1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DwarfWriter.h"
51 #include "llvm/Analysis/DebugInfo.h"
52 #include "llvm/Target/TargetData.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "SelectionDAGBuild.h"
59 unsigned FastISel::getRegForValue(Value
*V
) {
60 EVT RealVT
= TLI
.getValueType(V
->getType(), /*AllowUnknown=*/true);
61 // Don't handle non-simple values in FastISel.
62 if (!RealVT
.isSimple())
65 // Ignore illegal types. We must do this before looking up the value
66 // in ValueMap because Arguments are given virtual registers regardless
67 // of whether FastISel can handle them.
68 MVT VT
= RealVT
.getSimpleVT();
69 if (!TLI
.isTypeLegal(VT
)) {
70 // Promote MVT::i1 to a legal type though, because it's common and easy.
72 VT
= TLI
.getTypeToTransformTo(V
->getContext(), VT
).getSimpleVT();
77 // Look up the value to see if we already have a register for it. We
78 // cache values defined by Instructions across blocks, and other values
79 // only locally. This is because Instructions already have the SSA
80 // def-dominatess-use requirement enforced.
81 if (ValueMap
.count(V
))
83 unsigned Reg
= LocalValueMap
[V
];
87 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
88 if (CI
->getValue().getActiveBits() <= 64)
89 Reg
= FastEmit_i(VT
, VT
, ISD::Constant
, CI
->getZExtValue());
90 } else if (isa
<AllocaInst
>(V
)) {
91 Reg
= TargetMaterializeAlloca(cast
<AllocaInst
>(V
));
92 } else if (isa
<ConstantPointerNull
>(V
)) {
93 // Translate this as an integer zero so that it can be
94 // local-CSE'd with actual integer zeros.
96 getRegForValue(Constant::getNullValue(TD
.getIntPtrType(V
->getContext())));
97 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
98 Reg
= FastEmit_f(VT
, VT
, ISD::ConstantFP
, CF
);
101 const APFloat
&Flt
= CF
->getValueAPF();
102 EVT IntVT
= TLI
.getPointerTy();
105 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
107 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
108 APFloat::rmTowardZero
, &isExact
);
110 APInt
IntVal(IntBitWidth
, 2, x
);
112 unsigned IntegerReg
=
113 getRegForValue(ConstantInt::get(V
->getContext(), IntVal
));
115 Reg
= FastEmit_r(IntVT
.getSimpleVT(), VT
, ISD::SINT_TO_FP
, IntegerReg
);
118 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
119 if (!SelectOperator(CE
, CE
->getOpcode())) return 0;
120 Reg
= LocalValueMap
[CE
];
121 } else if (isa
<UndefValue
>(V
)) {
122 Reg
= createResultReg(TLI
.getRegClassFor(VT
));
123 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::IMPLICIT_DEF
), Reg
);
126 // If target-independent code couldn't handle the value, give target-specific
128 if (!Reg
&& isa
<Constant
>(V
))
129 Reg
= TargetMaterializeConstant(cast
<Constant
>(V
));
131 // Don't cache constant materializations in the general ValueMap.
132 // To do so would require tracking what uses they dominate.
134 LocalValueMap
[V
] = Reg
;
138 unsigned FastISel::lookUpRegForValue(Value
*V
) {
139 // Look up the value to see if we already have a register for it. We
140 // cache values defined by Instructions across blocks, and other values
141 // only locally. This is because Instructions already have the SSA
142 // def-dominatess-use requirement enforced.
143 if (ValueMap
.count(V
))
145 return LocalValueMap
[V
];
148 /// UpdateValueMap - Update the value map to include the new mapping for this
149 /// instruction, or insert an extra copy to get the result in a previous
150 /// determined register.
151 /// NOTE: This is only necessary because we might select a block that uses
152 /// a value before we select the block that defines the value. It might be
153 /// possible to fix this by selecting blocks in reverse postorder.
