pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / CodeGen / SelectionDAG / ScheduleDAGList.cpp
blob628a2a87ee65e4640f531d98840d9975744c7ad1
1 //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "pre-RA-sched"
22 #include "ScheduleDAGSDNodes.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SchedulerRegistry.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/ADT/PriorityQueue.h"
35 #include "llvm/ADT/Statistic.h"
36 #include <climits>
37 using namespace llvm;
39 STATISTIC(NumNoops , "Number of noops inserted");
40 STATISTIC(NumStalls, "Number of pipeline stalls");
42 static RegisterScheduler
43 tdListDAGScheduler("list-td", "Top-down list scheduler",
44 createTDListDAGScheduler);
46 namespace {
47 //===----------------------------------------------------------------------===//
48 /// ScheduleDAGList - The actual list scheduler implementation. This supports
49 /// top-down scheduling.
50 ///
51 class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAGSDNodes {
52 private:
53 /// AvailableQueue - The priority queue to use for the available SUnits.
54 ///
55 SchedulingPriorityQueue *AvailableQueue;
57 /// PendingQueue - This contains all of the instructions whose operands have
58 /// been issued, but their results are not ready yet (due to the latency of
59 /// the operation). Once the operands become available, the instruction is
60 /// added to the AvailableQueue.
61 std::vector<SUnit*> PendingQueue;
63 /// HazardRec - The hazard recognizer to use.
64 ScheduleHazardRecognizer *HazardRec;
66 public:
67 ScheduleDAGList(MachineFunction &mf,
68 SchedulingPriorityQueue *availqueue,
69 ScheduleHazardRecognizer *HR)
70 : ScheduleDAGSDNodes(mf),
71 AvailableQueue(availqueue), HazardRec(HR) {
74 ~ScheduleDAGList() {
75 delete HazardRec;
76 delete AvailableQueue;
79 void Schedule();
81 private:
82 void ReleaseSucc(SUnit *SU, const SDep &D);
83 void ReleaseSuccessors(SUnit *SU);
84 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
85 void ListScheduleTopDown();
87 } // end anonymous namespace
89 /// Schedule - Schedule the DAG using list scheduling.
90 void ScheduleDAGList::Schedule() {
91 DEBUG(errs() << "********** List Scheduling **********\n");
93 // Build the scheduling graph.
94 BuildSchedGraph();
96 AvailableQueue->initNodes(SUnits);
98 ListScheduleTopDown();
100 AvailableQueue->releaseState();
103 //===----------------------------------------------------------------------===//
104 // Top-Down Scheduling
105 //===----------------------------------------------------------------------===//
107 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
108 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
109 void ScheduleDAGList::ReleaseSucc(SUnit *SU, const SDep &D) {
110 SUnit *SuccSU = D.getSUnit();
111 --SuccSU->NumPredsLeft;
113 #ifndef NDEBUG
114 if (SuccSU->NumPredsLeft < 0) {
115 errs() << "*** Scheduling failed! ***\n";
116 SuccSU->dump(this);
117 errs() << " has been released too many times!\n";
118 llvm_unreachable(0);
120 #endif
122 SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
124 // If all the node's predecessors are scheduled, this node is ready
125 // to be scheduled. Ignore the special ExitSU node.
126 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
127 PendingQueue.push_back(SuccSU);
130 void ScheduleDAGList::ReleaseSuccessors(SUnit *SU) {
131 // Top down: release successors.
132 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
133 I != E; ++I) {
134 assert(!I->isAssignedRegDep() &&
135 "The list-td scheduler doesn't yet support physreg dependencies!");
137 ReleaseSucc(SU, *I);
141 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
142 /// count of its successors. If a successor pending count is zero, add it to
143 /// the Available queue.
144 void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
145 DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
146 DEBUG(SU->dump(this));
148 Sequence.push_back(SU);
149 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
150 SU->setDepthToAtLeast(CurCycle);
152 ReleaseSuccessors(SU);
153 SU->isScheduled = true;
154 AvailableQueue->ScheduledNode(SU);
157 /// ListScheduleTopDown - The main loop of list scheduling for top-down
158 /// schedulers.
