1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the actual instruction interpreter.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
31 STATISTIC(NumDynamicInsts
, "Number of dynamic instructions executed");
33 static cl::opt
<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden
,
34 cl::desc("make the interpreter print every volatile load and store"));
36 //===----------------------------------------------------------------------===//
37 // Various Helper Functions
38 //===----------------------------------------------------------------------===//
40 static void SetValue(Value
*V
, GenericValue Val
, ExecutionContext
&SF
) {
44 //===----------------------------------------------------------------------===//
45 // Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49 case Type::TY##TyID: \
50 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
53 static void executeFAddInst(GenericValue
&Dest
, GenericValue Src1
,
54 GenericValue Src2
, const Type
*Ty
) {
55 switch (Ty
->getTypeID()) {
56 IMPLEMENT_BINARY_OPERATOR(+, Float
);
57 IMPLEMENT_BINARY_OPERATOR(+, Double
);
59 errs() << "Unhandled type for FAdd instruction: " << *Ty
<< "\n";
64 static void executeFSubInst(GenericValue
&Dest
, GenericValue Src1
,
65 GenericValue Src2
, const Type
*Ty
) {
66 switch (Ty
->getTypeID()) {
67 IMPLEMENT_BINARY_OPERATOR(-, Float
);
68 IMPLEMENT_BINARY_OPERATOR(-, Double
);
70 errs() << "Unhandled type for FSub instruction: " << *Ty
<< "\n";
75 static void executeFMulInst(GenericValue
&Dest
, GenericValue Src1
,
76 GenericValue Src2
, const Type
*Ty
) {
77 switch (Ty
->getTypeID()) {
78 IMPLEMENT_BINARY_OPERATOR(*, Float
);
79 IMPLEMENT_BINARY_OPERATOR(*, Double
);
81 errs() << "Unhandled type for FMul instruction: " << *Ty
<< "\n";
86 static void executeFDivInst(GenericValue
&Dest
, GenericValue Src1
,
87 GenericValue Src2
, const Type
*Ty
) {
88 switch (Ty
->getTypeID()) {
89 IMPLEMENT_BINARY_OPERATOR(/, Float
);
90 IMPLEMENT_BINARY_OPERATOR(/, Double
);
92 errs() << "Unhandled type for FDiv instruction: " << *Ty
<< "\n";
97 static void executeFRemInst(GenericValue
&Dest
, GenericValue Src1
,
98 GenericValue Src2
, const Type
*Ty
) {
99 switch (Ty
->getTypeID()) {
100 case Type::FloatTyID
:
101 Dest
.FloatVal
= fmod(Src1
.FloatVal
, Src2
.FloatVal
);
103 case Type::DoubleTyID
:
104 Dest
.DoubleVal
= fmod(Src1
.DoubleVal
, Src2
.DoubleVal
);
107 errs() << "Unhandled type for Rem instruction: " << *Ty
<< "\n";
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113 case Type::IntegerTyID: \
114 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
117 // Handle pointers specially because they must be compared with only as much
118 // width as the host has. We _do not_ want to be comparing 64 bit values when
119 // running on a 32-bit target, otherwise the upper 32 bits might mess up
120 // comparisons if they contain garbage.
121 #define IMPLEMENT_POINTER_ICMP(OP) \
122 case Type::PointerTyID: \
123 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
124 (void*)(intptr_t)Src2.PointerVal); \
127 static GenericValue
executeICMP_EQ(GenericValue Src1
, GenericValue Src2
,
130 switch (Ty
->getTypeID()) {
131 IMPLEMENT_INTEGER_ICMP(eq
,Ty
);
132 IMPLEMENT_POINTER_ICMP(==);
134 errs() << "Unhandled type for ICMP_EQ predicate: " << *Ty
<< "\n";
140 static GenericValue
executeICMP_NE(GenericValue Src1
, GenericValue Src2
,
143 switch (Ty
->getTypeID()) {
144 IMPLEMENT_INTEGER_ICMP(ne
,Ty
);
145 IMPLEMENT_POINTER_ICMP(!=);
147 errs() << "Unhandled type for ICMP_NE predicate: " << *Ty
<< "\n";
153 static GenericValue
executeICMP_ULT(GenericValue Src1
, GenericValue Src2
,
156 switch (Ty
->getTypeID()) {
157 IMPLEMENT_INTEGER_ICMP(ult
,Ty
);
158 IMPLEMENT_POINTER_ICMP(<);
160 errs() << "Unhandled type for ICMP_ULT predicate: " << *Ty
<< "\n";
166 static GenericValue
executeICMP_SLT(GenericValue Src1
, GenericValue Src2
,
169 switch (Ty
->getTypeID()) {
170 IMPLEMENT_INTEGER_ICMP(slt
,Ty
);
171 IMPLEMENT_POINTER_ICMP(<);
173 errs() << "Unhandled type for ICMP_SLT predicate: " << *Ty
<< "\n";
179 static GenericValue
executeICMP_UGT(GenericValue Src1
, GenericValue Src2
,
182 switch (Ty
->getTypeID()) {
183 IMPLEMENT_INTEGER_ICMP(ugt
,Ty
);
184 IMPLEMENT_POINTER_ICMP(>);
186 errs() << "Unhandled type for ICMP_UGT predicate: " << *Ty
<< "\n";
192 static GenericValue
executeICMP_SGT(GenericValue Src1
, GenericValue Src2
,
195 switch (Ty
->getTypeID()) {
196 IMPLEMENT_INTEGER_ICMP(sgt
,Ty
);
197 IMPLEMENT_POINTER_ICMP(>);
199 errs() << "Unhandled type for ICMP_SGT predicate: " << *Ty
<< "\n";
205 static GenericValue
executeICMP_ULE(GenericValue Src1
, GenericValue Src2
,
208 switch (Ty
->getTypeID()) {
209 IMPLEMENT_INTEGER_ICMP(ule
,Ty
);
210 IMPLEMENT_POINTER_ICMP(<=);
212 errs() << "Unhandled type for ICMP_ULE predicate: " << *Ty
<< "\n";
218 static GenericValue
executeICMP_SLE(GenericValue Src1
, GenericValue Src2
,
221 switch (Ty
->getTypeID()) {
222 IMPLEMENT_INTEGER_ICMP(sle
,Ty
);
223 IMPLEMENT_POINTER_ICMP(<=);
225 errs() << "Unhandled type for ICMP_SLE predicate: " << *Ty
<< "\n";
231 static GenericValue
executeICMP_UGE(GenericValue Src1
, GenericValue Src2
,
234 switch (Ty
->getTypeID()) {
235 IMPLEMENT_INTEGER_ICMP(uge
,Ty
);
236 IMPLEMENT_POINTER_ICMP(>=);
238 errs() << "Unhandled type for ICMP_UGE predicate: " << *Ty
<< "\n";
244 static GenericValue
executeICMP_SGE(GenericValue Src1
, GenericValue Src2
,
247 switch (Ty
->getTypeID()) {
248 IMPLEMENT_INTEGER_ICMP(sge
,Ty
);
249 IMPLEMENT_POINTER_ICMP(>=);
251 errs() << "Unhandled type for ICMP_SGE predicate: " << *Ty
