1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP/HeuristicSolver.h"
35 #include "PBQP/SimpleGraph.h"
36 #include "PBQP/Heuristics/Briggs.h"
37 #include "VirtRegMap.h"
38 #include "VirtRegRewriter.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/RegAllocRegistry.h"
45 #include "llvm/CodeGen/RegisterCoalescer.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetMachine.h"
58 static RegisterRegAlloc
59 registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60 llvm::createPBQPRegisterAllocator
);
63 pbqpCoalescing("pbqp-coalescing",
64 cl::desc("Attempt coalescing during PBQP register allocation."),
65 cl::init(false), cl::Hidden
);
70 /// PBQP based allocators solve the register allocation problem by mapping
71 /// register allocation problems to Partitioned Boolean Quadratic
72 /// Programming problems.
73 class VISIBILITY_HIDDEN PBQPRegAlloc
: public MachineFunctionPass
{
78 /// Construct a PBQP register allocator.
79 PBQPRegAlloc() : MachineFunctionPass(&ID
) {}
81 /// Return the pass name.
82 virtual const char* getPassName() const {
83 return "PBQP Register Allocator";
86 /// PBQP analysis usage.
87 virtual void getAnalysisUsage(AnalysisUsage
&au
) const {
88 au
.addRequired
<LiveIntervals
>();
89 //au.addRequiredID(SplitCriticalEdgesID);
90 au
.addRequired
<RegisterCoalescer
>();
91 au
.addRequired
<LiveStacks
>();
92 au
.addPreserved
<LiveStacks
>();
93 au
.addRequired
<MachineLoopInfo
>();
94 au
.addPreserved
<MachineLoopInfo
>();
95 au
.addRequired
<VirtRegMap
>();
96 MachineFunctionPass::getAnalysisUsage(au
);
99 /// Perform register allocation
100 virtual bool runOnMachineFunction(MachineFunction
&MF
);
103 typedef std::map
<const LiveInterval
*, unsigned> LI2NodeMap
;
104 typedef std::vector
<const LiveInterval
*> Node2LIMap
;
105 typedef std::vector
<unsigned> AllowedSet
;
106 typedef std::vector
<AllowedSet
> AllowedSetMap
;
107 typedef std::set
<unsigned> RegSet
;
108 typedef std::pair
<unsigned, unsigned> RegPair
;
109 typedef std::map
<RegPair
, PBQP::PBQPNum
> CoalesceMap
;
111 typedef std::set
<LiveInterval
*> LiveIntervalSet
;
114 const TargetMachine
*tm
;
115 const TargetRegisterInfo
*tri
;
116 const TargetInstrInfo
*tii
;
117 const MachineLoopInfo
*loopInfo
;
118 MachineRegisterInfo
*mri
;
126 AllowedSetMap allowedSets
;
127 LiveIntervalSet vregIntervalsToAlloc
,
131 /// Builds a PBQP cost vector.
132 template <typename RegContainer
>
133 PBQP::Vector
buildCostVector(unsigned vReg
,
134 const RegContainer
&allowed
,
135 const CoalesceMap
&cealesces
,
136 PBQP::PBQPNum spillCost
) const;
138 /// \brief Builds a PBQP interference matrix.
140 /// @return Either a pointer to a non-zero PBQP matrix representing the
141 /// allocation option costs, or a null pointer for a zero matrix.
143 /// Expects allowed sets for two interfering LiveIntervals. These allowed
144 /// sets should contain only allocable registers from the LiveInterval's
145 /// register class, with any interfering pre-colored registers removed.
146 template <typename RegContainer
>
147 PBQP::Matrix
* buildInterferenceMatrix(const RegContainer
&allowed1
,
148 const RegContainer
&allowed2
) const;
151 /// Expects allowed sets for two potentially coalescable LiveIntervals,
152 /// and an estimated benefit due to coalescing. The allowed sets should
153 /// contain only allocable registers from the LiveInterval's register
154 /// classes, with any interfering pre-colored registers removed.