154 unsigned FastISel::UpdateValueMap(Value
* I
, unsigned Reg
) {
155 if (!isa
<Instruction
>(I
)) {
156 LocalValueMap
[I
] = Reg
;
160 unsigned &AssignedReg
= ValueMap
[I
];
161 if (AssignedReg
== 0)
163 else if (Reg
!= AssignedReg
) {
164 const TargetRegisterClass
*RegClass
= MRI
.getRegClass(Reg
);
165 TII
.copyRegToReg(*MBB
, MBB
->end(), AssignedReg
,
166 Reg
, RegClass
, RegClass
);
171 unsigned FastISel::getRegForGEPIndex(Value
*Idx
) {
172 unsigned IdxN
= getRegForValue(Idx
);
174 // Unhandled operand. Halt "fast" selection and bail.
177 // If the index is smaller or larger than intptr_t, truncate or extend it.
178 MVT PtrVT
= TLI
.getPointerTy();
179 EVT IdxVT
= EVT::getEVT(Idx
->getType(), /*HandleUnknown=*/false);
180 if (IdxVT
.bitsLT(PtrVT
))
181 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
, ISD::SIGN_EXTEND
, IdxN
);
182 else if (IdxVT
.bitsGT(PtrVT
))
183 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
, ISD::TRUNCATE
, IdxN
);
187 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
188 /// which has an opcode which directly corresponds to the given ISD opcode.
190 bool FastISel::SelectBinaryOp(User
*I
, ISD::NodeType ISDOpcode
) {
191 EVT VT
= EVT::getEVT(I
->getType(), /*HandleUnknown=*/true);
192 if (VT
== MVT::Other
|| !VT
.isSimple())
193 // Unhandled type. Halt "fast" selection and bail.
196 // We only handle legal types. For example, on x86-32 the instruction
197 // selector contains all of the 64-bit instructions from x86-64,
198 // under the assumption that i64 won't be used if the target doesn't
200 if (!TLI
.isTypeLegal(VT
)) {
201 // MVT::i1 is special. Allow AND, OR, or XOR because they
202 // don't require additional zeroing, which makes them easy.
204 (ISDOpcode
== ISD::AND
|| ISDOpcode
== ISD::OR
||
205 ISDOpcode
== ISD::XOR
))
206 VT
= TLI
.getTypeToTransformTo(I
->getContext(), VT
);
211 unsigned Op0
= getRegForValue(I
->getOperand(0));
213 // Unhandled operand. Halt "fast" selection and bail.
216 // Check if the second operand is a constant and handle it appropriately.
217 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
218 unsigned ResultReg
= FastEmit_ri(VT
.getSimpleVT(), VT
.getSimpleVT(),
219 ISDOpcode
, Op0
, CI
->getZExtValue());
220 if (ResultReg
!= 0) {
221 // We successfully emitted code for the given LLVM Instruction.
222 UpdateValueMap(I
, ResultReg
);
227 // Check if the second operand is a constant float.
228 if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(I
->getOperand(1))) {
229 unsigned ResultReg
= FastEmit_rf(VT
.getSimpleVT(), VT
.getSimpleVT(),
231 if (ResultReg
!= 0) {
232 // We successfully emitted code for the given LLVM Instruction.
233 UpdateValueMap(I
, ResultReg
);
238 unsigned Op1
= getRegForValue(I
->getOperand(1));
240 // Unhandled operand. Halt "fast" selection and bail.
243 // Now we have both operands in registers. Emit the instruction.
244 unsigned ResultReg
= FastEmit_rr(VT
.getSimpleVT(), VT
.getSimpleVT(),
245 ISDOpcode
, Op0
, Op1
);
247 // Target-specific code wasn't able to find a machine opcode for
248 // the given ISD opcode and type. Halt "fast" selection and bail.
251 // We successfully emitted code for the given LLVM Instruction.
252 UpdateValueMap(I
, ResultReg
);
256 bool FastISel::SelectGetElementPtr(User
*I
) {
257 unsigned N
= getRegForValue(I
->getOperand(0));
259 // Unhandled operand. Halt "fast" selection and bail.
262 const Type
*Ty
= I
->getOperand(0)->getType();
263 MVT VT
= TLI
.getPointerTy();
264 for (GetElementPtrInst::op_iterator OI
= I
->op_begin()+1, E
= I
->op_end();
267 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
268 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
271 uint64_t Offs
= TD
.getStructLayout(StTy
)->getElementOffset(Field
);
272 // FIXME: This can be optimized by combining the add with a
274 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
276 // Unhandled operand. Halt "fast" selection and bail.