<< "\n";
257 void Interpreter::visitICmpInst(ICmpInst
&I
) {
258 ExecutionContext
&SF
= ECStack
.back();
259 const Type
*Ty
= I
.getOperand(0)->getType();
260 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
261 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
262 GenericValue R
; // Result
264 switch (I
.getPredicate()) {
265 case ICmpInst::ICMP_EQ
: R
= executeICMP_EQ(Src1
, Src2
, Ty
); break;
266 case ICmpInst::ICMP_NE
: R
= executeICMP_NE(Src1
, Src2
, Ty
); break;
267 case ICmpInst::ICMP_ULT
: R
= executeICMP_ULT(Src1
, Src2
, Ty
); break;
268 case ICmpInst::ICMP_SLT
: R
= executeICMP_SLT(Src1
, Src2
, Ty
); break;
269 case ICmpInst::ICMP_UGT
: R
= executeICMP_UGT(Src1
, Src2
, Ty
); break;
270 case ICmpInst::ICMP_SGT
: R
= executeICMP_SGT(Src1
, Src2
, Ty
); break;
271 case ICmpInst::ICMP_ULE
: R
= executeICMP_ULE(Src1
, Src2
, Ty
); break;
272 case ICmpInst::ICMP_SLE
: R
= executeICMP_SLE(Src1
, Src2
, Ty
); break;
273 case ICmpInst::ICMP_UGE
: R
= executeICMP_UGE(Src1
, Src2
, Ty
); break;
274 case ICmpInst::ICMP_SGE
: R
= executeICMP_SGE(Src1
, Src2
, Ty
); break;
276 errs() << "Don't know how to handle this ICmp predicate!\n-->" << I
;
283 #define IMPLEMENT_FCMP(OP, TY) \
284 case Type::TY##TyID: \
285 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
288 static GenericValue
executeFCMP_OEQ(GenericValue Src1
, GenericValue Src2
,
291 switch (Ty
->getTypeID()) {
292 IMPLEMENT_FCMP(==, Float
);
293 IMPLEMENT_FCMP(==, Double
);
295 errs() << "Unhandled type for FCmp EQ instruction: " << *Ty
<< "\n";
301 static GenericValue
executeFCMP_ONE(GenericValue Src1
, GenericValue Src2
,
304 switch (Ty
->getTypeID()) {
305 IMPLEMENT_FCMP(!=, Float
);
306 IMPLEMENT_FCMP(!=, Double
);
309 errs() << "Unhandled type for FCmp NE instruction: " << *Ty
<< "\n";
315 static GenericValue
executeFCMP_OLE(GenericValue Src1
, GenericValue Src2
,
318 switch (Ty
->getTypeID()) {
319 IMPLEMENT_FCMP(<=, Float
);
320 IMPLEMENT_FCMP(<=, Double
);
322 errs() << "Unhandled type for FCmp LE instruction: " << *Ty
<< "\n";
328 static GenericValue
executeFCMP_OGE(GenericValue Src1
, GenericValue Src2
,
331 switch (Ty
->getTypeID()) {
332 IMPLEMENT_FCMP(>=, Float
);
333 IMPLEMENT_FCMP(>=, Double
);
335 errs() << "Unhandled type for FCmp GE instruction: " << *Ty
<< "\n";
341 static GenericValue
executeFCMP_OLT(GenericValue Src1
, GenericValue Src2
,
344 switch (Ty
->getTypeID()) {
345 IMPLEMENT_FCMP(<, Float
);
346 IMPLEMENT_FCMP(<, Double
);
348 errs() << "Unhandled type for FCmp LT instruction: " << *Ty
<< "\n";
354 static GenericValue
executeFCMP_OGT(GenericValue Src1
, GenericValue Src2
,
357 switch (Ty
->getTypeID()) {
358 IMPLEMENT_FCMP(>, Float
);
359 IMPLEMENT_FCMP(>, Double
);
361 errs() << "Unhandled type for FCmp GT instruction: " << *Ty
<< "\n";
367 #define IMPLEMENT_UNORDERED(TY, X,Y) \
368 if (TY == Type::getFloatTy(Ty->getContext())) { \
369 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
370 Dest.IntVal = APInt(1,true); \
373 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
374 Dest.IntVal = APInt(1,true); \
379 static GenericValue
executeFCMP_UEQ(GenericValue Src1
, GenericValue Src2
,
382 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
383 return executeFCMP_OEQ(Src1
, Src2
, Ty
);
386 static GenericValue
executeFCMP_UNE(GenericValue Src1
, GenericValue Src2
,
389 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
390 return executeFCMP_ONE(Src1
, Src2
, Ty
);
393 static GenericValue
executeFCMP_ULE(GenericValue Src1
, GenericValue Src2
,
396 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
397 return executeFCMP_OLE(Src1
, Src2
, Ty
);
400 static GenericValue
executeFCMP_UGE(GenericValue Src1
, GenericValue Src2
,
403 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
404 return executeFCMP_OGE(Src1
, Src2
, Ty
);
407 static GenericValue
executeFCMP_ULT(GenericValue Src1
, GenericValue Src2
,
410 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
411 return executeFCMP_OLT(Src1
, Src2
, Ty
);
414 static GenericValue
executeFCMP_UGT(GenericValue Src1
, GenericValue Src2
,
417 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
418 return executeFCMP_OGT(Src1
, Src2
, Ty
);
421 static GenericValue
executeFCMP_ORD(GenericValue Src1
, GenericValue Src2
,
424 if (Ty
== Type::getFloatTy(Ty
->getContext()))
425 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
== Src1
.FloatVal
&&
426 Src2
.FloatVal
== Src2
.FloatVal
));
428 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
== Src1
.DoubleVal
&&
429 Src2
.DoubleVal
== Src2
.DoubleVal
));
433 static GenericValue
executeFCMP_UNO(GenericValue Src1
, GenericValue Src2
,
436 if (Ty
== Type::getFloatTy(Ty
->getContext()))
437 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
!= Src1
.FloatVal
||
438 Src2
.FloatVal
!= Src2
.FloatVal
));
440 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
!= Src1
.DoubleVal
||
441 Src2
.DoubleVal
!= Src2
.DoubleVal
));
445 void Interpreter::visitFCmpInst(FCmpInst
&I
) {
446 ExecutionContext
&SF
= ECStack
.back();
447 const Type
*Ty
= I
.getOperand(0)->getType();
448 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
449 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
450 GenericValue R
; // Result
452 switch (I
.getPredicate()) {
453 case FCmpInst::FCMP_FALSE
: R
.IntVal
= APInt(1,false); break;
454 case FCmpInst::FCMP_TRUE
: R
.IntVal
= APInt(1,true); break;
455 case FCmpInst::FCMP_ORD
: R
= executeFCMP_ORD(Src1
, Src2
, Ty
); break;
456 case FCmpInst::FCMP_UNO
: R
= executeFCMP_UNO(Src1
, Src2
, Ty
); break;
