1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/MachineCodeEmitter.h"
28 #include "llvm/CodeGen/JITCodeEmitter.h"
29 #include "llvm/CodeGen/ObjectCodeEmitter.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
45 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
49 class ARMCodeEmitter
{
51 /// getBinaryCodeForInstr - This function, generated by the
52 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
53 /// machine instructions.
54 unsigned getBinaryCodeForInstr(const MachineInstr
&MI
);
57 template<class CodeEmitter
>
58 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
,
59 public ARMCodeEmitter
{
61 const ARMInstrInfo
*II
;
63 const ARMSubtarget
*Subtarget
;
66 const std::vector
<MachineConstantPoolEntry
> *MCPEs
;
67 const std::vector
<MachineJumpTableEntry
> *MJTEs
;
72 explicit Emitter(TargetMachine
&tm
, CodeEmitter
&mce
)
73 : MachineFunctionPass(&ID
), JTI(0), II(0), TD(0), TM(tm
),
74 MCE(mce
), MCPEs(0), MJTEs(0),
75 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
76 Emitter(TargetMachine
&tm
, CodeEmitter
&mce
,
77 const ARMInstrInfo
&ii
, const TargetData
&td
)
78 : MachineFunctionPass(&ID
), JTI(0), II(&ii
), TD(&td
), TM(tm
),
79 MCE(mce
), MCPEs(0), MJTEs(0),
80 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
82 bool runOnMachineFunction(MachineFunction
&MF
);
84 virtual const char *getPassName() const {
85 return "ARM Machine Code Emitter";
88 void emitInstruction(const MachineInstr
&MI
);
92 void emitWordLE(unsigned Binary
);
94 void emitDWordLE(uint64_t Binary
);
96 void emitConstPoolInstruction(const MachineInstr
&MI
);
98 void emitMOVi2piecesInstruction(const MachineInstr
&MI
);
100 void emitLEApcrelJTInstruction(const MachineInstr
&MI
);
102 void emitPseudoMoveInstruction(const MachineInstr
&MI
);
104 void addPCLabel(unsigned LabelID
);
106 void emitPseudoInstruction(const MachineInstr
&MI
);
108 unsigned getMachineSoRegOpValue(const MachineInstr
&MI
,
109 const TargetInstrDesc
&TID
,
110 const MachineOperand
&MO
,
113 unsigned getMachineSoImmOpValue(unsigned SoImm
);
115 unsigned getAddrModeSBit(const MachineInstr
&MI
,
116 const TargetInstrDesc
&TID
) const;
118 void emitDataProcessingInstruction(const MachineInstr
&MI
,
119 unsigned ImplicitRd
= 0,
120 unsigned ImplicitRn
= 0);
122 void emitLoadStoreInstruction(const MachineInstr
&MI
,
123 unsigned ImplicitRd
= 0,
124 unsigned ImplicitRn
= 0);
126 void emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
127 unsigned ImplicitRn
= 0);
129 void emitLoadStoreMultipleInstruction(const MachineInstr
&MI
);
131 void emitMulFrmInstruction(const MachineInstr
&MI
);
133 void emitExtendInstruction(const MachineInstr
&MI
);
135 void emitMiscArithInstruction(const MachineInstr
&MI
);
137 void emitBranchInstruction(const MachineInstr
&MI
);
139 void emitInlineJumpTable(unsigned JTIndex
);
141 void emitMiscBranchInstruction(const MachineInstr
&MI
);
143 void emitVFPArithInstruction(const MachineInstr
&MI
);
145 void emitVFPConversionInstruction(const MachineInstr
&MI
);
147 void emitVFPLoadStoreInstruction(const MachineInstr
&MI
);
149 void emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
);
151 void emitMiscInstruction(const MachineInstr
&MI
);
153 /// getMachineOpValue - Return binary encoding of operand. If the machine
154 /// operand requires relocation, record the relocation and return zero.
155 unsigned getMachineOpValue(const MachineInstr
&MI
,const MachineOperand
&MO
);
156 unsigned getMachineOpValue(const MachineInstr
&MI
, unsigned OpIdx
) {
157 return getMachineOpValue(MI
, MI
.getOperand(OpIdx
));
160 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
162 unsigned getShiftOp(unsigned Imm
) const ;
164 /// Routines that handle operands which add machine relocations which are
165 /// fixed up by the relocation stage.
166 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
167 bool NeedStub
, bool Indirect
, intptr_t ACPV
= 0);
168 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
169 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
);
170 void emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
);
171 void emitMachineBasicBlock(MachineBasicBlock
*BB
, unsigned Reloc
,
172 intptr_t JTBase
= 0);
174 template <class CodeEmitter
>
175 char Emitter
<CodeEmitter
>::ID
= 0;
178 /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
179 /// to the specified MCE object.