155 template <typename RegContainer
>
156 PBQP::Matrix
* buildCoalescingMatrix(const RegContainer
&allowed1
,
157 const RegContainer
&allowed2
,
158 PBQP::PBQPNum cBenefit
) const;
160 /// \brief Finds coalescing opportunities and returns them as a map.
162 /// Any entries in the map are guaranteed coalescable, even if their
163 /// corresponding live intervals overlap.
164 CoalesceMap
findCoalesces();
166 /// \brief Finds the initial set of vreg intervals to allocate.
167 void findVRegIntervalsToAlloc();
169 /// \brief Constructs a PBQP problem representation of the register
170 /// allocation problem for this function.
172 /// @return a PBQP solver object for the register allocation problem.
173 PBQP::SimpleGraph
constructPBQPProblem();
175 /// \brief Adds a stack interval if the given live interval has been
176 /// spilled. Used to support stack slot coloring.
177 void addStackInterval(const LiveInterval
*spilled
,MachineRegisterInfo
* mri
);
179 /// \brief Given a solved PBQP problem maps this solution back to a register
181 bool mapPBQPToRegAlloc(const PBQP::Solution
&solution
);
183 /// \brief Postprocessing before final spilling. Sets basic block "live in"
185 void finalizeAlloc() const;
189 char PBQPRegAlloc::ID
= 0;
193 template <typename RegContainer
>
194 PBQP::Vector
PBQPRegAlloc::buildCostVector(unsigned vReg
,
195 const RegContainer
&allowed
,
196 const CoalesceMap
&coalesces
,
197 PBQP::PBQPNum spillCost
) const {
199 typedef typename
RegContainer::const_iterator AllowedItr
;
201 // Allocate vector. Additional element (0th) used for spill option
202 PBQP::Vector
v(allowed
.size() + 1, 0);
206 // Iterate over the allowed registers inserting coalesce benefits if there
209 for (AllowedItr itr
= allowed
.begin(), end
= allowed
.end();
210 itr
!= end
; ++itr
, ++ai
) {
212 unsigned pReg
= *itr
;
214 CoalesceMap::const_iterator cmItr
=
215 coalesces
.find(RegPair(vReg
, pReg
));
217 // No coalesce - on to the next preg.
218 if (cmItr
== coalesces
.end())
221 // We have a coalesce - insert the benefit.
222 v
[ai
+ 1] = -cmItr
->second
;
228 template <typename RegContainer
>
229 PBQP::Matrix
* PBQPRegAlloc::buildInterferenceMatrix(
230 const RegContainer
&allowed1
, const RegContainer
&allowed2
) const {
232 typedef typename
RegContainer::const_iterator RegContainerIterator
;
234 // Construct a PBQP matrix representing the cost of allocation options. The
235 // rows and columns correspond to the allocation options for the two live
236 // intervals. Elements will be infinite where corresponding registers alias,
237 // since we cannot allocate aliasing registers to interfering live intervals.
238 // All other elements (non-aliasing combinations) will have zero cost. Note
239 // that the spill option (element 0,0) has zero cost, since we can allocate
240 // both intervals to memory safely (the cost for each individual allocation
241 // to memory is accounted for by the cost vectors for each live interval).
243 new PBQP::Matrix(allowed1
.size() + 1, allowed2
.size() + 1, 0);
245 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
246 // between interfering live ranges with non-overlapping register sets (e.g.
247 // non-overlapping reg classes, or disjoint sets of allowed regs within the
248 // same class). The term "overlapping" is used advisedly: sets which do not
249 // intersect, but contain registers which alias, will have non-zero matrices.
250 // We optimize zero matrices away to improve solver speed.
251 bool isZeroMatrix
= true;
254 // Row index. Starts at 1, since the 0th row is for the spill option, which
258 // Iterate over allowed sets, insert infinities where required.
259 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
260 a1Itr
!= a1End
; ++a1Itr
) {
262 // Column index, starts at 1 as for row index.