457 case FCmpInst::FCMP_UEQ
: R
= executeFCMP_UEQ(Src1
, Src2
, Ty
); break;
458 case FCmpInst::FCMP_OEQ
: R
= executeFCMP_OEQ(Src1
, Src2
, Ty
); break;
459 case FCmpInst::FCMP_UNE
: R
= executeFCMP_UNE(Src1
, Src2
, Ty
); break;
460 case FCmpInst::FCMP_ONE
: R
= executeFCMP_ONE(Src1
, Src2
, Ty
); break;
461 case FCmpInst::FCMP_ULT
: R
= executeFCMP_ULT(Src1
, Src2
, Ty
); break;
462 case FCmpInst::FCMP_OLT
: R
= executeFCMP_OLT(Src1
, Src2
, Ty
); break;
463 case FCmpInst::FCMP_UGT
: R
= executeFCMP_UGT(Src1
, Src2
, Ty
); break;
464 case FCmpInst::FCMP_OGT
: R
= executeFCMP_OGT(Src1
, Src2
, Ty
); break;
465 case FCmpInst::FCMP_ULE
: R
= executeFCMP_ULE(Src1
, Src2
, Ty
); break;
466 case FCmpInst::FCMP_OLE
: R
= executeFCMP_OLE(Src1
, Src2
, Ty
); break;
467 case FCmpInst::FCMP_UGE
: R
= executeFCMP_UGE(Src1
, Src2
, Ty
); break;
468 case FCmpInst::FCMP_OGE
: R
= executeFCMP_OGE(Src1
, Src2
, Ty
); break;
470 errs() << "Don't know how to handle this FCmp predicate!\n-->" << I
;
477 static GenericValue
executeCmpInst(unsigned predicate
, GenericValue Src1
,
478 GenericValue Src2
, const Type
*Ty
) {
481 case ICmpInst::ICMP_EQ
: return executeICMP_EQ(Src1
, Src2
, Ty
);
482 case ICmpInst::ICMP_NE
: return executeICMP_NE(Src1
, Src2
, Ty
);
483 case ICmpInst::ICMP_UGT
: return executeICMP_UGT(Src1
, Src2
, Ty
);
484 case ICmpInst::ICMP_SGT
: return executeICMP_SGT(Src1
, Src2
, Ty
);
485 case ICmpInst::ICMP_ULT
: return executeICMP_ULT(Src1
, Src2
, Ty
);
486 case ICmpInst::ICMP_SLT
: return executeICMP_SLT(Src1
, Src2
, Ty
);
487 case ICmpInst::ICMP_UGE
: return executeICMP_UGE(Src1
, Src2
, Ty
);
488 case ICmpInst::ICMP_SGE
: return executeICMP_SGE(Src1
, Src2
, Ty
);
489 case ICmpInst::ICMP_ULE
: return executeICMP_ULE(Src1
, Src2
, Ty
);
490 case ICmpInst::ICMP_SLE
: return executeICMP_SLE(Src1
, Src2
, Ty
);
491 case FCmpInst::FCMP_ORD
: return executeFCMP_ORD(Src1
, Src2
, Ty
);
492 case FCmpInst::FCMP_UNO
: return executeFCMP_UNO(Src1
, Src2
, Ty
);
493 case FCmpInst::FCMP_OEQ
: return executeFCMP_OEQ(Src1
, Src2
, Ty
);
494 case FCmpInst::FCMP_UEQ
: return executeFCMP_UEQ(Src1
, Src2
, Ty
);
495 case FCmpInst::FCMP_ONE
: return executeFCMP_ONE(Src1
, Src2
, Ty
);
496 case FCmpInst::FCMP_UNE
: return executeFCMP_UNE(Src1
, Src2
, Ty
);
497 case FCmpInst::FCMP_OLT
: return executeFCMP_OLT(Src1
, Src2
, Ty
);
498 case FCmpInst::FCMP_ULT
: return executeFCMP_ULT(Src1
, Src2
, Ty
);
499 case FCmpInst::FCMP_OGT
: return executeFCMP_OGT(Src1
, Src2
, Ty
);
500 case FCmpInst::FCMP_UGT
: return executeFCMP_UGT(Src1
, Src2
, Ty
);
501 case FCmpInst::FCMP_OLE
: return executeFCMP_OLE(Src1
, Src2
, Ty
);
502 case FCmpInst::FCMP_ULE
: return executeFCMP_ULE(Src1
, Src2
, Ty
);
503 case FCmpInst::FCMP_OGE
: return executeFCMP_OGE(Src1
, Src2
, Ty
);
504 case FCmpInst::FCMP_UGE
: return executeFCMP_UGE(Src1
, Src2
, Ty
);
505 case FCmpInst::FCMP_FALSE
: {
507 Result
.IntVal
= APInt(1, false);
510 case FCmpInst::FCMP_TRUE
: {
512 Result
.IntVal
= APInt(1, true);
516 errs() << "Unhandled Cmp predicate\n";
521 void Interpreter::visitBinaryOperator(BinaryOperator
&I
) {
522 ExecutionContext
&SF
= ECStack
.back();
523 const Type
*Ty
= I
.getOperand(0)->getType();
524 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
525 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
526 GenericValue R
; // Result
528 switch (I
.getOpcode()) {
529 case Instruction::Add
: R
.IntVal
= Src1
.IntVal
+ Src2
.IntVal
; break;
530 case Instruction::Sub
: R
.IntVal
= Src1
.IntVal
- Src2
.IntVal
; break;
531 case Instruction::Mul
: R
.IntVal
= Src1
.IntVal
* Src2
.IntVal
; break;
532 case Instruction::FAdd
: executeFAddInst(R
, Src1
, Src2
, Ty
); break;
533 case Instruction::FSub
: executeFSubInst(R
, Src1
, Src2
, Ty
); break;
534 case Instruction::FMul
: executeFMulInst(R
, Src1
, Src2
, Ty
); break;
535 case Instruction::FDiv
: executeFDivInst(R
, Src1
, Src2
, Ty
); break;
536 case Instruction::FRem
: executeFRemInst(R
, Src1
, Src2
, Ty
); break;
537 case Instruction::UDiv
: R
.IntVal
= Src1
.IntVal
.udiv(Src2
.IntVal
); break;
538 case Instruction::SDiv
: R
.IntVal
= Src1
.IntVal
.sdiv(Src2
.IntVal
); break;
539 case Instruction::URem
: R
.IntVal
= Src1
.IntVal
.urem(Src2
.IntVal
); break;
540 case Instruction::SRem
: R
.IntVal
= Src1
.IntVal
.srem(Src2
.IntVal
); break;
541 case Instruction::And
: R
.IntVal
= Src1
.IntVal
& Src2
.IntVal
; break;
542 case Instruction::Or
: R
.IntVal
= Src1
.IntVal
| Src2
.IntVal
; break;
543 case Instruction::Xor
: R
.IntVal
= Src1
.IntVal
^ Src2
.IntVal
; break;
545 errs() << "Don't know how to handle this binary operator!\n-->" << I
;
552 static GenericValue
executeSelectInst(GenericValue Src1
, GenericValue Src2
,
554 return Src1
.IntVal
== 0 ? Src3
: Src2
;
557 void Interpreter::visitSelectInst(SelectInst
&I
) {
558 ExecutionContext
&SF
= ECStack
.back();
559 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
560 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
561 GenericValue Src3
= getOperandValue(I
.getOperand(2), SF
);
562 GenericValue R
= executeSelectInst(Src1
, Src2
, Src3
);
567 //===----------------------------------------------------------------------===//
568 // Terminator Instruction Implementations
569 //===----------------------------------------------------------------------===//
571 void Interpreter::exitCalled(GenericValue GV
) {
572 // runAtExitHandlers() assumes there are no stack frames, but
573 // if exit() was called, then it had a stack frame. Blow away
574 // the stack before interpreting atexit handlers.
