pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / ExecutionEngine / JIT / JIT.cpp
blob37433504333365b104e25729ee8adf825bc6a218
1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/ModuleProvider.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/CodeGen/MachineCodeInfo.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/ExecutionEngine/JITEventListener.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetJITInfo.h"
29 #include "llvm/Support/Dwarf.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MutexGuard.h"
32 #include "llvm/System/DynamicLibrary.h"
33 #include "llvm/Config/config.h"
35 using namespace llvm;
37 #ifdef __APPLE__
38 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
39 // of atexit). It passes the address of linker generated symbol __dso_handle
40 // to the function.
41 // This configuration change happened at version 5330.
42 # include <AvailabilityMacros.h>
43 # if defined(MAC_OS_X_VERSION_10_4) && \
44 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
45 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
46 __APPLE_CC__ >= 5330))
47 # ifndef HAVE___DSO_HANDLE
48 # define HAVE___DSO_HANDLE 1
49 # endif
50 # endif
51 #endif
53 #if HAVE___DSO_HANDLE
54 extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
55 #endif
57 namespace {
59 static struct RegisterJIT {
60 RegisterJIT() { JIT::Register(); }
61 } JITRegistrator;
65 extern "C" void LLVMLinkInJIT() {
69 #if defined(__GNUC__) && !defined(__ARM__EABI__)
71 // libgcc defines the __register_frame function to dynamically register new
72 // dwarf frames for exception handling. This functionality is not portable
73 // across compilers and is only provided by GCC. We use the __register_frame
74 // function here so that code generated by the JIT cooperates with the unwinding
75 // runtime of libgcc. When JITting with exception handling enable, LLVM
76 // generates dwarf frames and registers it to libgcc with __register_frame.
78 // The __register_frame function works with Linux.
80 // Unfortunately, this functionality seems to be in libgcc after the unwinding
81 // library of libgcc for darwin was written. The code for darwin overwrites the
82 // value updated by __register_frame with a value fetched with "keymgr".
83 // "keymgr" is an obsolete functionality, which should be rewritten some day.
84 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
85 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
86 // values of an opaque key, used by libgcc to find dwarf tables.
88 extern "C" void __register_frame(void*);
90 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
91 # define USE_KEYMGR 1
92 #else
93 # define USE_KEYMGR 0
94 #endif
96 #if USE_KEYMGR
98 namespace {
100 // LibgccObject - This is the structure defined in libgcc. There is no #include
101 // provided for this structure, so we also define it here. libgcc calls it
102 // "struct object". The structure is undocumented in libgcc.
103 struct LibgccObject {
104 void *unused1;
105 void *unused2;
106 void *unused3;
108 /// frame - Pointer to the exception table.
109 void *frame;
111 /// encoding - The encoding of the object?
112 union {
113 struct {
114 unsigned long sorted : 1;
115 unsigned long from_array : 1;
116 unsigned long mixed_encoding : 1;
117 unsigned long encoding : 8;
118 unsigned long count : 21;
119 } b;
120 size_t i;
121 } encoding;
123 /// fde_end - libgcc defines this field only if some macro is defined. We
124 /// include this field even if it may not there, to make libgcc happy.
125 char *fde_end;
127 /// next - At least we know it's a chained list!
128 struct LibgccObject *next;
131 // "kemgr" stuff. Apparently, all frame tables are stored there.
132 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
133 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
134 #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
136 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
137 /// probably contains all dwarf tables that are loaded.
138 struct LibgccObjectInfo {
140 /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
142 struct LibgccObject* seenObjects;
144 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
146 struct LibgccObject* unseenObjects;
148 unsigned unused[2];
151 /// darwin_register_frame - Since __register_frame does not work with darwin's
152 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
153 /// "Dwarf2 object list" key.
154 void DarwinRegisterFrame(void* FrameBegin) {
155 // Get the key.