279 Ty
= StTy
->getElementType(Field
);
281 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
283 // If this is a constant subscript, handle it quickly.
284 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
285 if (CI
->getZExtValue() == 0) continue;
287 TD
.getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
288 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
290 // Unhandled operand. Halt "fast" selection and bail.
295 // N = N + Idx * ElementSize;
296 uint64_t ElementSize
= TD
.getTypeAllocSize(Ty
);
297 unsigned IdxN
= getRegForGEPIndex(Idx
);
299 // Unhandled operand. Halt "fast" selection and bail.
302 if (ElementSize
!= 1) {
303 IdxN
= FastEmit_ri_(VT
, ISD::MUL
, IdxN
, ElementSize
, VT
);
305 // Unhandled operand. Halt "fast" selection and bail.
308 N
= FastEmit_rr(VT
, VT
, ISD::ADD
, N
, IdxN
);
310 // Unhandled operand. Halt "fast" selection and bail.
315 // We successfully emitted code for the given LLVM Instruction.
316 UpdateValueMap(I
, N
);
320 bool FastISel::SelectCall(User
*I
) {
321 Function
*F
= cast
<CallInst
>(I
)->getCalledFunction();
322 if (!F
) return false;
324 unsigned IID
= F
->getIntrinsicID();
327 case Intrinsic::dbg_stoppoint
: {
328 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
329 if (isValidDebugInfoIntrinsic(*SPI
, CodeGenOpt::None
))
330 setCurDebugLoc(ExtractDebugLocation(*SPI
, MF
.getDebugLocInfo()));
333 case Intrinsic::dbg_region_start
: {
334 DbgRegionStartInst
*RSI
= cast
<DbgRegionStartInst
>(I
);
335 if (isValidDebugInfoIntrinsic(*RSI
, CodeGenOpt::None
) && DW
336 && DW
->ShouldEmitDwarfDebug()) {
338 DW
->RecordRegionStart(RSI
->getContext());
339 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
340 BuildMI(MBB
, DL
, II
).addImm(ID
);
344 case Intrinsic::dbg_region_end
: {
345 DbgRegionEndInst
*REI
= cast
<DbgRegionEndInst
>(I
);
346 if (isValidDebugInfoIntrinsic(*REI
, CodeGenOpt::None
) && DW
347 && DW
->ShouldEmitDwarfDebug()) {
349 DISubprogram
Subprogram(REI
->getContext());
350 if (isInlinedFnEnd(*REI
, MF
.getFunction())) {
351 // This is end of an inlined function.
352 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
353 ID
= DW
->RecordInlinedFnEnd(Subprogram
);
355 // Returned ID is 0 if this is unbalanced "end of inlined
356 // scope". This could happen if optimizer eats dbg intrinsics
357 // or "beginning of inlined scope" is not recoginized due to
358 // missing location info. In such cases, ignore this region.end.
359 BuildMI(MBB
, DL
, II
).addImm(ID
);
361 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
362 ID
= DW
->RecordRegionEnd(REI
->getContext());
363 BuildMI(MBB
, DL
, II
).addImm(ID
);
368 case Intrinsic::dbg_func_start
: {
369 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
370 if (!isValidDebugInfoIntrinsic(*FSI
, CodeGenOpt::None
) || !DW
371 || !DW
->ShouldEmitDwarfDebug())
374 if (isInlinedFnStart(*FSI
, MF
.getFunction())) {
375 // This is a beginning of an inlined function.
377 // If llvm.dbg.func.start is seen in a new block before any
378 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
379 // FIXME : Why DebugLoc is reset at the beginning of each block ?
380 DebugLoc PrevLoc
= DL
;
381 if (PrevLoc
.isUnknown())
383 // Record the source line.
384 setCurDebugLoc(ExtractDebugLocation(*FSI
, MF
.getDebugLocInfo()));
386 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
387 DISubprogram
SP(FSI
->getSubprogram());
388 unsigned LabelID
= DW
->RecordInlinedFnStart(SP
,
389 DICompileUnit(PrevLocTpl
.CompileUnit
),
392 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
393 BuildMI(MBB
, DL
, II
).addImm(LabelID
);
397 // This is a beginning of a new function.
