1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
11 // not natively support them (which includes the C backend). Note that the code
12 // generated is not quite as efficient as algorithms which generate stack maps
15 // This pass implements the code transformation described in this paper:
16 // "Accurate Garbage Collection in an Uncooperative Environment"
17 // Fergus Henderson, ISMM, 2002
19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
22 // In order to support this particular transformation, all stack roots are
23 // coallocated in the stack. This allows a fully target-independent stack map
24 // while introducing only minor runtime overhead.
26 //===----------------------------------------------------------------------===//
28 #define DEBUG_TYPE "shadowstackgc"
29 #include "llvm/CodeGen/GCs.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/Module.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/IRBuilder.h"
41 class VISIBILITY_HIDDEN ShadowStackGC
: public GCStrategy
{
42 /// RootChain - This is the global linked-list that contains the chain of GC
46 /// StackEntryTy - Abstract type of a link in the shadow stack.
48 const StructType
*StackEntryTy
;
50 /// Roots - GC roots in the current function. Each is a pair of the
51 /// intrinsic call and its corresponding alloca.
52 std::vector
<std::pair
<CallInst
*,AllocaInst
*> > Roots
;
57 bool initializeCustomLowering(Module
&M
);
58 bool performCustomLowering(Function
&F
);
61 bool IsNullValue(Value
*V
);
62 Constant
*GetFrameMap(Function
&F
);
63 const Type
* GetConcreteStackEntryType(Function
&F
);
64 void CollectRoots(Function
&F
);
65 static GetElementPtrInst
*CreateGEP(LLVMContext
&Context
,
66 IRBuilder
<> &B
, Value
*BasePtr
,
67 int Idx1
, const char *Name
);
68 static GetElementPtrInst
*CreateGEP(LLVMContext
&Context
,
69 IRBuilder
<> &B
, Value
*BasePtr
,
70 int Idx1
, int Idx2
, const char *Name
);
75 static GCRegistry::Add
<ShadowStackGC
>
76 X("shadow-stack", "Very portable GC for uncooperative code generators");
79 /// EscapeEnumerator - This is a little algorithm to find all escape points
80 /// from a function so that "finally"-style code can be inserted. In addition
81 /// to finding the existing return and unwind instructions, it also (if
82 /// necessary) transforms any call instructions into invokes and sends them to
85 /// It's wrapped up in a state machine using the same transform C# uses for
86 /// 'yield return' enumerators, This transform allows it to be non-allocating.
87 class VISIBILITY_HIDDEN EscapeEnumerator
{
89 const char *CleanupBBName
;
93 Function::iterator StateBB
, StateE
;
97 EscapeEnumerator(Function
&F
, const char *N
= "cleanup")
98 : F(F
), CleanupBBName(N
), State(0), Builder(F
.getContext()) {}
100 IRBuilder
<> *Next() {
111 // Find all 'return' and 'unwind' instructions.
112 while (StateBB
!= StateE
) {
113 BasicBlock
*CurBB
= StateBB
++;
115 // Branches and invokes do not escape, only unwind and return do.
116 TerminatorInst
*TI
= CurBB
->getTerminator();
117 if (!isa
<UnwindInst
>(TI
) && !isa
<ReturnInst
>(TI
))
120 Builder
.SetInsertPoint(TI
->getParent(), TI
);
126 // Find all 'call' instructions.
127 SmallVector
<Instruction
*,16> Calls
;
128 for (Function::iterator BB
= F
.begin(),
129 E
= F
.end(); BB
!= E
; ++BB
)
130 for (BasicBlock::iterator II
= BB
->begin(),
131 EE
= BB
->end(); II
!= EE
; ++II
)
132 if (CallInst
*CI
= dyn_cast
<CallInst
>(II
))
133 if (!CI
->getCalledFunction() ||
134 !CI
->getCalledFunction()->getIntrinsicID())
140 // Create a cleanup block.
141 BasicBlock
*CleanupBB
= BasicBlock::Create(F
.getContext(),
143 UnwindInst
*UI
= new UnwindInst(F
.getContext(), CleanupBB
);
145 // Transform the 'call' instructions into 'invoke's branching to the
146 // cleanup block. Go in reverse order to make prettier BB names.
147 SmallVector
<Value
*,16> Args
;
148 for (unsigned I
= Calls
.size(); I
!= 0; ) {
149 CallInst
*CI
= cast
<CallInst
>(Calls
[--I
]);
151 // Split the basic block containing the function call.