156 LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
157 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
158 assert(LOI && "This should be preallocated by the runtime");
160 // Allocate a new LibgccObject to represent this frame. Deallocation of this
161 // object may be impossible: since darwin code in libgcc was written after
162 // the ability to dynamically register frames, things may crash if we
163 // deallocate it.
164 struct LibgccObject* ob = (struct LibgccObject*)
165 malloc(sizeof(struct LibgccObject));
167 // Do like libgcc for the values of the field.
168 ob->unused1 = (void *)-1;
169 ob->unused2 = 0;
170 ob->unused3 = 0;
171 ob->frame = FrameBegin;
172 ob->encoding.i = 0;
173 ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
175 // Put the info on both places, as libgcc uses the first or the the second
176 // field. Note that we rely on having two pointers here. If fde_end was a
177 // char, things would get complicated.
178 ob->fde_end = (char*)LOI->unseenObjects;
179 ob->next = LOI->unseenObjects;
181 // Update the key's unseenObjects list.
182 LOI->unseenObjects = ob;
184 // Finally update the "key". Apparently, libgcc requires it.
185 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
186 LOI);
191 #endif // __APPLE__
192 #endif // __GNUC__
194 /// createJIT - This is the factory method for creating a JIT for the current
195 /// machine, it does not fall back to the interpreter. This takes ownership
196 /// of the module provider.
197 ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
198 std::string *ErrorStr,
199 JITMemoryManager *JMM,
200 CodeGenOpt::Level OptLevel,
201 bool GVsWithCode) {
202 return JIT::createJIT(MP, ErrorStr, JMM, OptLevel, GVsWithCode);
205 ExecutionEngine *JIT::createJIT(ModuleProvider *MP,
206 std::string *ErrorStr,
207 JITMemoryManager *JMM,
208 CodeGenOpt::Level OptLevel,
209 bool GVsWithCode) {
210 // Make sure we can resolve symbols in the program as well. The zero arg
211 // to the function tells DynamicLibrary to load the program, not a library.
212 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
213 return 0;
215 // Pick a target either via -march or by guessing the native arch.
216 TargetMachine *TM = JIT::selectTarget(MP, ErrorStr);
217 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
219 // If the target supports JIT code generation, create a the JIT.
220 if (TargetJITInfo *TJ = TM->getJITInfo()) {
221 return new JIT(MP, *TM, *TJ, JMM, OptLevel, GVsWithCode);
222 } else {
223 if (ErrorStr)
224 *ErrorStr = "target does not support JIT code generation";
225 return 0;
229 JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
230 JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
231 : ExecutionEngine(MP), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode) {
232 setTargetData(TM.getTargetData());
234 jitstate = new JITState(MP);
236 // Initialize JCE
237 JCE = createEmitter(*this, JMM);
239 // Add target data
240 MutexGuard locked(lock);
241 FunctionPassManager &PM = jitstate->getPM(locked);
242 PM.add(new TargetData(*TM.getTargetData()));
244 // Turn the machine code intermediate representation into bytes in memory that
245 // may be executed.
246 if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
247 llvm_report_error("Target does not support machine code emission!");
250 // Register routine for informing unwinding runtime about new EH frames
251 #if defined(__GNUC__) && !defined(__ARM_EABI__)
252 #if USE_KEYMGR
253 struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
254 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
256 // The key is created on demand, and libgcc creates it the first time an
257 // exception occurs. Since we need the key to register frames, we create
258 // it now.
259 if (!LOI)
260 LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
261 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
262 InstallExceptionTableRegister(DarwinRegisterFrame);
263 #else
264 InstallExceptionTableRegister(__register_frame);
265 #endif // __APPLE__
266 #endif // __GNUC__
268 // Initialize passes.
269 PM.doInitialization();
272 JIT::~JIT() {
273 delete jitstate;
274 delete JCE;
275 delete &TM;
278 /// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously
279 /// removed the last ModuleProvider, we need re-initialize jitstate with a valid
280 /// ModuleProvider.