264 unsigned reg1
= *a1Itr
;
266 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
267 a2Itr
!= a2End
; ++a2Itr
) {
269 unsigned reg2
= *a2Itr
;
271 // If the row/column regs are identical or alias insert an infinity.
272 if (tri
->regsOverlap(reg1
, reg2
)) {
273 (*m
)[ri
][ci
] = std::numeric_limits
<PBQP::PBQPNum
>::infinity();
274 isZeroMatrix
= false;
283 // If this turns out to be a zero matrix...
285 // free it and return null.
290 // ...otherwise return the cost matrix.
294 template <typename RegContainer
>
295 PBQP::Matrix
* PBQPRegAlloc::buildCoalescingMatrix(
296 const RegContainer
&allowed1
, const RegContainer
&allowed2
,
297 PBQP::PBQPNum cBenefit
) const {
299 typedef typename
RegContainer::const_iterator RegContainerIterator
;
301 // Construct a PBQP Matrix representing the benefits of coalescing. As with
302 // interference matrices the rows and columns represent allowed registers
303 // for the LiveIntervals which are (potentially) to be coalesced. The amount
304 // -cBenefit will be placed in any element representing the same register
305 // for both intervals.
307 new PBQP::Matrix(allowed1
.size() + 1, allowed2
.size() + 1, 0);
309 // Reset costs to zero.
312 // Assume the matrix is zero till proven otherwise. Zero matrices will be
313 // optimized away as in the interference case.
314 bool isZeroMatrix
= true;
316 // Row index. Starts at 1, since the 0th row is for the spill option, which
320 // Iterate over the allowed sets, insert coalescing benefits where
322 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
323 a1Itr
!= a1End
; ++a1Itr
) {
325 // Column index, starts at 1 as for row index.
327 unsigned reg1
= *a1Itr
;
329 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
330 a2Itr
!= a2End
; ++a2Itr
) {
332 // If the row and column represent the same register insert a beneficial
333 // cost to preference this allocation - it would allow us to eliminate a
335 if (reg1
== *a2Itr
) {
336 (*m
)[ri
][ci
] = -cBenefit
;
337 isZeroMatrix
= false;
346 // If this turns out to be a zero matrix...
348 // ...free it and return null.
356 PBQPRegAlloc::CoalesceMap
PBQPRegAlloc::findCoalesces() {
358 typedef MachineFunction::const_iterator MFIterator
;
359 typedef MachineBasicBlock::const_iterator MBBIterator
;
360 typedef LiveInterval::const_vni_iterator VNIIterator
;
362 CoalesceMap coalescesFound
;
364 // To find coalesces we need to iterate over the function looking for
365 // copy instructions.
366 for (MFIterator bbItr
= mf
->begin(), bbEnd
= mf
->end();
367 bbItr
!= bbEnd
; ++bbItr
) {
369 const MachineBasicBlock
*mbb
= &*bbItr
;
371 for (MBBIterator iItr
= mbb
->begin(), iEnd
= mbb
->end();
372 iItr
!= iEnd
; ++iItr
) {
374 const MachineInstr
*instr
= &*iItr
;
375 unsigned srcReg
, dstReg
, srcSubReg
, dstSubReg
;
377 // If this isn't a copy then continue to the next instruction.
378 if (!tii
->isMoveInstr(*instr
, srcReg
, dstReg
, srcSubReg
, dstSubReg
))
381 // If the registers are already the same our job is nice and easy.
382 if (dstReg
== srcReg
)
385 bool srcRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(srcReg
),
386 dstRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(dstReg
);
388 // If both registers are physical then we can't coalesce.
389 if (srcRegIsPhysical
&& dstRegIsPhysical
)
392 // If it's a copy that includes a virtual register but the source and
393 // destination classes differ then we can't coalesce, so continue with
394 // the next instruction.
395 const TargetRegisterClass
*srcRegClass
= srcRegIsPhysical
?
396 tri
->getPhysicalRegisterRegClass(srcReg
) : mri
->getRegClass(srcReg
);
398 const TargetRegisterClass
*dstRegClass
= dstRegIsPhysical
?
