1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetInstrInfo.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
26 ScheduleDAG::ScheduleDAG(MachineFunction
&mf
)
28 TII(TM
.getInstrInfo()),
29 TRI(TM
.getRegisterInfo()),
30 TLI(TM
.getTargetLowering()),
31 MF(mf
), MRI(mf
.getRegInfo()),
32 ConstPool(MF
.getConstantPool()),
36 ScheduleDAG::~ScheduleDAG() {}
38 /// dump - dump the schedule.
39 void ScheduleDAG::dumpSchedule() const {
40 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; i
++) {
41 if (SUnit
*SU
= Sequence
[i
])
44 errs() << "**** NOOP ****\n";
49 /// Run - perform scheduling.
51 void ScheduleDAG::Run(MachineBasicBlock
*bb
,
52 MachineBasicBlock::iterator insertPos
) {
54 InsertPos
= insertPos
;
64 errs() << "*** Final schedule ***\n";
70 /// addPred - This adds the specified edge as a pred of the current node if
71 /// not already. It also adds the current node as a successor of the
73 void SUnit::addPred(const SDep
&D
) {
74 // If this node already has this depenence, don't add a redundant one.
75 for (SmallVector
<SDep
, 4>::const_iterator I
= Preds
.begin(), E
= Preds
.end();
79 // Now add a corresponding succ to N.
82 SUnit
*N
= D
.getSUnit();
83 // Update the bookkeeping.
84 if (D
.getKind() == SDep::Data
) {
93 N
->Succs
.push_back(P
);
94 if (P
.getLatency() != 0) {
95 this->setDepthDirty();
100 /// removePred - This removes the specified edge as a pred of the current
101 /// node if it exists. It also removes the current node as a successor of
102 /// the specified node.
103 void SUnit::removePred(const SDep
&D
) {
104 // Find the matching predecessor.
105 for (SmallVector
<SDep
, 4>::iterator I
= Preds
.begin(), E
= Preds
.end();
108 bool FoundSucc
= false;
109 // Find the corresponding successor in N.
112 SUnit
*N
= D
.getSUnit();
113 for (SmallVector
<SDep
, 4>::iterator II
= N
->Succs
.begin(),
114 EE
= N
->Succs
.end(); II
!= EE
; ++II
)
120 assert(FoundSucc
&& "Mismatching preds / succs lists!");
122 // Update the bookkeeping.
123 if (P
.getKind() == SDep::Data
) {
131 if (P
.getLatency() != 0) {
132 this->setDepthDirty();
139 void SUnit::setDepthDirty() {
140 if (!isDepthCurrent
) return;
141 SmallVector
<SUnit
*, 8> WorkList
;
142 WorkList
.push_back(this);
144 SUnit
*SU
= WorkList
.pop_back_val();
145 SU
->isDepthCurrent
= false;
146 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(),
147 E
= SU
->Succs
.end(); I
!= E
; ++I
) {
148 SUnit
*SuccSU
= I
->getSUnit();
149 if (SuccSU
->isDepthCurrent
)
150 WorkList
.push_back(SuccSU
);
152 } while (!WorkList
.empty());
155 void SUnit::setHeightDirty() {
156 if (!isHeightCurrent
) return;
157 SmallVector
<SUnit
*, 8> WorkList
;
158 WorkList
.push_back(this);
160 SUnit
*SU
= WorkList
.pop_back_val();
161 SU
->isHeightCurrent
= false;
162 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(),
163 E
= SU
->Preds
.end(); I
!= E
; ++I
) {
164 SUnit
*PredSU
= I
->getSUnit();
165 if (PredSU
->isHeightCurrent
)
166 WorkList
.push_back(PredSU
);
168 } while (!WorkList
.empty());
171 /// setDepthToAtLeast - Update this node's successors to reflect the
172 /// fact that this node's depth just increased.
174 void SUnit::setDepthToAtLeast(unsigned NewDepth
) {
175 if (NewDepth
<= getDepth())
179 isDepthCurrent
= true;
182 /// setHeightToAtLeast - Update this node's predecessors to reflect the
183 /// fact that this node's height just increased.