181 FunctionPass
*llvm::createARMCodeEmitterPass(ARMBaseTargetMachine
&TM
,
182 MachineCodeEmitter
&MCE
) {
183 return new Emitter
<MachineCodeEmitter
>(TM
, MCE
);
185 FunctionPass
*llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine
&TM
,
186 JITCodeEmitter
&JCE
) {
187 return new Emitter
<JITCodeEmitter
>(TM
, JCE
);
189 FunctionPass
*llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine
&TM
,
190 ObjectCodeEmitter
&OCE
) {
191 return new Emitter
<ObjectCodeEmitter
>(TM
, OCE
);
194 template<class CodeEmitter
>
195 bool Emitter
<CodeEmitter
>::runOnMachineFunction(MachineFunction
&MF
) {
196 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
197 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
198 "JIT relocation model must be set to static or default!");
199 JTI
= ((ARMTargetMachine
&)MF
.getTarget()).getJITInfo();
200 II
= ((ARMTargetMachine
&)MF
.getTarget()).getInstrInfo();
201 TD
= ((ARMTargetMachine
&)MF
.getTarget()).getTargetData();
202 Subtarget
= &TM
.getSubtarget
<ARMSubtarget
>();
203 MCPEs
= &MF
.getConstantPool()->getConstants();
204 MJTEs
= &MF
.getJumpTableInfo()->getJumpTables();
205 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
206 JTI
->Initialize(MF
, IsPIC
);
209 DEBUG(errs() << "JITTing function '"
210 << MF
.getFunction()->getName() << "'\n");
211 MCE
.startFunction(MF
);
212 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
214 MCE
.StartMachineBasicBlock(MBB
);
215 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
219 } while (MCE
.finishFunction(MF
));
224 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
226 template<class CodeEmitter
>
227 unsigned Emitter
<CodeEmitter
>::getShiftOp(unsigned Imm
) const {
228 switch (ARM_AM::getAM2ShiftOpc(Imm
)) {
229 default: llvm_unreachable("Unknown shift opc!");
230 case ARM_AM::asr
: return 2;
231 case ARM_AM::lsl
: return 0;
232 case ARM_AM::lsr
: return 1;
234 case ARM_AM::rrx
: return 3;
239 /// getMachineOpValue - Return binary encoding of operand. If the machine
240 /// operand requires relocation, record the relocation and return zero.
241 template<class CodeEmitter
>
242 unsigned Emitter
<CodeEmitter
>::getMachineOpValue(const MachineInstr
&MI
,
243 const MachineOperand
&MO
) {
245 return ARMRegisterInfo::getRegisterNumbering(MO
.getReg());
247 return static_cast<unsigned>(MO
.getImm());
248 else if (MO
.isGlobal())
249 emitGlobalAddress(MO
.getGlobal(), ARM::reloc_arm_branch
, true, false);
250 else if (MO
.isSymbol())
251 emitExternalSymbolAddress(MO
.getSymbolName(), ARM::reloc_arm_branch
);
252 else if (MO
.isCPI()) {
253 const TargetInstrDesc
&TID
= MI
.getDesc();
254 // For VFP load, the immediate offset is multiplied by 4.
255 unsigned Reloc
= ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPLdStFrm
)
256 ? ARM::reloc_arm_vfp_cp_entry
: ARM::reloc_arm_cp_entry
;
257 emitConstPoolAddress(MO
.getIndex(), Reloc
);
258 } else if (MO
.isJTI())
259 emitJumpTableAddress(MO
.getIndex(), ARM::reloc_arm_relative
);
261 emitMachineBasicBlock(MO
.getMBB(), ARM::reloc_arm_branch
);
271 /// emitGlobalAddress - Emit the specified address to the code stream.
273 template<class CodeEmitter
>
274 void Emitter
<CodeEmitter
>::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
275 bool NeedStub
, bool Indirect
,
277 MachineRelocation MR
= Indirect
278 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
280 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
282 MCE
.addRelocation(MR
);
285 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
286 /// be emitted to the current location in the function, and allow it to be PC
288 template<class CodeEmitter
>
289 void Emitter
<CodeEmitter
>::emitExternalSymbolAddress(const char *ES
,
291 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
295 /// emitConstPoolAddress - Arrange for the address of an constant pool
296 /// to be emitted to the current location in the function, and allow it to be PC
298 template<class CodeEmitter
>
299 void Emitter
<CodeEmitter
>::emitConstPoolAddress(unsigned CPI
,
301 // Tell JIT emitter we'll resolve the address.
302 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
303 Reloc
, CPI
, 0, true));
306 /// emitJumpTableAddress - Arrange for the address of a jump table to
307 /// be emitted to the current location in the function, and allow it to be PC
309 template<class CodeEmitter
>
310 void Emitter
<CodeEmitter
>::emitJumpTableAddress(unsigned JTIndex
,
312 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
313 Reloc
, JTIndex
, 0, true));
316 /// emitMachineBasicBlock - Emit the specified address basic block.