399 tri
->getPhysicalRegisterRegClass(dstReg
) : mri
->getRegClass(dstReg
);
401 if (srcRegClass
!= dstRegClass
)
404 // We also need any physical regs to be allocable, coalescing with
405 // a non-allocable register is invalid.
406 if (srcRegIsPhysical
) {
407 if (std::find(srcRegClass
->allocation_order_begin(*mf
),
408 srcRegClass
->allocation_order_end(*mf
), srcReg
) ==
409 srcRegClass
->allocation_order_end(*mf
))
413 if (dstRegIsPhysical
) {
414 if (std::find(dstRegClass
->allocation_order_begin(*mf
),
415 dstRegClass
->allocation_order_end(*mf
), dstReg
) ==
416 dstRegClass
->allocation_order_end(*mf
))
420 // If we've made it here we have a copy with compatible register classes.
421 // We can probably coalesce, but we need to consider overlap.
422 const LiveInterval
*srcLI
= &lis
->getInterval(srcReg
),
423 *dstLI
= &lis
->getInterval(dstReg
);
425 if (srcLI
->overlaps(*dstLI
)) {
426 // Even in the case of an overlap we might still be able to coalesce,
427 // but we need to make sure that no definition of either range occurs
428 // while the other range is live.
430 // Otherwise start by assuming we're ok.
433 // Test all defs of the source range.
435 vniItr
= srcLI
->vni_begin(), vniEnd
= srcLI
->vni_end();
436 vniItr
!= vniEnd
; ++vniItr
) {
438 // If we find a def that kills the coalescing opportunity then
439 // record it and break from the loop.
440 if (dstLI
->liveAt((*vniItr
)->def
)) {
446 // If we have a bad def give up, continue to the next instruction.
450 // Otherwise test definitions of the destination range.
452 vniItr
= dstLI
->vni_begin(), vniEnd
= dstLI
->vni_end();
453 vniItr
!= vniEnd
; ++vniItr
) {
455 // We want to make sure we skip the copy instruction itself.
456 if ((*vniItr
)->getCopy() == instr
)
459 if (srcLI
->liveAt((*vniItr
)->def
)) {
465 // As before a bad def we give up and continue to the next instr.
470 // If we make it to here then either the ranges didn't overlap, or they
471 // did, but none of their definitions would prevent us from coalescing.
472 // We're good to go with the coalesce.
474 float cBenefit
= powf(10.0f
, loopInfo
->getLoopDepth(mbb
)) / 5.0;
476 coalescesFound
[RegPair(srcReg
, dstReg
)] = cBenefit
;
477 coalescesFound
[RegPair(dstReg
, srcReg
)] = cBenefit
;
482 return coalescesFound
;
485 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
487 // Iterate over all live ranges.
488 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
491 // Ignore physical ones.
492 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
))
495 LiveInterval
*li
= itr
->second
;
497 // If this live interval is non-empty we will use pbqp to allocate it.
498 // Empty intervals we allocate in a simple post-processing stage in
501 vregIntervalsToAlloc
.insert(li
);
504 emptyVRegIntervals
.insert(li
);
509 PBQP::SimpleGraph
PBQPRegAlloc::constructPBQPProblem() {
511 typedef std::vector
<const LiveInterval
*> LIVector
;
512 typedef std::vector
<unsigned> RegVector
;
513 typedef std::vector
<PBQP::SimpleGraph::NodeIterator
> NodeVector
;
515 // This will store the physical intervals for easy reference.
516 LIVector physIntervals
;
518 // Start by clearing the old node <-> live interval mappings & allowed sets
523 // Populate physIntervals, update preg use:
524 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
527 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
)) {
528 physIntervals
.push_back(itr
->second
);
529 mri
->setPhysRegUsed(itr
->second
->reg
);
533 // Iterate over vreg intervals, construct live interval <-> node number
535 for (LiveIntervalSet::const_iterator
536 itr
= vregIntervalsToAlloc
.begin(), end
= vregIntervalsToAlloc
.end();
538 const LiveInterval
*li
= *itr
;
540 li2Node
[li
] = node2LI
.size();
541 node2LI
.push_back(li
);
544 // Get the set of potential coalesces.