185 void SUnit::setHeightToAtLeast(unsigned NewHeight
) {
186 if (NewHeight
<= getHeight())
190 isHeightCurrent
= true;
193 /// ComputeDepth - Calculate the maximal path from the node to the exit.
195 void SUnit::ComputeDepth() {
196 SmallVector
<SUnit
*, 8> WorkList
;
197 WorkList
.push_back(this);
199 SUnit
*Cur
= WorkList
.back();
202 unsigned MaxPredDepth
= 0;
203 for (SUnit::const_pred_iterator I
= Cur
->Preds
.begin(),
204 E
= Cur
->Preds
.end(); I
!= E
; ++I
) {
205 SUnit
*PredSU
= I
->getSUnit();
206 if (PredSU
->isDepthCurrent
)
207 MaxPredDepth
= std::max(MaxPredDepth
,
208 PredSU
->Depth
+ I
->getLatency());
211 WorkList
.push_back(PredSU
);
217 if (MaxPredDepth
!= Cur
->Depth
) {
218 Cur
->setDepthDirty();
219 Cur
->Depth
= MaxPredDepth
;
221 Cur
->isDepthCurrent
= true;
223 } while (!WorkList
.empty());
226 /// ComputeHeight - Calculate the maximal path from the node to the entry.
228 void SUnit::ComputeHeight() {
229 SmallVector
<SUnit
*, 8> WorkList
;
230 WorkList
.push_back(this);
232 SUnit
*Cur
= WorkList
.back();
235 unsigned MaxSuccHeight
= 0;
236 for (SUnit::const_succ_iterator I
= Cur
->Succs
.begin(),
237 E
= Cur
->Succs
.end(); I
!= E
; ++I
) {
238 SUnit
*SuccSU
= I
->getSUnit();
239 if (SuccSU
->isHeightCurrent
)
240 MaxSuccHeight
= std::max(MaxSuccHeight
,
241 SuccSU
->Height
+ I
->getLatency());
244 WorkList
.push_back(SuccSU
);
250 if (MaxSuccHeight
!= Cur
->Height
) {
251 Cur
->setHeightDirty();
252 Cur
->Height
= MaxSuccHeight
;
254 Cur
->isHeightCurrent
= true;
256 } while (!WorkList
.empty());
259 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
260 /// a group of nodes flagged together.
261 void SUnit::dump(const ScheduleDAG
*G
) const {
262 errs() << "SU(" << NodeNum
<< "): ";
266 void SUnit::dumpAll(const ScheduleDAG
*G
) const {
269 errs() << " # preds left : " << NumPredsLeft
<< "\n";
270 errs() << " # succs left : " << NumSuccsLeft
<< "\n";
271 errs() << " Latency : " << Latency
<< "\n";
272 errs() << " Depth : " << Depth
<< "\n";
273 errs() << " Height : " << Height
<< "\n";
275 if (Preds
.size() != 0) {
276 errs() << " Predecessors:\n";
277 for (SUnit::const_succ_iterator I
= Preds
.begin(), E
= Preds
.end();
280 switch (I
->getKind()) {
281 case SDep::Data
: errs() << "val "; break;
282 case SDep::Anti
: errs() << "anti"; break;
283 case SDep::Output
: errs() << "out "; break;
284 case SDep::Order
: errs() << "ch "; break;
287 errs() << I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
288 if (I
->isArtificial())
290 errs() << ": Latency=" << I
->getLatency();
294 if (Succs
.size() != 0) {
295 errs() << " Successors:\n";
296 for (SUnit::const_succ_iterator I
= Succs
.begin(), E
= Succs
.end();
299 switch (I
->getKind()) {
300 case SDep::Data
: errs() << "val "; break;
301 case SDep::Anti
: errs() << "anti"; break;
302 case SDep::Output
: errs() << "out "; break;
303 case SDep::Order
: errs() << "ch "; break;
306 errs() << I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
307 if (I
->isArtificial())
309 errs() << ": Latency=" << I
->getLatency();
317 /// VerifySchedule - Verify that all SUnits were scheduled and that
318 /// their state is consistent.