317 template<class CodeEmitter
>
318 void Emitter
<CodeEmitter
>::emitMachineBasicBlock(MachineBasicBlock
*BB
,
319 unsigned Reloc
, intptr_t JTBase
) {
320 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
324 template<class CodeEmitter
>
325 void Emitter
<CodeEmitter
>::emitWordLE(unsigned Binary
) {
326 DEBUG(errs() << " 0x";
327 errs().write_hex(Binary
) << "\n");
328 MCE
.emitWordLE(Binary
);
331 template<class CodeEmitter
>
332 void Emitter
<CodeEmitter
>::emitDWordLE(uint64_t Binary
) {
333 DEBUG(errs() << " 0x";
334 errs().write_hex(Binary
) << "\n");
335 MCE
.emitDWordLE(Binary
);
338 template<class CodeEmitter
>
339 void Emitter
<CodeEmitter
>::emitInstruction(const MachineInstr
&MI
) {
340 DEBUG(errs() << "JIT: " << (void*)MCE
.getCurrentPCValue() << ":\t" << MI
);
342 MCE
.processDebugLoc(MI
.getDebugLoc());
344 NumEmitted
++; // Keep track of the # of mi's emitted
345 switch (MI
.getDesc().TSFlags
& ARMII::FormMask
) {
347 llvm_unreachable("Unhandled instruction encoding format!");
351 emitPseudoInstruction(MI
);
354 case ARMII::DPSoRegFrm
:
355 emitDataProcessingInstruction(MI
);
359 emitLoadStoreInstruction(MI
);
361 case ARMII::LdMiscFrm
:
362 case ARMII::StMiscFrm
:
363 emitMiscLoadStoreInstruction(MI
);
365 case ARMII::LdStMulFrm
:
366 emitLoadStoreMultipleInstruction(MI
);
369 emitMulFrmInstruction(MI
);
372 emitExtendInstruction(MI
);
374 case ARMII::ArithMiscFrm
:
375 emitMiscArithInstruction(MI
);
378 emitBranchInstruction(MI
);
380 case ARMII::BrMiscFrm
:
381 emitMiscBranchInstruction(MI
);
384 case ARMII::VFPUnaryFrm
:
385 case ARMII::VFPBinaryFrm
:
386 emitVFPArithInstruction(MI
);
388 case ARMII::VFPConv1Frm
:
389 case ARMII::VFPConv2Frm
:
390 case ARMII::VFPConv3Frm
:
391 case ARMII::VFPConv4Frm
:
392 case ARMII::VFPConv5Frm
:
393 emitVFPConversionInstruction(MI
);
395 case ARMII::VFPLdStFrm
:
396 emitVFPLoadStoreInstruction(MI
);
398 case ARMII::VFPLdStMulFrm
:
399 emitVFPLoadStoreMultipleInstruction(MI
);
401 case ARMII::VFPMiscFrm
:
402 emitMiscInstruction(MI
);
407 template<class CodeEmitter
>
408 void Emitter
<CodeEmitter
>::emitConstPoolInstruction(const MachineInstr
&MI
) {
409 unsigned CPI
= MI
.getOperand(0).getImm(); // CP instruction index.
410 unsigned CPIndex
= MI
.getOperand(1).getIndex(); // Actual cp entry index.
411 const MachineConstantPoolEntry
&MCPE
= (*MCPEs
)[CPIndex
];
413 // Remember the CONSTPOOL_ENTRY address for later relocation.
414 JTI
->addConstantPoolEntryAddr(CPI
, MCE
.getCurrentPCValue());
416 // Emit constpool island entry. In most cases, the actual values will be
417 // resolved and relocated after code emission.