545 CoalesceMap coalesces
;
547 if (pbqpCoalescing
) {
548 coalesces
= findCoalesces();
551 // Construct a PBQP solver for this problem
552 PBQP::SimpleGraph problem
;
553 NodeVector
problemNodes(vregIntervalsToAlloc
.size());
555 // Resize allowedSets container appropriately.
556 allowedSets
.resize(vregIntervalsToAlloc
.size());
558 // Iterate over virtual register intervals to compute allowed sets...
559 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
561 // Grab pointers to the interval and its register class.
562 const LiveInterval
*li
= node2LI
[node
];
563 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
565 // Start by assuming all allocable registers in the class are allowed...
566 RegVector
liAllowed(liRC
->allocation_order_begin(*mf
),
567 liRC
->allocation_order_end(*mf
));
569 // Eliminate the physical registers which overlap with this range, along
570 // with all their aliases.
571 for (LIVector::iterator pItr
= physIntervals
.begin(),
572 pEnd
= physIntervals
.end(); pItr
!= pEnd
; ++pItr
) {
574 if (!li
->overlaps(**pItr
))
577 unsigned pReg
= (*pItr
)->reg
;
579 // If we get here then the live intervals overlap, but we're still ok
580 // if they're coalescable.
581 if (coalesces
.find(RegPair(li
->reg
, pReg
)) != coalesces
.end())
584 // If we get here then we have a genuine exclusion.
586 // Remove the overlapping reg...
587 RegVector::iterator eraseItr
=
588 std::find(liAllowed
.begin(), liAllowed
.end(), pReg
);
590 if (eraseItr
!= liAllowed
.end())
591 liAllowed
.erase(eraseItr
);
593 const unsigned *aliasItr
= tri
->getAliasSet(pReg
);
596 // ...and its aliases.
597 for (; *aliasItr
!= 0; ++aliasItr
) {
598 RegVector::iterator eraseItr
=
599 std::find(liAllowed
.begin(), liAllowed
.end(), *aliasItr
);
601 if (eraseItr
!= liAllowed
.end()) {
602 liAllowed
.erase(eraseItr
);
608 // Copy the allowed set into a member vector for use when constructing cost
609 // vectors & matrices, and mapping PBQP solutions back to assignments.
610 allowedSets
[node
] = AllowedSet(liAllowed
.begin(), liAllowed
.end());
612 // Set the spill cost to the interval weight, or epsilon if the
613 // interval weight is zero
614 PBQP::PBQPNum spillCost
= (li
->weight
!= 0.0) ?
615 li
->weight
: std::numeric_limits
<PBQP::PBQPNum
>::min();
617 // Build a cost vector for this interval.
620 buildCostVector(li
->reg
, allowedSets
[node
], coalesces
, spillCost
));
625 // Now add the cost matrices...
626 for (unsigned node1
= 0; node1
< node2LI
.size(); ++node1
) {
627 const LiveInterval
*li
= node2LI
[node1
];
629 // Test for live range overlaps and insert interference matrices.
630 for (unsigned node2
= node1
+ 1; node2
< node2LI
.size(); ++node2
) {
631 const LiveInterval
*li2
= node2LI
[node2
];
633 CoalesceMap::const_iterator cmItr
=
634 coalesces
.find(RegPair(li
->reg
, li2
->reg
));
638 if (cmItr
!= coalesces
.end()) {
639 m
= buildCoalescingMatrix(allowedSets
[node1
], allowedSets
[node2
],
642 else if (li
->overlaps(*li2
)) {
643 m
= buildInterferenceMatrix(allowedSets
[node1
], allowedSets
[node2
]);
647 problem
.addEdge(problemNodes
[node1
],
656 problem
.assignNodeIDs();
658 assert(problem
.getNumNodes() == allowedSets
.size());
659 for (unsigned i
= 0; i
< allowedSets
.size(); ++i
) {
660 assert(problem
.getNodeItr(i
) == problemNodes
[i
]);
663 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
664 << problem.getNumEdges() << " edges.\n";
666 problem.printDot(std::cerr);
668 // We're done, PBQP problem constructed - return it.