281 void JIT::addModuleProvider(ModuleProvider *MP) {
282 MutexGuard locked(lock);
284 if (Modules.empty()) {
285 assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
287 jitstate = new JITState(MP);
289 FunctionPassManager &PM = jitstate->getPM(locked);
290 PM.add(new TargetData(*TM.getTargetData()));
292 // Turn the machine code intermediate representation into bytes in memory
293 // that may be executed.
294 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
295 llvm_report_error("Target does not support machine code emission!");
298 // Initialize passes.
299 PM.doInitialization();
302 ExecutionEngine::addModuleProvider(MP);
305 /// removeModuleProvider - If we are removing the last ModuleProvider,
306 /// invalidate the jitstate since the PassManager it contains references a
307 /// released ModuleProvider.
308 Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
309 Module *result = ExecutionEngine::removeModuleProvider(MP, E);
311 MutexGuard locked(lock);
313 if (jitstate->getMP() == MP) {
314 delete jitstate;
315 jitstate = 0;
318 if (!jitstate && !Modules.empty()) {
319 jitstate = new JITState(Modules[0]);
321 FunctionPassManager &PM = jitstate->getPM(locked);
322 PM.add(new TargetData(*TM.getTargetData()));
324 // Turn the machine code intermediate representation into bytes in memory
325 // that may be executed.
326 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
327 llvm_report_error("Target does not support machine code emission!");
330 // Initialize passes.
331 PM.doInitialization();
333 return result;
336 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
337 /// and deletes the ModuleProvider and owned Module. Avoids materializing
338 /// the underlying module.
339 void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
340 ExecutionEngine::deleteModuleProvider(MP, E);
342 MutexGuard locked(lock);
344 if (jitstate->getMP() == MP) {
345 delete jitstate;
346 jitstate = 0;
349 if (!jitstate && !Modules.empty()) {
350 jitstate = new JITState(Modules[0]);
352 FunctionPassManager &PM = jitstate->getPM(locked);
353 PM.add(new TargetData(*TM.getTargetData()));
355 // Turn the machine code intermediate representation into bytes in memory
356 // that may be executed.
357 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
358 llvm_report_error("Target does not support machine code emission!");
361 // Initialize passes.
362 PM.doInitialization();
366 /// run - Start execution with the specified function and arguments.
368 GenericValue JIT::runFunction(Function *F,
369 const std::vector<GenericValue> &ArgValues) {
370 assert(F && "Function *F was null at entry to run()");
372 void *FPtr = getPointerToFunction(F);
373 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
374 const FunctionType *FTy = F->getFunctionType();
375 const Type *RetTy = FTy->getReturnType();
377 assert((FTy->getNumParams() == ArgValues.size() ||
378 (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
379 "Wrong number of arguments passed into function!");
380 assert(FTy->getNumParams() == ArgValues.size() &&
381 "This doesn't support passing arguments through varargs (yet)!");
383 // Handle some common cases first. These cases correspond to common `main'
384 // prototypes.
385 if (RetTy == Type::getInt32Ty(F->getContext()) ||
386 RetTy == Type::getVoidTy(F->getContext())) {
387 switch (ArgValues.size()) {
388 case 3:
389 if (FTy->getParamType(0) == Type::getInt32Ty(F->getContext()) &&
390 isa<PointerType>(FTy->getParamType(1)) &&
391 isa<PointerType>(FTy->getParamType(2))) {
392 int (*PF)(int, char **, const char **) =
393 (int(*)(int, char **, const char **))(intptr_t)FPtr;
395 // Call the function.
396 GenericValue rv;
397 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
398 (char **)GVTOP(ArgValues[1]),
399 (const char **)GVTOP(ArgValues[2])));
400 return rv;
402 break;
403 case 2:
404 if (FTy->getParamType(0) == Type::getInt32Ty(F->getContext()) &&
405 isa<PointerType>(FTy->getParamType(1))) {
406 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
408 // Call the function.
409 GenericValue rv;
410 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
411 (char **)GVTOP(ArgValues[1])));
412 return rv;
414 break;
415 case 1:
416 if (FTy->getNumParams() == 1 &&
417 FTy->getParamType(0) == Type::getInt32Ty(F->getContext())) {
418 GenericValue rv;
419 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
420 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
421 return rv;
423 break;
427 // Handle cases where no arguments are passed first.