320 void ScheduleDAG::VerifySchedule(bool isBottomUp
) {
321 bool AnyNotSched
= false;
322 unsigned DeadNodes
= 0;
324 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
325 if (!SUnits
[i
].isScheduled
) {
326 if (SUnits
[i
].NumPreds
== 0 && SUnits
[i
].NumSuccs
== 0) {
331 errs() << "*** Scheduling failed! ***\n";
332 SUnits
[i
].dump(this);
333 errs() << "has not been scheduled!\n";
336 if (SUnits
[i
].isScheduled
&&
337 (isBottomUp
? SUnits
[i
].getHeight() : SUnits
[i
].getHeight()) >
340 errs() << "*** Scheduling failed! ***\n";
341 SUnits
[i
].dump(this);
342 errs() << "has an unexpected "
343 << (isBottomUp
? "Height" : "Depth") << " value!\n";
347 if (SUnits
[i
].NumSuccsLeft
!= 0) {
349 errs() << "*** Scheduling failed! ***\n";
350 SUnits
[i
].dump(this);
351 errs() << "has successors left!\n";
355 if (SUnits
[i
].NumPredsLeft
!= 0) {
357 errs() << "*** Scheduling failed! ***\n";
358 SUnits
[i
].dump(this);
359 errs() << "has predecessors left!\n";
364 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; ++i
)
367 assert(!AnyNotSched
);
368 assert(Sequence
.size() + DeadNodes
- Noops
== SUnits
.size() &&
369 "The number of nodes scheduled doesn't match the expected number!");
373 /// InitDAGTopologicalSorting - create the initial topological
374 /// ordering from the DAG to be scheduled.
376 /// The idea of the algorithm is taken from
377 /// "Online algorithms for managing the topological order of
378 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
379 /// This is the MNR algorithm, which was first introduced by
380 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
381 /// "Maintaining a topological order under edge insertions".
383 /// Short description of the algorithm:
385 /// Topological ordering, ord, of a DAG maps each node to a topological
386 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
388 /// This means that if there is a path from the node X to the node Z,
389 /// then ord(X) < ord(Z).
391 /// This property can be used to check for reachability of nodes:
392 /// if Z is reachable from X, then an insertion of the edge Z->X would
395 /// The algorithm first computes a topological ordering for the DAG by
396 /// initializing the Index2Node and Node2Index arrays and then tries to keep
397 /// the ordering up-to-date after edge insertions by reordering the DAG.
399 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
400 /// the nodes reachable from Y, and then shifts them using Shift to lie
401 /// immediately after X in Index2Node.
402 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
403 unsigned DAGSize
= SUnits
.size();
404 std::vector
<SUnit
*> WorkList
;
405 WorkList
.reserve(DAGSize
);
407 Index2Node
.resize(DAGSize
);
408 Node2Index
.resize(DAGSize
);
410 // Initialize the data structures.
411 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
412 SUnit
*SU
= &SUnits
[i
];
413 int NodeNum
= SU
->NodeNum
;
414 unsigned Degree
= SU
->Succs
.size();
415 // Temporarily use the Node2Index array as scratch space for degree counts.
416 Node2Index
[NodeNum
] = Degree
;
418 // Is it a node without dependencies?
420 assert(SU
->Succs
.empty() && "SUnit should have no successors");
421 // Collect leaf nodes.
422 WorkList
.push_back(SU
);
427 while (!WorkList
.empty()) {
428 SUnit
*SU
= WorkList
.back();
430 Allocate(SU
->NodeNum
, --Id
);
431 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
433 SUnit
*SU
= I
->getSUnit();
434 if (!--Node2Index
[SU
->NodeNum
])
435 // If all dependencies of the node are processed already,
436 // then the node can be computed now.