398 MF
.setDefaultDebugLoc(ExtractDebugLocation(*FSI
, MF
.getDebugLocInfo()));
400 // llvm.dbg.func_start also defines beginning of function scope.
401 DW
->RecordRegionStart(FSI
->getSubprogram());
404 case Intrinsic::dbg_declare
: {
405 DbgDeclareInst
*DI
= cast
<DbgDeclareInst
>(I
);
406 if (!isValidDebugInfoIntrinsic(*DI
, CodeGenOpt::None
) || !DW
407 || !DW
->ShouldEmitDwarfDebug())
410 Value
*Variable
= DI
->getVariable();
411 Value
*Address
= DI
->getAddress();
412 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
413 Address
= BCI
->getOperand(0);
414 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
415 // Don't handle byval struct arguments or VLAs, for example.
417 DenseMap
<const AllocaInst
*, int>::iterator SI
=
418 StaticAllocaMap
.find(AI
);
419 if (SI
== StaticAllocaMap
.end()) break; // VLAs.
422 DW
->RecordVariable(cast
<MDNode
>(Variable
), FI
);
425 case Intrinsic::eh_exception
: {
426 EVT VT
= TLI
.getValueType(I
->getType());
427 switch (TLI
.getOperationAction(ISD::EXCEPTIONADDR
, VT
)) {
429 case TargetLowering::Expand
: {
430 assert(MBB
->isLandingPad() && "Call to eh.exception not in landing pad!");
431 unsigned Reg
= TLI
.getExceptionAddressRegister();
432 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
433 unsigned ResultReg
= createResultReg(RC
);
434 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
436 assert(InsertedCopy
&& "Can't copy address registers!");
437 InsertedCopy
= InsertedCopy
;
438 UpdateValueMap(I
, ResultReg
);
444 case Intrinsic::eh_selector_i32
:
445 case Intrinsic::eh_selector_i64
: {
446 EVT VT
= TLI
.getValueType(I
->getType());
447 switch (TLI
.getOperationAction(ISD::EHSELECTION
, VT
)) {
449 case TargetLowering::Expand
: {
450 EVT VT
= (IID
== Intrinsic::eh_selector_i32
?
451 MVT::i32
: MVT::i64
);
454 if (MBB
->isLandingPad())
455 AddCatchInfo(*cast
<CallInst
>(I
), MMI
, MBB
);
458 CatchInfoLost
.insert(cast
<CallInst
>(I
));
460 // FIXME: Mark exception selector register as live in. Hack for PR1508.
461 unsigned Reg
= TLI
.getExceptionSelectorRegister();
462 if (Reg
) MBB
->addLiveIn(Reg
);
465 unsigned Reg
= TLI
.getExceptionSelectorRegister();
466 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
467 unsigned ResultReg
= createResultReg(RC
);
468 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
470 assert(InsertedCopy
&& "Can't copy address registers!");
471 InsertedCopy
= InsertedCopy
;
472 UpdateValueMap(I
, ResultReg
);
475 getRegForValue(Constant::getNullValue(I
->getType()));
476 UpdateValueMap(I
, ResultReg
);
487 bool FastISel::SelectCast(User
*I
, ISD::NodeType Opcode
) {
488 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
489 EVT DstVT
= TLI
.getValueType(I
->getType());
491 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
492 DstVT
== MVT::Other
|| !DstVT
.isSimple())
493 // Unhandled type. Halt "fast" selection and bail.
496 // Check if the destination type is legal. Or as a special case,
497 // it may be i1 if we're doing a truncate because that's
498 // easy and somewhat common.
499 if (!TLI
.isTypeLegal(DstVT
))
500 if (DstVT
!= MVT::i1
|| Opcode
!= ISD::TRUNCATE
)
501 // Unhandled type. Halt "fast" selection and bail.
504 // Check if the source operand is legal. Or as a special case,
505 // it may be i1 if we're doing zero-extension because that's
506 // easy and somewhat common.