428 if (ArgValues.empty()) {
429 GenericValue rv;
430 switch (RetTy->getTypeID()) {
431 default: llvm_unreachable("Unknown return type for function call!");
432 case Type::IntegerTyID: {
433 unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
434 if (BitWidth == 1)
435 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
436 else if (BitWidth <= 8)
437 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
438 else if (BitWidth <= 16)
439 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
440 else if (BitWidth <= 32)
441 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
442 else if (BitWidth <= 64)
443 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
444 else
445 llvm_unreachable("Integer types > 64 bits not supported");
446 return rv;
448 case Type::VoidTyID:
449 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
450 return rv;
451 case Type::FloatTyID:
452 rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
453 return rv;
454 case Type::DoubleTyID:
455 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
456 return rv;
457 case Type::X86_FP80TyID:
458 case Type::FP128TyID:
459 case Type::PPC_FP128TyID:
460 llvm_unreachable("long double not supported yet");
461 return rv;
462 case Type::PointerTyID:
463 return PTOGV(((void*(*)())(intptr_t)FPtr)());
467 // Okay, this is not one of our quick and easy cases. Because we don't have a
468 // full FFI, we have to codegen a nullary stub function that just calls the
469 // function we are interested in, passing in constants for all of the
470 // arguments. Make this function and return.
472 // First, create the function.
473 FunctionType *STy=FunctionType::get(RetTy, false);
474 Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
475 F->getParent());
477 // Insert a basic block.
478 BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
480 // Convert all of the GenericValue arguments over to constants. Note that we
481 // currently don't support varargs.
482 SmallVector<Value*, 8> Args;
483 for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
484 Constant *C = 0;
485 const Type *ArgTy = FTy->getParamType(i);
486 const GenericValue &AV = ArgValues[i];
487 switch (ArgTy->getTypeID()) {
488 default: llvm_unreachable("Unknown argument type for function call!");
489 case Type::IntegerTyID:
490 C = ConstantInt::get(F->getContext(), AV.IntVal);
491 break;
492 case Type::FloatTyID:
493 C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
494 break;
495 case Type::DoubleTyID:
496 C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
497 break;
498 case Type::PPC_FP128TyID:
499 case Type::X86_FP80TyID:
500 case Type::FP128TyID:
501 C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
502 break;
503 case Type::PointerTyID:
504 void *ArgPtr = GVTOP(AV);
505 if (sizeof(void*) == 4)
506 C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
507 (int)(intptr_t)ArgPtr);
508 else
509 C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
510 (intptr_t)ArgPtr);
511 // Cast the integer to pointer
512 C = ConstantExpr::getIntToPtr(C, ArgTy);
513 break;
515 Args.push_back(C);
518 CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
519 "", StubBB);
520 TheCall->setCallingConv(F->getCallingConv());
521 TheCall->setTailCall();
522 if (TheCall->getType() != Type::getVoidTy(F->getContext()))
523 // Return result of the call.
524 ReturnInst::Create(F->getContext(), TheCall, StubBB);
525 else
526 ReturnInst::Create(F->getContext(), StubBB); // Just return void.
528 // Finally, return the value returned by our nullary stub function.
