pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blobe90101a9ba53eb0ec0ef2909d00e7b72dca3c3b2
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 #include <cmath>
38 using namespace llvm;
40 STATISTIC(numJoins , "Number of interval joins performed");
41 STATISTIC(numCrossRCs , "Number of cross class joins performed");
42 STATISTIC(numCommutes , "Number of instruction commuting performed");
43 STATISTIC(numExtends , "Number of copies extended");
44 STATISTIC(NumReMats , "Number of instructions re-materialized");
45 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts , "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID = 0;
50 static cl::opt<bool>
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
53 cl::init(true));
55 static cl::opt<bool>
56 DisableCrossClassJoin("disable-cross-class-join",
57 cl::desc("Avoid coalescing cross register class copies"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 PhysJoinTweak("tweak-phys-join-heuristics",
62 cl::desc("Tweak heuristics for joining phys reg with vr"),
63 cl::init(false), cl::Hidden);
65 static RegisterPass<SimpleRegisterCoalescing>
66 X("simple-register-coalescing", "Simple Register Coalescing");
68 // Declare that we implement the RegisterCoalescer interface
69 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
71 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
73 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.setPreservesCFG();
75 AU.addRequired<LiveIntervals>();
76 AU.addPreserved<LiveIntervals>();
77 AU.addRequired<MachineLoopInfo>();
78 AU.addPreserved<MachineLoopInfo>();
79 AU.addPreservedID(MachineDominatorsID);
80 if (StrongPHIElim)
81 AU.addPreservedID(StrongPHIEliminationID);
82 else
83 AU.addPreservedID(PHIEliminationID);
84 AU.addPreservedID(TwoAddressInstructionPassID);
85 MachineFunctionPass::getAnalysisUsage(AU);
88 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
89 /// being the source and IntB being the dest, thus this defines a value number
90 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
91 /// see if we can merge these two pieces of B into a single value number,
92 /// eliminating a copy. For example:
93 ///
94 /// A3 = B0
95 /// ...
96 /// B1 = A3 <- this copy
97 ///
98 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
99 /// value number to be replaced with B0 (which simplifies the B liveinterval).
101 /// This returns true if an interval was modified.
103 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
104 LiveInterval &IntB,
105 MachineInstr *CopyMI) {
106 MachineInstrIndex CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
108 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
109 // the example above.
110 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
111 assert(BLR != IntB.end() && "Live range not found!");
112 VNInfo *BValNo = BLR->valno;
114 // Get the location that B is defined at. Two options: either this value has
115 // an unknown definition point or it is defined at CopyIdx. If unknown, we
116 // can't process it.
117 if (!BValNo->getCopy()) return false;
118 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
120 // AValNo is the value number in A that defines the copy, A3 in the example.
121 MachineInstrIndex CopyUseIdx = li_->getUseIndex(CopyIdx);
122 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
123 assert(ALR != IntA.end() && "Live range not found!");
124 VNInfo *AValNo = ALR->valno;
125 // If it's re-defined by an early clobber somewhere in the live range, then
126 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
127 // See PR3149:
128 // 172 %ECX<def> = MOV32rr %reg1039<kill>
129 // 180 INLINEASM <es:subl $5,$1
130 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
131 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
132 // 188 %EAX<def> = MOV32rr %EAX<kill>
133 // 196 %ECX<def> = MOV32rr %ECX<kill>
134 // 204 %ECX<def> = MOV32rr %ECX<kill>
135 // 212 %EAX<def> = MOV32rr %EAX<kill>
136 // 220 %EAX<def> = MOV32rr %EAX
137 // 228 %reg1039<def> = MOV32rr %ECX<kill>
138 // The early clobber operand ties ECX input to the ECX def.
140 // The live interval of ECX is represented as this:
141 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
142 // The coalescer has no idea there was a def in the middle of [174,230].
143 if (AValNo->hasRedefByEC())
144 return false;
146 // If AValNo is defined as a copy from IntB, we can potentially process this.
147 // Get the instruction that defines this value number.
148 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
149 if (!SrcReg) return false; // Not defined by a copy.
151 // If the value number is not defined by a copy instruction, ignore it.
153 // If the source register comes from an interval other than IntB, we can't
154 // handle this.
155 if (SrcReg != IntB.reg) return false;
157 // Get the LiveRange in IntB that this value number starts with.
158 LiveInterval::iterator ValLR =
159 IntB.FindLiveRangeContaining(li_->getPrevSlot(AValNo->def));
160 assert(ValLR != IntB.end() && "Live range not found!");
162 // Make sure that the end of the live range is inside the same block as
163 // CopyMI.
164 MachineInstr *ValLREndInst =
165 li_->getInstructionFromIndex(li_->getPrevSlot(ValLR->end));
166 if (!ValLREndInst ||
167 ValLREndInst->getParent() != CopyMI->getParent()) return false;
169 // Okay, we now know that ValLR ends in the same block that the CopyMI
170 // live-range starts. If there are no intervening live ranges between them in
171 // IntB, we can merge them.
172 if (ValLR+1 != BLR) return false;
174 // If a live interval is a physical register, conservatively check if any
175 // of its sub-registers is overlapping the live interval of the virtual
176 // register. If so, do not coalesce.
177 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
178 *tri_->getSubRegisters(IntB.reg)) {
179 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
180 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
181 DEBUG({
182 errs() << "Interfere with sub-register ";
183 li_->getInterval(*SR).print(errs(), tri_);
185 return false;
189 DEBUG({
190 errs() << "\nExtending: ";
191 IntB.print(errs(), tri_);
194 MachineInstrIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
195 // We are about to delete CopyMI, so need to remove it as the 'instruction
196 // that defines this value #'. Update the the valnum with the new defining
197 // instruction #.
198 BValNo->def = FillerStart;
199 BValNo->setCopy(0);
201 // Okay, we can merge them. We need to insert a new liverange:
202 // [ValLR.end, BLR.begin) of either value number, then we merge the
203 // two value numbers.
204 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
206 // If the IntB live range is assigned to a physical register, and if that
207 // physreg has sub-registers, update their live intervals as well.
208 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
209 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
210 LiveInterval &SRLI = li_->getInterval(*SR);
211 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
212 SRLI.getNextValue(FillerStart, 0, true,
213 li_->getVNInfoAllocator())));
217 // Okay, merge "B1" into the same value number as "B0".
218 if (BValNo != ValLR->valno) {
219 IntB.addKills(ValLR->valno, BValNo->kills);
220 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
222 DEBUG({
223 errs() << " result = ";
224 IntB.print(errs(), tri_);
225 errs() << "\n";
228 // If the source instruction was killing the source register before the
229 // merge, unset the isKill marker given the live range has been extended.
230 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
231 if (UIdx != -1) {
232 ValLREndInst->getOperand(UIdx).setIsKill(false);
233 ValLR->valno->removeKill(FillerStart);
236 // If the copy instruction was killing the destination register before the
237 // merge, find the last use and trim the live range. That will also add the
238 // isKill marker.
239 if (CopyMI->killsRegister(IntA.reg))
240 TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
242 ++numExtends;
243 return true;
246 /// HasOtherReachingDefs - Return true if there are definitions of IntB
247 /// other than BValNo val# that can reach uses of AValno val# of IntA.
248 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
249 LiveInterval &IntB,
250 VNInfo *AValNo,
251 VNInfo *BValNo) {
252 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
253 AI != AE; ++AI) {
254 if (AI->valno != AValNo) continue;
255 LiveInterval::Ranges::iterator BI =
256 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
257 if (BI != IntB.ranges.begin())
258 --BI;
259 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
260 if (BI->valno == BValNo)
261 continue;
262 if (BI->start <= AI->start && BI->end > AI->start)
263 return true;
264 if (BI->start > AI->start && BI->start < AI->end)
265 return true;
268 return false;
271 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
272 /// being the source and IntB being the dest, thus this defines a value number
273 /// in IntB. If the source value number (in IntA) is defined by a commutable
274 /// instruction and its other operand is coalesced to the copy dest register,
275 /// see if we can transform the copy into a noop by commuting the definition. For
276 /// example,
278 /// A3 = op A2 B0<kill>
279 /// ...
280 /// B1 = A3 <- this copy
281 /// ...
282 /// = op A3 <- more uses
284 /// ==>
286 /// B2 = op B0 A2<kill>
287 /// ...
288 /// B1 = B2 <- now an identify copy
289 /// ...
290 /// = op B2 <- more uses
292 /// This returns true if an interval was modified.
294 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
295 LiveInterval &IntB,
296 MachineInstr *CopyMI) {
297 MachineInstrIndex CopyIdx =
298 li_->getDefIndex(li_->getInstructionIndex(CopyMI));
300 // FIXME: For now, only eliminate the copy by commuting its def when the
301 // source register is a virtual register. We want to guard against cases
302 // where the copy is a back edge copy and commuting the def lengthen the
303 // live interval of the source register to the entire loop.
304 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
305 return false;
307 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
308 // the example above.
309 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
310 assert(BLR != IntB.end() && "Live range not found!");
311 VNInfo *BValNo = BLR->valno;
313 // Get the location that B is defined at. Two options: either this value has
314 // an unknown definition point or it is defined at CopyIdx. If unknown, we
315 // can't process it.
316 if (!BValNo->getCopy()) return false;
317 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
319 // AValNo is the value number in A that defines the copy, A3 in the example.
320 LiveInterval::iterator ALR =
321 IntA.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
323 assert(ALR != IntA.end() && "Live range not found!");
324 VNInfo *AValNo = ALR->valno;
325 // If other defs can reach uses of this def, then it's not safe to perform
326 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
327 // tested?
328 if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
329 AValNo->isUnused() || AValNo->hasPHIKill())
330 return false;
331 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
332 const TargetInstrDesc &TID = DefMI->getDesc();
333 if (!TID.isCommutable())
334 return false;
335 // If DefMI is a two-address instruction then commuting it will change the
336 // destination register.
337 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
338 assert(DefIdx != -1);
339 unsigned UseOpIdx;
340 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
341 return false;
342 unsigned Op1, Op2, NewDstIdx;
343 if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
344 return false;
345 if (Op1 == UseOpIdx)
346 NewDstIdx = Op2;
347 else if (Op2 == UseOpIdx)
348 NewDstIdx = Op1;
349 else
350 return false;
352 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
353 unsigned NewReg = NewDstMO.getReg();
354 if (NewReg != IntB.reg || !NewDstMO.isKill())
355 return false;
357 // Make sure there are no other definitions of IntB that would reach the
358 // uses which the new definition can reach.