507 if (!TLI
.isTypeLegal(SrcVT
))
508 if (SrcVT
!= MVT::i1
|| Opcode
!= ISD::ZERO_EXTEND
)
509 // Unhandled type. Halt "fast" selection and bail.
512 unsigned InputReg
= getRegForValue(I
->getOperand(0));
514 // Unhandled operand. Halt "fast" selection and bail.
517 // If the operand is i1, arrange for the high bits in the register to be zero.
518 if (SrcVT
== MVT::i1
) {
519 SrcVT
= TLI
.getTypeToTransformTo(I
->getContext(), SrcVT
);
520 InputReg
= FastEmitZExtFromI1(SrcVT
.getSimpleVT(), InputReg
);
524 // If the result is i1, truncate to the target's type for i1 first.
525 if (DstVT
== MVT::i1
)
526 DstVT
= TLI
.getTypeToTransformTo(I
->getContext(), DstVT
);
528 unsigned ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(),
535 UpdateValueMap(I
, ResultReg
);
539 bool FastISel::SelectBitCast(User
*I
) {
540 // If the bitcast doesn't change the type, just use the operand value.
541 if (I
->getType() == I
->getOperand(0)->getType()) {
542 unsigned Reg
= getRegForValue(I
->getOperand(0));
545 UpdateValueMap(I
, Reg
);
549 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
550 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
551 EVT DstVT
= TLI
.getValueType(I
->getType());
553 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
554 DstVT
== MVT::Other
|| !DstVT
.isSimple() ||
555 !TLI
.isTypeLegal(SrcVT
) || !TLI
.isTypeLegal(DstVT
))
556 // Unhandled type. Halt "fast" selection and bail.
559 unsigned Op0
= getRegForValue(I
->getOperand(0));
561 // Unhandled operand. Halt "fast" selection and bail.
564 // First, try to perform the bitcast by inserting a reg-reg copy.
565 unsigned ResultReg
= 0;
566 if (SrcVT
.getSimpleVT() == DstVT
.getSimpleVT()) {
567 TargetRegisterClass
* SrcClass
= TLI
.getRegClassFor(SrcVT
);
568 TargetRegisterClass
* DstClass
= TLI
.getRegClassFor(DstVT
);
569 ResultReg
= createResultReg(DstClass
);
571 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
572 Op0
, DstClass
, SrcClass
);
577 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
579 ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(),
580 ISD::BIT_CONVERT
, Op0
);
585 UpdateValueMap(I
, ResultReg
);
590 FastISel::SelectInstruction(Instruction
*I
) {
591 return SelectOperator(I
, I
->getOpcode());
594 /// FastEmitBranch - Emit an unconditional branch to the given block,
595 /// unless it is the immediate (fall-through) successor, and update
598 FastISel::FastEmitBranch(MachineBasicBlock
*MSucc
) {
599 MachineFunction::iterator NextMBB
=
600 next(MachineFunction::iterator(MBB
));
602 if (MBB
->isLayoutSuccessor(MSucc
)) {
603 // The unconditional fall-through case, which needs no instructions.
605 // The unconditional branch case.
606 TII
.InsertBranch(*MBB
, MSucc
, NULL
, SmallVector
<MachineOperand
, 0>());
608 MBB
->addSuccessor(MSucc
);
611 /// SelectFNeg - Emit an FNeg operation.
614 FastISel::SelectFNeg(User
*I
) {
615 unsigned OpReg
= getRegForValue(BinaryOperator::getFNegArgument(I
));
616 if (OpReg
== 0) return false;
618 // If the target has ISD::FNEG, use it.
619 EVT VT
= TLI
.getValueType(I
->getType());
620 unsigned ResultReg
= FastEmit_r(VT
.getSimpleVT(), VT
.getSimpleVT(),
622 if (ResultReg
!= 0) {
623 UpdateValueMap(I
, ResultReg
);
627 // Bitcast the value to integer, twiddle the sign bit with xor,
628 // and then bitcast it back to floating-point.