159 void ScheduleDAGList::ListScheduleTopDown() {
160 unsigned CurCycle = 0;
162 // Release any successors of the special Entry node.
163 ReleaseSuccessors(&EntrySU);
165 // All leaves to Available queue.
166 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
167 // It is available if it has no predecessors.
168 if (SUnits[i].Preds.empty()) {
169 AvailableQueue->push(&SUnits[i]);
170 SUnits[i].isAvailable = true;
174 // While Available queue is not empty, grab the node with the highest
175 // priority. If it is not ready put it back. Schedule the node.
176 std::vector<SUnit*> NotReady;
177 Sequence.reserve(SUnits.size());
178 while (!AvailableQueue->empty() || !PendingQueue.empty()) {
179 // Check to see if any of the pending instructions are ready to issue. If
180 // so, add them to the available queue.
181 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
182 if (PendingQueue[i]->getDepth() == CurCycle) {
183 AvailableQueue->push(PendingQueue[i]);
184 PendingQueue[i]->isAvailable = true;
185 PendingQueue[i] = PendingQueue.back();
186 PendingQueue.pop_back();
187 --i; --e;
188 } else {
189 assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
193 // If there are no instructions available, don't try to issue anything, and
194 // don't advance the hazard recognizer.
195 if (AvailableQueue->empty()) {
196 ++CurCycle;
197 continue;
200 SUnit *FoundSUnit = 0;
202 bool HasNoopHazards = false;
203 while (!AvailableQueue->empty()) {
204 SUnit *CurSUnit = AvailableQueue->pop();
206 ScheduleHazardRecognizer::HazardType HT =
207 HazardRec->getHazardType(CurSUnit);
208 if (HT == ScheduleHazardRecognizer::NoHazard) {
209 FoundSUnit = CurSUnit;
210 break;
213 // Remember if this is a noop hazard.
214 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
216 NotReady.push_back(CurSUnit);
219 // Add the nodes that aren't ready back onto the available list.
220 if (!NotReady.empty()) {
221 AvailableQueue->push_all(NotReady);
222 NotReady.clear();
225 // If we found a node to schedule, do it now.
226 if (FoundSUnit) {
227 ScheduleNodeTopDown(FoundSUnit, CurCycle);
228 HazardRec->EmitInstruction(FoundSUnit);
230 // If this is a pseudo-op node, we don't want to increment the current
231 // cycle.
232 if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
233 ++CurCycle;
234 } else if (!HasNoopHazards) {
235 // Otherwise, we have a pipeline stall, but no other problem, just advance
236 // the current cycle and try again.
237 DEBUG(errs() << "*** Advancing cycle, no work to do\n");
238 HazardRec->AdvanceCycle();
239 ++NumStalls;
240 ++CurCycle;
241 } else {
242 // Otherwise, we have no instructions to issue and we have instructions
243 // that will fault if we don't do this right. This is the case for
244 // processors without pipeline interlocks and other cases.
245 DEBUG(errs() << "*** Emitting noop\n");
246 HazardRec->EmitNoop();
247 Sequence.push_back(0); // NULL here means noop
248 ++NumNoops;
249 ++CurCycle;
253 #ifndef NDEBUG
254 VerifySchedule(/*isBottomUp=*/false);
255 #endif
258 //===----------------------------------------------------------------------===//
259 // Public Constructor Functions
260 //===----------------------------------------------------------------------===//
262 /// createTDListDAGScheduler - This creates a top-down list scheduler with a
263 /// new hazard recognizer. This scheduler takes ownership of the hazard
264 /// recognizer and deletes it when done.
265 ScheduleDAGSDNodes *
266 llvm::createTDListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
267 return new ScheduleDAGList(*IS->MF,
268 new LatencyPriorityQueue(),
269 IS->CreateTargetHazardRecognizer());