576 runAtExitHandlers ();
577 exit (GV
.IntVal
.zextOrTrunc(32).getZExtValue());
580 /// Pop the last stack frame off of ECStack and then copy the result
581 /// back into the result variable if we are not returning void. The
582 /// result variable may be the ExitValue, or the Value of the calling
583 /// CallInst if there was a previous stack frame. This method may
584 /// invalidate any ECStack iterators you have. This method also takes
585 /// care of switching to the normal destination BB, if we are returning
588 void Interpreter::popStackAndReturnValueToCaller (const Type
*RetTy
,
589 GenericValue Result
) {
590 // Pop the current stack frame.
593 if (ECStack
.empty()) { // Finished main. Put result into exit code...
594 if (RetTy
&& RetTy
->isInteger()) { // Nonvoid return type?
595 ExitValue
= Result
; // Capture the exit value of the program
597 memset(&ExitValue
.Untyped
, 0, sizeof(ExitValue
.Untyped
));
600 // If we have a previous stack frame, and we have a previous call,
601 // fill in the return value...
602 ExecutionContext
&CallingSF
= ECStack
.back();
603 if (Instruction
*I
= CallingSF
.Caller
.getInstruction()) {
605 if (CallingSF
.Caller
.getType() != Type::getVoidTy(RetTy
->getContext()))
606 SetValue(I
, Result
, CallingSF
);
607 if (InvokeInst
*II
= dyn_cast
<InvokeInst
> (I
))
608 SwitchToNewBasicBlock (II
->getNormalDest (), CallingSF
);
609 CallingSF
.Caller
= CallSite(); // We returned from the call...
614 void Interpreter::visitReturnInst(ReturnInst
&I
) {
615 ExecutionContext
&SF
= ECStack
.back();
616 const Type
*RetTy
= Type::getVoidTy(I
.getContext());
619 // Save away the return value... (if we are not 'ret void')
620 if (I
.getNumOperands()) {
621 RetTy
= I
.getReturnValue()->getType();
622 Result
= getOperandValue(I
.getReturnValue(), SF
);
625 popStackAndReturnValueToCaller(RetTy
, Result
);
628 void Interpreter::visitUnwindInst(UnwindInst
&I
) {
633 if (ECStack
.empty ())
634 llvm_report_error("Empty stack during unwind!");
635 Inst
= ECStack
.back ().Caller
.getInstruction ();
636 } while (!(Inst
&& isa
<InvokeInst
> (Inst
)));
638 // Return from invoke
639 ExecutionContext
&InvokingSF
= ECStack
.back ();
640 InvokingSF
.Caller
= CallSite ();
642 // Go to exceptional destination BB of invoke instruction
643 SwitchToNewBasicBlock(cast
<InvokeInst
>(Inst
)->getUnwindDest(), InvokingSF
);
646 void Interpreter::visitUnreachableInst(UnreachableInst
&I
) {
647 llvm_report_error("Program executed an 'unreachable' instruction!");
650 void Interpreter::visitBranchInst(BranchInst
&I
) {
651 ExecutionContext
&SF
= ECStack
.back();
654 Dest
= I
.getSuccessor(0); // Uncond branches have a fixed dest...
655 if (!I
.isUnconditional()) {
656 Value
*Cond
= I
.getCondition();
657 if (getOperandValue(Cond
, SF
).IntVal
== 0) // If false cond...
658 Dest
= I
.getSuccessor(1);
660 SwitchToNewBasicBlock(Dest
, SF
);
663 void Interpreter::visitSwitchInst(SwitchInst
&I
) {
664 ExecutionContext
&SF
= ECStack
.back();
665 GenericValue CondVal
= getOperandValue(I
.getOperand(0), SF
);
666 const Type
*ElTy
= I
.getOperand(0)->getType();
668 // Check to see if any of the cases match...
669 BasicBlock
*Dest
= 0;
670 for (unsigned i
= 2, e
= I
.getNumOperands(); i
!= e
; i
+= 2)
671 if (executeICMP_EQ(CondVal
, getOperandValue(I
.getOperand(i
), SF
), ElTy
)
673 Dest
= cast
<BasicBlock
>(I
.getOperand(i
+1));
677 if (!Dest
) Dest
= I
.getDefaultDest(); // No cases matched: use default
678 SwitchToNewBasicBlock(Dest
, SF
);
681 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
682 // This function handles the actual updating of block and instruction iterators
683 // as well as execution of all of the PHI nodes in the destination block.
685 // This method does this because all of the PHI nodes must be executed
686 // atomically, reading their inputs before any of the results are updated. Not
687 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
688 // their inputs. If the input PHI node is updated before it is read, incorrect
689 // results can happen. Thus we use a two phase approach.
691 void Interpreter::SwitchToNewBasicBlock(BasicBlock
*Dest
, ExecutionContext
&SF
){
692 BasicBlock
*PrevBB
= SF
.CurBB
; // Remember where we came from...
693 SF
.CurBB
= Dest
; // Update CurBB to branch destination
694 SF
.CurInst
= SF
.CurBB
->begin(); // Update new instruction ptr...
696 if (!isa
<PHINode
>(SF
.CurInst
)) return; // Nothing fancy to do
698 // Loop over all of the PHI nodes in the current block, reading their inputs.
699 std::vector
<GenericValue
> ResultValues
;
701 for (; PHINode
*PN
= dyn_cast
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
) {
702 // Search for the value corresponding to this previous bb...
703 int i
= PN
->getBasicBlockIndex(PrevBB
);
704 assert(i
!= -1 && "PHINode doesn't contain entry for predecessor??");
705 Value
*IncomingValue
= PN
->getIncomingValue(i
);
707 // Save the incoming value for this PHI node...
708 ResultValues
.push_back(getOperandValue(IncomingValue
, SF
));
711 // Now loop over all of the PHI nodes setting their values...
