the symbol index into the symbol table
994 // One greater than the symbol table index of the last local symbol
995 SymTab
.Info
= FirstNonLocalSymbol
;
996 SymTab
.Size
= SymTab
.size();
999 /// EmitSectionTableStringTable - This method adds and emits a section for the
1000 /// ELF Section Table string table: the string table that holds all of the
1002 void ELFWriter::EmitSectionTableStringTable() {
1003 // First step: add the section for the string table to the list of sections:
1004 ELFSection
&SHStrTab
= getSectionHeaderStringTableSection();
1006 // Now that we know which section number is the .shstrtab section, update the
1007 // e_shstrndx entry in the ELF header.
1008 ElfHdr
.fixWord16(SHStrTab
.SectionIdx
, ELFHdr_e_shstrndx_Offset
);
1010 // Set the NameIdx of each section in the string table and emit the bytes for
1011 // the string table.
1014 for (ELFSectionIter I
=SectionList
.begin(), E
=SectionList
.end(); I
!= E
; ++I
) {
1015 ELFSection
&S
= *(*I
);
1016 // Set the index into the table. Note if we have lots of entries with
1017 // common suffixes, we could memoize them here if we cared.
1019 SHStrTab
.emitString(S
.getName());
1021 // Keep track of the number of bytes emitted to this section.
1022 Index
+= S
.getName().size()+1;
1025 // Set the size of .shstrtab now that we know what it is.
1026 assert(Index
== SHStrTab
.size());
1027 SHStrTab
.Size
= Index
;
1030 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
1031 /// and all of the sections, emit these to the ostream destination and emit the
1033 void ELFWriter::OutputSectionsAndSectionTable() {
1034 // Pass #1: Compute the file offset for each section.
1035 size_t FileOff
= ElfHdr
.size(); // File header first.
1037 // Adjust alignment of all section if needed, skip the null section.
1038 for (unsigned i
=1, e
=SectionList
.size(); i
< e
; ++i
) {
1039 ELFSection
&ES
= *SectionList
[i
];
1041 ES
.Offset
= FileOff
;
1045 // Update Section size
1047 ES
.Size
= ES
.size();
1049 // Align FileOff to whatever the alignment restrictions of the section are.
1051 FileOff
= (FileOff
+ES
.Align
-1) & ~(ES
.Align
-1);
1053 ES
.Offset
= FileOff
;
1057 // Align Section Header.
1058 unsigned TableAlign
= TEW
->getPrefELFAlignment();
1059 FileOff
= (FileOff
+TableAlign
-1) & ~(TableAlign
-1);
1061 // Now that we know where all of the sections will be emitted, set the e_shnum
1062 // entry in the ELF header.
1063 ElfHdr
.fixWord16(NumSections
, ELFHdr_e_shnum_Offset
);
1065 // Now that we know the offset in the file of the section table, update the
1066 // e_shoff address in the ELF header.
1067 ElfHdr
.fixWord(FileOff
, ELFHdr_e_shoff_Offset
);
1069 // Now that we know all of the data in the file header, emit it and all of the
1071 O
.write((char *)&ElfHdr
.getData()[0], ElfHdr
.size());
1072 FileOff
= ElfHdr
.size();
1074 // Section Header Table blob
1075 BinaryObject
SHdrTable(isLittleEndian
, is64Bit
);
1077 // Emit all of sections to the file and build the section header table.
1078 for (ELFSectionIter I
=SectionList
.begin(), E
=SectionList
.end(); I
!= E
; ++I
) {
1079 ELFSection
&S
= *(*I
);
1080 DEBUG(errs() << "SectionIdx: " << S
.SectionIdx
<< ", Name: " << S
.getName()
1081 << ", Size: " << S
.Size
<< ", Offset: " << S
.Offset
1082 << ", SectionData Size: " << S
.size() << "\n");
1084 // Align FileOff to whatever the alignment restrictions of the section are.
1087 for (size_t NewFileOff
= (FileOff
+S
.Align
-1) & ~(S
.Align
-1);
1088 FileOff
!= NewFileOff
; ++FileOff
)
1091 O
.write((char *)&S
.getData()[0], S
.Size
);
1095 EmitSectionHeader(SHdrTable
, S
);
1098 // Align output for the section table.
1099 for (size_t NewFileOff
= (FileOff
+TableAlign
-1) & ~(TableAlign
-1);
1100 FileOff
!= NewFileOff
; ++FileOff
)
1103 // Emit the section table itself.
1104 O
.write((char *)&SHdrTable
.getData()[0], SHdrTable
.size());