1 //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "pre-RA-sched"
22 #include "ScheduleDAGSDNodes.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SchedulerRegistry.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/ADT/PriorityQueue.h"
35 #include "llvm/ADT/Statistic.h"
39 STATISTIC(NumNoops
, "Number of noops inserted");
40 STATISTIC(NumStalls
, "Number of pipeline stalls");
42 static RegisterScheduler
43 tdListDAGScheduler("list-td", "Top-down list scheduler",
44 createTDListDAGScheduler
);
47 //===----------------------------------------------------------------------===//
48 /// ScheduleDAGList - The actual list scheduler implementation. This supports
49 /// top-down scheduling.
51 class VISIBILITY_HIDDEN ScheduleDAGList
: public ScheduleDAGSDNodes
{
53 /// AvailableQueue - The priority queue to use for the available SUnits.
55 SchedulingPriorityQueue
*AvailableQueue
;
57 /// PendingQueue - This contains all of the instructions whose operands have
58 /// been issued, but their results are not ready yet (due to the latency of
59 /// the operation). Once the operands become available, the instruction is
60 /// added to the AvailableQueue.
61 std::vector
<SUnit
*> PendingQueue
;
63 /// HazardRec - The hazard recognizer to use.
64 ScheduleHazardRecognizer
*HazardRec
;
67 ScheduleDAGList(MachineFunction
&mf
,
68 SchedulingPriorityQueue
*availqueue
,
69 ScheduleHazardRecognizer
*HR
)
70 : ScheduleDAGSDNodes(mf
),
71 AvailableQueue(availqueue
), HazardRec(HR
) {
76 delete AvailableQueue
;
82 void ReleaseSucc(SUnit
*SU
, const SDep
&D
);
83 void ReleaseSuccessors(SUnit
*SU
);
84 void ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
);
85 void ListScheduleTopDown();
87 } // end anonymous namespace
89 /// Schedule - Schedule the DAG using list scheduling.
90 void ScheduleDAGList::Schedule() {
91 DEBUG(errs() << "********** List Scheduling **********\n");
93 // Build the scheduling graph.
96 AvailableQueue
->initNodes(SUnits
);
98 ListScheduleTopDown();
100 AvailableQueue
->releaseState();
103 //===----------------------------------------------------------------------===//
104 // Top-Down Scheduling
105 //===----------------------------------------------------------------------===//
107 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
108 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
109 void ScheduleDAGList::ReleaseSucc(SUnit
*SU
, const SDep
&D
) {
110 SUnit
*SuccSU
= D
.getSUnit();
111 --SuccSU
->NumPredsLeft
;
114 if (SuccSU
->NumPredsLeft
< 0) {
115 errs() << "*** Scheduling failed! ***\n";
117 errs() << " has been released too many times!\n";
122 SuccSU
->setDepthToAtLeast(SU
->getDepth() + D
.getLatency());
124 // If all the node's predecessors are scheduled, this node is ready
125 // to be scheduled. Ignore the special ExitSU node.
126 if (SuccSU
->NumPredsLeft
== 0 && SuccSU
!= &ExitSU
)
127 PendingQueue
.push_back(SuccSU
);
130 void ScheduleDAGList::ReleaseSuccessors(SUnit
*SU
) {
131 // Top down: release successors.
132 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
134 assert(!I
->isAssignedRegDep() &&
135 "The list-td scheduler doesn't yet support physreg dependencies!");
141 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
142 /// count of its successors. If a successor pending count is zero, add it to
143 /// the Available queue.
144 void ScheduleDAGList::ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
) {
145 DEBUG(errs() << "*** Scheduling [" << CurCycle
<< "]: ");
146 DEBUG(SU
->dump(this));
148 Sequence
.push_back(SU
);
149 assert(CurCycle
>= SU
->getDepth() && "Node scheduled above its depth!");
150 SU
->setDepthToAtLeast(CurCycle
);
152 ReleaseSuccessors(SU
);
153 SU
->isScheduled
= true;
154 AvailableQueue
->ScheduledNode(SU
);
157 /// ListScheduleTopDown - The main loop of list scheduling for top-down
159 void ScheduleDAGList::ListScheduleTopDown() {
160 unsigned CurCycle
= 0;
162 // Release any successors of the special Entry node.