629 if (VT
.getSizeInBits() > 64) return false;
630 EVT IntVT
= EVT::getIntegerVT(I
->getContext(), VT
.getSizeInBits());
631 if (!TLI
.isTypeLegal(IntVT
))
634 unsigned IntReg
= FastEmit_r(VT
.getSimpleVT(), IntVT
.getSimpleVT(),
635 ISD::BIT_CONVERT
, OpReg
);
639 unsigned IntResultReg
= FastEmit_ri_(IntVT
.getSimpleVT(), ISD::XOR
, IntReg
,
640 UINT64_C(1) << (VT
.getSizeInBits()-1),
641 IntVT
.getSimpleVT());
642 if (IntResultReg
== 0)
645 ResultReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
.getSimpleVT(),
646 ISD::BIT_CONVERT
, IntResultReg
);
650 UpdateValueMap(I
, ResultReg
);
655 FastISel::SelectOperator(User
*I
, unsigned Opcode
) {
657 case Instruction::Add
:
658 return SelectBinaryOp(I
, ISD::ADD
);
659 case Instruction::FAdd
:
660 return SelectBinaryOp(I
, ISD::FADD
);
661 case Instruction::Sub
:
662 return SelectBinaryOp(I
, ISD::SUB
);
663 case Instruction::FSub
:
664 // FNeg is currently represented in LLVM IR as a special case of FSub.
665 if (BinaryOperator::isFNeg(I
))
666 return SelectFNeg(I
);
667 return SelectBinaryOp(I
, ISD::FSUB
);
668 case Instruction::Mul
:
669 return SelectBinaryOp(I
, ISD::MUL
);
670 case Instruction::FMul
:
671 return SelectBinaryOp(I
, ISD::FMUL
);
672 case Instruction::SDiv
:
673 return SelectBinaryOp(I
, ISD::SDIV
);
674 case Instruction::UDiv
:
675 return SelectBinaryOp(I
, ISD::UDIV
);
676 case Instruction::FDiv
:
677 return SelectBinaryOp(I
, ISD::FDIV
);
678 case Instruction::SRem
:
679 return SelectBinaryOp(I
, ISD::SREM
);
680 case Instruction::URem
:
681 return SelectBinaryOp(I
, ISD::UREM
);
682 case Instruction::FRem
:
683 return SelectBinaryOp(I
, ISD::FREM
);
684 case Instruction::Shl
:
685 return SelectBinaryOp(I
, ISD::SHL
);
686 case Instruction::LShr
:
687 return SelectBinaryOp(I
, ISD::SRL
);
688 case Instruction::AShr
:
689 return SelectBinaryOp(I
, ISD::SRA
);
690 case Instruction::And
:
691 return SelectBinaryOp(I
, ISD::AND
);
692 case Instruction::Or
:
693 return SelectBinaryOp(I
, ISD::OR
);
694 case Instruction::Xor
:
695 return SelectBinaryOp(I
, ISD::XOR
);
697 case Instruction::GetElementPtr
:
698 return SelectGetElementPtr(I
);
700 case Instruction::Br
: {
701 BranchInst
*BI
= cast
<BranchInst
>(I
);
703 if (BI
->isUnconditional()) {
704 BasicBlock
*LLVMSucc
= BI
->getSuccessor(0);
705 MachineBasicBlock
*MSucc
= MBBMap
[LLVMSucc
];
706 FastEmitBranch(MSucc
);
710 // Conditional branches are not handed yet.
711 // Halt "fast" selection and bail.
715 case Instruction::Unreachable
:
719 case Instruction::PHI
:
720 // PHI nodes are already emitted.
723 case Instruction::Alloca
:
724 // FunctionLowering has the static-sized case covered.
725 if (StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
728 // Dynamic-sized alloca is not handled yet.
731 case Instruction::Call
:
732 return SelectCall(I
);
734 case Instruction::BitCast
:
735 return SelectBitCast(I
);
737 case Instruction::FPToSI
:
738 return SelectCast(I
, ISD::FP_TO_SINT
);
739 case Instruction::ZExt
:
740 return SelectCast(I
, ISD::ZERO_EXTEND
);
741 case Instruction::SExt
:
742 return SelectCast(I
, ISD::SIGN_EXTEND
);
743 case Instruction::Trunc
:
744 return SelectCast(I
, ISD::TRUNCATE
);
745 case Instruction::SIToFP
:
746 return SelectCast(I
, ISD::SINT_TO_FP
);
748 case Instruction::IntToPtr
: // Deliberate fall-through.