152 BasicBlock
*CallBB
= CI
->getParent();
154 CallBB
->splitBasicBlock(CI
, CallBB
->getName() + ".cont");
156 // Remove the unconditional branch inserted at the end of CallBB.
157 CallBB
->getInstList().pop_back();
158 NewBB
->getInstList().remove(CI
);
160 // Create a new invoke instruction.
162 Args
.append(CI
->op_begin() + 1, CI
->op_end());
164 InvokeInst
*II
= InvokeInst::Create(CI
->getOperand(0),
166 Args
.begin(), Args
.end(),
167 CI
->getName(), CallBB
);
168 II
->setCallingConv(CI
->getCallingConv());
169 II
->setAttributes(CI
->getAttributes());
170 CI
->replaceAllUsesWith(II
);
174 Builder
.SetInsertPoint(UI
->getParent(), UI
);
181 // -----------------------------------------------------------------------------
183 void llvm::linkShadowStackGC() { }
185 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
190 Constant
*ShadowStackGC::GetFrameMap(Function
&F
) {
191 // doInitialization creates the abstract type of this value.
192 Type
*VoidPtr
= PointerType::getUnqual(Type::getInt8Ty(F
.getContext()));
194 // Truncate the ShadowStackDescriptor if some metadata is null.
195 unsigned NumMeta
= 0;
196 SmallVector
<Constant
*,16> Metadata
;
197 for (unsigned I
= 0; I
!= Roots
.size(); ++I
) {
198 Constant
*C
= cast
<Constant
>(Roots
[I
].first
->getOperand(2));
199 if (!C
->isNullValue())
201 Metadata
.push_back(ConstantExpr::getBitCast(C
, VoidPtr
));
204 Constant
*BaseElts
[] = {
205 ConstantInt::get(Type::getInt32Ty(F
.getContext()), Roots
.size(), false),
206 ConstantInt::get(Type::getInt32Ty(F
.getContext()), NumMeta
, false),
209 Constant
*DescriptorElts
[] = {
210 ConstantStruct::get(F
.getContext(), BaseElts
, 2),
211 ConstantArray::get(ArrayType::get(VoidPtr
, NumMeta
),
212 Metadata
.begin(), NumMeta
)
215 Constant
*FrameMap
= ConstantStruct::get(F
.getContext(), DescriptorElts
, 2);
217 std::string
TypeName("gc_map.");
218 TypeName
+= utostr(NumMeta
);
219 F
.getParent()->addTypeName(TypeName
, FrameMap
->getType());
221 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
222 // that, short of multithreaded LLVM, it should be safe; all that is
223 // necessary is that a simple Module::iterator loop not be invalidated.
224 // Appending to the GlobalVariable list is safe in that sense.
226 // All of the output passes emit globals last. The ExecutionEngine
227 // explicitly supports adding globals to the module after
230 // Still, if it isn't deemed acceptable, then this transformation needs
231 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
232 // (which uses a FunctionPassManager (which segfaults (not asserts) if
233 // provided a ModulePass))).
234 Constant
*GV
= new GlobalVariable(*F
.getParent(), FrameMap
->getType(), true,
235 GlobalVariable::InternalLinkage
,
236 FrameMap
, "__gc_" + F
.getName());
238 Constant
*GEPIndices
[2] = {
239 ConstantInt::get(Type::getInt32Ty(F
.getContext()), 0),
240 ConstantInt::get(Type::getInt32Ty(F
.getContext()), 0)
242 return ConstantExpr::getGetElementPtr(GV
, GEPIndices
, 2);
245 const Type
* ShadowStackGC::GetConcreteStackEntryType(Function
&F
) {
246 // doInitialization creates the generic version of this type.
247 std::vector
<const Type
*> EltTys
;
248 EltTys
.push_back(StackEntryTy
);
249 for (size_t I
= 0; I
!= Roots
.size(); I
++)
250 EltTys
.push_back(Roots
[I
].second
->getAllocatedType());
251 Type
*Ty
= StructType::get(F
.getContext(), EltTys
);
253 std::string
TypeName("gc_stackentry.");
254 TypeName
+= F
.getName();
255 F
.getParent()->addTypeName(TypeName
, Ty
);
260 /// doInitialization - If this module uses the GC intrinsics, find them now. If
262 bool ShadowStackGC::initializeCustomLowering(Module
&M
) {
264 // int32_t NumRoots; // Number of roots in stack frame.
