pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / CodeGen / PreAllocSplitting.cpp
blob2e20dc1f735121ecdadb7b653ed10a674ef5c600
1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DepthFirstIterator.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/Statistic.h"
39 using namespace llvm;
41 static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
42 static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden);
43 static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden);
45 STATISTIC(NumSplits, "Number of intervals split");
46 STATISTIC(NumRemats, "Number of intervals split by rematerialization");
47 STATISTIC(NumFolds, "Number of intervals split with spill folding");
48 STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
49 STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
50 STATISTIC(NumDeadSpills, "Number of dead spills removed");
52 namespace {
53 class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
54 MachineFunction *CurrMF;
55 const TargetMachine *TM;
56 const TargetInstrInfo *TII;
57 const TargetRegisterInfo* TRI;
58 MachineFrameInfo *MFI;
59 MachineRegisterInfo *MRI;
60 LiveIntervals *LIs;
61 LiveStacks *LSs;
62 VirtRegMap *VRM;
64 // Barrier - Current barrier being processed.
65 MachineInstr *Barrier;
67 // BarrierMBB - Basic block where the barrier resides in.
68 MachineBasicBlock *BarrierMBB;
70 // Barrier - Current barrier index.
71 MachineInstrIndex BarrierIdx;
73 // CurrLI - Current live interval being split.
74 LiveInterval *CurrLI;
76 // CurrSLI - Current stack slot live interval.
77 LiveInterval *CurrSLI;
79 // CurrSValNo - Current val# for the stack slot live interval.
80 VNInfo *CurrSValNo;
82 // IntervalSSMap - A map from live interval to spill slots.
83 DenseMap<unsigned, int> IntervalSSMap;
85 // Def2SpillMap - A map from a def instruction index to spill index.
86 DenseMap<MachineInstrIndex, MachineInstrIndex> Def2SpillMap;
88 public:
89 static char ID;
90 PreAllocSplitting() : MachineFunctionPass(&ID) {}
92 virtual bool runOnMachineFunction(MachineFunction &MF);
94 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.setPreservesCFG();
96 AU.addRequired<LiveIntervals>();
97 AU.addPreserved<LiveIntervals>();
98 AU.addRequired<LiveStacks>();
99 AU.addPreserved<LiveStacks>();
100 AU.addPreserved<RegisterCoalescer>();
101 if (StrongPHIElim)
102 AU.addPreservedID(StrongPHIEliminationID);
103 else
104 AU.addPreservedID(PHIEliminationID);
105 AU.addRequired<MachineDominatorTree>();
106 AU.addRequired<MachineLoopInfo>();
107 AU.addRequired<VirtRegMap>();
108 AU.addPreserved<MachineDominatorTree>();
109 AU.addPreserved<MachineLoopInfo>();
110 AU.addPreserved<VirtRegMap>();
111 MachineFunctionPass::getAnalysisUsage(AU);
114 virtual void releaseMemory() {
115 IntervalSSMap.clear();
116 Def2SpillMap.clear();
119 virtual const char *getPassName() const {
120 return "Pre-Register Allocaton Live Interval Splitting";
123 /// print - Implement the dump method.
124 virtual void print(raw_ostream &O, const Module* M = 0) const {
125 LIs->print(O, M);
129 private:
130 MachineBasicBlock::iterator
131 findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
132 MachineInstrIndex&);
134 MachineBasicBlock::iterator
135 findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
136 SmallPtrSet<MachineInstr*, 4>&, MachineInstrIndex&);
138 MachineBasicBlock::iterator
139 findRestorePoint(MachineBasicBlock*, MachineInstr*, MachineInstrIndex,
140 SmallPtrSet<MachineInstr*, 4>&, MachineInstrIndex&);
142 int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
144 bool IsAvailableInStack(MachineBasicBlock*, unsigned,
145 MachineInstrIndex, MachineInstrIndex,
146 MachineInstrIndex&, int&) const;
148 void UpdateSpillSlotInterval(VNInfo*, MachineInstrIndex, MachineInstrIndex);
150 bool SplitRegLiveInterval(LiveInterval*);
152 bool SplitRegLiveIntervals(const TargetRegisterClass **,
153 SmallPtrSet<LiveInterval*, 8>&);
155 bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
156 MachineBasicBlock* BarrierMBB);
157 bool Rematerialize(unsigned vreg, VNInfo* ValNo,
158 MachineInstr* DefMI,
159 MachineBasicBlock::iterator RestorePt,
160 MachineInstrIndex RestoreIdx,
161 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
162 MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
163 MachineInstr* DefMI,
164 MachineInstr* Barrier,
165 MachineBasicBlock* MBB,
166 int& SS,
167 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
168 MachineInstr* FoldRestore(unsigned vreg,
169 const TargetRegisterClass* RC,
170 MachineInstr* Barrier,
171 MachineBasicBlock* MBB,
172 int SS,
173 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
174 void RenumberValno(VNInfo* VN);
175 void ReconstructLiveInterval(LiveInterval* LI);
176 bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
177 unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
178 unsigned Reg, int FrameIndex, bool& TwoAddr);
179 VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
180 MachineBasicBlock* MBB, LiveInterval* LI,
181 SmallPtrSet<MachineInstr*, 4>& Visited,
182 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
183 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
184 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
185 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
186 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
187 bool IsTopLevel, bool IsIntraBlock);
188 VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
189 MachineBasicBlock* MBB, LiveInterval* LI,
190 SmallPtrSet<MachineInstr*, 4>& Visited,
191 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
192 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
193 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
194 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
195 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
196 bool IsTopLevel, bool IsIntraBlock);
198 } // end anonymous namespace
200 char PreAllocSplitting::ID = 0;
202 static RegisterPass<PreAllocSplitting>
203 X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
205 const PassInfo *const llvm::PreAllocSplittingID = &X;
208 /// findNextEmptySlot - Find a gap after the given machine instruction in the
209 /// instruction index map. If there isn't one, return end().