749 case Instruction::PtrToInt
: {
750 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
751 EVT DstVT
= TLI
.getValueType(I
->getType());
752 if (DstVT
.bitsGT(SrcVT
))
753 return SelectCast(I
, ISD::ZERO_EXTEND
);
754 if (DstVT
.bitsLT(SrcVT
))
755 return SelectCast(I
, ISD::TRUNCATE
);
756 unsigned Reg
= getRegForValue(I
->getOperand(0));
757 if (Reg
== 0) return false;
758 UpdateValueMap(I
, Reg
);
763 // Unhandled instruction. Halt "fast" selection and bail.
768 FastISel::FastISel(MachineFunction
&mf
,
769 MachineModuleInfo
*mmi
,
771 DenseMap
<const Value
*, unsigned> &vm
,
772 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
773 DenseMap
<const AllocaInst
*, int> &am
775 , SmallSet
<Instruction
*, 8> &cil
788 MRI(MF
.getRegInfo()),
789 MFI(*MF
.getFrameInfo()),
790 MCP(*MF
.getConstantPool()),
792 TD(*TM
.getTargetData()),
793 TII(*TM
.getInstrInfo()),
794 TLI(*TM
.getTargetLowering()) {
797 FastISel::~FastISel() {}
799 unsigned FastISel::FastEmit_(MVT
, MVT
,
804 unsigned FastISel::FastEmit_r(MVT
, MVT
,
805 ISD::NodeType
, unsigned /*Op0*/) {
809 unsigned FastISel::FastEmit_rr(MVT
, MVT
,
810 ISD::NodeType
, unsigned /*Op0*/,
815 unsigned FastISel::FastEmit_i(MVT
, MVT
, ISD::NodeType
, uint64_t /*Imm*/) {
819 unsigned FastISel::FastEmit_f(MVT
, MVT
,
820 ISD::NodeType
, ConstantFP
* /*FPImm*/) {
824 unsigned FastISel::FastEmit_ri(MVT
, MVT
,
825 ISD::NodeType
, unsigned /*Op0*/,
830 unsigned FastISel::FastEmit_rf(MVT
, MVT
,
831 ISD::NodeType
, unsigned /*Op0*/,
832 ConstantFP
* /*FPImm*/) {
836 unsigned FastISel::FastEmit_rri(MVT
, MVT
,
838 unsigned /*Op0*/, unsigned /*Op1*/,
843 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
844 /// to emit an instruction with an immediate operand using FastEmit_ri.
845 /// If that fails, it materializes the immediate into a register and try
846 /// FastEmit_rr instead.
847 unsigned FastISel::FastEmit_ri_(MVT VT
, ISD::NodeType Opcode
,
848 unsigned Op0
, uint64_t Imm
,
850 // First check if immediate type is legal. If not, we can't use the ri form.
851 unsigned ResultReg
= FastEmit_ri(VT
, VT
, Opcode
, Op0
, Imm
);
854 unsigned MaterialReg
= FastEmit_i(ImmType
, ImmType
, ISD::Constant
, Imm
);
855 if (MaterialReg
== 0)
857 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
860 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
861 /// to emit an instruction with a floating-point immediate operand using
862 /// FastEmit_rf. If that fails, it materializes the immediate into a register
863 /// and try FastEmit_rr instead.
864 unsigned FastISel::FastEmit_rf_(MVT VT
, ISD::NodeType Opcode
,
865 unsigned Op0
, ConstantFP
*FPImm
,
867 // First check if immediate type is legal. If not, we can't use the rf form.
868 unsigned ResultReg
= FastEmit_rf(VT
, VT
, Opcode
, Op0
, FPImm
);
872 // Materialize the constant in a register.
873 unsigned MaterialReg
= FastEmit_f(ImmType
, ImmType
, ISD::ConstantFP
, FPImm
);
874 if (MaterialReg
== 0) {
875 // If the target doesn't have a way to directly enter a floating-point
876 // value into a register, use an alternate approach.