712 SF
.CurInst
= SF
.CurBB
->begin();
713 for (unsigned i
= 0; isa
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
, ++i
) {
714 PHINode
*PN
= cast
<PHINode
>(SF
.CurInst
);
715 SetValue(PN
, ResultValues
[i
], SF
);
719 //===----------------------------------------------------------------------===//
720 // Memory Instruction Implementations
721 //===----------------------------------------------------------------------===//
723 void Interpreter::visitAllocationInst(AllocationInst
&I
) {
724 ExecutionContext
&SF
= ECStack
.back();
726 const Type
*Ty
= I
.getType()->getElementType(); // Type to be allocated
728 // Get the number of elements being allocated by the array...
729 unsigned NumElements
=
730 getOperandValue(I
.getOperand(0), SF
).IntVal
.getZExtValue();
732 unsigned TypeSize
= (size_t)TD
.getTypeAllocSize(Ty
);
734 // Avoid malloc-ing zero bytes, use max()...
735 unsigned MemToAlloc
= std::max(1U, NumElements
* TypeSize
);
737 // Allocate enough memory to hold the type...
738 void *Memory
= malloc(MemToAlloc
);
740 DEBUG(errs() << "Allocated Type: " << *Ty
<< " (" << TypeSize
<< " bytes) x "
741 << NumElements
<< " (Total: " << MemToAlloc
<< ") at "
742 << uintptr_t(Memory
) << '\n');
744 GenericValue Result
= PTOGV(Memory
);
745 assert(Result
.PointerVal
!= 0 && "Null pointer returned by malloc!");
746 SetValue(&I
, Result
, SF
);
748 if (I
.getOpcode() == Instruction::Alloca
)
749 ECStack
.back().Allocas
.add(Memory
);
752 void Interpreter::visitFreeInst(FreeInst
&I
) {
753 ExecutionContext
&SF
= ECStack
.back();
754 assert(isa
<PointerType
>(I
.getOperand(0)->getType()) && "Freeing nonptr?");
755 GenericValue Value
= getOperandValue(I
.getOperand(0), SF
);
756 // TODO: Check to make sure memory is allocated
757 free(GVTOP(Value
)); // Free memory
760 // getElementOffset - The workhorse for getelementptr.
762 GenericValue
Interpreter::executeGEPOperation(Value
*Ptr
, gep_type_iterator I
,
764 ExecutionContext
&SF
) {
765 assert(isa
<PointerType
>(Ptr
->getType()) &&
766 "Cannot getElementOffset of a nonpointer type!");
770 for (; I
!= E
; ++I
) {
771 if (const StructType
*STy
= dyn_cast
<StructType
>(*I
)) {
772 const StructLayout
*SLO
= TD
.getStructLayout(STy
);
774 const ConstantInt
*CPU
= cast
<ConstantInt
>(I
.getOperand());
775 unsigned Index
= unsigned(CPU
->getZExtValue());
777 Total
+= SLO
->getElementOffset(Index
);
779 const SequentialType
*ST
= cast
<SequentialType
>(*I
);
780 // Get the index number for the array... which must be long type...
781 GenericValue IdxGV
= getOperandValue(I
.getOperand(), SF
);
785 cast
<IntegerType
>(I
.getOperand()->getType())->getBitWidth();
787 Idx
= (int64_t)(int32_t)IdxGV
.IntVal
.getZExtValue();
789 assert(BitWidth
== 64 && "Invalid index type for getelementptr");
790 Idx
= (int64_t)IdxGV
.IntVal
.getZExtValue();
792 Total
+= TD
.getTypeAllocSize(ST
->getElementType())*Idx
;
797 Result
.PointerVal
= ((char*)getOperandValue(Ptr
, SF
).PointerVal
) + Total
;
798 DEBUG(errs() << "GEP Index " << Total
<< " bytes.\n");
802 void Interpreter::visitGetElementPtrInst(GetElementPtrInst
&I
) {
803 ExecutionContext
&SF
= ECStack
.back();
804 SetValue(&I
, executeGEPOperation(I
.getPointerOperand(),
805 gep_type_begin(I
), gep_type_end(I
), SF
), SF
);
808 void Interpreter::visitLoadInst(LoadInst
&I
) {
809 ExecutionContext
&SF
= ECStack
.back();
810 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
811 GenericValue
*Ptr
= (GenericValue
*)GVTOP(SRC
);
813 LoadValueFromMemory(Result
, Ptr
, I
.getType());
814 SetValue(&I
, Result
, SF
);
815 if (I
.isVolatile() && PrintVolatile
)
816 errs() << "Volatile load " << I
;
819 void Interpreter::visitStoreInst(StoreInst
&I
) {
820 ExecutionContext
&SF
= ECStack
.back();
821 GenericValue Val
= getOperandValue(I
.getOperand(0), SF
);
822 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
823 StoreValueToMemory(Val
, (GenericValue
*)GVTOP(SRC
),
824 I
.getOperand(0)->getType());
825 if (I
.isVolatile() && PrintVolatile
)
826 errs() << "Volatile store: " << I
;
829 //===----------------------------------------------------------------------===//
830 // Miscellaneous Instruction Implementations
831 //===----------------------------------------------------------------------===//
833 void Interpreter::visitCallSite(CallSite CS
) {
834 ExecutionContext
&SF
= ECStack
.back();
836 // Check to see if this is an intrinsic function call...
837 Function
*F
= CS
.getCalledFunction();
838 if (F
&& F
->isDeclaration ())
839 switch (F
->getIntrinsicID()) {
840 case Intrinsic::not_intrinsic
:
842 case Intrinsic::vastart
: { // va_start
843 GenericValue ArgIndex
;
844 ArgIndex
.UIntPairVal
.first
= ECStack
.size() - 1;
845 ArgIndex
.UIntPairVal
.second
= 0;
846 SetValue(CS
.getInstruction(), ArgIndex
, SF
);
849 case Intrinsic::vaend
: // va_end is a noop for the interpreter
851 case Intrinsic::vacopy
: // va_copy: dest = src
852 SetValue(CS
.getInstruction(), getOperandValue(*CS
.arg_begin(), SF
), SF
);
855 // If it is an unknown intrinsic function, use the intrinsic lowering
856 // class to transform it into hopefully tasty LLVM code.
858 BasicBlock::iterator
me(CS
.getInstruction());
859 BasicBlock
*Parent
= CS
.getInstruction()->getParent();
860 bool atBegin(Parent
->begin() == me
);
863 IL
->LowerIntrinsicCall(cast
<CallInst
>(CS
.getInstruction()));
865 // Restore the CurInst pointer to the first instruction newly inserted, if
868 SF
.CurInst
= Parent
->begin();
878 std::vector
<GenericValue
> ArgVals
;
879 const unsigned NumArgs
= SF
.Caller
.arg_size();
880 ArgVals
.reserve(NumArgs
);
882 for (CallSite::arg_iterator i
= SF
.Caller
.arg_begin(),
883 e
= SF
.Caller
.arg_end(); i
!= e
; ++i
, ++pNum
) {
885 ArgVals
.push_back(getOperandValue(V
, SF
));
886 // Promote all integral types whose size is < sizeof(i32) into i32.