210 MachineBasicBlock::iterator
211 PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
212 MachineInstrIndex &SpotIndex) {
213 MachineBasicBlock::iterator MII = MI;
214 if (++MII != MBB->end()) {
215 MachineInstrIndex Index =
216 LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
217 if (Index != MachineInstrIndex()) {
218 SpotIndex = Index;
219 return MII;
222 return MBB->end();
225 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
226 /// for spilling the current live interval. The index must be before any
227 /// defs and uses of the live interval register in the mbb. Return begin() if
228 /// none is found.
229 MachineBasicBlock::iterator
230 PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
231 MachineInstr *DefMI,
232 SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
233 MachineInstrIndex &SpillIndex) {
234 MachineBasicBlock::iterator Pt = MBB->begin();
236 MachineBasicBlock::iterator MII = MI;
237 MachineBasicBlock::iterator EndPt = DefMI
238 ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
240 while (MII != EndPt && !RefsInMBB.count(MII) &&
241 MII->getOpcode() != TRI->getCallFrameSetupOpcode())
242 --MII;
243 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
245 while (MII != EndPt && !RefsInMBB.count(MII)) {
246 MachineInstrIndex Index = LIs->getInstructionIndex(MII);
248 // We can't insert the spill between the barrier (a call), and its
249 // corresponding call frame setup.
250 if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
251 while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
252 --MII;
253 if (MII == EndPt) {
254 return Pt;
257 continue;
258 } else if (LIs->hasGapBeforeInstr(Index)) {
259 Pt = MII;
260 SpillIndex = LIs->findGapBeforeInstr(Index, true);
263 if (RefsInMBB.count(MII))
264 return Pt;
267 --MII;
270 return Pt;
273 /// findRestorePoint - Find a gap in the instruction index map that's suitable
274 /// for restoring the current live interval value. The index must be before any
275 /// uses of the live interval register in the mbb. Return end() if none is
276 /// found.
277 MachineBasicBlock::iterator
278 PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
279 MachineInstrIndex LastIdx,
280 SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
281 MachineInstrIndex &RestoreIndex) {
282 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
283 // begin index accordingly.
284 MachineBasicBlock::iterator Pt = MBB->end();
285 MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
287 // We start at the call, so walk forward until we find the call frame teardown
288 // since we can't insert restores before that. Bail if we encounter a use
289 // during this time.
290 MachineBasicBlock::iterator MII = MI;
291 if (MII == EndPt) return Pt;
293 while (MII != EndPt && !RefsInMBB.count(MII) &&
294 MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
295 ++MII;
296 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
297 ++MII;
299 // FIXME: Limit the number of instructions to examine to reduce
300 // compile time?
301 while (MII != EndPt) {
302 MachineInstrIndex Index = LIs->getInstructionIndex(MII);
303 if (Index > LastIdx)
304 break;
305 MachineInstrIndex Gap = LIs->findGapBeforeInstr(Index);
307 // We can't insert a restore between the barrier (a call) and its
308 // corresponding call frame teardown.
309 if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
310 do {
311 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
312 ++MII;
313 } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
314 } else if (Gap != MachineInstrIndex()) {
315 Pt = MII;
316 RestoreIndex = Gap;
319 if (RefsInMBB.count(MII))
320 return Pt;
322 ++MII;
325 return Pt;
328 /// CreateSpillStackSlot - Create a stack slot for the live interval being
329 /// split. If the live interval was previously split, just reuse the same
330 /// slot.
331 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
332 const TargetRegisterClass *RC) {
333 int SS;
334 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
335 if (I != IntervalSSMap.end()) {
336 SS = I->second;
337 } else {
338 SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
339 IntervalSSMap[Reg] = SS;
342 // Create live interval for stack slot.
343 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
344 if (CurrSLI->hasAtLeastOneValue())
345 CurrSValNo = CurrSLI->getValNumInfo(0);
346 else
347 CurrSValNo = CurrSLI->getNextValue(MachineInstrIndex(), 0, false,
348 LSs->getVNInfoAllocator());
349 return SS;
352 /// IsAvailableInStack - Return true if register is available in a split stack
353 /// slot at the specified index.
354 bool
355 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
356 unsigned Reg, MachineInstrIndex DefIndex,
357 MachineInstrIndex RestoreIndex,
358 MachineInstrIndex &SpillIndex,
359 int& SS) const {
360 if (!DefMBB)
361 return false;
363 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
364 if (I == IntervalSSMap.end())
365 return false;
366 DenseMap<MachineInstrIndex, MachineInstrIndex>::iterator
367 II = Def2SpillMap.find(DefIndex);
368 if (II == Def2SpillMap.end())
369 return false;
371 // If last spill of def is in the same mbb as barrier mbb (where restore will
372 // be), make sure it's not below the intended restore index.
373 // FIXME: Undo the previous spill?
374 assert(LIs->getMBBFromIndex(II->second) == DefMBB);
375 if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
376 return false;
378 SS = I->second;
379 SpillIndex = II->second;
380 return true;
383 /// UpdateSpillSlotInterval - Given the specified val# of the register live
384 /// interval being split, and the spill and restore indicies, update the live
385 /// interval of the spill stack slot.
386 void
387 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, MachineInstrIndex SpillIndex,
388 MachineInstrIndex RestoreIndex) {
389 assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
390 "Expect restore in the barrier mbb");
392 MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
393 if (MBB == BarrierMBB) {
394 // Intra-block spill + restore. We are done.