359 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
360 return false;
362 // If some of the uses of IntA.reg is already coalesced away, return false.
363 // It's not possible to determine whether it's safe to perform the coalescing.
364 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
365 UE = mri_->use_end(); UI != UE; ++UI) {
366 MachineInstr *UseMI = &*UI;
367 MachineInstrIndex UseIdx = li_->getInstructionIndex(UseMI);
368 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
369 if (ULR == IntA.end())
370 continue;
371 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
372 return false;
375 // At this point we have decided that it is legal to do this
376 // transformation. Start by commuting the instruction.
377 MachineBasicBlock *MBB = DefMI->getParent();
378 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
379 if (!NewMI)
380 return false;
381 if (NewMI != DefMI) {
382 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
383 MBB->insert(DefMI, NewMI);
384 MBB->erase(DefMI);
386 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
387 NewMI->getOperand(OpIdx).setIsKill();
389 bool BHasPHIKill = BValNo->hasPHIKill();
390 SmallVector<VNInfo*, 4> BDeadValNos;
391 VNInfo::KillSet BKills;
392 std::map<MachineInstrIndex, MachineInstrIndex> BExtend;
394 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
395 // A = or A, B
396 // ...
397 // B = A
398 // ...
399 // C = A<kill>
400 // ...
401 // = B
403 // then do not add kills of A to the newly created B interval.
404 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
405 if (Extended)
406 BExtend[ALR->end] = BLR->end;
408 // Update uses of IntA of the specific Val# with IntB.
409 bool BHasSubRegs = false;
410 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
411 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
412 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
413 UE = mri_->use_end(); UI != UE;) {
414 MachineOperand &UseMO = UI.getOperand();
415 MachineInstr *UseMI = &*UI;
416 ++UI;
417 if (JoinedCopies.count(UseMI))
418 continue;
419 MachineInstrIndex UseIdx = li_->getInstructionIndex(UseMI);
420 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
421 if (ULR == IntA.end() || ULR->valno != AValNo)
422 continue;
423 UseMO.setReg(NewReg);
424 if (UseMI == CopyMI)
425 continue;
426 if (UseMO.isKill()) {
427 if (Extended)
428 UseMO.setIsKill(false);
429 else
430 BKills.push_back(li_->getNextSlot(li_->getUseIndex(UseIdx)));
432 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
433 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
434 continue;
435 if (DstReg == IntB.reg) {
436 // This copy will become a noop. If it's defining a new val#,
437 // remove that val# as well. However this live range is being
438 // extended to the end of the existing live range defined by the copy.
439 MachineInstrIndex DefIdx = li_->getDefIndex(UseIdx);
440 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
441 BHasPHIKill |= DLR->valno->hasPHIKill();
442 assert(DLR->valno->def == DefIdx);
443 BDeadValNos.push_back(DLR->valno);
444 BExtend[DLR->start] = DLR->end;
445 JoinedCopies.insert(UseMI);
446 // If this is a kill but it's going to be removed, the last use
447 // of the same val# is the new kill.
448 if (UseMO.isKill())
449 BKills.pop_back();
453 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
454 // simply extend BLR if CopyMI doesn't end the range.
455 DEBUG({
456 errs() << "\nExtending: ";
457 IntB.print(errs(), tri_);
460 // Remove val#'s defined by copies that will be coalesced away.
461 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
462 VNInfo *DeadVNI = BDeadValNos[i];
463 if (BHasSubRegs) {
464 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
465 LiveInterval &SRLI = li_->getInterval(*SR);
466 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
467 SRLI.removeValNo(SRLR->valno);
470 IntB.removeValNo(BDeadValNos[i]);
473 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
474 // is updated. Kills are also updated.
475 VNInfo *ValNo = BValNo;
476 ValNo->def = AValNo->def;
477 ValNo->setCopy(0);
478 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
479 if (ValNo->kills[j] != BLR->end)
480 BKills.push_back(ValNo->kills[j]);
482 ValNo->kills.clear();
483 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
484 AI != AE; ++AI) {
485 if (AI->valno != AValNo) continue;
486 MachineInstrIndex End = AI->end;
487 std::map<MachineInstrIndex, MachineInstrIndex>::iterator
488 EI = BExtend.find(End);
489 if (EI != BExtend.end())
490 End = EI->second;
491 IntB.addRange(LiveRange(AI->start, End, ValNo));
493 // If the IntB live range is assigned to a physical register, and if that
494 // physreg has sub-registers, update their live intervals as well.
495 if (BHasSubRegs) {
496 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
497 LiveInterval &SRLI = li_->getInterval(*SR);
498 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
502 IntB.addKills(ValNo, BKills);
503 ValNo->setHasPHIKill(BHasPHIKill);
505 DEBUG({
506 errs() << " result = ";
507 IntB.print(errs(), tri_);
508 errs() << '\n';
509 errs() << "\nShortening: ";
510 IntA.print(errs(), tri_);
513 IntA.removeValNo(AValNo);
515 DEBUG({
516 errs() << " result = ";
517 IntA.print(errs(), tri_);
518 errs() << '\n';
521 ++numCommutes;
522 return true;
525 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
526 /// fallthoughs to SuccMBB.
527 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
528 MachineBasicBlock *SuccMBB,
529 const TargetInstrInfo *tii_) {
530 if (MBB == SuccMBB)
531 return true;
532 MachineBasicBlock *TBB = 0, *FBB = 0;
533 SmallVector<MachineOperand, 4> Cond;
534 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
535 MBB->isSuccessor(SuccMBB);
538 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
539 /// from a physical register live interval as well as from the live intervals
540 /// of its sub-registers.
541 static void removeRange(LiveInterval &li,
542 MachineInstrIndex Start, MachineInstrIndex End,
543 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
544 li.removeRange(Start, End, true);
545 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
546 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
547 if (!li_->hasInterval(*SR))
548 continue;
549 LiveInterval &sli = li_->getInterval(*SR);
550 MachineInstrIndex RemoveStart = Start;
551 MachineInstrIndex RemoveEnd = Start;
552 while (RemoveEnd != End) {
553 LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
554 if (LR == sli.end())
555 break;
556 RemoveEnd = (LR->end < End) ? LR->end : End;
557 sli.removeRange(RemoveStart, RemoveEnd, true);
558 RemoveStart = RemoveEnd;
564 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
565 /// as the copy instruction, trim the live interval to the last use and return
566 /// true.
567 bool
568 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(MachineInstrIndex CopyIdx,
569 MachineBasicBlock *CopyMBB,
570 LiveInterval &li,
571 const LiveRange *LR) {
572 MachineInstrIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
573 MachineInstrIndex LastUseIdx;
574 MachineOperand *LastUse =
575 lastRegisterUse(LR->start, li_->getPrevSlot(CopyIdx), li.reg, LastUseIdx);
576 if (LastUse) {
577 MachineInstr *LastUseMI = LastUse->getParent();
578 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
579 // r1024 = op
580 // ...
581 // BB1:
582 // = r1024
584 // BB2:
585 // r1025<dead> = r1024<kill>
586 if (MBBStart < LR->end)
587 removeRange(li, MBBStart, LR->end, li_, tri_);
588 return true;
591 // There are uses before the copy, just shorten the live range to the end
592 // of last use.
593 LastUse->setIsKill();
594 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
595 LR->valno->addKill(li_->getNextSlot(LastUseIdx));
596 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
597 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
598 DstReg == li.reg) {
599 // Last use is itself an identity code.
600 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
601 LastUseMI->getOperand(DeadIdx).setIsDead();
603 return true;
606 // Is it livein?
607 if (LR->start <= MBBStart && LR->end > MBBStart) {
608 if (LR->start == MachineInstrIndex()) {
609 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
610 // Live-in to the function but dead. Remove it from entry live-in set.
611 mf_->begin()->removeLiveIn(li.reg);
613 // FIXME: Shorten intervals in BBs that reaches this BB.
616 return false;
619 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
620 /// computation, replace the copy by rematerialize the definition.
621 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
622 unsigned DstReg,
623 unsigned DstSubIdx,
624 MachineInstr *CopyMI) {
625 MachineInstrIndex CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
626 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
627 assert(SrcLR != SrcInt.end() && "Live range not found!");
628 VNInfo *ValNo = SrcLR->valno;
629 // If other defs can reach uses of this def, then it's not safe to perform
630 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
631 // tested?
632 if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
633 ValNo->isUnused() || ValNo->hasPHIKill())
634 return false;
635 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
636 const TargetInstrDesc &TID = DefMI->getDesc();
637 if (!TID.isAsCheapAsAMove())
638 return false;
639 if (!DefMI->getDesc().isRematerializable() ||
640 !tii_->isTriviallyReMaterializable(DefMI))
641 return false;
642 bool SawStore = false;
643 if (!DefMI->isSafeToMove(tii_, SawStore))
644 return false;
645 if (TID.getNumDefs() != 1)
646 return false;
647 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
648 // Make sure the copy destination register class fits the instruction
649 // definition register class. The mismatch can happen as a result of earlier
650 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
651 const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
652 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
653 if (mri_->getRegClass(DstReg) != RC)
654 return false;
655 } else if (!RC->contains(DstReg))
656 return false;
659 // If destination register has a sub-register index on it, make sure it mtches
660 // the instruction register class.
661 if (DstSubIdx) {
662 const TargetInstrDesc &TID = DefMI->getDesc();
663 if (TID.getNumDefs() != 1)
664 return false;
665 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
666 const TargetRegisterClass *DstSubRC =
667 DstRC->getSubRegisterRegClass(DstSubIdx);
668 const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
669 if (DefRC == DstRC)
670 DstSubIdx = 0;
671 else if (DefRC != DstSubRC)
672 return false;
675 MachineInstrIndex DefIdx = li_->getDefIndex(CopyIdx);
676 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
677 DLR->valno->setCopy(0);
678 // Don't forget to update sub-register intervals.
679 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
680 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
681 if (!li_->hasInterval(*SR))
682 continue;
683 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
684 if (DLR && DLR->valno->getCopy() == CopyMI)
685 DLR->valno->setCopy(0);
689 // If copy kills the source register, find the last use and propagate
690 // kill.