672 void PBQPRegAlloc::addStackInterval(const LiveInterval
*spilled
,
673 MachineRegisterInfo
* mri
) {
674 int stackSlot
= vrm
->getStackSlot(spilled
->reg
);
676 if (stackSlot
== VirtRegMap::NO_STACK_SLOT
)
679 const TargetRegisterClass
*RC
= mri
->getRegClass(spilled
->reg
);
680 LiveInterval
&stackInterval
= lss
->getOrCreateInterval(stackSlot
, RC
);
683 if (stackInterval
.getNumValNums() != 0)
684 vni
= stackInterval
.getValNumInfo(0);
686 vni
= stackInterval
.getNextValue(
687 MachineInstrIndex(), 0, false, lss
->getVNInfoAllocator());
689 LiveInterval
&rhsInterval
= lis
->getInterval(spilled
->reg
);
690 stackInterval
.MergeRangesInAsValue(rhsInterval
, vni
);
693 bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution
&solution
) {
694 // Set to true if we have any spills
695 bool anotherRoundNeeded
= false;
697 // Clear the existing allocation.
700 // Iterate over the nodes mapping the PBQP solution to a register assignment.
701 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
702 unsigned virtReg
= node2LI
[node
]->reg
,
703 allocSelection
= solution
.getSelection(node
);
706 // If the PBQP solution is non-zero it's a physical register...
707 if (allocSelection
!= 0) {
708 // Get the physical reg, subtracting 1 to account for the spill option.
709 unsigned physReg
= allowedSets
[node
][allocSelection
- 1];
711 DEBUG(errs() << "VREG " << virtReg
<< " -> "
712 << tri
->getName(physReg
) << "\n");
714 assert(physReg
!= 0);
716 // Add to the virt reg map and update the used phys regs.
717 vrm
->assignVirt2Phys(virtReg
, physReg
);
719 // ...Otherwise it's a spill.
722 // Make sure we ignore this virtual reg on the next round
724 vregIntervalsToAlloc
.erase(&lis
->getInterval(virtReg
));
726 // Insert spill ranges for this live range
727 const LiveInterval
*spillInterval
= node2LI
[node
];
728 double oldSpillWeight
= spillInterval
->weight
;
729 SmallVector
<LiveInterval
*, 8> spillIs
;
730 std::vector
<LiveInterval
*> newSpills
=
731 lis
->addIntervalsForSpills(*spillInterval
, spillIs
, loopInfo
, *vrm
);
732 addStackInterval(spillInterval
, mri
);
734 (void) oldSpillWeight
;
735 DEBUG(errs() << "VREG " << virtReg
<< " -> SPILLED (Cost: "
736 << oldSpillWeight
<< ", New vregs: ");
738 // Copy any newly inserted live intervals into the list of regs to
740 for (std::vector
<LiveInterval
*>::const_iterator
741 itr
= newSpills
.begin(), end
= newSpills
.end();
744 assert(!(*itr
)->empty() && "Empty spill range.");
746 DEBUG(errs() << (*itr
)->reg
<< " ");
748 vregIntervalsToAlloc
.insert(*itr
);
751 DEBUG(errs() << ")\n");
753 // We need another round if spill intervals were added.
754 anotherRoundNeeded
|= !newSpills
.empty();
758 return !anotherRoundNeeded
;
761 void PBQPRegAlloc::finalizeAlloc() const {
762 typedef LiveIntervals::iterator LIIterator
;
763 typedef LiveInterval::Ranges::const_iterator LRIterator
;
765 // First allocate registers for the empty intervals.