887 // We do this by zero or sign extending the value as appropriate
888 // according to the parameter attributes
889 const Type
*Ty
= V
->getType();
890 if (Ty
->isInteger() && (ArgVals
.back().IntVal
.getBitWidth() < 32)) {
891 if (CS
.paramHasAttr(pNum
, Attribute::ZExt
))
892 ArgVals
.back().IntVal
= ArgVals
.back().IntVal
.zext(32);
893 else if (CS
.paramHasAttr(pNum
, Attribute::SExt
))
894 ArgVals
.back().IntVal
= ArgVals
.back().IntVal
.sext(32);
898 // To handle indirect calls, we must get the pointer value from the argument
899 // and treat it as a function pointer.
900 GenericValue SRC
= getOperandValue(SF
.Caller
.getCalledValue(), SF
);
901 callFunction((Function
*)GVTOP(SRC
), ArgVals
);
904 void Interpreter::visitShl(BinaryOperator
&I
) {
905 ExecutionContext
&SF
= ECStack
.back();
906 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
907 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
909 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
910 Dest
.IntVal
= Src1
.IntVal
.shl(Src2
.IntVal
.getZExtValue());
912 Dest
.IntVal
= Src1
.IntVal
;
914 SetValue(&I
, Dest
, SF
);
917 void Interpreter::visitLShr(BinaryOperator
&I
) {
918 ExecutionContext
&SF
= ECStack
.back();
919 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
920 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
922 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
923 Dest
.IntVal
= Src1
.IntVal
.lshr(Src2
.IntVal
.getZExtValue());
925 Dest
.IntVal
= Src1
.IntVal
;
927 SetValue(&I
, Dest
, SF
);
930 void Interpreter::visitAShr(BinaryOperator
&I
) {
931 ExecutionContext
&SF
= ECStack
.back();
932 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
933 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
935 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
936 Dest
.IntVal
= Src1
.IntVal
.ashr(Src2
.IntVal
.getZExtValue());
938 Dest
.IntVal
= Src1
.IntVal
;
940 SetValue(&I
, Dest
, SF
);
943 GenericValue
Interpreter::executeTruncInst(Value
*SrcVal
, const Type
*DstTy
,
944 ExecutionContext
&SF
) {
945 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
946 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
947 unsigned DBitWidth
= DITy
->getBitWidth();
948 Dest
.IntVal
= Src
.IntVal
.trunc(DBitWidth
);
952 GenericValue
Interpreter::executeSExtInst(Value
*SrcVal
, const Type
*DstTy
,
953 ExecutionContext
&SF
) {
954 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
955 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
956 unsigned DBitWidth
= DITy
->getBitWidth();
957 Dest
.IntVal
= Src
.IntVal
.sext(DBitWidth
);
961 GenericValue
Interpreter::executeZExtInst(Value
*SrcVal
, const Type
*DstTy
,
962 ExecutionContext
&SF
) {
963 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
964 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
965 unsigned DBitWidth
= DITy
->getBitWidth();
966 Dest
.IntVal
= Src
.IntVal
.zext(DBitWidth
);
970 GenericValue
Interpreter::executeFPTruncInst(Value
*SrcVal
, const Type
*DstTy
,
971 ExecutionContext
&SF
) {
972 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
973 assert(SrcVal
->getType() == Type::getDoubleTy(SrcVal
->getContext()) &&
974 DstTy
== Type::getFloatTy(SrcVal
->getContext()) &&
975 "Invalid FPTrunc instruction");
976 Dest
.FloatVal
= (float) Src
.DoubleVal
;
980 GenericValue
Interpreter::executeFPExtInst(Value
*SrcVal
, const Type
*DstTy
,
981 ExecutionContext
&SF
) {
982 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
983 assert(SrcVal
->getType() == Type::getFloatTy(SrcVal
->getContext()) &&
984 DstTy
== Type::getDoubleTy(SrcVal
->getContext()) &&
985 "Invalid FPTrunc instruction");
986 Dest
.DoubleVal
= (double) Src
.FloatVal
;
990 GenericValue
Interpreter::executeFPToUIInst(Value
*SrcVal
, const Type
*DstTy
,
991 ExecutionContext
&SF
) {
992 const Type
*SrcTy
= SrcVal
->getType();
993 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
994 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
995 assert(SrcTy
->isFloatingPoint() && "Invalid FPToUI instruction");
997 if (SrcTy
->getTypeID() == Type::FloatTyID
)
998 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1000 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1004 GenericValue
Interpreter::executeFPToSIInst(Value
*SrcVal
, const Type
*DstTy
,
1005 ExecutionContext
&SF
) {
1006 const Type
*SrcTy
= SrcVal
->getType();
1007 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1008 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1009 assert(SrcTy
->isFloatingPoint() && "Invalid FPToSI instruction");
1011 if (SrcTy
->getTypeID() == Type::FloatTyID
)
1012 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1014 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1018 GenericValue
Interpreter::executeUIToFPInst(Value
*SrcVal
, const Type
*DstTy
,
1019 ExecutionContext
&SF
) {
1020 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1021 assert(DstTy
->isFloatingPoint() && "Invalid UIToFP instruction");
1023 if (DstTy
->getTypeID() == Type::FloatTyID
)
1024 Dest
.FloatVal
= APIntOps::RoundAPIntToFloat(Src
.IntVal
);
1026 Dest
.DoubleVal
= APIntOps::RoundAPIntToDouble(Src
.IntVal
);
1030 GenericValue
Interpreter::executeSIToFPInst(Value
*SrcVal
, const Type
*DstTy
,
1031 ExecutionContext
&SF
) {
1032 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1033 assert(DstTy
->isFloatingPoint() && "Invalid SIToFP instruction");
1035 if (DstTy
->getTypeID() == Type::FloatTyID
)
1036 Dest
.FloatVal
= APIntOps::RoundSignedAPIntToFloat(Src
.IntVal
);
1038 Dest
.DoubleVal
= APIntOps::RoundSignedAPIntToDouble(Src
.IntVal
);
1043 GenericValue
Interpreter::executePtrToIntInst(Value
*SrcVal
, const Type
*DstTy
,
1044 ExecutionContext
&SF
) {
1045 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1046 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1047 assert(isa
<PointerType
>(SrcVal
->getType()) && "Invalid PtrToInt instruction");
1049 Dest
.IntVal
= APInt(DBitWidth
, (intptr_t) Src
.PointerVal
);
1053 GenericValue
Interpreter::executeIntToPtrInst(Value
*SrcVal
, const Type
*DstTy
,
1054 ExecutionContext
&SF
) {
1055 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1056 assert(isa
<PointerType
>(DstTy
) && "Invalid PtrToInt instruction");
1058 uint32_t PtrSize
= TD
.getPointerSizeInBits();
1059 if (PtrSize
!= Src
.IntVal
.getBitWidth())
1060 Src
.IntVal
= Src
.IntVal
.zextOrTrunc(PtrSize
);
1062 Dest
.PointerVal
= PointerTy(intptr_t(Src
.IntVal
.getZExtValue()));
1066 GenericValue
Interpreter::executeBitCastInst(Value
*SrcVal
, const Type
*DstTy
,