691 bool checkForDeadDef = false;
692 MachineBasicBlock *MBB = CopyMI->getParent();
693 if (CopyMI->killsRegister(SrcInt.reg))
694 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
695 checkForDeadDef = true;
698 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
699 tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI);
700 MachineInstr *NewMI = prior(MII);
702 if (checkForDeadDef) {
703 // PR4090 fix: Trim interval failed because there was no use of the
704 // source interval in this MBB. If the def is in this MBB too then we
705 // should mark it dead:
706 if (DefMI->getParent() == MBB) {
707 DefMI->addRegisterDead(SrcInt.reg, tri_);
708 SrcLR->end = li_->getNextSlot(SrcLR->start);
712 // CopyMI may have implicit operands, transfer them over to the newly
713 // rematerialized instruction. And update implicit def interval valnos.
714 for (unsigned i = CopyMI->getDesc().getNumOperands(),
715 e = CopyMI->getNumOperands(); i != e; ++i) {
716 MachineOperand &MO = CopyMI->getOperand(i);
717 if (MO.isReg() && MO.isImplicit())
718 NewMI->addOperand(MO);
719 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
720 unsigned Reg = MO.getReg();
721 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
722 if (DLR && DLR->valno->getCopy() == CopyMI)
723 DLR->valno->setCopy(0);
727 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
728 CopyMI->eraseFromParent();
729 ReMatCopies.insert(CopyMI);
730 ReMatDefs.insert(DefMI);
731 ++NumReMats;
732 return true;
735 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
736 /// update the subregister number if it is not zero. If DstReg is a
737 /// physical register and the existing subregister number of the def / use
738 /// being updated is not zero, make sure to set it to the correct physical
739 /// subregister.
740 void
741 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
742 unsigned SubIdx) {
743 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
744 if (DstIsPhys && SubIdx) {
745 // Figure out the real physical register we are updating with.
746 DstReg = tri_->getSubReg(DstReg, SubIdx);
747 SubIdx = 0;
750 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
751 E = mri_->reg_end(); I != E; ) {
752 MachineOperand &O = I.getOperand();
753 MachineInstr *UseMI = &*I;
754 ++I;
755 unsigned OldSubIdx = O.getSubReg();
756 if (DstIsPhys) {
757 unsigned UseDstReg = DstReg;
758 if (OldSubIdx)
759 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
761 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
762 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
763 CopySrcSubIdx, CopyDstSubIdx) &&
764 CopySrcReg != CopyDstReg &&
765 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
766 // If the use is a copy and it won't be coalesced away, and its source
767 // is defined by a trivial computation, try to rematerialize it instead.
768 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
769 CopyDstSubIdx, UseMI))
770 continue;
773 O.setReg(UseDstReg);
774 O.setSubReg(0);
775 continue;
778 // Sub-register indexes goes from small to large. e.g.
779 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
780 // EAX: 1 -> AL, 2 -> AX
781 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
782 // sub-register 2 is also AX.
783 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
784 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
785 else if (SubIdx)
786 O.setSubReg(SubIdx);
787 // Remove would-be duplicated kill marker.
788 if (O.isKill() && UseMI->killsRegister(DstReg))
789 O.setIsKill(false);
790 O.setReg(DstReg);
792 // After updating the operand, check if the machine instruction has
793 // become a copy. If so, update its val# information.
794 if (JoinedCopies.count(UseMI))
795 continue;
797 const TargetInstrDesc &TID = UseMI->getDesc();
798 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
799 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
800 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
801 CopySrcSubIdx, CopyDstSubIdx) &&
802 CopySrcReg != CopyDstReg &&
803 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
804 allocatableRegs_[CopyDstReg])) {
805 LiveInterval &LI = li_->getInterval(CopyDstReg);
806 MachineInstrIndex DefIdx =
807 li_->getDefIndex(li_->getInstructionIndex(UseMI));
808 if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
809 if (DLR->valno->def == DefIdx)
810 DLR->valno->setCopy(UseMI);
816 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
817 /// due to live range lengthening as the result of coalescing.
818 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
819 LiveInterval &LI) {
820 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
821 UE = mri_->use_end(); UI != UE; ++UI) {
822 MachineOperand &UseMO = UI.getOperand();
823 if (!UseMO.isKill())
824 continue;
825 MachineInstr *UseMI = UseMO.getParent();
826 MachineInstrIndex UseIdx =
827 li_->getUseIndex(li_->getInstructionIndex(UseMI));
828 const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
829 if (!LR || !LR->valno->isKill(li_->getNextSlot(UseIdx))) {
830 if (LR->valno->def != li_->getNextSlot(UseIdx)) {
831 // Interesting problem. After coalescing reg1027's def and kill are both
832 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
834 // bb5:
835 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
836 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
837 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
838 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
839 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
841 // Do not remove the kill marker on t2LDRi12.
842 UseMO.setIsKill(false);
848 /// removeIntervalIfEmpty - Check if the live interval of a physical register
849 /// is empty, if so remove it and also remove the empty intervals of its
850 /// sub-registers. Return true if live interval is removed.
851 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
852 const TargetRegisterInfo *tri_) {
853 if (li.empty()) {
854 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
855 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
856 if (!li_->hasInterval(*SR))
857 continue;
858 LiveInterval &sli = li_->getInterval(*SR);
859 if (sli.empty())
860 li_->removeInterval(*SR);
862 li_->removeInterval(li.reg);
863 return true;
865 return false;
868 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
869 /// Return true if live interval is removed.
870 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
871 MachineInstr *CopyMI) {
872 MachineInstrIndex CopyIdx = li_->getInstructionIndex(CopyMI);
873 LiveInterval::iterator MLR =
874 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
875 if (MLR == li.end())
876 return false; // Already removed by ShortenDeadCopySrcLiveRange.
877 MachineInstrIndex RemoveStart = MLR->start;
878 MachineInstrIndex RemoveEnd = MLR->end;
879 MachineInstrIndex DefIdx = li_->getDefIndex(CopyIdx);
880 // Remove the liverange that's defined by this.
881 if (RemoveStart == DefIdx && RemoveEnd == li_->getNextSlot(DefIdx)) {
882 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
883 return removeIntervalIfEmpty(li, li_, tri_);
885 return false;
888 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
889 /// the val# it defines. If the live interval becomes empty, remove it as well.
890 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
891 MachineInstr *DefMI) {
892 MachineInstrIndex DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
893 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
894 if (DefIdx != MLR->valno->def)
895 return false;
896 li.removeValNo(MLR->valno);
897 return removeIntervalIfEmpty(li, li_, tri_);
900 /// PropagateDeadness - Propagate the dead marker to the instruction which
901 /// defines the val#.
902 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
903 MachineInstrIndex &LRStart, LiveIntervals *li_,
904 const TargetRegisterInfo* tri_) {
905 MachineInstr *DefMI =
906 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
907 if (DefMI && DefMI != CopyMI) {
908 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
909 if (DeadIdx != -1)
910 DefMI->getOperand(DeadIdx).setIsDead();
911 else
912 DefMI->addOperand(MachineOperand::CreateReg(li.reg,
913 true, true, false, true));
914 LRStart = li_->getNextSlot(LRStart);
918 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
919 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
920 /// ends the live range there. If there isn't another use, then this live range
921 /// is dead. Return true if live interval is removed.
922 bool
923 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
924 MachineInstr *CopyMI) {
925 MachineInstrIndex CopyIdx = li_->getInstructionIndex(CopyMI);
926 if (CopyIdx == MachineInstrIndex()) {
927 // FIXME: special case: function live in. It can be a general case if the
928 // first instruction index starts at > 0 value.
929 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
930 // Live-in to the function but dead. Remove it from entry live-in set.
931 if (mf_->begin()->isLiveIn(li.reg))
932 mf_->begin()->removeLiveIn(li.reg);
933 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
934 removeRange(li, LR->start, LR->end, li_, tri_);
935 return removeIntervalIfEmpty(li, li_, tri_);
938 LiveInterval::iterator LR =
939 li.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
940 if (LR == li.end())
941 // Livein but defined by a phi.
942 return false;
944 MachineInstrIndex RemoveStart = LR->start;
945 MachineInstrIndex RemoveEnd = li_->getNextSlot(li_->getDefIndex(CopyIdx));
946 if (LR->end > RemoveEnd)
947 // More uses past this copy? Nothing to do.
948 return false;
950 // If there is a last use in the same bb, we can't remove the live range.
951 // Shorten the live interval and return.
952 MachineBasicBlock *CopyMBB = CopyMI->getParent();
953 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
954 return false;
956 // There are other kills of the val#. Nothing to do.
957 if (!li.isOnlyLROfValNo(LR))
958 return false;
960 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
961 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
962 // If the live range starts in another mbb and the copy mbb is not a fall
963 // through mbb, then we can only cut the range from the beginning of the
964 // copy mbb.
965 RemoveStart = li_->getNextSlot(li_->getMBBStartIdx(CopyMBB));
967 if (LR->valno->def == RemoveStart) {
968 // If the def MI defines the val# and this copy is the only kill of the
969 // val#, then propagate the dead marker.
970 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
971 ++numDeadValNo;
973 if (LR->valno->isKill(RemoveEnd))
974 LR->valno->removeKill(RemoveEnd);
977 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
978 return removeIntervalIfEmpty(li, li_, tri_);
981 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
982 /// from an implicit def to another register can be coalesced away.
983 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
984 LiveInterval &li,
985 LiveInterval &ImpLi) const{
986 if (!CopyMI->killsRegister(ImpLi.reg))
987 return false;
988 // Make sure this is the only use.
989 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
990 UE = mri_->use_end(); UI != UE;) {
991 MachineInstr *UseMI = &*UI;
992 ++UI;
993 if (CopyMI == UseMI || JoinedCopies.count(UseMI))
994 continue;
995 return false;
997 return true;
1001 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1002 /// a virtual destination register with physical source register.
1003 bool
1004 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
1005 MachineBasicBlock *CopyMBB,
1006 LiveInterval &DstInt,
1007 LiveInterval &SrcInt) {
1008 // If the virtual register live interval is long but it has low use desity,
1009 // do not join them, instead mark the physical register as its allocation
1010 // preference.
1011 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
1012 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1013 unsigned Length = li_->getApproximateInstructionCount(DstInt);
1014 if (Length > Threshold &&
1015 (((float)std::distance(mri_->use_begin(DstInt.reg),
1016 mri_->use_end()) / Length) < (1.0 / Threshold)))
1017 return false;
1019 // If the virtual register live interval extends into a loop, turn down
1020 // aggressiveness.
1021 MachineInstrIndex CopyIdx =
1022 li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1023 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1024 if (!L) {
1025 // Let's see if the virtual register live interval extends into the loop.