265 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
266 // void *Meta[]; // May be absent for roots without metadata.
268 std::vector
<const Type
*> EltTys
;
269 // 32 bits is ok up to a 32GB stack frame. :)
270 EltTys
.push_back(Type::getInt32Ty(M
.getContext()));
271 // Specifies length of variable length array.
272 EltTys
.push_back(Type::getInt32Ty(M
.getContext()));
273 StructType
*FrameMapTy
= StructType::get(M
.getContext(), EltTys
);
274 M
.addTypeName("gc_map", FrameMapTy
);
275 PointerType
*FrameMapPtrTy
= PointerType::getUnqual(FrameMapTy
);
277 // struct StackEntry {
278 // ShadowStackEntry *Next; // Caller's stack entry.
279 // FrameMap *Map; // Pointer to constant FrameMap.
280 // void *Roots[]; // Stack roots (in-place array, so we pretend).
282 OpaqueType
*RecursiveTy
= OpaqueType::get(M
.getContext());
285 EltTys
.push_back(PointerType::getUnqual(RecursiveTy
));
286 EltTys
.push_back(FrameMapPtrTy
);
287 PATypeHolder LinkTyH
= StructType::get(M
.getContext(), EltTys
);
289 RecursiveTy
->refineAbstractTypeTo(LinkTyH
.get());
290 StackEntryTy
= cast
<StructType
>(LinkTyH
.get());
291 const PointerType
*StackEntryPtrTy
= PointerType::getUnqual(StackEntryTy
);
292 M
.addTypeName("gc_stackentry", LinkTyH
.get()); // FIXME: Is this safe from
295 // Get the root chain if it already exists.
296 Head
= M
.getGlobalVariable("llvm_gc_root_chain");
298 // If the root chain does not exist, insert a new one with linkonce
300 Head
= new GlobalVariable(M
, StackEntryPtrTy
, false,
301 GlobalValue::LinkOnceAnyLinkage
,
302 Constant::getNullValue(StackEntryPtrTy
),
303 "llvm_gc_root_chain");
304 } else if (Head
->hasExternalLinkage() && Head
->isDeclaration()) {
305 Head
->setInitializer(Constant::getNullValue(StackEntryPtrTy
));
306 Head
->setLinkage(GlobalValue::LinkOnceAnyLinkage
);
312 bool ShadowStackGC::IsNullValue(Value
*V
) {
313 if (Constant
*C
= dyn_cast
<Constant
>(V
))
314 return C
->isNullValue();
318 void ShadowStackGC::CollectRoots(Function
&F
) {
319 // FIXME: Account for original alignment. Could fragment the root array.
320 // Approach 1: Null initialize empty slots at runtime. Yuck.
321 // Approach 2: Emit a map of the array instead of just a count.
323 assert(Roots
.empty() && "Not cleaned up?");
325 SmallVector
<std::pair
<CallInst
*,AllocaInst
*>,16> MetaRoots
;
327 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
328 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
;)
329 if (IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(II
++))
330 if (Function
*F
= CI
->getCalledFunction())
331 if (F
->getIntrinsicID() == Intrinsic::gcroot
) {
332 std::pair
<CallInst
*,AllocaInst
*> Pair
= std::make_pair(
333 CI
, cast
<AllocaInst
>(CI
->getOperand(1)->stripPointerCasts()));
334 if (IsNullValue(CI
->getOperand(2)))
335 Roots
.push_back(Pair
);
337 MetaRoots
.push_back(Pair
);
340 // Number roots with metadata (usually empty) at the beginning, so that the
341 // FrameMap::Meta array can be elided.