529 return runFunction(Stub, std::vector<GenericValue>());
532 void JIT::RegisterJITEventListener(JITEventListener *L) {
533 if (L == NULL)
534 return;
535 MutexGuard locked(lock);
536 EventListeners.push_back(L);
538 void JIT::UnregisterJITEventListener(JITEventListener *L) {
539 if (L == NULL)
540 return;
541 MutexGuard locked(lock);
542 std::vector<JITEventListener*>::reverse_iterator I=
543 std::find(EventListeners.rbegin(), EventListeners.rend(), L);
544 if (I != EventListeners.rend()) {
545 std::swap(*I, EventListeners.back());
546 EventListeners.pop_back();
549 void JIT::NotifyFunctionEmitted(
550 const Function &F,
551 void *Code, size_t Size,
552 const JITEvent_EmittedFunctionDetails &Details) {
553 MutexGuard locked(lock);
554 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
555 EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
559 void JIT::NotifyFreeingMachineCode(const Function &F, void *OldPtr) {
560 MutexGuard locked(lock);
561 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
562 EventListeners[I]->NotifyFreeingMachineCode(F, OldPtr);
566 /// runJITOnFunction - Run the FunctionPassManager full of
567 /// just-in-time compilation passes on F, hopefully filling in
568 /// GlobalAddress[F] with the address of F's machine code.
570 void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
571 MutexGuard locked(lock);
573 class MCIListener : public JITEventListener {
574 MachineCodeInfo *const MCI;
575 public:
576 MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
577 virtual void NotifyFunctionEmitted(const Function &,
578 void *Code, size_t Size,
579 const EmittedFunctionDetails &) {
580 MCI->setAddress(Code);
581 MCI->setSize(Size);
584 MCIListener MCIL(MCI);
585 RegisterJITEventListener(&MCIL);
587 runJITOnFunctionUnlocked(F, locked);
589 UnregisterJITEventListener(&MCIL);
592 void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
593 static bool isAlreadyCodeGenerating = false;
594 assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
596 // JIT the function
597 isAlreadyCodeGenerating = true;
598 jitstate->getPM(locked).run(*F);
599 isAlreadyCodeGenerating = false;
601 // If the function referred to another function that had not yet been
602 // read from bitcode, but we are jitting non-lazily, emit it now.
603 while (!jitstate->getPendingFunctions(locked).empty()) {
604 Function *PF = jitstate->getPendingFunctions(locked).back();
605 jitstate->getPendingFunctions(locked).pop_back();
607 // JIT the function
608 isAlreadyCodeGenerating = true;
609 jitstate->getPM(locked).run(*PF);
610 isAlreadyCodeGenerating = false;
612 // Now that the function has been jitted, ask the JITEmitter to rewrite
613 // the stub with real address of the function.
614 updateFunctionStub(PF);
617 // If the JIT is configured to emit info so that dlsym can be used to
618 // rewrite stubs to external globals, do so now.
619 if (areDlsymStubsEnabled() && isLazyCompilationDisabled())
620 updateDlsymStubTable();
623 /// getPointerToFunction - This method is used to get the address of the
624 /// specified function, compiling it if neccesary.
626 void *JIT::getPointerToFunction(Function *F) {
628 if (void *Addr = getPointerToGlobalIfAvailable(F))
629 return Addr; // Check if function already code gen'd
631 MutexGuard locked(lock);
633 // Now that this thread owns the lock, check if another thread has already
634 // code gen'd the function.
635 if (void *Addr = getPointerToGlobalIfAvailable(F))
636 return Addr;
638 // Make sure we read in the function if it exists in this Module.
639 if (F->hasNotBeenReadFromBitcode()) {
640 // Determine the module provider this function is provided by.
641 Module *M = F->getParent();
642 ModuleProvider *MP = 0;
643 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
644 if (Modules[i]->getModule() == M) {
645 MP = Modules[i];
646 break;
649 assert(MP && "Function isn't in a module we know about!");
651 std::string ErrorMsg;
652 if (MP->materializeFunction(F, &ErrorMsg)) {
653 llvm_report_error("Error reading function '" + F->getName()+
654 "' from bitcode file: " + ErrorMsg);
657 // Now retry to get the address.
658 if (void *Addr = getPointerToGlobalIfAvailable(F))
659 return Addr;
662 if (F->isDeclaration()) {
663 bool AbortOnFailure =
664 !areDlsymStubsEnabled() && !F->hasExternalWeakLinkage();
665 void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
666 addGlobalMapping(F, Addr);
667 return Addr;
670 runJITOnFunctionUnlocked(F, locked);
672 void *Addr = getPointerToGlobalIfAvailable(F);
673 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
674 return Addr;
677 /// getOrEmitGlobalVariable - Return the address of the specified global
678 /// variable, possibly emitting it to memory if needed. This is used by the
679 /// Emitter.