395 LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
396 CurrSLI->addRange(SLR);
397 return;
400 SmallPtrSet<MachineBasicBlock*, 4> Processed;
401 MachineInstrIndex EndIdx = LIs->getMBBEndIdx(MBB);
402 LiveRange SLR(SpillIndex, LIs->getNextSlot(EndIdx), CurrSValNo);
403 CurrSLI->addRange(SLR);
404 Processed.insert(MBB);
406 // Start from the spill mbb, figure out the extend of the spill slot's
407 // live interval.
408 SmallVector<MachineBasicBlock*, 4> WorkList;
409 const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
410 if (LR->end > EndIdx)
411 // If live range extend beyond end of mbb, add successors to work list.
412 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
413 SE = MBB->succ_end(); SI != SE; ++SI)
414 WorkList.push_back(*SI);
416 while (!WorkList.empty()) {
417 MachineBasicBlock *MBB = WorkList.back();
418 WorkList.pop_back();
419 if (Processed.count(MBB))
420 continue;
421 MachineInstrIndex Idx = LIs->getMBBStartIdx(MBB);
422 LR = CurrLI->getLiveRangeContaining(Idx);
423 if (LR && LR->valno == ValNo) {
424 EndIdx = LIs->getMBBEndIdx(MBB);
425 if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
426 // Spill slot live interval stops at the restore.
427 LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
428 CurrSLI->addRange(SLR);
429 } else if (LR->end > EndIdx) {
430 // Live range extends beyond end of mbb, process successors.
431 LiveRange SLR(Idx, LIs->getNextIndex(EndIdx), CurrSValNo);
432 CurrSLI->addRange(SLR);
433 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
434 SE = MBB->succ_end(); SI != SE; ++SI)
435 WorkList.push_back(*SI);
436 } else {
437 LiveRange SLR(Idx, LR->end, CurrSValNo);
438 CurrSLI->addRange(SLR);
440 Processed.insert(MBB);
445 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
446 /// construction algorithm to compute the ranges and valnos for an interval.
447 VNInfo*
448 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
449 MachineBasicBlock* MBB, LiveInterval* LI,
450 SmallPtrSet<MachineInstr*, 4>& Visited,
451 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
452 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
453 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
454 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
455 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
456 bool IsTopLevel, bool IsIntraBlock) {
457 // Return memoized result if it's available.
458 if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
459 return NewVNs[UseI];
460 else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
461 return NewVNs[UseI];
462 else if (!IsIntraBlock && LiveOut.count(MBB))
463 return LiveOut[MBB];
465 // Check if our block contains any uses or defs.
466 bool ContainsDefs = Defs.count(MBB);
467 bool ContainsUses = Uses.count(MBB);
469 VNInfo* RetVNI = 0;
471 // Enumerate the cases of use/def contaning blocks.
472 if (!ContainsDefs && !ContainsUses) {
473 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
474 NewVNs, LiveOut, Phis,
475 IsTopLevel, IsIntraBlock);
476 } else if (ContainsDefs && !ContainsUses) {
477 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
479 // Search for the def in this block. If we don't find it before the
480 // instruction we care about, go to the fallback case. Note that that
481 // should never happen: this cannot be intrablock, so use should
482 // always be an end() iterator.
483 assert(UseI == MBB->end() && "No use marked in intrablock");
485 MachineBasicBlock::iterator Walker = UseI;
486 --Walker;
487 while (Walker != MBB->begin()) {
488 if (BlockDefs.count(Walker))
489 break;
490 --Walker;
493 // Once we've found it, extend its VNInfo to our instruction.
494 MachineInstrIndex DefIndex = LIs->getInstructionIndex(Walker);
495 DefIndex = LIs->getDefIndex(DefIndex);
496 MachineInstrIndex EndIndex = LIs->getMBBEndIdx(MBB);
498 RetVNI = NewVNs[Walker];
499 LI->addRange(LiveRange(DefIndex, LIs->getNextSlot(EndIndex), RetVNI));
500 } else if (!ContainsDefs && ContainsUses) {
501 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
503 // Search for the use in this block that precedes the instruction we care
504 // about, going to the fallback case if we don't find it.
505 if (UseI == MBB->begin())
506 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
507 Uses, NewVNs, LiveOut, Phis,
508 IsTopLevel, IsIntraBlock);
510 MachineBasicBlock::iterator Walker = UseI;
511 --Walker;
512 bool found = false;
513 while (Walker != MBB->begin()) {
514 if (BlockUses.count(Walker)) {
515 found = true;
516 break;
518 --Walker;
521 // Must check begin() too.
522 if (!found) {
523 if (BlockUses.count(Walker))
524 found = true;
525 else
526 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
527 Uses, NewVNs, LiveOut, Phis,
528 IsTopLevel, IsIntraBlock);
531 MachineInstrIndex UseIndex = LIs->getInstructionIndex(Walker);
532 UseIndex = LIs->getUseIndex(UseIndex);
533 MachineInstrIndex EndIndex;
534 if (IsIntraBlock) {
535 EndIndex = LIs->getInstructionIndex(UseI);
536 EndIndex = LIs->getUseIndex(EndIndex);
537 } else
538 EndIndex = LIs->getMBBEndIdx(MBB);
540 // Now, recursively phi construct the VNInfo for the use we found,
541 // and then extend it to include the instruction we care about
542 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
543 NewVNs, LiveOut, Phis, false, true);
545 LI->addRange(LiveRange(UseIndex, LIs->getNextSlot(EndIndex), RetVNI));
547 // FIXME: Need to set kills properly for inter-block stuff.
548 if (RetVNI->isKill(UseIndex)) RetVNI->removeKill(UseIndex);
549 if (IsIntraBlock)
550 RetVNI->addKill(EndIndex);
551 } else if (ContainsDefs && ContainsUses) {
552 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
553 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
555 // This case is basically a merging of the two preceding case, with the
556 // special note that checking for defs must take precedence over checking
557 // for uses, because of two-address instructions.