342 Roots
.insert(Roots
.begin(), MetaRoots
.begin(), MetaRoots
.end());
346 ShadowStackGC::CreateGEP(LLVMContext
&Context
, IRBuilder
<> &B
, Value
*BasePtr
,
347 int Idx
, int Idx2
, const char *Name
) {
348 Value
*Indices
[] = { ConstantInt::get(Type::getInt32Ty(Context
), 0),
349 ConstantInt::get(Type::getInt32Ty(Context
), Idx
),
350 ConstantInt::get(Type::getInt32Ty(Context
), Idx2
) };
351 Value
* Val
= B
.CreateGEP(BasePtr
, Indices
, Indices
+ 3, Name
);
353 assert(isa
<GetElementPtrInst
>(Val
) && "Unexpected folded constant");
355 return dyn_cast
<GetElementPtrInst
>(Val
);
359 ShadowStackGC::CreateGEP(LLVMContext
&Context
, IRBuilder
<> &B
, Value
*BasePtr
,
360 int Idx
, const char *Name
) {
361 Value
*Indices
[] = { ConstantInt::get(Type::getInt32Ty(Context
), 0),
362 ConstantInt::get(Type::getInt32Ty(Context
), Idx
) };
363 Value
*Val
= B
.CreateGEP(BasePtr
, Indices
, Indices
+ 2, Name
);
365 assert(isa
<GetElementPtrInst
>(Val
) && "Unexpected folded constant");
367 return dyn_cast
<GetElementPtrInst
>(Val
);
370 /// runOnFunction - Insert code to maintain the shadow stack.
371 bool ShadowStackGC::performCustomLowering(Function
&F
) {
372 LLVMContext
&Context
= F
.getContext();
374 // Find calls to llvm.gcroot.
377 // If there are no roots in this function, then there is no need to add a
378 // stack map entry for it.
382 // Build the constant map and figure the type of the shadow stack entry.
383 Value
*FrameMap
= GetFrameMap(F
);
384 const Type
*ConcreteStackEntryTy
= GetConcreteStackEntryType(F
);
386 // Build the shadow stack entry at the very start of the function.
387 BasicBlock::iterator IP
= F
.getEntryBlock().begin();
388 IRBuilder
<> AtEntry(IP
->getParent(), IP
);
390 Instruction
*StackEntry
= AtEntry
.CreateAlloca(ConcreteStackEntryTy
, 0,
393 while (isa
<AllocaInst
>(IP
)) ++IP
;
394 AtEntry
.SetInsertPoint(IP
->getParent(), IP
);
396 // Initialize the map pointer and load the current head of the shadow stack.
397 Instruction
*CurrentHead
= AtEntry
.CreateLoad(Head
, "gc_currhead");
398 Instruction
*EntryMapPtr
= CreateGEP(Context
, AtEntry
, StackEntry
,
400 AtEntry
.CreateStore(FrameMap
, EntryMapPtr
);
402 // After all the allocas...
403 for (unsigned I
= 0, E
= Roots
.size(); I
!= E
; ++I
) {
404 // For each root, find the corresponding slot in the aggregate...
405 Value
*SlotPtr
= CreateGEP(Context
, AtEntry
, StackEntry
, 1 + I
, "gc_root");
407 // And use it in lieu of the alloca.
408 AllocaInst
*OriginalAlloca
= Roots
[I
].second
;
409 SlotPtr
->takeName(OriginalAlloca
);
410 OriginalAlloca
->replaceAllUsesWith(SlotPtr
);
413 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
414 // really necessary (the collector would never see the intermediate state at
415 // runtime), but it's nicer not to push the half-initialized entry onto the
417 while (isa
<StoreInst
>(IP
)) ++IP
;
418 AtEntry
.SetInsertPoint(IP
->getParent(), IP
);
420 // Push the entry onto the shadow stack.
421 Instruction
*EntryNextPtr
= CreateGEP(Context
, AtEntry
,
422 StackEntry
,0,0,"gc_frame.next");
423 Instruction
*NewHeadVal
= CreateGEP(Context
, AtEntry
,
424 StackEntry
, 0, "gc_newhead");
425 AtEntry
.CreateStore(CurrentHead
, EntryNextPtr
);
426 AtEntry
.CreateStore(NewHeadVal
, Head
);
428 // For each instruction that escapes...
429 EscapeEnumerator
EE(F
, "gc_cleanup");
430 while (IRBuilder
<> *AtExit
= EE
.Next()) {
431 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
432 // AtEntry, since that would make the value live for the entire function.
433 Instruction
*EntryNextPtr2
= CreateGEP(Context
, *AtExit
, StackEntry
, 0, 0,
435 Value
*SavedHead
= AtExit
->CreateLoad(EntryNextPtr2
, "gc_savedhead");
436 AtExit
->CreateStore(SavedHead
, Head
);
439 // Delete the original allocas (which are no longer used) and the intrinsic
440 // calls (which are no longer valid). Doing this last avoids invalidating
442 for (unsigned I
= 0, E
= Roots
.size(); I
!= E
; ++I
) {
443 Roots
[I
].first
->eraseFromParent();
444 Roots
[I
].second
->eraseFromParent();