163 ReleaseSuccessors(&EntrySU
);
165 // All leaves to Available queue.
166 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
167 // It is available if it has no predecessors.
168 if (SUnits
[i
].Preds
.empty()) {
169 AvailableQueue
->push(&SUnits
[i
]);
170 SUnits
[i
].isAvailable
= true;
174 // While Available queue is not empty, grab the node with the highest
175 // priority. If it is not ready put it back. Schedule the node.
176 std::vector
<SUnit
*> NotReady
;
177 Sequence
.reserve(SUnits
.size());
178 while (!AvailableQueue
->empty() || !PendingQueue
.empty()) {
179 // Check to see if any of the pending instructions are ready to issue. If
180 // so, add them to the available queue.
181 for (unsigned i
= 0, e
= PendingQueue
.size(); i
!= e
; ++i
) {
182 if (PendingQueue
[i
]->getDepth() == CurCycle
) {
183 AvailableQueue
->push(PendingQueue
[i
]);
184 PendingQueue
[i
]->isAvailable
= true;
185 PendingQueue
[i
] = PendingQueue
.back();
186 PendingQueue
.pop_back();
189 assert(PendingQueue
[i
]->getDepth() > CurCycle
&& "Negative latency?");
193 // If there are no instructions available, don't try to issue anything, and
194 // don't advance the hazard recognizer.
195 if (AvailableQueue
->empty()) {
200 SUnit
*FoundSUnit
= 0;
202 bool HasNoopHazards
= false;
203 while (!AvailableQueue
->empty()) {
204 SUnit
*CurSUnit
= AvailableQueue
->pop();
206 ScheduleHazardRecognizer::HazardType HT
=
207 HazardRec
->getHazardType(CurSUnit
);
208 if (HT
== ScheduleHazardRecognizer::NoHazard
) {
209 FoundSUnit
= CurSUnit
;
213 // Remember if this is a noop hazard.
214 HasNoopHazards
|= HT
== ScheduleHazardRecognizer::NoopHazard
;
216 NotReady
.push_back(CurSUnit
);
219 // Add the nodes that aren't ready back onto the available list.
220 if (!NotReady
.empty()) {
221 AvailableQueue
->push_all(NotReady
);
225 // If we found a node to schedule, do it now.
227 ScheduleNodeTopDown(FoundSUnit
, CurCycle
);
228 HazardRec
->EmitInstruction(FoundSUnit
);
230 // If this is a pseudo-op node, we don't want to increment the current
232 if (FoundSUnit
->Latency
) // Don't increment CurCycle for pseudo-ops!
234 } else if (!HasNoopHazards
) {
235 // Otherwise, we have a pipeline stall, but no other problem, just advance
236 // the current cycle and try again.
237 DEBUG(errs() << "*** Advancing cycle, no work to do\n");
238 HazardRec
->AdvanceCycle();
242 // Otherwise, we have no instructions to issue and we have instructions
243 // that will fault if we don't do this right. This is the case for
244 // processors without pipeline interlocks and other cases.
245 DEBUG(errs() << "*** Emitting noop\n");
246 HazardRec
->EmitNoop();
247 Sequence
.push_back(0); // NULL here means noop
254 VerifySchedule(/*isBottomUp=*/false);
258 //===----------------------------------------------------------------------===//
259 // Public Constructor Functions
260 //===----------------------------------------------------------------------===//
262 /// createTDListDAGScheduler - This creates a top-down list scheduler with a
263 /// new hazard recognizer. This scheduler takes ownership of the hazard
264 /// recognizer and deletes it when done.
266 llvm::createTDListDAGScheduler(SelectionDAGISel
*IS
, CodeGenOpt::Level
) {
267 return new ScheduleDAGList(*IS
->MF
,
268 new LatencyPriorityQueue(),
269 IS
->CreateTargetHazardRecognizer());