559 if (UseI == MBB->begin())
560 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
561 NewVNs, LiveOut, Phis,
562 IsTopLevel, IsIntraBlock);
564 MachineBasicBlock::iterator Walker = UseI;
565 --Walker;
566 bool foundDef = false;
567 bool foundUse = false;
568 while (Walker != MBB->begin()) {
569 if (BlockDefs.count(Walker)) {
570 foundDef = true;
571 break;
572 } else if (BlockUses.count(Walker)) {
573 foundUse = true;
574 break;
576 --Walker;
579 // Must check begin() too.
580 if (!foundDef && !foundUse) {
581 if (BlockDefs.count(Walker))
582 foundDef = true;
583 else if (BlockUses.count(Walker))
584 foundUse = true;
585 else
586 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
587 Uses, NewVNs, LiveOut, Phis,
588 IsTopLevel, IsIntraBlock);
591 MachineInstrIndex StartIndex = LIs->getInstructionIndex(Walker);
592 StartIndex = foundDef ? LIs->getDefIndex(StartIndex) :
593 LIs->getUseIndex(StartIndex);
594 MachineInstrIndex EndIndex;
595 if (IsIntraBlock) {
596 EndIndex = LIs->getInstructionIndex(UseI);
597 EndIndex = LIs->getUseIndex(EndIndex);
598 } else
599 EndIndex = LIs->getMBBEndIdx(MBB);
601 if (foundDef)
602 RetVNI = NewVNs[Walker];
603 else
604 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
605 NewVNs, LiveOut, Phis, false, true);
607 LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI));
609 if (foundUse && RetVNI->isKill(StartIndex))
610 RetVNI->removeKill(StartIndex);
611 if (IsIntraBlock) {
612 RetVNI->addKill(EndIndex);
616 // Memoize results so we don't have to recompute them.
617 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
618 else {
619 if (!NewVNs.count(UseI))
620 NewVNs[UseI] = RetVNI;
621 Visited.insert(UseI);
624 return RetVNI;
627 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
629 VNInfo*
630 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
631 MachineBasicBlock* MBB, LiveInterval* LI,
632 SmallPtrSet<MachineInstr*, 4>& Visited,
633 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
634 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
635 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
636 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
637 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
638 bool IsTopLevel, bool IsIntraBlock) {
639 // NOTE: Because this is the fallback case from other cases, we do NOT
640 // assume that we are not intrablock here.
641 if (Phis.count(MBB)) return Phis[MBB];
643 MachineInstrIndex StartIndex = LIs->getMBBStartIdx(MBB);
644 VNInfo *RetVNI = Phis[MBB] =
645 LI->getNextValue(MachineInstrIndex(), /*FIXME*/ 0, false,
646 LIs->getVNInfoAllocator());
648 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
650 // If there are no uses or defs between our starting point and the
651 // beginning of the block, then recursive perform phi construction
652 // on our predecessors.
653 DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
654 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
655 PE = MBB->pred_end(); PI != PE; ++PI) {
656 VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
657 Visited, Defs, Uses, NewVNs,
658 LiveOut, Phis, false, false);
659 if (Incoming != 0)
660 IncomingVNs[*PI] = Incoming;
663 if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
664 VNInfo* OldVN = RetVNI;
665 VNInfo* NewVN = IncomingVNs.begin()->second;
666 VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
667 if (MergedVN == OldVN) std::swap(OldVN, NewVN);
669 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
670 LOE = LiveOut.end(); LOI != LOE; ++LOI)
671 if (LOI->second == OldVN)
672 LOI->second = MergedVN;
673 for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
674 NVE = NewVNs.end(); NVI != NVE; ++NVI)
675 if (NVI->second == OldVN)
676 NVI->second = MergedVN;
677 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
678 PE = Phis.end(); PI != PE; ++PI)
679 if (PI->second == OldVN)
680 PI->second = MergedVN;
681 RetVNI = MergedVN;
682 } else {
683 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
684 // VNInfo to represent the joined value.
685 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
686 IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
687 I->second->setHasPHIKill(true);
688 MachineInstrIndex KillIndex = LIs->getMBBEndIdx(I->first);
689 if (!I->second->isKill(KillIndex))
690 I->second->addKill(KillIndex);
694 MachineInstrIndex EndIndex;
695 if (IsIntraBlock) {
696 EndIndex = LIs->getInstructionIndex(UseI);
697 EndIndex = LIs->getUseIndex(EndIndex);
698 } else
699 EndIndex = LIs->getMBBEndIdx(MBB);
700 LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI));
701 if (IsIntraBlock)
702 RetVNI->addKill(EndIndex);
704 // Memoize results so we don't have to recompute them.
705 if (!IsIntraBlock)
706 LiveOut[MBB] = RetVNI;
707 else {
708 if (!NewVNs.count(UseI))
709 NewVNs[UseI] = RetVNI;
710 Visited.insert(UseI);
713 return RetVNI;
716 /// ReconstructLiveInterval - Recompute a live interval from scratch.
717 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
718 BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
720 // Clear the old ranges and valnos;
721 LI->clear();
723 // Cache the uses and defs of the register
724 typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
725 RegMap Defs, Uses;
727 // Keep track of the new VNs we're creating.
728 DenseMap<MachineInstr*, VNInfo*> NewVNs;
729 SmallPtrSet<VNInfo*, 2> PhiVNs;
731 // Cache defs, and create a new VNInfo for each def.