1026 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1027 assert(DLR != DstInt.end() && "Live range not found!");
1028 DLR = DstInt.FindLiveRangeContaining(li_->getNextSlot(DLR->end));
1029 if (DLR != DstInt.end()) {
1030 CopyMBB = li_->getMBBFromIndex(DLR->start);
1031 L = loopInfo->getLoopFor(CopyMBB);
1035 if (!L || Length <= Threshold)
1036 return true;
1038 MachineInstrIndex UseIdx = li_->getUseIndex(CopyIdx);
1039 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1040 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1041 if (loopInfo->getLoopFor(SMBB) != L) {
1042 if (!loopInfo->isLoopHeader(CopyMBB))
1043 return false;
1044 // If vr's live interval extends pass the loop header, do not join.
1045 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1046 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1047 MachineBasicBlock *SuccMBB = *SI;
1048 if (SuccMBB == CopyMBB)
1049 continue;
1050 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1051 li_->getNextSlot(li_->getMBBEndIdx(SuccMBB))))
1052 return false;
1055 return true;
1058 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1059 /// copy from a virtual source register to a physical destination register.
1060 bool
1061 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1062 MachineBasicBlock *CopyMBB,
1063 LiveInterval &DstInt,
1064 LiveInterval &SrcInt) {
1065 // If the virtual register live interval is long but it has low use desity,
1066 // do not join them, instead mark the physical register as its allocation
1067 // preference.
1068 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1069 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1070 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1071 if (Length > Threshold &&
1072 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1073 mri_->use_end()) / Length) < (1.0 / Threshold)))
1074 return false;
1076 if (SrcInt.empty())
1077 // Must be implicit_def.
1078 return false;
1080 // If the virtual register live interval is defined or cross a loop, turn
1081 // down aggressiveness.
1082 MachineInstrIndex CopyIdx =
1083 li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1084 MachineInstrIndex UseIdx = li_->getUseIndex(CopyIdx);
1085 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1086 assert(SLR != SrcInt.end() && "Live range not found!");
1087 SLR = SrcInt.FindLiveRangeContaining(li_->getPrevSlot(SLR->start));
1088 if (SLR == SrcInt.end())
1089 return true;
1090 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1091 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1093 if (!L || Length <= Threshold)
1094 return true;
1096 if (loopInfo->getLoopFor(CopyMBB) != L) {
1097 if (SMBB != L->getLoopLatch())
1098 return false;
1099 // If vr's live interval is extended from before the loop latch, do not
1100 // join.
1101 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1102 PE = SMBB->pred_end(); PI != PE; ++PI) {
1103 MachineBasicBlock *PredMBB = *PI;
1104 if (PredMBB == SMBB)
1105 continue;
1106 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1107 li_->getNextSlot(li_->getMBBEndIdx(PredMBB))))
1108 return false;
1111 return true;
1114 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1115 /// two virtual registers from different register classes.
1116 bool
1117 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1118 unsigned SmallReg,
1119 unsigned Threshold) {
1120 // Then make sure the intervals are *short*.
1121 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1122 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1123 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1124 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1125 if (SmallSize > Threshold || LargeSize > Threshold)
1126 if ((float)std::distance(mri_->use_begin(SmallReg),
1127 mri_->use_end()) / SmallSize <
1128 (float)std::distance(mri_->use_begin(LargeReg),
1129 mri_->use_end()) / LargeSize)
1130 return false;
1131 return true;
1134 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1135 /// register with a physical register, check if any of the virtual register
1136 /// operand is a sub-register use or def. If so, make sure it won't result
1137 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1138 /// vr1024 = extract_subreg vr1025, 1
1139 /// ...
1140 /// vr1024 = mov8rr AH
1141 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1142 /// AH does not have a super-reg whose sub-register 1 is AH.
1143 bool
1144 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1145 unsigned VirtReg,
1146 unsigned PhysReg) {
1147 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1148 E = mri_->reg_end(); I != E; ++I) {
1149 MachineOperand &O = I.getOperand();
1150 MachineInstr *MI = &*I;
1151 if (MI == CopyMI || JoinedCopies.count(MI))
1152 continue;
1153 unsigned SubIdx = O.getSubReg();
1154 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1155 return true;
1156 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1157 SubIdx = MI->getOperand(2).getImm();
1158 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1159 return true;
1160 if (O.isDef()) {
1161 unsigned SrcReg = MI->getOperand(1).getReg();
1162 const TargetRegisterClass *RC =
1163 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1164 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1165 : mri_->getRegClass(SrcReg);
1166 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1167 return true;
1170 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1171 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1172 SubIdx = MI->getOperand(3).getImm();
1173 if (VirtReg == MI->getOperand(0).getReg()) {
1174 if (!tri_->getSubReg(PhysReg, SubIdx))
1175 return true;
1176 } else {
1177 unsigned DstReg = MI->getOperand(0).getReg();
1178 const TargetRegisterClass *RC =
1179 TargetRegisterInfo::isPhysicalRegister(DstReg)
1180 ? tri_->getPhysicalRegisterRegClass(DstReg)
1181 : mri_->getRegClass(DstReg);
1182 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1183 return true;
1187 return false;
1191 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1192 /// an extract_subreg where dst is a physical register, e.g.
1193 /// cl = EXTRACT_SUBREG reg1024, 1
1194 bool
1195 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1196 unsigned SrcReg, unsigned SubIdx,
1197 unsigned &RealDstReg) {
1198 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1199 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1200 assert(RealDstReg && "Invalid extract_subreg instruction!");
1202 // For this type of EXTRACT_SUBREG, conservatively
1203 // check if the live interval of the source register interfere with the
1204 // actual super physical register we are trying to coalesce with.
1205 LiveInterval &RHS = li_->getInterval(SrcReg);
1206 if (li_->hasInterval(RealDstReg) &&
1207 RHS.overlaps(li_->getInterval(RealDstReg))) {
1208 DEBUG({
1209 errs() << "Interfere with register ";
1210 li_->getInterval(RealDstReg).print(errs(), tri_);
1212 return false; // Not coalescable
1214 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1215 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1216 DEBUG({
1217 errs() << "Interfere with sub-register ";
1218 li_->getInterval(*SR).print(errs(), tri_);
1220 return false; // Not coalescable
1222 return true;
1225 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1226 /// an insert_subreg where src is a physical register, e.g.
1227 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1228 bool
1229 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1230 unsigned SrcReg, unsigned SubIdx,
1231 unsigned &RealSrcReg) {
1232 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1233 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1234 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1236 LiveInterval &RHS = li_->getInterval(DstReg);
1237 if (li_->hasInterval(RealSrcReg) &&
1238 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1239 DEBUG({
1240 errs() << "Interfere with register ";
1241 li_->getInterval(RealSrcReg).print(errs(), tri_);
1243 return false; // Not coalescable
1245 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1246 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1247 DEBUG({
1248 errs() << "Interfere with sub-register ";
1249 li_->getInterval(*SR).print(errs(), tri_);
1251 return false; // Not coalescable
1253 return true;
1256 /// getRegAllocPreference - Return register allocation preference register.
1258 static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
1259 MachineRegisterInfo *MRI,
1260 const TargetRegisterInfo *TRI) {
1261 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1262 return 0;
1263 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
1264 return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
1267 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1268 /// which are the src/dst of the copy instruction CopyMI. This returns true
1269 /// if the copy was successfully coalesced away. If it is not currently
1270 /// possible to coalesce this interval, but it may be possible if other
1271 /// things get coalesced, then it returns true by reference in 'Again'.
1272 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1273 MachineInstr *CopyMI = TheCopy.MI;
1275 Again = false;
1276 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1277 return false; // Already done.
1279 DEBUG(errs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1281 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1282 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1283 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1284 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1285 unsigned SubIdx = 0;
1286 if (isExtSubReg) {
1287 DstReg = CopyMI->getOperand(0).getReg();
1288 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1289 SrcReg = CopyMI->getOperand(1).getReg();
1290 SrcSubIdx = CopyMI->getOperand(2).getImm();
1291 } else if (isInsSubReg || isSubRegToReg) {
1292 DstReg = CopyMI->getOperand(0).getReg();
1293 DstSubIdx = CopyMI->getOperand(3).getImm();
1294 SrcReg = CopyMI->getOperand(2).getReg();
1295 SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1296 if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
1297 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1298 // coalesced to a larger register so the subreg indices cancel out.
1299 DEBUG(errs() << "\tSource of insert_subreg is already coalesced "
1300 << "to another register.\n");
1301 return false; // Not coalescable.
1303 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1304 llvm_unreachable("Unrecognized copy instruction!");
1307 // If they are already joined we continue.
1308 if (SrcReg == DstReg) {
1309 DEBUG(errs() << "\tCopy already coalesced.\n");
1310 return false; // Not coalescable.
1313 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1314 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1316 // If they are both physical registers, we cannot join them.
1317 if (SrcIsPhys && DstIsPhys) {
1318 DEBUG(errs() << "\tCan not coalesce physregs.\n");
1319 return false; // Not coalescable.
1322 // We only join virtual registers with allocatable physical registers.
1323 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1324 DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
1325 return false; // Not coalescable.
1327 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1328 DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
1329 return false; // Not coalescable.
1332 // Check that a physical source register is compatible with dst regclass
1333 if (SrcIsPhys) {
1334 unsigned SrcSubReg = SrcSubIdx ?
1335 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1336 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1337 const TargetRegisterClass *DstSubRC = DstRC;
1338 if (DstSubIdx)
1339 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1340 assert(DstSubRC && "Illegal subregister index");
1341 if (!DstSubRC->contains(SrcSubReg)) {
1342 DEBUG(errs() << "\tIncompatible destination regclass: "
1343 << tri_->getName(SrcSubReg) << " not in "
1344 << DstSubRC->getName() << ".\n");
1345 return false; // Not coalescable.
1349 // Check that a physical dst register is compatible with source regclass
1350 if (DstIsPhys) {
1351 unsigned DstSubReg = DstSubIdx ?
1352 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1353 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1354 const TargetRegisterClass *SrcSubRC = SrcRC;
1355 if (SrcSubIdx)
1356 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1357 assert(SrcSubRC && "Illegal subregister index");
1358 if (!SrcSubRC->contains(DstReg)) {
1359 DEBUG(errs() << "\tIncompatible source regclass: "
1360 << tri_->getName(DstSubReg) << " not in "
1361 << SrcSubRC->getName() << ".\n");
1362 (void)DstSubReg;
1363 return false; // Not coalescable.