766 for (LiveIntervalSet::const_iterator
767 itr
= emptyVRegIntervals
.begin(), end
= emptyVRegIntervals
.end();
769 LiveInterval
*li
= *itr
;
771 unsigned physReg
= vrm
->getRegAllocPref(li
->reg
);
774 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
775 physReg
= *liRC
->allocation_order_begin(*mf
);
778 vrm
->assignVirt2Phys(li
->reg
, physReg
);
781 // Finally iterate over the basic blocks to compute and set the live-in sets.
782 SmallVector
<MachineBasicBlock
*, 8> liveInMBBs
;
783 MachineBasicBlock
*entryMBB
= &*mf
->begin();
785 for (LIIterator liItr
= lis
->begin(), liEnd
= lis
->end();
786 liItr
!= liEnd
; ++liItr
) {
788 const LiveInterval
*li
= liItr
->second
;
791 // Get the physical register for this interval
792 if (TargetRegisterInfo::isPhysicalRegister(li
->reg
)) {
795 else if (vrm
->isAssignedReg(li
->reg
)) {
796 reg
= vrm
->getPhys(li
->reg
);
799 // Ranges which are assigned a stack slot only are ignored.
804 // Filter out zero regs - they're for intervals that were spilled.
808 // Iterate over the ranges of the current interval...
809 for (LRIterator lrItr
= li
->begin(), lrEnd
= li
->end();
810 lrItr
!= lrEnd
; ++lrItr
) {
812 // Find the set of basic blocks which this range is live into...
813 if (lis
->findLiveInMBBs(lrItr
->start
, lrItr
->end
, liveInMBBs
)) {
814 // And add the physreg for this interval to their live-in sets.
815 for (unsigned i
= 0; i
< liveInMBBs
.size(); ++i
) {
816 if (liveInMBBs
[i
] != entryMBB
) {
817 if (!liveInMBBs
[i
]->isLiveIn(reg
)) {
818 liveInMBBs
[i
]->addLiveIn(reg
);
829 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction
&MF
) {
832 tm
= &mf
->getTarget();
833 tri
= tm
->getRegisterInfo();
834 tii
= tm
->getInstrInfo();
835 mri
= &mf
->getRegInfo();
837 lis
= &getAnalysis
<LiveIntervals
>();
838 lss
= &getAnalysis
<LiveStacks
>();
839 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
841 vrm
= &getAnalysis
<VirtRegMap
>();
843 DEBUG(errs() << "PBQP2 Register Allocating for " << mf
->getFunction()->getName() << "\n");
845 // Allocator main loop:
847 // * Map current regalloc problem to a PBQP problem
848 // * Solve the PBQP problem
849 // * Map the solution back to a register allocation
850 // * Spill if necessary
852 // This process is continued till no more spills are generated.
854 // Find the vreg intervals in need of allocation.
855 findVRegIntervalsToAlloc();
857 // If there aren't any then we're done here.
858 if (vregIntervalsToAlloc
.empty() && emptyVRegIntervals
.empty())
861 // If there are non-empty intervals allocate them using pbqp.
862 if (!vregIntervalsToAlloc
.empty()) {
864 bool pbqpAllocComplete
= false;
867 while (!pbqpAllocComplete
) {
868 DEBUG(errs() << " PBQP Regalloc round " << round
<< ":\n");
870 PBQP::SimpleGraph problem
= constructPBQPProblem();
871 PBQP::HeuristicSolver
<PBQP::Heuristics::Briggs
> solver
;
872 problem
.assignNodeIDs();
873 PBQP::Solution solution
= solver
.solve(problem
);
875 pbqpAllocComplete
= mapPBQPToRegAlloc(solution
);
881 // Finalise allocation, allocate empty ranges.
884 vregIntervalsToAlloc
.clear();
885 emptyVRegIntervals
.clear();
890 DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm
<< "\n");
893 std::auto_ptr
<VirtRegRewriter
> rewriter(createVirtRegRewriter());
895 rewriter
->runOnMachineFunction(*mf
, *vrm
, lis
);
900 FunctionPass
* llvm::createPBQPRegisterAllocator() {
901 return new PBQPRegAlloc();