732 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
733 DE = MRI->def_end(); DI != DE; ++DI) {
734 Defs[(*DI).getParent()].insert(&*DI);
736 MachineInstrIndex DefIdx = LIs->getInstructionIndex(&*DI);
737 DefIdx = LIs->getDefIndex(DefIdx);
739 assert(DI->getOpcode() != TargetInstrInfo::PHI &&
740 "Following NewVN isPHIDef flag incorrect. Fix me!");
741 VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
743 // If the def is a move, set the copy field.
744 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
745 if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
746 if (DstReg == LI->reg)
747 NewVN->setCopy(&*DI);
749 NewVNs[&*DI] = NewVN;
752 // Cache uses as a separate pass from actually processing them.
753 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
754 UE = MRI->use_end(); UI != UE; ++UI)
755 Uses[(*UI).getParent()].insert(&*UI);
757 // Now, actually process every use and use a phi construction algorithm
758 // to walk from it to its reaching definitions, building VNInfos along
759 // the way.
760 DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
761 DenseMap<MachineBasicBlock*, VNInfo*> Phis;
762 SmallPtrSet<MachineInstr*, 4> Visited;
763 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
764 UE = MRI->use_end(); UI != UE; ++UI) {
765 PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
766 Uses, NewVNs, LiveOut, Phis, true, true);
769 // Add ranges for dead defs
770 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
771 DE = MRI->def_end(); DI != DE; ++DI) {
772 MachineInstrIndex DefIdx = LIs->getInstructionIndex(&*DI);
773 DefIdx = LIs->getDefIndex(DefIdx);
775 if (LI->liveAt(DefIdx)) continue;
777 VNInfo* DeadVN = NewVNs[&*DI];
778 LI->addRange(LiveRange(DefIdx, LIs->getNextSlot(DefIdx), DeadVN));
779 DeadVN->addKill(DefIdx);
783 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
784 /// be allocated to a different register. This function creates a new vreg,
785 /// copies the valno and its live ranges over to the new vreg's interval,
786 /// removes them from the old interval, and rewrites all uses and defs of
787 /// the original reg to the new vreg within those ranges.
788 void PreAllocSplitting::RenumberValno(VNInfo* VN) {
789 SmallVector<VNInfo*, 4> Stack;
790 SmallVector<VNInfo*, 4> VNsToCopy;
791 Stack.push_back(VN);
793 // Walk through and copy the valno we care about, and any other valnos
794 // that are two-address redefinitions of the one we care about. These
795 // will need to be rewritten as well. We also check for safety of the
796 // renumbering here, by making sure that none of the valno involved has
797 // phi kills.
798 while (!Stack.empty()) {
799 VNInfo* OldVN = Stack.back();
800 Stack.pop_back();
802 // Bail out if we ever encounter a valno that has a PHI kill. We can't
803 // renumber these.
804 if (OldVN->hasPHIKill()) return;
806 VNsToCopy.push_back(OldVN);
808 // Locate two-address redefinitions
809 for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
810 KE = OldVN->kills.end(); KI != KE; ++KI) {
811 assert(!KI->isPHIIndex() &&
812 "VN previously reported having no PHI kills.");
813 MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
814 unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
815 if (DefIdx == ~0U) continue;
816 if (MI->isRegTiedToUseOperand(DefIdx)) {
817 VNInfo* NextVN =
818 CurrLI->findDefinedVNInfoForRegInt(LIs->getDefIndex(*KI));
819 if (NextVN == OldVN) continue;
820 Stack.push_back(NextVN);
825 // Create the new vreg
826 unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
828 // Create the new live interval
829 LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
831 for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
832 VNsToCopy.end(); OI != OE; ++OI) {
833 VNInfo* OldVN = *OI;
835 // Copy the valno over
836 VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
837 NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
839 // Remove the valno from the old interval
840 CurrLI->removeValNo(OldVN);
843 // Rewrite defs and uses. This is done in two stages to avoid invalidating
844 // the reg_iterator.
845 SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
847 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
848 E = MRI->reg_end(); I != E; ++I) {
849 MachineOperand& MO = I.getOperand();
850 MachineInstrIndex InstrIdx = LIs->getInstructionIndex(&*I);
852 if ((MO.isUse() && NewLI.liveAt(LIs->getUseIndex(InstrIdx))) ||
853 (MO.isDef() && NewLI.liveAt(LIs->getDefIndex(InstrIdx))))
854 OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
857 for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
858 OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
859 MachineInstr* Inst = I->first;
860 unsigned OpIdx = I->second;
861 MachineOperand& MO = Inst->getOperand(OpIdx);
862 MO.setReg(NewVReg);
865 // Grow the VirtRegMap, since we've created a new vreg.
866 VRM->grow();
868 // The renumbered vreg shares a stack slot with the old register.
869 if (IntervalSSMap.count(CurrLI->reg))
870 IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
872 NumRenumbers++;
875 bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
876 MachineInstr* DefMI,
877 MachineBasicBlock::iterator RestorePt,
878 MachineInstrIndex RestoreIdx,
879 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
880 MachineBasicBlock& MBB = *RestorePt->getParent();
882 MachineBasicBlock::iterator KillPt = BarrierMBB->end();
883 MachineInstrIndex KillIdx;
884 if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
885 KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
886 else
887 KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
889 if (KillPt == DefMI->getParent()->end())
890 return false;
892 TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI);
893 LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
895 ReconstructLiveInterval(CurrLI);
896 MachineInstrIndex RematIdx = LIs->getInstructionIndex(prior(RestorePt));
897 RematIdx = LIs->getDefIndex(RematIdx);
898 RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
900 ++NumSplits;
901 ++NumRemats;
902 return true;
905 MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
906 const TargetRegisterClass* RC,
907 MachineInstr* DefMI,
908 MachineInstr* Barrier,
909 MachineBasicBlock* MBB,
910 int& SS,
911 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
912 MachineBasicBlock::iterator Pt = MBB->begin();
914 // Go top down if RefsInMBB is empty.