1367 // Should be non-null only when coalescing to a sub-register class.
1368 bool CrossRC = false;
1369 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1370 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1371 const TargetRegisterClass *NewRC = NULL;
1372 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1373 unsigned RealDstReg = 0;
1374 unsigned RealSrcReg = 0;
1375 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1376 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1377 if (SrcIsPhys && isExtSubReg) {
1378 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1379 // coalesced with AX.
1380 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1381 if (DstSubIdx) {
1382 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1383 // coalesced to a larger register so the subreg indices cancel out.
1384 if (DstSubIdx != SubIdx) {
1385 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1386 return false; // Not coalescable.
1388 } else
1389 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1390 SubIdx = 0;
1391 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1392 // EAX = INSERT_SUBREG EAX, r1024, 0
1393 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1394 if (SrcSubIdx) {
1395 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1396 // coalesced to a larger register so the subreg indices cancel out.
1397 if (SrcSubIdx != SubIdx) {
1398 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1399 return false; // Not coalescable.
1401 } else
1402 DstReg = tri_->getSubReg(DstReg, SubIdx);
1403 SubIdx = 0;
1404 } else if ((DstIsPhys && isExtSubReg) ||
1405 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1406 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1407 DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
1408 << " of a super-class.\n");
1409 return false; // Not coalescable.
1412 if (isExtSubReg) {
1413 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1414 return false; // Not coalescable
1415 } else {
1416 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1417 return false; // Not coalescable
1419 SubIdx = 0;
1420 } else {
1421 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1422 : CopyMI->getOperand(2).getSubReg();
1423 if (OldSubIdx) {
1424 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1425 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1426 // coalesced to a larger register so the subreg indices cancel out.
1427 // Also check if the other larger register is of the same register
1428 // class as the would be resulting register.
1429 SubIdx = 0;
1430 else {
1431 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1432 return false; // Not coalescable.
1435 if (SubIdx) {
1436 if (!DstIsPhys && !SrcIsPhys) {
1437 if (isInsSubReg || isSubRegToReg) {
1438 NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
1439 } else // extract_subreg {
1440 NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
1442 if (!NewRC) {
1443 DEBUG(errs() << "\t Conflicting sub-register indices.\n");
1444 return false; // Not coalescable
1447 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1448 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1449 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1450 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1451 Again = true; // May be possible to coalesce later.
1452 return false;
1456 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1457 if (DisableCrossClassJoin)
1458 return false;
1459 CrossRC = true;
1461 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1462 // with another? If it's the resulting destination register, then
1463 // the subidx must be propagated to uses (but only those defined
1464 // by the EXTRACT_SUBREG). If it's being coalesced into another
1465 // register, it should be safe because register is assumed to have
1466 // the register class of the super-register.
1468 // Process moves where one of the registers have a sub-register index.
1469 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1470 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1471 SubIdx = DstMO->getSubReg();
1472 if (SubIdx) {
1473 if (SrcMO->getSubReg())
1474 // FIXME: can we handle this?
1475 return false;
1476 // This is not an insert_subreg but it looks like one.
1477 // e.g. %reg1024:4 = MOV32rr %EAX
1478 isInsSubReg = true;
1479 if (SrcIsPhys) {
1480 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1481 return false; // Not coalescable
1482 SubIdx = 0;
1484 } else {
1485 SubIdx = SrcMO->getSubReg();
1486 if (SubIdx) {
1487 // This is not a extract_subreg but it looks like one.
1488 // e.g. %cl = MOV16rr %reg1024:1
1489 isExtSubReg = true;
1490 if (DstIsPhys) {
1491 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1492 return false; // Not coalescable
1493 SubIdx = 0;
1498 unsigned LargeReg = SrcReg;
1499 unsigned SmallReg = DstReg;
1501 // Now determine the register class of the joined register.
1502 if (isExtSubReg) {
1503 if (SubIdx && DstRC && DstRC->isASubClass()) {
1504 // This is a move to a sub-register class. However, the source is a
1505 // sub-register of a larger register class. We don't know what should
1506 // the register class be. FIXME.
1507 Again = true;
1508 return false;
1510 if (!DstIsPhys && !SrcIsPhys)
1511 NewRC = SrcRC;
1512 } else if (!SrcIsPhys && !DstIsPhys) {
1513 NewRC = getCommonSubClass(SrcRC, DstRC);
1514 if (!NewRC) {
1515 DEBUG(errs() << "\tDisjoint regclasses: "
1516 << SrcRC->getName() << ", "
1517 << DstRC->getName() << ".\n");
1518 return false; // Not coalescable.
1520 if (DstRC->getSize() > SrcRC->getSize())
1521 std::swap(LargeReg, SmallReg);
1524 // If we are joining two virtual registers and the resulting register
1525 // class is more restrictive (fewer register, smaller size). Check if it's
1526 // worth doing the merge.
1527 if (!SrcIsPhys && !DstIsPhys &&
1528 (isExtSubReg || DstRC->isASubClass()) &&
1529 !isWinToJoinCrossClass(LargeReg, SmallReg,
1530 allocatableRCRegs_[NewRC].count())) {
1531 DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
1532 // Allow the coalescer to try again in case either side gets coalesced to
1533 // a physical register that's compatible with the other side. e.g.
1534 // r1024 = MOV32to32_ r1025
1535 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1536 Again = true; // May be possible to coalesce later.
1537 return false;
1541 // Will it create illegal extract_subreg / insert_subreg?
1542 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1543 return false;
1544 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1545 return false;
1547 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1548 LiveInterval &DstInt = li_->getInterval(DstReg);
1549 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1550 "Register mapping is horribly broken!");
1552 DEBUG({
1553 errs() << "\t\tInspecting "; SrcInt.print(errs(), tri_);
1554 errs() << " and "; DstInt.print(errs(), tri_);
1555 errs() << ": ";
1558 // Save a copy of the virtual register live interval. We'll manually
1559 // merge this into the "real" physical register live interval this is
1560 // coalesced with.
1561 LiveInterval *SavedLI = 0;
1562 if (RealDstReg)
1563 SavedLI = li_->dupInterval(&SrcInt);
1564 else if (RealSrcReg)
1565 SavedLI = li_->dupInterval(&DstInt);
1567 // Check if it is necessary to propagate "isDead" property.
1568 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1569 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1570 bool isDead = mopd->isDead();
1572 // We need to be careful about coalescing a source physical register with a
1573 // virtual register. Once the coalescing is done, it cannot be broken and
1574 // these are not spillable! If the destination interval uses are far away,
1575 // think twice about coalescing them!
1576 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1577 // If the copy is in a loop, take care not to coalesce aggressively if the
1578 // src is coming in from outside the loop (or the dst is out of the loop).
1579 // If it's not in a loop, then determine whether to join them base purely
1580 // by the length of the interval.
1581 if (PhysJoinTweak) {
1582 if (SrcIsPhys) {
1583 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1584 mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
1585 ++numAborts;
1586 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1587 Again = true; // May be possible to coalesce later.
1588 return false;
1590 } else {
1591 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1592 mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
1593 ++numAborts;
1594 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1595 Again = true; // May be possible to coalesce later.
1596 return false;
1599 } else {
1600 // If the virtual register live interval is long but it has low use desity,
1601 // do not join them, instead mark the physical register as its allocation
1602 // preference.
1603 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1604 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1605 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1606 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1607 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1608 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1609 float Ratio = 1.0 / Threshold;
1610 if (Length > Threshold &&
1611 (((float)std::distance(mri_->use_begin(JoinVReg),
1612 mri_->use_end()) / Length) < Ratio)) {
1613 mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
1614 ++numAborts;
1615 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1616 Again = true; // May be possible to coalesce later.
1617 return false;
1623 // Okay, attempt to join these two intervals. On failure, this returns false.
1624 // Otherwise, if one of the intervals being joined is a physreg, this method
1625 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1626 // been modified, so we can use this information below to update aliases.
1627 bool Swapped = false;
1628 // If SrcInt is implicitly defined, it's safe to coalesce.
1629 bool isEmpty = SrcInt.empty();
1630 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1631 // Only coalesce an empty interval (defined by implicit_def) with
1632 // another interval which has a valno defined by the CopyMI and the CopyMI
1633 // is a kill of the implicit def.
1634 DEBUG(errs() << "Not profitable!\n");
1635 return false;
1638 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1639 // Coalescing failed.
1641 // If definition of source is defined by trivial computation, try
1642 // rematerializing it.
1643 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1644 ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
1645 return true;
1647 // If we can eliminate the copy without merging the live ranges, do so now.
1648 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1649 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1650 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1651 JoinedCopies.insert(CopyMI);
1652 return true;
1655 // Otherwise, we are unable to join the intervals.
1656 DEBUG(errs() << "Interference!\n");
1657 Again = true; // May be possible to coalesce later.
1658 return false;
1661 LiveInterval *ResSrcInt = &SrcInt;
1662 LiveInterval *ResDstInt = &DstInt;
1663 if (Swapped) {
1664 std::swap(SrcReg, DstReg);
1665 std::swap(ResSrcInt, ResDstInt);
1667 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1668 "LiveInterval::join didn't work right!");
1670 // If we're about to merge live ranges into a physical register live interval,
1671 // we have to update any aliased register's live ranges to indicate that they
1672 // have clobbered values for this range.
1673 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1674 // If this is a extract_subreg where dst is a physical register, e.g.
1675 // cl = EXTRACT_SUBREG reg1024, 1
1676 // then create and update the actual physical register allocated to RHS.
1677 if (RealDstReg || RealSrcReg) {
1678 LiveInterval &RealInt =
1679 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1680 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1681 E = SavedLI->vni_end(); I != E; ++I) {
1682 const VNInfo *ValNo = *I;
1683 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
1684 false, // updated at *
1685 li_->getVNInfoAllocator());
1686 NewValNo->setFlags(ValNo->getFlags()); // * updated here.
1687 RealInt.addKills(NewValNo, ValNo->kills);
1688 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1690 RealInt.weight += SavedLI->weight;
1691 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1694 // Update the liveintervals of sub-registers.
1695 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1696 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1697 li_->getVNInfoAllocator());
1700 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1701 // larger super-register.
1702 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1703 !SrcIsPhys && !DstIsPhys) {
1704 if ((isExtSubReg && !Swapped) ||
1705 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1706 ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
1707 std::swap(SrcReg, DstReg);
1708 std::swap(ResSrcInt, ResDstInt);
1712 // Coalescing to a virtual register that is of a sub-register class of the
1713 // other. Make sure the resulting register is set to the right register class.