877 // TODO: The current approach only supports floating-point constants
878 // that can be constructed by conversion from integer values. This should
879 // be replaced by code that creates a load from a constant-pool entry,
880 // which will require some target-specific work.
881 const APFloat
&Flt
= FPImm
->getValueAPF();
882 EVT IntVT
= TLI
.getPointerTy();
885 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
887 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
888 APFloat::rmTowardZero
, &isExact
);
891 APInt
IntVal(IntBitWidth
, 2, x
);
893 unsigned IntegerReg
= FastEmit_i(IntVT
.getSimpleVT(), IntVT
.getSimpleVT(),
894 ISD::Constant
, IntVal
.getZExtValue());
897 MaterialReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
,
898 ISD::SINT_TO_FP
, IntegerReg
);
899 if (MaterialReg
== 0)
902 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
905 unsigned FastISel::createResultReg(const TargetRegisterClass
* RC
) {
906 return MRI
.createVirtualRegister(RC
);
909 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode
,
910 const TargetRegisterClass
* RC
) {
911 unsigned ResultReg
= createResultReg(RC
);
912 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
914 BuildMI(MBB
, DL
, II
, ResultReg
);
918 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
919 const TargetRegisterClass
*RC
,
921 unsigned ResultReg
= createResultReg(RC
);
922 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
924 if (II
.getNumDefs() >= 1)
925 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
);
927 BuildMI(MBB
, DL
, II
).addReg(Op0
);
928 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
929 II
.ImplicitDefs
[0], RC
, RC
);
937 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
938 const TargetRegisterClass
*RC
,
939 unsigned Op0
, unsigned Op1
) {
940 unsigned ResultReg
= createResultReg(RC
);
941 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
943 if (II
.getNumDefs() >= 1)
944 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
);
946 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
);
947 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
948 II
.ImplicitDefs
[0], RC
, RC
);
955 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
956 const TargetRegisterClass
*RC
,
957 unsigned Op0
, uint64_t Imm
) {
958 unsigned ResultReg
= createResultReg(RC
);
959 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
961 if (II
.getNumDefs() >= 1)
962 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Imm
);
964 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Imm
);
965 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
966 II
.ImplicitDefs
[0], RC
, RC
);
973 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
974 const TargetRegisterClass
*RC
,
975 unsigned Op0
, ConstantFP
*FPImm
) {
976 unsigned ResultReg
= createResultReg(RC
);
977 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
979 if (II
.getNumDefs() >= 1)
980 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addFPImm(FPImm
);
982 BuildMI(MBB
, DL
, II
).addReg(Op0
).addFPImm(FPImm
);
983 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
984 II
.ImplicitDefs
[0], RC
, RC
);
991 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
992 const TargetRegisterClass
*RC
,
993 unsigned Op0
, unsigned Op1
, uint64_t Imm
) {
994 unsigned ResultReg
= createResultReg(RC
);
995 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
997 if (II
.getNumDefs() >= 1)
998 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
1000 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
1001 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1002 II
.ImplicitDefs
[0], RC
, RC
);
1009 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
1010 const TargetRegisterClass
*RC
,
1012 unsigned ResultReg
= createResultReg(RC
);
1013 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
1015 if (II
.getNumDefs() >= 1)
1016 BuildMI(MBB
, DL
, II
, ResultReg
).addImm(Imm
);
1018 BuildMI(MBB
, DL
, II
).addImm(Imm
);
1019 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1020 II
.ImplicitDefs
[0], RC
, RC
);
1027 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT
,
1028 unsigned Op0
, uint32_t Idx
) {
1029 const TargetRegisterClass
* RC
= MRI
.getRegClass(Op0
);
1031 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
1032 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EXTRACT_SUBREG
);
1034 if (II
.getNumDefs() >= 1)
1035 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Idx
);
1037 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Idx
);
1038 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1039 II
.ImplicitDefs
[0], RC
, RC
);
1046 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1047 /// with all but the least significant bit set to zero.
1048 unsigned FastISel::FastEmitZExtFromI1(MVT VT
, unsigned Op
) {
1049 return FastEmit_ri(VT
, VT
, ISD::AND
, Op
, 1);