915 if (RefsInMBB.empty())
916 return 0;
918 MachineBasicBlock::iterator FoldPt = Barrier;
919 while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
920 !RefsInMBB.count(FoldPt))
921 --FoldPt;
923 int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
924 if (OpIdx == -1)
925 return 0;
927 SmallVector<unsigned, 1> Ops;
928 Ops.push_back(OpIdx);
930 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
931 return 0;
933 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
934 if (I != IntervalSSMap.end()) {
935 SS = I->second;
936 } else {
937 SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
940 MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
941 FoldPt, Ops, SS);
943 if (FMI) {
944 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
945 FMI = MBB->insert(MBB->erase(FoldPt), FMI);
946 ++NumFolds;
948 IntervalSSMap[vreg] = SS;
949 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
950 if (CurrSLI->hasAtLeastOneValue())
951 CurrSValNo = CurrSLI->getValNumInfo(0);
952 else
953 CurrSValNo = CurrSLI->getNextValue(MachineInstrIndex(), 0, false,
954 LSs->getVNInfoAllocator());
957 return FMI;
960 MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
961 const TargetRegisterClass* RC,
962 MachineInstr* Barrier,
963 MachineBasicBlock* MBB,
964 int SS,
965 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
966 if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
967 return 0;
969 // Go top down if RefsInMBB is empty.
970 if (RefsInMBB.empty())
971 return 0;
973 // Can't fold a restore between a call stack setup and teardown.
974 MachineBasicBlock::iterator FoldPt = Barrier;
976 // Advance from barrier to call frame teardown.
977 while (FoldPt != MBB->getFirstTerminator() &&
978 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
979 if (RefsInMBB.count(FoldPt))
980 return 0;
982 ++FoldPt;
985 if (FoldPt == MBB->getFirstTerminator())
986 return 0;
987 else
988 ++FoldPt;
990 // Now find the restore point.
991 while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
992 if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
993 while (FoldPt != MBB->getFirstTerminator() &&
994 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
995 if (RefsInMBB.count(FoldPt))
996 return 0;
998 ++FoldPt;
1001 if (FoldPt == MBB->getFirstTerminator())
1002 return 0;
1005 ++FoldPt;
1008 if (FoldPt == MBB->getFirstTerminator())
1009 return 0;
1011 int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
1012 if (OpIdx == -1)
1013 return 0;
1015 SmallVector<unsigned, 1> Ops;
1016 Ops.push_back(OpIdx);
1018 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
1019 return 0;
1021 MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
1022 FoldPt, Ops, SS);
1024 if (FMI) {
1025 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
1026 FMI = MBB->insert(MBB->erase(FoldPt), FMI);
1027 ++NumRestoreFolds;
1030 return FMI;
1033 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
1034 /// so it would not cross the barrier that's being processed. Shrink wrap
1035 /// (minimize) the live interval to the last uses.
1036 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
1037 CurrLI = LI;
1039 // Find live range where current interval cross the barrier.
1040 LiveInterval::iterator LR =
1041 CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
1042 VNInfo *ValNo = LR->valno;
1044 assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
1046 MachineInstr *DefMI = ValNo->isDefAccurate()
1047 ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
1049 // If this would create a new join point, do not split.
1050 if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
1051 return false;
1053 // Find all references in the barrier mbb.
1054 SmallPtrSet<MachineInstr*, 4> RefsInMBB;
1055 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
1056 E = MRI->reg_end(); I != E; ++I) {
1057 MachineInstr *RefMI = &*I;
1058 if (RefMI->getParent() == BarrierMBB)
1059 RefsInMBB.insert(RefMI);
1062 // Find a point to restore the value after the barrier.
1063 MachineInstrIndex RestoreIndex;
1064 MachineBasicBlock::iterator RestorePt =
1065 findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
1066 if (RestorePt == BarrierMBB->end())
1067 return false;
1069 if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
1070 if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
1071 RestoreIndex, RefsInMBB))
1072 return true;
1074 // Add a spill either before the barrier or after the definition.
1075 MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
1076 const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
1077 MachineInstrIndex SpillIndex;
1078 MachineInstr *SpillMI = NULL;
1079 int SS = -1;
1080 if (!ValNo->isDefAccurate()) {
1081 // If we don't know where the def is we must split just before the barrier.
1082 if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
1083 BarrierMBB, SS, RefsInMBB))) {
1084 SpillIndex = LIs->getInstructionIndex(SpillMI);
1085 } else {
1086 MachineBasicBlock::iterator SpillPt =
1087 findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
1088 if (SpillPt == BarrierMBB->begin())
1089 return false; // No gap to insert spill.
1090 // Add spill.
1092 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1093 TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
1094 SpillMI = prior(SpillPt);
1095 LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
1097 } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
1098 RestoreIndex, SpillIndex, SS)) {
1099 // If it's already split, just restore the value. There is no need to spill
1100 // the def again.
1101 if (!DefMI)
1102 return false; // Def is dead. Do nothing.
1104 if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
1105 BarrierMBB, SS, RefsInMBB))) {
1106 SpillIndex = LIs->getInstructionIndex(SpillMI);
1107 } else {
1108 // Check if it's possible to insert a spill after the def MI.
1109 MachineBasicBlock::iterator SpillPt;
1110 if (DefMBB == BarrierMBB) {
1111 // Add spill after the def and the last use before the barrier.
1112 SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
1113 RefsInMBB, SpillIndex);
1114 if (SpillPt == DefMBB->begin())
1115 return false; // No gap to insert spill.
1116 } else {
1117 SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
1118 if (SpillPt == DefMBB->end())
1119 return false; // No gap to insert spill.