1067 ExecutionContext
&SF
) {
1069 const Type
*SrcTy
= SrcVal
->getType();
1070 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1071 if (isa
<PointerType
>(DstTy
)) {
1072 assert(isa
<PointerType
>(SrcTy
) && "Invalid BitCast");
1073 Dest
.PointerVal
= Src
.PointerVal
;
1074 } else if (DstTy
->isInteger()) {
1075 if (SrcTy
== Type::getFloatTy(SrcVal
->getContext())) {
1076 Dest
.IntVal
.zext(sizeof(Src
.FloatVal
) * CHAR_BIT
);
1077 Dest
.IntVal
.floatToBits(Src
.FloatVal
);
1078 } else if (SrcTy
== Type::getDoubleTy(SrcVal
->getContext())) {
1079 Dest
.IntVal
.zext(sizeof(Src
.DoubleVal
) * CHAR_BIT
);
1080 Dest
.IntVal
.doubleToBits(Src
.DoubleVal
);
1081 } else if (SrcTy
->isInteger()) {
1082 Dest
.IntVal
= Src
.IntVal
;
1084 llvm_unreachable("Invalid BitCast");
1085 } else if (DstTy
== Type::getFloatTy(SrcVal
->getContext())) {
1086 if (SrcTy
->isInteger())
1087 Dest
.FloatVal
= Src
.IntVal
.bitsToFloat();
1089 Dest
.FloatVal
= Src
.FloatVal
;
1090 } else if (DstTy
== Type::getDoubleTy(SrcVal
->getContext())) {
1091 if (SrcTy
->isInteger())
1092 Dest
.DoubleVal
= Src
.IntVal
.bitsToDouble();
1094 Dest
.DoubleVal
= Src
.DoubleVal
;
1096 llvm_unreachable("Invalid Bitcast");
1101 void Interpreter::visitTruncInst(TruncInst
&I
) {
1102 ExecutionContext
&SF
= ECStack
.back();
1103 SetValue(&I
, executeTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1106 void Interpreter::visitSExtInst(SExtInst
&I
) {
1107 ExecutionContext
&SF
= ECStack
.back();
1108 SetValue(&I
, executeSExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1111 void Interpreter::visitZExtInst(ZExtInst
&I
) {
1112 ExecutionContext
&SF
= ECStack
.back();
1113 SetValue(&I
, executeZExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1116 void Interpreter::visitFPTruncInst(FPTruncInst
&I
) {
1117 ExecutionContext
&SF
= ECStack
.back();
1118 SetValue(&I
, executeFPTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1121 void Interpreter::visitFPExtInst(FPExtInst
&I
) {
1122 ExecutionContext
&SF
= ECStack
.back();
1123 SetValue(&I
, executeFPExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1126 void Interpreter::visitUIToFPInst(UIToFPInst
&I
) {
1127 ExecutionContext
&SF
= ECStack
.back();
1128 SetValue(&I
, executeUIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1131 void Interpreter::visitSIToFPInst(SIToFPInst
&I
) {
1132 ExecutionContext
&SF
= ECStack
.back();
1133 SetValue(&I
, executeSIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1136 void Interpreter::visitFPToUIInst(FPToUIInst
&I
) {
1137 ExecutionContext
&SF
= ECStack
.back();
1138 SetValue(&I
, executeFPToUIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1141 void Interpreter::visitFPToSIInst(FPToSIInst
&I
) {
1142 ExecutionContext
&SF
= ECStack
.back();
1143 SetValue(&I
, executeFPToSIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1146 void Interpreter::visitPtrToIntInst(PtrToIntInst
&I
) {
1147 ExecutionContext
&SF
= ECStack
.back();
1148 SetValue(&I
, executePtrToIntInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1151 void Interpreter::visitIntToPtrInst(IntToPtrInst
&I
) {
1152 ExecutionContext
&SF
= ECStack
.back();
1153 SetValue(&I
, executeIntToPtrInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1156 void Interpreter::visitBitCastInst(BitCastInst
&I
) {
1157 ExecutionContext
&SF
= ECStack
.back();
1158 SetValue(&I
, executeBitCastInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1161 #define IMPLEMENT_VAARG(TY) \
1162 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1164 void Interpreter::visitVAArgInst(VAArgInst
&I
) {
1165 ExecutionContext
&SF
= ECStack
.back();
1167 // Get the incoming valist parameter. LLI treats the valist as a
1168 // (ec-stack-depth var-arg-index) pair.
1169 GenericValue VAList
= getOperandValue(I
.getOperand(0), SF
);
1171 GenericValue Src
= ECStack
[VAList
.UIntPairVal
.first
]
1172 .VarArgs
[VAList
.UIntPairVal
.second
];
1173 const Type
*Ty
= I
.getType();
1174 switch (Ty
->getTypeID()) {
1175 case Type::IntegerTyID
: Dest
.IntVal
= Src
.IntVal
;
1176 IMPLEMENT_VAARG(Pointer
);
1177 IMPLEMENT_VAARG(Float
);
1178 IMPLEMENT_VAARG(Double
);
1180 errs() << "Unhandled dest type for vaarg instruction: " << *Ty
<< "\n";
1181 llvm_unreachable(0);
1184 // Set the Value of this Instruction.
1185 SetValue(&I
, Dest
, SF
);
1187 // Move the pointer to the next vararg.
1188 ++VAList
.UIntPairVal
.second
;
1191 GenericValue
Interpreter::getConstantExprValue (ConstantExpr
*CE
,
1192 ExecutionContext
&SF
) {
1193 switch (CE
->getOpcode()) {
1194 case Instruction::Trunc
:
1195 return executeTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
1196 case Instruction::ZExt
:
1197 return executeZExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1198 case Instruction::SExt
:
1199 return executeSExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1200 case Instruction::FPTrunc
:
1201 return executeFPTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
1202 case Instruction::FPExt
:
1203 return executeFPExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1204 case Instruction::UIToFP
:
1205 return executeUIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
1206 case Instruction::SIToFP
:
1207 return executeSIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
1208 case Instruction::FPToUI
:
1209 return executeFPToUIInst(CE
->getOperand(0), CE
->getType(), SF
);
1210 case Instruction::FPToSI
:
1211 return executeFPToSIInst(CE
->getOperand(0), CE
->getType(), SF
);
1212 case Instruction::PtrToInt
:
1213 return executePtrToIntInst(CE
->getOperand(0), CE
->getType(), SF
);
1214 case Instruction::IntToPtr
:
1215 return executeIntToPtrInst(CE
->getOperand(0), CE
->getType(), SF
);
1216 case Instruction::BitCast
:
1217 return executeBitCastInst(CE
->getOperand(0), CE
->getType(), SF
);
1218 case Instruction::GetElementPtr
:
1219 return executeGEPOperation(CE
->getOperand(0), gep_type_begin(CE
),
1220 gep_type_end(CE
), SF
);
1221 case Instruction::FCmp
:
1222 case Instruction::ICmp
:
1223 return executeCmpInst(CE
->getPredicate(),
1224 getOperandValue(CE
->getOperand(0), SF
),
1225 getOperandValue(CE
->getOperand(1), SF
),
1226 CE
->getOperand(0)->getType());
1227 case Instruction::Select
:
1228 return executeSelectInst(getOperandValue(CE
->getOperand(0), SF
),
1229 getOperandValue(CE
->getOperand(1), SF
),
1230 getOperandValue(CE
->getOperand(2), SF
));
1235 // The cases below here require a GenericValue parameter for the result
1236 // so we initialize one, compute it and then return it.