1714 if (CrossRC)
1715 ++numCrossRCs;
1717 // This may happen even if it's cross-rc coalescing. e.g.
1718 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1719 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1720 // be allocate a register from GR64_ABCD.
1721 if (NewRC)
1722 mri_->setRegClass(DstReg, NewRC);
1724 // Remember to delete the copy instruction.
1725 JoinedCopies.insert(CopyMI);
1727 // Some live range has been lengthened due to colaescing, eliminate the
1728 // unnecessary kills.
1729 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1730 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1731 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1733 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1735 // SrcReg is guarateed to be the register whose live interval that is
1736 // being merged.
1737 li_->removeInterval(SrcReg);
1739 // Update regalloc hint.
1740 tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
1742 // Manually deleted the live interval copy.
1743 if (SavedLI) {
1744 SavedLI->clear();
1745 delete SavedLI;
1748 // If resulting interval has a preference that no longer fits because of subreg
1749 // coalescing, just clear the preference.
1750 unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
1751 if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1752 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1753 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1754 if (!RC->contains(Preference))
1755 mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
1758 DEBUG({
1759 errs() << "\n\t\tJoined. Result = ";
1760 ResDstInt->print(errs(), tri_);
1761 errs() << "\n";
1764 ++numJoins;
1765 return true;
1768 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1769 /// compute what the resultant value numbers for each value in the input two
1770 /// ranges will be. This is complicated by copies between the two which can
1771 /// and will commonly cause multiple value numbers to be merged into one.
1773 /// VN is the value number that we're trying to resolve. InstDefiningValue
1774 /// keeps track of the new InstDefiningValue assignment for the result
1775 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1776 /// whether a value in this or other is a copy from the opposite set.
1777 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1778 /// already been assigned.
1780 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1781 /// contains the value number the copy is from.
1783 static unsigned ComputeUltimateVN(VNInfo *VNI,
1784 SmallVector<VNInfo*, 16> &NewVNInfo,
1785 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1786 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1787 SmallVector<int, 16> &ThisValNoAssignments,
1788 SmallVector<int, 16> &OtherValNoAssignments) {
1789 unsigned VN = VNI->id;
1791 // If the VN has already been computed, just return it.
1792 if (ThisValNoAssignments[VN] >= 0)
1793 return ThisValNoAssignments[VN];
1794 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1796 // If this val is not a copy from the other val, then it must be a new value
1797 // number in the destination.
1798 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1799 if (I == ThisFromOther.end()) {
1800 NewVNInfo.push_back(VNI);
1801 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1803 VNInfo *OtherValNo = I->second;
1805 // Otherwise, this *is* a copy from the RHS. If the other side has already
1806 // been computed, return it.
1807 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1808 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1810 // Mark this value number as currently being computed, then ask what the
1811 // ultimate value # of the other value is.
1812 ThisValNoAssignments[VN] = -2;
1813 unsigned UltimateVN =
1814 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1815 OtherValNoAssignments, ThisValNoAssignments);
1816 return ThisValNoAssignments[VN] = UltimateVN;
1819 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1820 return std::find(V.begin(), V.end(), Val) != V.end();
1823 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1824 /// the specified live interval is defined by a copy from the specified
1825 /// register.
1826 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1827 LiveRange *LR,
1828 unsigned Reg) {
1829 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1830 if (SrcReg == Reg)
1831 return true;
1832 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1833 if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
1834 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1835 *tri_->getSuperRegisters(li.reg)) {
1836 // It's a sub-register live interval, we may not have precise information.
1837 // Re-compute it.
1838 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1839 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1840 if (DefMI &&
1841 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1842 DstReg == li.reg && SrcReg == Reg) {
1843 // Cache computed info.
1844 LR->valno->def = LR->start;
1845 LR->valno->setCopy(DefMI);
1846 return true;
1849 return false;
1852 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1853 /// caller of this method must guarantee that the RHS only contains a single
1854 /// value number and that the RHS is not defined by a copy from this
1855 /// interval. This returns false if the intervals are not joinable, or it
1856 /// joins them and returns true.
1857 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1858 assert(RHS.containsOneValue());
1860 // Some number (potentially more than one) value numbers in the current
1861 // interval may be defined as copies from the RHS. Scan the overlapping
1862 // portions of the LHS and RHS, keeping track of this and looking for
1863 // overlapping live ranges that are NOT defined as copies. If these exist, we
1864 // cannot coalesce.
1866 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1867 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1869 if (LHSIt->start < RHSIt->start) {
1870 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1871 if (LHSIt != LHS.begin()) --LHSIt;
1872 } else if (RHSIt->start < LHSIt->start) {
1873 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1874 if (RHSIt != RHS.begin()) --RHSIt;
1877 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1879 while (1) {
1880 // Determine if these live intervals overlap.
1881 bool Overlaps = false;
1882 if (LHSIt->start <= RHSIt->start)
1883 Overlaps = LHSIt->end > RHSIt->start;
1884 else
1885 Overlaps = RHSIt->end > LHSIt->start;
1887 // If the live intervals overlap, there are two interesting cases: if the
1888 // LHS interval is defined by a copy from the RHS, it's ok and we record
1889 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1890 // coalesce these live ranges and we bail out.
1891 if (Overlaps) {
1892 // If we haven't already recorded that this value # is safe, check it.
1893 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1894 // Copy from the RHS?
1895 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1896 return false; // Nope, bail out.
1898 if (LHSIt->contains(RHSIt->valno->def))
1899 // Here is an interesting situation:
1900 // BB1:
1901 // vr1025 = copy vr1024
1902 // ..
1903 // BB2:
1904 // vr1024 = op
1905 // = vr1025
1906 // Even though vr1025 is copied from vr1024, it's not safe to
1907 // coalesce them since the live range of vr1025 intersects the
1908 // def of vr1024. This happens because vr1025 is assigned the
1909 // value of the previous iteration of vr1024.
1910 return false;
1911 EliminatedLHSVals.push_back(LHSIt->valno);
1914 // We know this entire LHS live range is okay, so skip it now.
1915 if (++LHSIt == LHSEnd) break;
1916 continue;
1919 if (LHSIt->end < RHSIt->end) {
1920 if (++LHSIt == LHSEnd) break;
1921 } else {
1922 // One interesting case to check here. It's possible that we have
1923 // something like "X3 = Y" which defines a new value number in the LHS,
1924 // and is the last use of this liverange of the RHS. In this case, we
1925 // want to notice this copy (so that it gets coalesced away) even though
1926 // the live ranges don't actually overlap.
1927 if (LHSIt->start == RHSIt->end) {
1928 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1929 // We already know that this value number is going to be merged in
1930 // if coalescing succeeds. Just skip the liverange.
1931 if (++LHSIt == LHSEnd) break;
1932 } else {
1933 // Otherwise, if this is a copy from the RHS, mark it as being merged
1934 // in.
1935 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1936 if (LHSIt->contains(RHSIt->valno->def))
1937 // Here is an interesting situation:
1938 // BB1:
1939 // vr1025 = copy vr1024
1940 // ..
1941 // BB2:
1942 // vr1024 = op
1943 // = vr1025
1944 // Even though vr1025 is copied from vr1024, it's not safe to
1945 // coalesced them since live range of vr1025 intersects the
1946 // def of vr1024. This happens because vr1025 is assigned the
1947 // value of the previous iteration of vr1024.
1948 return false;
1949 EliminatedLHSVals.push_back(LHSIt->valno);
1951 // We know this entire LHS live range is okay, so skip it now.
1952 if (++LHSIt == LHSEnd) break;
1957 if (++RHSIt == RHSEnd) break;
1961 // If we got here, we know that the coalescing will be successful and that
1962 // the value numbers in EliminatedLHSVals will all be merged together. Since
1963 // the most common case is that EliminatedLHSVals has a single number, we
1964 // optimize for it: if there is more than one value, we merge them all into
1965 // the lowest numbered one, then handle the interval as if we were merging
1966 // with one value number.
1967 VNInfo *LHSValNo = NULL;
1968 if (EliminatedLHSVals.size() > 1) {
1969 // Loop through all the equal value numbers merging them into the smallest
1970 // one.
1971 VNInfo *Smallest = EliminatedLHSVals[0];
1972 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1973 if (EliminatedLHSVals[i]->id < Smallest->id) {
1974 // Merge the current notion of the smallest into the smaller one.
1975 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1976 Smallest = EliminatedLHSVals[i];
1977 } else {
1978 // Merge into the smallest.
1979 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1982 LHSValNo = Smallest;
1983 } else if (EliminatedLHSVals.empty()) {
1984 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
1985 *tri_->getSuperRegisters(LHS.reg))
1986 // Imprecise sub-register information. Can't handle it.
1987 return false;
1988 llvm_unreachable("No copies from the RHS?");
1989 } else {
1990 LHSValNo = EliminatedLHSVals[0];
1993 // Okay, now that there is a single LHS value number that we're merging the
1994 // RHS into, update the value number info for the LHS to indicate that the
1995 // value number is defined where the RHS value number was.
1996 const VNInfo *VNI = RHS.getValNumInfo(0);
1997 LHSValNo->def = VNI->def;
1998 LHSValNo->setCopy(VNI->getCopy());
2000 // Okay, the final step is to loop over the RHS live intervals, adding them to
2001 // the LHS.
2002 if (VNI->hasPHIKill())
2003 LHSValNo->setHasPHIKill(true);
2004 LHS.addKills(LHSValNo, VNI->kills);
2005 LHS.MergeRangesInAsValue(RHS, LHSValNo);
2007 LHS.ComputeJoinedWeight(RHS);
2009 // Update regalloc hint if both are virtual registers.
2010 if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
2011 TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
2012 std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
2013 std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
2014 if (RHSPref != LHSPref)
2015 mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
2018 // Update the liveintervals of sub-registers.
2019 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2020 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2021 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2022 li_->getVNInfoAllocator());
2024 return true;
2027 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2028 /// returns false. Otherwise, if one of the intervals being joined is a
2029 /// physreg, this method always canonicalizes LHS to be it. The output
2030 /// "RHS" will not have been modified, so we can use this information
2031 /// below to update aliases.
2032 bool
2033 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2034 bool &Swapped) {
2035 // Compute the final value assignment, assuming that the live ranges can be
2036 // coalesced.