437 WorkList
.push_back(SU
);
441 Visited
.resize(DAGSize
);
444 // Check correctness of the ordering
445 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
446 SUnit
*SU
= &SUnits
[i
];
447 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
449 assert(Node2Index
[SU
->NodeNum
] > Node2Index
[I
->getSUnit()->NodeNum
] &&
450 "Wrong topological sorting");
456 /// AddPred - Updates the topological ordering to accomodate an edge
457 /// to be added from SUnit X to SUnit Y.
458 void ScheduleDAGTopologicalSort::AddPred(SUnit
*Y
, SUnit
*X
) {
459 int UpperBound
, LowerBound
;
460 LowerBound
= Node2Index
[Y
->NodeNum
];
461 UpperBound
= Node2Index
[X
->NodeNum
];
462 bool HasLoop
= false;
463 // Is Ord(X) < Ord(Y) ?
464 if (LowerBound
< UpperBound
) {
465 // Update the topological order.
467 DFS(Y
, UpperBound
, HasLoop
);
468 assert(!HasLoop
&& "Inserted edge creates a loop!");
469 // Recompute topological indexes.
470 Shift(Visited
, LowerBound
, UpperBound
);
474 /// RemovePred - Updates the topological ordering to accomodate an
475 /// an edge to be removed from the specified node N from the predecessors
476 /// of the current node M.
477 void ScheduleDAGTopologicalSort::RemovePred(SUnit
*M
, SUnit
*N
) {
478 // InitDAGTopologicalSorting();
481 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
482 /// all nodes affected by the edge insertion. These nodes will later get new
483 /// topological indexes by means of the Shift method.
484 void ScheduleDAGTopologicalSort::DFS(const SUnit
*SU
, int UpperBound
,
486 std::vector
<const SUnit
*> WorkList
;
487 WorkList
.reserve(SUnits
.size());
489 WorkList
.push_back(SU
);
491 SU
= WorkList
.back();
493 Visited
.set(SU
->NodeNum
);
494 for (int I
= SU
->Succs
.size()-1; I
>= 0; --I
) {
495 int s
= SU
->Succs
[I
].getSUnit()->NodeNum
;
496 if (Node2Index
[s
] == UpperBound
) {
500 // Visit successors if not already and in affected region.
501 if (!Visited
.test(s
) && Node2Index
[s
] < UpperBound
) {
502 WorkList
.push_back(SU
->Succs
[I
].getSUnit());
505 } while (!WorkList
.empty());
508 /// Shift - Renumber the nodes so that the topological ordering is
510 void ScheduleDAGTopologicalSort::Shift(BitVector
& Visited
, int LowerBound
,
516 for (i
= LowerBound
; i
<= UpperBound
; ++i
) {
517 // w is node at topological index i.
518 int w
= Index2Node
[i
];
519 if (Visited
.test(w
)) {
525 Allocate(w
, i
- shift
);
529 for (unsigned j
= 0; j
< L
.size(); ++j
) {
530 Allocate(L
[j
], i
- shift
);
536 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
538 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit
*SU
, SUnit
*TargetSU
) {
539 if (IsReachable(TargetSU
, SU
))
541 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
543 if (I
->isAssignedRegDep() &&
544 IsReachable(TargetSU
, I
->getSUnit()))
549 /// IsReachable - Checks if SU is reachable from TargetSU.
550 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit
*SU
,
551 const SUnit
*TargetSU
) {
552 // If insertion of the edge SU->TargetSU would create a cycle
553 // then there is a path from TargetSU to SU.
554 int UpperBound
, LowerBound
;
555 LowerBound
= Node2Index
[TargetSU
->NodeNum
];
556 UpperBound
= Node2Index
[SU
->NodeNum
];
557 bool HasLoop
= false;
558 // Is Ord(TargetSU) < Ord(SU) ?
559 if (LowerBound
< UpperBound
) {
561 // There may be a path from TargetSU to SU. Check for it.
562 DFS(TargetSU
, UpperBound
, HasLoop
);
567 /// Allocate - assign the topological index to the node n.
568 void ScheduleDAGTopologicalSort::Allocate(int n
, int index
) {
569 Node2Index
[n
] = index
;
570 Index2Node
[index
] = n
;
573 ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
574 std::vector
<SUnit
> &sunits
)
577 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}