1121 // Add spill. The store instruction kills the register if def is before
1122 // the barrier in the barrier block.
1123 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1124 TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
1125 DefMBB == BarrierMBB, SS, RC);
1126 SpillMI = prior(SpillPt);
1127 LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
1131 // Remember def instruction index to spill index mapping.
1132 if (DefMI && SpillMI)
1133 Def2SpillMap[ValNo->def] = SpillIndex;
1135 // Add restore.
1136 bool FoldedRestore = false;
1137 if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
1138 BarrierMBB, SS, RefsInMBB)) {
1139 RestorePt = LMI;
1140 RestoreIndex = LIs->getInstructionIndex(RestorePt);
1141 FoldedRestore = true;
1142 } else {
1143 TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
1144 MachineInstr *LoadMI = prior(RestorePt);
1145 LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
1148 // Update spill stack slot live interval.
1149 UpdateSpillSlotInterval(ValNo, LIs->getNextSlot(LIs->getUseIndex(SpillIndex)),
1150 LIs->getDefIndex(RestoreIndex));
1152 ReconstructLiveInterval(CurrLI);
1154 if (!FoldedRestore) {
1155 MachineInstrIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
1156 RestoreIdx = LIs->getDefIndex(RestoreIdx);
1157 RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
1160 ++NumSplits;
1161 return true;
1164 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1165 /// barrier that's being processed.
1166 bool
1167 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
1168 SmallPtrSet<LiveInterval*, 8>& Split) {
1169 // First find all the virtual registers whose live intervals are intercepted
1170 // by the current barrier.
1171 SmallVector<LiveInterval*, 8> Intervals;
1172 for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
1173 // FIXME: If it's not safe to move any instruction that defines the barrier
1174 // register class, then it means there are some special dependencies which
1175 // codegen is not modelling. Ignore these barriers for now.
1176 if (!TII->isSafeToMoveRegClassDefs(*RC))
1177 continue;
1178 std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
1179 for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
1180 unsigned Reg = VRs[i];
1181 if (!LIs->hasInterval(Reg))
1182 continue;
1183 LiveInterval *LI = &LIs->getInterval(Reg);
1184 if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
1185 // Virtual register live interval is intercepted by the barrier. We
1186 // should split and shrink wrap its interval if possible.
1187 Intervals.push_back(LI);
1191 // Process the affected live intervals.
1192 bool Change = false;
1193 while (!Intervals.empty()) {
1194 if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
1195 break;
1196 else if (NumSplits == 4)
1197 Change |= Change;
1198 LiveInterval *LI = Intervals.back();
1199 Intervals.pop_back();
1200 bool result = SplitRegLiveInterval(LI);
1201 if (result) Split.insert(LI);
1202 Change |= result;
1205 return Change;
1208 unsigned PreAllocSplitting::getNumberOfNonSpills(
1209 SmallPtrSet<MachineInstr*, 4>& MIs,
1210 unsigned Reg, int FrameIndex,
1211 bool& FeedsTwoAddr) {
1212 unsigned NonSpills = 0;
1213 for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
1214 UI != UE; ++UI) {
1215 int StoreFrameIndex;
1216 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1217 if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
1218 NonSpills++;
1220 int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
1221 if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
1222 FeedsTwoAddr = true;
1225 return NonSpills;
1228 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1229 /// split, and see if any of the spills are unnecessary. If so, remove them.
1230 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
1231 bool changed = false;
1233 // Walk over all of the live intervals that were touched by the splitter,
1234 // and see if we can do any DCE and/or folding.
1235 for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
1236 LE = split.end(); LI != LE; ++LI) {
1237 DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
1239 // First, collect all the uses of the vreg, and sort them by their
1240 // reaching definition (VNInfo).
1241 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
1242 UE = MRI->use_end(); UI != UE; ++UI) {
1243 MachineInstrIndex index = LIs->getInstructionIndex(&*UI);
1244 index = LIs->getUseIndex(index);
1246 const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
1247 VNUseCount[LR->valno].insert(&*UI);
1250 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1251 // and/or fold them away.
1252 for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
1253 VE = (*LI)->vni_end(); VI != VE; ++VI) {
1255 if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
1256 return changed;
1258 VNInfo* CurrVN = *VI;
1260 // We don't currently try to handle definitions with PHI kills, because
1261 // it would involve processing more than one VNInfo at once.
1262 if (CurrVN->hasPHIKill()) continue;
1264 // We also don't try to handle the results of PHI joins, since there's
1265 // no defining instruction to analyze.
1266 if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
1268 // We're only interested in eliminating cruft introduced by the splitter,
1269 // is of the form load-use or load-use-store. First, check that the
1270 // definition is a load, and remember what stack slot we loaded it from.
1271 MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
1272 int FrameIndex;
1273 if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
1275 // If the definition has no uses at all, just DCE it.
1276 if (VNUseCount[CurrVN].size() == 0) {
1277 LIs->RemoveMachineInstrFromMaps(DefMI);
1278 (*LI)->removeValNo(CurrVN);
1279 DefMI->eraseFromParent();
1280 VNUseCount.erase(CurrVN);
1281 NumDeadSpills++;
1282 changed = true;
1283 continue;
1286 // Second, get the number of non-store uses of the definition, as well as
1287 // a flag indicating whether it feeds into a later two-address definition.
1288 bool FeedsTwoAddr = false;
1289 unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
1290 (*LI)->reg, FrameIndex,
1291 FeedsTwoAddr);
1293 // If there's one non-store use and it doesn't feed a two-addr, then
1294 // this is a load-use-store case that we can try to fold.
1295 if (NonSpillCount == 1 && !FeedsTwoAddr) {
1296 // Start by finding the non-store use MachineInstr.