2037 SmallVector<int, 16> LHSValNoAssignments;
2038 SmallVector<int, 16> RHSValNoAssignments;
2039 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2040 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2041 SmallVector<VNInfo*, 16> NewVNInfo;
2043 // If a live interval is a physical register, conservatively check if any
2044 // of its sub-registers is overlapping the live interval of the virtual
2045 // register. If so, do not coalesce.
2046 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2047 *tri_->getSubRegisters(LHS.reg)) {
2048 // If it's coalescing a virtual register to a physical register, estimate
2049 // its live interval length. This is the *cost* of scanning an entire live
2050 // interval. If the cost is low, we'll do an exhaustive check instead.
2052 // If this is something like this:
2053 // BB1:
2054 // v1024 = op
2055 // ...
2056 // BB2:
2057 // ...
2058 // RAX = v1024
2060 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2061 // less conservative check. It's possible a sub-register is defined before
2062 // v1024 (or live in) and live out of BB1.
2063 if (RHS.containsOneValue() &&
2064 li_->intervalIsInOneMBB(RHS) &&
2065 li_->getApproximateInstructionCount(RHS) <= 10) {
2066 // Perform a more exhaustive check for some common cases.
2067 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2068 return false;
2069 } else {
2070 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2071 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2072 DEBUG({
2073 errs() << "Interfere with sub-register ";
2074 li_->getInterval(*SR).print(errs(), tri_);
2076 return false;
2079 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2080 *tri_->getSubRegisters(RHS.reg)) {
2081 if (LHS.containsOneValue() &&
2082 li_->getApproximateInstructionCount(LHS) <= 10) {
2083 // Perform a more exhaustive check for some common cases.
2084 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2085 return false;
2086 } else {
2087 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2088 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2089 DEBUG({
2090 errs() << "Interfere with sub-register ";
2091 li_->getInterval(*SR).print(errs(), tri_);
2093 return false;
2098 // Compute ultimate value numbers for the LHS and RHS values.
2099 if (RHS.containsOneValue()) {
2100 // Copies from a liveinterval with a single value are simple to handle and
2101 // very common, handle the special case here. This is important, because
2102 // often RHS is small and LHS is large (e.g. a physreg).
2104 // Find out if the RHS is defined as a copy from some value in the LHS.
2105 int RHSVal0DefinedFromLHS = -1;
2106 int RHSValID = -1;
2107 VNInfo *RHSValNoInfo = NULL;
2108 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2109 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2110 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2111 // If RHS is not defined as a copy from the LHS, we can use simpler and
2112 // faster checks to see if the live ranges are coalescable. This joiner
2113 // can't swap the LHS/RHS intervals though.
2114 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2115 return SimpleJoin(LHS, RHS);
2116 } else {
2117 RHSValNoInfo = RHSValNoInfo0;
2119 } else {
2120 // It was defined as a copy from the LHS, find out what value # it is.
2121 RHSValNoInfo =
2122 LHS.getLiveRangeContaining(li_->getPrevSlot(RHSValNoInfo0->def))->valno;
2123 RHSValID = RHSValNoInfo->id;
2124 RHSVal0DefinedFromLHS = RHSValID;
2127 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2128 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2129 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2131 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2132 // should now get updated.
2133 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2134 i != e; ++i) {
2135 VNInfo *VNI = *i;
2136 unsigned VN = VNI->id;
2137 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2138 if (LHSSrcReg != RHS.reg) {
2139 // If this is not a copy from the RHS, its value number will be
2140 // unmodified by the coalescing.
2141 NewVNInfo[VN] = VNI;
2142 LHSValNoAssignments[VN] = VN;
2143 } else if (RHSValID == -1) {
2144 // Otherwise, it is a copy from the RHS, and we don't already have a
2145 // value# for it. Keep the current value number, but remember it.
2146 LHSValNoAssignments[VN] = RHSValID = VN;
2147 NewVNInfo[VN] = RHSValNoInfo;
2148 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2149 } else {
2150 // Otherwise, use the specified value #.
2151 LHSValNoAssignments[VN] = RHSValID;
2152 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2153 NewVNInfo[VN] = RHSValNoInfo;
2154 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2157 } else {
2158 NewVNInfo[VN] = VNI;
2159 LHSValNoAssignments[VN] = VN;
2163 assert(RHSValID != -1 && "Didn't find value #?");
2164 RHSValNoAssignments[0] = RHSValID;
2165 if (RHSVal0DefinedFromLHS != -1) {
2166 // This path doesn't go through ComputeUltimateVN so just set
2167 // it to anything.
2168 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2170 } else {
2171 // Loop over the value numbers of the LHS, seeing if any are defined from
2172 // the RHS.
2173 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2174 i != e; ++i) {
2175 VNInfo *VNI = *i;
2176 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2177 continue;
2179 // DstReg is known to be a register in the LHS interval. If the src is
2180 // from the RHS interval, we can use its value #.
2181 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2182 continue;
2184 // Figure out the value # from the RHS.
2185 LHSValsDefinedFromRHS[VNI]=
2186 RHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
2189 // Loop over the value numbers of the RHS, seeing if any are defined from
2190 // the LHS.
2191 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2192 i != e; ++i) {
2193 VNInfo *VNI = *i;
2194 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2195 continue;
2197 // DstReg is known to be a register in the RHS interval. If the src is
2198 // from the LHS interval, we can use its value #.
2199 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2200 continue;
2202 // Figure out the value # from the LHS.
2203 RHSValsDefinedFromLHS[VNI]=
2204 LHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
2207 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2208 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2209 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2211 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2212 i != e; ++i) {
2213 VNInfo *VNI = *i;
2214 unsigned VN = VNI->id;
2215 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2216 continue;
2217 ComputeUltimateVN(VNI, NewVNInfo,
2218 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2219 LHSValNoAssignments, RHSValNoAssignments);
2221 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2222 i != e; ++i) {
2223 VNInfo *VNI = *i;
2224 unsigned VN = VNI->id;
2225 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2226 continue;
2227 // If this value number isn't a copy from the LHS, it's a new number.
2228 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2229 NewVNInfo.push_back(VNI);
2230 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2231 continue;
2234 ComputeUltimateVN(VNI, NewVNInfo,
2235 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2236 RHSValNoAssignments, LHSValNoAssignments);
2240 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2241 // interval lists to see if these intervals are coalescable.
2242 LiveInterval::const_iterator I = LHS.begin();
2243 LiveInterval::const_iterator IE = LHS.end();
2244 LiveInterval::const_iterator J = RHS.begin();
2245 LiveInterval::const_iterator JE = RHS.end();
2247 // Skip ahead until the first place of potential sharing.
2248 if (I->start < J->start) {
2249 I = std::upper_bound(I, IE, J->start);
2250 if (I != LHS.begin()) --I;
2251 } else if (J->start < I->start) {
2252 J = std::upper_bound(J, JE, I->start);
2253 if (J != RHS.begin()) --J;
2256 while (1) {
2257 // Determine if these two live ranges overlap.
2258 bool Overlaps;
2259 if (I->start < J->start) {
2260 Overlaps = I->end > J->start;
2261 } else {
2262 Overlaps = J->end > I->start;
2265 // If so, check value # info to determine if they are really different.
2266 if (Overlaps) {
2267 // If the live range overlap will map to the same value number in the
2268 // result liverange, we can still coalesce them. If not, we can't.
2269 if (LHSValNoAssignments[I->valno->id] !=
2270 RHSValNoAssignments[J->valno->id])
2271 return false;
2274 if (I->end < J->end) {
2275 ++I;
2276 if (I == IE) break;
2277 } else {
2278 ++J;
2279 if (J == JE) break;
2283 // Update kill info. Some live ranges are extended due to copy coalescing.
2284 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2285 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2286 VNInfo *VNI = I->first;
2287 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2288 NewVNInfo[LHSValID]->removeKill(VNI->def);
2289 if (VNI->hasPHIKill())
2290 NewVNInfo[LHSValID]->setHasPHIKill(true);
2291 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2294 // Update kill info. Some live ranges are extended due to copy coalescing.
2295 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2296 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2297 VNInfo *VNI = I->first;
2298 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2299 NewVNInfo[RHSValID]->removeKill(VNI->def);
2300 if (VNI->hasPHIKill())
2301 NewVNInfo[RHSValID]->setHasPHIKill(true);
2302 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2305 // If we get here, we know that we can coalesce the live ranges. Ask the
2306 // intervals to coalesce themselves now.
2307 if ((RHS.ranges.size() > LHS.ranges.size() &&
2308 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2309 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2310 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
2311 mri_);
2312 Swapped = true;
2313 } else {
2314 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
2315 mri_);
2316 Swapped = false;
2318 return true;
2321 namespace {
2322 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2323 // depth of the basic block (the unsigned), and then on the MBB number.
2324 struct DepthMBBCompare {
2325 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2326 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2327 if (LHS.first > RHS.first) return true; // Deeper loops first
2328 return LHS.first == RHS.first &&
2329 LHS.second->getNumber() < RHS.second->getNumber();
2334 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2335 std::vector<CopyRec> &TryAgain) {
2336 DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
2338 std::vector<CopyRec> VirtCopies;
2339 std::vector<CopyRec> PhysCopies;
2340 std::vector<CopyRec> ImpDefCopies;
2341 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2342 MII != E;) {
2343 MachineInstr *Inst = MII++;
2345 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2346 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2347 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2348 DstReg = Inst->getOperand(0).getReg();
2349 SrcReg = Inst->getOperand(1).getReg();
2350 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2351 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2352 DstReg = Inst->getOperand(0).getReg();
2353 SrcReg = Inst->getOperand(2).getReg();
2354 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2355 continue;
2357 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2358 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2359 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2360 ImpDefCopies.push_back(CopyRec(Inst, 0));
2361 else if (SrcIsPhys || DstIsPhys)
2362 PhysCopies.push_back(CopyRec(Inst, 0));
2363 else
2364 VirtCopies.push_back(CopyRec(Inst, 0));
2367 // Try coalescing implicit copies first, followed by copies to / from
2368 // physical registers, then finally copies from virtual registers to
2369 // virtual registers.