1237 GenericValue Op0
= getOperandValue(CE
->getOperand(0), SF
);
1238 GenericValue Op1
= getOperandValue(CE
->getOperand(1), SF
);
1240 const Type
* Ty
= CE
->getOperand(0)->getType();
1241 switch (CE
->getOpcode()) {
1242 case Instruction::Add
: Dest
.IntVal
= Op0
.IntVal
+ Op1
.IntVal
; break;
1243 case Instruction::Sub
: Dest
.IntVal
= Op0
.IntVal
- Op1
.IntVal
; break;
1244 case Instruction::Mul
: Dest
.IntVal
= Op0
.IntVal
* Op1
.IntVal
; break;
1245 case Instruction::FAdd
: executeFAddInst(Dest
, Op0
, Op1
, Ty
); break;
1246 case Instruction::FSub
: executeFSubInst(Dest
, Op0
, Op1
, Ty
); break;
1247 case Instruction::FMul
: executeFMulInst(Dest
, Op0
, Op1
, Ty
); break;
1248 case Instruction::FDiv
: executeFDivInst(Dest
, Op0
, Op1
, Ty
); break;
1249 case Instruction::FRem
: executeFRemInst(Dest
, Op0
, Op1
, Ty
); break;
1250 case Instruction::SDiv
: Dest
.IntVal
= Op0
.IntVal
.sdiv(Op1
.IntVal
); break;
1251 case Instruction::UDiv
: Dest
.IntVal
= Op0
.IntVal
.udiv(Op1
.IntVal
); break;
1252 case Instruction::URem
: Dest
.IntVal
= Op0
.IntVal
.urem(Op1
.IntVal
); break;
1253 case Instruction::SRem
: Dest
.IntVal
= Op0
.IntVal
.srem(Op1
.IntVal
); break;
1254 case Instruction::And
: Dest
.IntVal
= Op0
.IntVal
& Op1
.IntVal
; break;
1255 case Instruction::Or
: Dest
.IntVal
= Op0
.IntVal
| Op1
.IntVal
; break;
1256 case Instruction::Xor
: Dest
.IntVal
= Op0
.IntVal
^ Op1
.IntVal
; break;
1257 case Instruction::Shl
:
1258 Dest
.IntVal
= Op0
.IntVal
.shl(Op1
.IntVal
.getZExtValue());
1260 case Instruction::LShr
:
1261 Dest
.IntVal
= Op0
.IntVal
.lshr(Op1
.IntVal
.getZExtValue());
1263 case Instruction::AShr
:
1264 Dest
.IntVal
= Op0
.IntVal
.ashr(Op1
.IntVal
.getZExtValue());
1267 errs() << "Unhandled ConstantExpr: " << *CE
<< "\n";
1268 llvm_unreachable(0);
1269 return GenericValue();
1274 GenericValue
Interpreter::getOperandValue(Value
*V
, ExecutionContext
&SF
) {
1275 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1276 return getConstantExprValue(CE
, SF
);
1277 } else if (Constant
*CPV
= dyn_cast
<Constant
>(V
)) {
1278 return getConstantValue(CPV
);
1279 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1280 return PTOGV(getPointerToGlobal(GV
));
1282 return SF
.Values
[V
];
1286 //===----------------------------------------------------------------------===//
1287 // Dispatch and Execution Code
1288 //===----------------------------------------------------------------------===//
1290 //===----------------------------------------------------------------------===//
1291 // callFunction - Execute the specified function...
1293 void Interpreter::callFunction(Function
*F
,
1294 const std::vector
<GenericValue
> &ArgVals
) {
1295 assert((ECStack
.empty() || ECStack
.back().Caller
.getInstruction() == 0 ||
1296 ECStack
.back().Caller
.arg_size() == ArgVals
.size()) &&
1297 "Incorrect number of arguments passed into function call!");
1298 // Make a new stack frame... and fill it in.
1299 ECStack
.push_back(ExecutionContext());
1300 ExecutionContext
&StackFrame
= ECStack
.back();
1301 StackFrame
.CurFunction
= F
;
1303 // Special handling for external functions.
1304 if (F
->isDeclaration()) {
1305 GenericValue Result
= callExternalFunction (F
, ArgVals
);
1306 // Simulate a 'ret' instruction of the appropriate type.
1307 popStackAndReturnValueToCaller (F
->getReturnType (), Result
);
1311 // Get pointers to first LLVM BB & Instruction in function.
1312 StackFrame
.CurBB
= F
->begin();
1313 StackFrame
.CurInst
= StackFrame
.CurBB
->begin();
1315 // Run through the function arguments and initialize their values...
1316 assert((ArgVals
.size() == F
->arg_size() ||
1317 (ArgVals
.size() > F
->arg_size() && F
->getFunctionType()->isVarArg()))&&
1318 "Invalid number of values passed to function invocation!");
1320 // Handle non-varargs arguments...
1322 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1324 SetValue(AI
, ArgVals
[i
], StackFrame
);
1326 // Handle varargs arguments...
1327 StackFrame
.VarArgs
.assign(ArgVals
.begin()+i
, ArgVals
.end());
1331 void Interpreter::run() {
1332 while (!ECStack
.empty()) {
1333 // Interpret a single instruction & increment the "PC".
1334 ExecutionContext
&SF
= ECStack
.back(); // Current stack frame
1335 Instruction
&I
= *SF
.CurInst
++; // Increment before execute
1337 // Track the number of dynamic instructions executed.
1340 DEBUG(errs() << "About to interpret: " << I
);
1341 visit(I
); // Dispatch to one of the visit* methods...
1343 // This is not safe, as visiting the instruction could lower it and free I.
1345 if (!isa
<CallInst
>(I
) && !isa
<InvokeInst
>(I
) &&
1346 I
.getType() != Type::VoidTy
) {
1348 const GenericValue
&Val
= SF
.Values
[&I
];
1349 switch (I
.getType()->getTypeID()) {
1350 default: llvm_unreachable("Invalid GenericValue Type");
1351 case Type::VoidTyID
: errs() << "void"; break;
1352 case Type::FloatTyID
: errs() << "float " << Val
.FloatVal
; break;
1353 case Type::DoubleTyID
: errs() << "double " << Val
.DoubleVal
; break;
1354 case Type::PointerTyID
: errs() << "void* " << intptr_t(Val
.PointerVal
);
1356 case Type::IntegerTyID
:
1357 errs() << "i" << Val
.IntVal
.getBitWidth() << " "
1358 << Val
.IntVal
.toStringUnsigned(10)
1359 << " (0x" << Val
.IntVal
.toStringUnsigned(16) << ")\n";