1297 SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
1298 int StoreFrameIndex;
1299 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1300 while (UI != VNUseCount[CurrVN].end() &&
1301 (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
1302 ++UI;
1303 if (UI != VNUseCount[CurrVN].end())
1304 StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1306 if (UI == VNUseCount[CurrVN].end()) continue;
1308 MachineInstr* use = *UI;
1310 // Attempt to fold it away!
1311 int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
1312 if (OpIdx == -1) continue;
1313 SmallVector<unsigned, 1> Ops;
1314 Ops.push_back(OpIdx);
1315 if (!TII->canFoldMemoryOperand(use, Ops)) continue;
1317 MachineInstr* NewMI =
1318 TII->foldMemoryOperand(*use->getParent()->getParent(),
1319 use, Ops, FrameIndex);
1321 if (!NewMI) continue;
1323 // Update relevant analyses.
1324 LIs->RemoveMachineInstrFromMaps(DefMI);
1325 LIs->ReplaceMachineInstrInMaps(use, NewMI);
1326 (*LI)->removeValNo(CurrVN);
1328 DefMI->eraseFromParent();
1329 MachineBasicBlock* MBB = use->getParent();
1330 NewMI = MBB->insert(MBB->erase(use), NewMI);
1331 VNUseCount[CurrVN].erase(use);
1333 // Remove deleted instructions. Note that we need to remove them from
1334 // the VNInfo->use map as well, just to be safe.
1335 for (SmallPtrSet<MachineInstr*, 4>::iterator II =
1336 VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
1337 II != IE; ++II) {
1338 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1339 VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
1340 ++VNI)
1341 if (VNI->first != CurrVN)
1342 VNI->second.erase(*II);
1343 LIs->RemoveMachineInstrFromMaps(*II);
1344 (*II)->eraseFromParent();
1347 VNUseCount.erase(CurrVN);
1349 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1350 VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
1351 if (VI->second.erase(use))
1352 VI->second.insert(NewMI);
1354 NumDeadSpills++;
1355 changed = true;
1356 continue;
1359 // If there's more than one non-store instruction, we can't profitably
1360 // fold it, so bail.
1361 if (NonSpillCount) continue;
1363 // Otherwise, this is a load-store case, so DCE them.
1364 for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
1365 VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
1366 UI != UI; ++UI) {
1367 LIs->RemoveMachineInstrFromMaps(*UI);
1368 (*UI)->eraseFromParent();
1371 VNUseCount.erase(CurrVN);
1373 LIs->RemoveMachineInstrFromMaps(DefMI);
1374 (*LI)->removeValNo(CurrVN);
1375 DefMI->eraseFromParent();
1376 NumDeadSpills++;
1377 changed = true;
1381 return changed;
1384 bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
1385 MachineBasicBlock* DefMBB,
1386 MachineBasicBlock* BarrierMBB) {
1387 if (DefMBB == BarrierMBB)
1388 return false;
1390 if (LR->valno->hasPHIKill())
1391 return false;
1393 MachineInstrIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
1394 if (LR->end < MBBEnd)
1395 return false;
1397 MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
1398 if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
1399 return true;
1401 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
1402 SmallPtrSet<MachineBasicBlock*, 4> Visited;
1403 typedef std::pair<MachineBasicBlock*,
1404 MachineBasicBlock::succ_iterator> ItPair;
1405 SmallVector<ItPair, 4> Stack;
1406 Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
1408 while (!Stack.empty()) {
1409 ItPair P = Stack.back();
1410 Stack.pop_back();
1412 MachineBasicBlock* PredMBB = P.first;
1413 MachineBasicBlock::succ_iterator S = P.second;
1415 if (S == PredMBB->succ_end())
1416 continue;
1417 else if (Visited.count(*S)) {
1418 Stack.push_back(std::make_pair(PredMBB, ++S));
1419 continue;
1420 } else
1421 Stack.push_back(std::make_pair(PredMBB, S+1));
1423 MachineBasicBlock* MBB = *S;
1424 Visited.insert(MBB);
1426 if (MBB == BarrierMBB)
1427 return true;
1429 MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
1430 MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
1431 MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
1432 while (MDTN) {
1433 if (MDTN == DefMDTN)
1434 return true;
1435 else if (MDTN == BarrierMDTN)
1436 break;
1437 MDTN = MDTN->getIDom();
1440 MBBEnd = LIs->getMBBEndIdx(MBB);
1441 if (LR->end > MBBEnd)
1442 Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
1445 return false;
1449 bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
1450 CurrMF = &MF;
1451 TM = &MF.getTarget();
1452 TRI = TM->getRegisterInfo();
1453 TII = TM->getInstrInfo();
1454 MFI = MF.getFrameInfo();
1455 MRI = &MF.getRegInfo();
1456 LIs = &getAnalysis<LiveIntervals>();
1457 LSs = &getAnalysis<LiveStacks>();
1458 VRM = &getAnalysis<VirtRegMap>();
1460 bool MadeChange = false;
1462 // Make sure blocks are numbered in order.
1463 MF.RenumberBlocks();
1465 MachineBasicBlock *Entry = MF.begin();
1466 SmallPtrSet<MachineBasicBlock*,16> Visited;
1468 SmallPtrSet<LiveInterval*, 8> Split;
1470 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
1471 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1472 DFI != E; ++DFI) {
1473 BarrierMBB = *DFI;
1474 for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
1475 E = BarrierMBB->end(); I != E; ++I) {
1476 Barrier = &*I;
1477 const TargetRegisterClass **BarrierRCs =
1478 Barrier->getDesc().getRegClassBarriers();
1479 if (!BarrierRCs)
1480 continue;
1481 BarrierIdx = LIs->getInstructionIndex(Barrier);
1482 MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
1486 MadeChange |= removeDeadSpills(Split);
1488 return MadeChange;