2370 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2371 CopyRec &TheCopy = ImpDefCopies[i];
2372 bool Again = false;
2373 if (!JoinCopy(TheCopy, Again))
2374 if (Again)
2375 TryAgain.push_back(TheCopy);
2377 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2378 CopyRec &TheCopy = PhysCopies[i];
2379 bool Again = false;
2380 if (!JoinCopy(TheCopy, Again))
2381 if (Again)
2382 TryAgain.push_back(TheCopy);
2384 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2385 CopyRec &TheCopy = VirtCopies[i];
2386 bool Again = false;
2387 if (!JoinCopy(TheCopy, Again))
2388 if (Again)
2389 TryAgain.push_back(TheCopy);
2393 void SimpleRegisterCoalescing::joinIntervals() {
2394 DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
2396 std::vector<CopyRec> TryAgainList;
2397 if (loopInfo->empty()) {
2398 // If there are no loops in the function, join intervals in function order.
2399 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2400 I != E; ++I)
2401 CopyCoalesceInMBB(I, TryAgainList);
2402 } else {
2403 // Otherwise, join intervals in inner loops before other intervals.
2404 // Unfortunately we can't just iterate over loop hierarchy here because
2405 // there may be more MBB's than BB's. Collect MBB's for sorting.
2407 // Join intervals in the function prolog first. We want to join physical
2408 // registers with virtual registers before the intervals got too long.
2409 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2410 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2411 MachineBasicBlock *MBB = I;
2412 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2415 // Sort by loop depth.
2416 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2418 // Finally, join intervals in loop nest order.
2419 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2420 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2423 // Joining intervals can allow other intervals to be joined. Iteratively join
2424 // until we make no progress.
2425 bool ProgressMade = true;
2426 while (ProgressMade) {
2427 ProgressMade = false;
2429 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2430 CopyRec &TheCopy = TryAgainList[i];
2431 if (!TheCopy.MI)
2432 continue;
2434 bool Again = false;
2435 bool Success = JoinCopy(TheCopy, Again);
2436 if (Success || !Again) {
2437 TheCopy.MI = 0; // Mark this one as done.
2438 ProgressMade = true;
2444 /// Return true if the two specified registers belong to different register
2445 /// classes. The registers may be either phys or virt regs.
2446 bool
2447 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2448 unsigned RegB) const {
2449 // Get the register classes for the first reg.
2450 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2451 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2452 "Shouldn't consider two physregs!");
2453 return !mri_->getRegClass(RegB)->contains(RegA);
2456 // Compare against the regclass for the second reg.
2457 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2458 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2459 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2460 return RegClassA != RegClassB;
2462 return !RegClassA->contains(RegB);
2465 /// lastRegisterUse - Returns the last use of the specific register between
2466 /// cycles Start and End or NULL if there are no uses.
2467 MachineOperand *
2468 SimpleRegisterCoalescing::lastRegisterUse(MachineInstrIndex Start,
2469 MachineInstrIndex End,
2470 unsigned Reg,
2471 MachineInstrIndex &UseIdx) const{
2472 UseIdx = MachineInstrIndex();
2473 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2474 MachineOperand *LastUse = NULL;
2475 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2476 E = mri_->use_end(); I != E; ++I) {
2477 MachineOperand &Use = I.getOperand();
2478 MachineInstr *UseMI = Use.getParent();
2479 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2480 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2481 SrcReg == DstReg)
2482 // Ignore identity copies.
2483 continue;
2484 MachineInstrIndex Idx = li_->getInstructionIndex(UseMI);
2485 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2486 LastUse = &Use;
2487 UseIdx = li_->getUseIndex(Idx);
2490 return LastUse;
2493 MachineInstrIndex s = Start;
2494 MachineInstrIndex e = li_->getBaseIndex(li_->getPrevSlot(End));
2495 while (e >= s) {
2496 // Skip deleted instructions
2497 MachineInstr *MI = li_->getInstructionFromIndex(e);
2498 while (e != MachineInstrIndex() && li_->getPrevIndex(e) >= s && !MI) {
2499 e = li_->getPrevIndex(e);
2500 MI = li_->getInstructionFromIndex(e);
2502 if (e < s || MI == NULL)
2503 return NULL;
2505 // Ignore identity copies.
2506 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2507 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2508 SrcReg == DstReg))
2509 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2510 MachineOperand &Use = MI->getOperand(i);
2511 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2512 tri_->regsOverlap(Use.getReg(), Reg)) {
2513 UseIdx = li_->getUseIndex(e);
2514 return &Use;
2518 e = li_->getPrevIndex(e);
2521 return NULL;
2525 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2526 if (TargetRegisterInfo::isPhysicalRegister(reg))
2527 errs() << tri_->getName(reg);
2528 else
2529 errs() << "%reg" << reg;
2532 void SimpleRegisterCoalescing::releaseMemory() {
2533 JoinedCopies.clear();
2534 ReMatCopies.clear();
2535 ReMatDefs.clear();
2538 bool SimpleRegisterCoalescing::isZeroLengthInterval(LiveInterval *li) const {
2539 for (LiveInterval::Ranges::const_iterator
2540 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2541 if (li_->getPrevIndex(i->end) > i->start)
2542 return false;
2543 return true;
2547 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2548 mf_ = &fn;
2549 mri_ = &fn.getRegInfo();
2550 tm_ = &fn.getTarget();
2551 tri_ = tm_->getRegisterInfo();
2552 tii_ = tm_->getInstrInfo();
2553 li_ = &getAnalysis<LiveIntervals>();
2554 loopInfo = &getAnalysis<MachineLoopInfo>();
2556 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2557 << "********** Function: "
2558 << ((Value*)mf_->getFunction())->getName() << '\n');
2560 allocatableRegs_ = tri_->getAllocatableSet(fn);
2561 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2562 E = tri_->regclass_end(); I != E; ++I)
2563 allocatableRCRegs_.insert(std::make_pair(*I,
2564 tri_->getAllocatableSet(fn, *I)));
2566 // Join (coalesce) intervals if requested.
2567 if (EnableJoining) {
2568 joinIntervals();
2569 DEBUG({
2570 errs() << "********** INTERVALS POST JOINING **********\n";
2571 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2572 I->second->print(errs(), tri_);
2573 errs() << "\n";
2578 // Perform a final pass over the instructions and compute spill weights
2579 // and remove identity moves.
2580 SmallVector<unsigned, 4> DeadDefs;
2581 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2582 mbbi != mbbe; ++mbbi) {
2583 MachineBasicBlock* mbb = mbbi;
2584 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2586 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2587 mii != mie; ) {
2588 MachineInstr *MI = mii;
2589 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2590 if (JoinedCopies.count(MI)) {
2591 // Delete all coalesced copies.
2592 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2593 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2594 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2595 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2596 "Unrecognized copy instruction");
2597 DstReg = MI->getOperand(0).getReg();
2599 if (MI->registerDefIsDead(DstReg)) {
2600 LiveInterval &li = li_->getInterval(DstReg);
2601 if (!ShortenDeadCopySrcLiveRange(li, MI))
2602 ShortenDeadCopyLiveRange(li, MI);
2604 li_->RemoveMachineInstrFromMaps(MI);
2605 mii = mbbi->erase(mii);
2606 ++numPeep;
2607 continue;
2610 // Now check if this is a remat'ed def instruction which is now dead.
2611 if (ReMatDefs.count(MI)) {
2612 bool isDead = true;
2613 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2614 const MachineOperand &MO = MI->getOperand(i);
2615 if (!MO.isReg())
2616 continue;
2617 unsigned Reg = MO.getReg();
2618 if (!Reg)
2619 continue;
2620 if (TargetRegisterInfo::isVirtualRegister(Reg))
2621 DeadDefs.push_back(Reg);
2622 if (MO.isDead())
2623 continue;
2624 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2625 !mri_->use_empty(Reg)) {
2626 isDead = false;
2627 break;
2630 if (isDead) {
2631 while (!DeadDefs.empty()) {
2632 unsigned DeadDef = DeadDefs.back();
2633 DeadDefs.pop_back();
2634 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2636 li_->RemoveMachineInstrFromMaps(mii);
2637 mii = mbbi->erase(mii);
2638 continue;
2639 } else
2640 DeadDefs.clear();
2643 // If the move will be an identity move delete it
2644 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2645 if (isMove && SrcReg == DstReg) {
2646 if (li_->hasInterval(SrcReg)) {
2647 LiveInterval &RegInt = li_->getInterval(SrcReg);
2648 // If def of this move instruction is dead, remove its live range
2649 // from the dstination register's live interval.
2650 if (MI->registerDefIsDead(DstReg)) {
2651 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2652 ShortenDeadCopyLiveRange(RegInt, MI);
2655 li_->RemoveMachineInstrFromMaps(MI);
2656 mii = mbbi->erase(mii);
2657 ++numPeep;
2658 } else {
2659 SmallSet<unsigned, 4> UniqueUses;
2660 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2661 const MachineOperand &mop = MI->getOperand(i);
2662 if (mop.isReg() && mop.getReg() &&
2663 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2664 unsigned reg = mop.getReg();
2665 // Multiple uses of reg by the same instruction. It should not
2666 // contribute to spill weight again.
2667 if (UniqueUses.count(reg) != 0)
2668 continue;
2669 LiveInterval &RegInt = li_->getInterval(reg);
2670 RegInt.weight +=
2671 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2672 UniqueUses.insert(reg);
2675 ++mii;
2680 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2681 LiveInterval &LI = *I->second;
2682 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2683 // If the live interval length is essentially zero, i.e. in every live
2684 // range the use follows def immediately, it doesn't make sense to spill
2685 // it and hope it will be easier to allocate for this li.
2686 if (isZeroLengthInterval(&LI))
2687 LI.weight = HUGE_VALF;
2688 else {
2689 bool isLoad = false;
2690 SmallVector<LiveInterval*, 4> SpillIs;
2691 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2692 // If all of the definitions of the interval are re-materializable,
2693 // it is a preferred candidate for spilling. If non of the defs are
2694 // loads, then it's potentially very cheap to re-materialize.
2695 // FIXME: this gets much more complicated once we support non-trivial
2696 // re-materialization.
2697 if (isLoad)
2698 LI.weight *= 0.9F;
2699 else
2700 LI.weight *= 0.5F;
2704 // Slightly prefer live interval that has been assigned a preferred reg.
2705 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
2706 if (Hint.first || Hint.second)
2707 LI.weight *= 1.01F;
2709 // Divide the weight of the interval by its size. This encourages
2710 // spilling of intervals that are large and have few uses, and
2711 // discourages spilling of small intervals with many uses.
2712 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2716 DEBUG(dump());
2717 return true;
2720 /// print - Implement the dump method.
2721 void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
2722 li_->print(O, m);
2725 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2726 return new SimpleRegisterCoalescing();
2729 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2730 DEFINING_FILE_FOR(SimpleRegisterCoalescing)