680 void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
681 MutexGuard locked(lock);
683 void *Ptr = getPointerToGlobalIfAvailable(GV);
684 if (Ptr) return Ptr;
686 // If the global is external, just remember the address.
687 if (GV->isDeclaration()) {
688 #if HAVE___DSO_HANDLE
689 if (GV->getName() == "__dso_handle")
690 return (void*)&__dso_handle;
691 #endif
692 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
693 if (Ptr == 0 && !areDlsymStubsEnabled()) {
694 llvm_report_error("Could not resolve external global address: "
695 +GV->getName());
697 addGlobalMapping(GV, Ptr);
698 } else {
699 // If the global hasn't been emitted to memory yet, allocate space and
700 // emit it into memory.
701 Ptr = getMemoryForGV(GV);
702 addGlobalMapping(GV, Ptr);
703 EmitGlobalVariable(GV); // Initialize the variable.
705 return Ptr;
708 /// recompileAndRelinkFunction - This method is used to force a function
709 /// which has already been compiled, to be compiled again, possibly
710 /// after it has been modified. Then the entry to the old copy is overwritten
711 /// with a branch to the new copy. If there was no old copy, this acts
712 /// just like JIT::getPointerToFunction().
714 void *JIT::recompileAndRelinkFunction(Function *F) {
715 void *OldAddr = getPointerToGlobalIfAvailable(F);
717 // If it's not already compiled there is no reason to patch it up.
718 if (OldAddr == 0) { return getPointerToFunction(F); }
720 // Delete the old function mapping.
721 addGlobalMapping(F, 0);
723 // Recodegen the function
724 runJITOnFunction(F);
726 // Update state, forward the old function to the new function.
727 void *Addr = getPointerToGlobalIfAvailable(F);
728 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
729 TJI.replaceMachineCodeForFunction(OldAddr, Addr);
730 return Addr;
733 /// getMemoryForGV - This method abstracts memory allocation of global
734 /// variable so that the JIT can allocate thread local variables depending
735 /// on the target.
737 char* JIT::getMemoryForGV(const GlobalVariable* GV) {
738 char *Ptr;
740 // GlobalVariable's which are not "constant" will cause trouble in a server
741 // situation. It's returned in the same block of memory as code which may
742 // not be writable.
743 if (isGVCompilationDisabled() && !GV->isConstant()) {
744 llvm_report_error("Compilation of non-internal GlobalValue is disabled!");
747 // Some applications require globals and code to live together, so they may
748 // be allocated into the same buffer, but in general globals are allocated
749 // through the memory manager which puts them near the code but not in the
750 // same buffer.
751 const Type *GlobalType = GV->getType()->getElementType();
752 size_t S = getTargetData()->getTypeAllocSize(GlobalType);
753 size_t A = getTargetData()->getPreferredAlignment(GV);
754 if (GV->isThreadLocal()) {
755 MutexGuard locked(lock);
756 Ptr = TJI.allocateThreadLocalMemory(S);
757 } else if (TJI.allocateSeparateGVMemory()) {
758 if (A <= 8) {
759 Ptr = (char*)malloc(S);
760 } else {
761 // Allocate S+A bytes of memory, then use an aligned pointer within that
762 // space.
763 Ptr = (char*)malloc(S+A);
764 unsigned MisAligned = ((intptr_t)Ptr & (A-1));
765 Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
767 } else if (AllocateGVsWithCode) {
768 Ptr = (char*)JCE->allocateSpace(S, A);
769 } else {
770 Ptr = (char*)JCE->allocateGlobal(S, A);
772 return Ptr;
775 void JIT::addPendingFunction(Function *F) {
776 MutexGuard locked(lock);
777 jitstate->getPendingFunctions(locked).push_back(F);
781 JITEventListener::~JITEventListener() {}