418 if (MCPE
.isMachineConstantPoolEntry()) {
419 ARMConstantPoolValue
*ACPV
=
420 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
422 DEBUG(errs() << " ** ARM constant pool #" << CPI
<< " @ "
423 << (void*)MCE
.getCurrentPCValue() << " " << *ACPV
<< '\n');
425 GlobalValue
*GV
= ACPV
->getGV();
427 Reloc::Model RelocM
= TM
.getRelocationModel();
428 emitGlobalAddress(GV
, ARM::reloc_arm_machine_cp_entry
,
430 Subtarget
->GVIsIndirectSymbol(GV
, RelocM
),
433 emitExternalSymbolAddress(ACPV
->getSymbol(), ARM::reloc_arm_absolute
);
437 Constant
*CV
= MCPE
.Val
.ConstVal
;
440 errs() << " ** Constant pool #" << CPI
<< " @ "
441 << (void*)MCE
.getCurrentPCValue() << " ";
442 if (const Function
*F
= dyn_cast
<Function
>(CV
))
443 errs() << F
->getName();
449 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
450 emitGlobalAddress(GV
, ARM::reloc_arm_absolute
, isa
<Function
>(GV
), false);
452 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
453 uint32_t Val
= *(uint32_t*)CI
->getValue().getRawData();
455 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
456 if (CFP
->getType() == Type::getFloatTy(CFP
->getContext()))
457 emitWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
458 else if (CFP
->getType() == Type::getDoubleTy(CFP
->getContext()))
459 emitDWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
461 llvm_unreachable("Unable to handle this constantpool entry!");
464 llvm_unreachable("Unable to handle this constantpool entry!");
469 template<class CodeEmitter
>
470 void Emitter
<CodeEmitter
>::emitMOVi2piecesInstruction(const MachineInstr
&MI
) {
471 const MachineOperand
&MO0
= MI
.getOperand(0);
472 const MachineOperand
&MO1
= MI
.getOperand(1);
473 assert(MO1
.isImm() && ARM_AM::getSOImmVal(MO1
.isImm()) != -1 &&
474 "Not a valid so_imm value!");
475 unsigned V1
= ARM_AM::getSOImmTwoPartFirst(MO1
.getImm());
476 unsigned V2
= ARM_AM::getSOImmTwoPartSecond(MO1
.getImm());
478 // Emit the 'mov' instruction.
479 unsigned Binary
= 0xd << 21; // mov: Insts{24-21} = 0b1101
481 // Set the conditional execution predicate.
482 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
485 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
488 // Set bit I(25) to identify this is the immediate form of <shifter_op>
489 Binary
|= 1 << ARMII::I_BitShift
;
490 Binary
|= getMachineSoImmOpValue(V1
);
493 // Now the 'orr' instruction.
494 Binary
= 0xc << 21; // orr: Insts{24-21} = 0b1100
496 // Set the conditional execution predicate.
497 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
500 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
503 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRnShift
;
506 // Set bit I(25) to identify this is the immediate form of <shifter_op>
507 Binary
|= 1 << ARMII::I_BitShift
;
508 Binary
|= getMachineSoImmOpValue(V2
);
512 template<class CodeEmitter
>
513 void Emitter
<CodeEmitter
>::emitLEApcrelJTInstruction(const MachineInstr
&MI
) {
514 // It's basically add r, pc, (LJTI - $+8)
516 const TargetInstrDesc
&TID
= MI
.getDesc();
518 // Emit the 'add' instruction.
519 unsigned Binary
= 0x4 << 21; // add: Insts{24-31} = 0b0100
521 // Set the conditional execution predicate
522 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
524 // Encode S bit if MI modifies CPSR.
525 Binary
|= getAddrModeSBit(MI
, TID
);
528 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
530 // Encode Rn which is PC.
531 Binary
|= ARMRegisterInfo::getRegisterNumbering(ARM::PC
) << ARMII::RegRnShift
;
533 // Encode the displacement.
534 Binary
|= 1 << ARMII::I_BitShift
;
535 emitJumpTableAddress(MI
.getOperand(1).getIndex(), ARM::reloc_arm_jt_base
);
540 template<class CodeEmitter
>
541 void Emitter
<CodeEmitter
>::emitPseudoMoveInstruction(const MachineInstr
&MI
) {
542 unsigned Opcode
= MI
.getDesc().Opcode
;
544 // Part of binary is determined by TableGn.
545 unsigned Binary
= getBinaryCodeForInstr(MI
);
547 // Set the conditional execution predicate
548 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
550 // Encode S bit if MI modifies CPSR.
551 if (Opcode
== ARM::MOVsrl_flag
|| Opcode
== ARM::MOVsra_flag
)
552 Binary
|= 1 << ARMII::S_BitShift
;
554 // Encode register def if there is one.
555 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
557 // Encode the shift operation.
564 case ARM::MOVsrl_flag
:
566 Binary
|= (0x2 << 4) | (1 << 7);
568 case ARM::MOVsra_flag
:
570 Binary
|= (0x4 << 4) | (1 << 7);
574 // Encode register Rm.
575 Binary
|= getMachineOpValue(MI
, 1);
580 template<class CodeEmitter
>
581 void Emitter
<CodeEmitter
>::addPCLabel(unsigned LabelID
) {
582 DEBUG(errs() << " ** LPC" << LabelID
<< " @ "
583 << (void*)MCE
.getCurrentPCValue() << '\n');
584 JTI
->addPCLabelAddr(LabelID
, MCE
.getCurrentPCValue());
587 template<class CodeEmitter
>
588 void Emitter
<CodeEmitter
>::emitPseudoInstruction(const MachineInstr
&MI
) {
589 unsigned Opcode
= MI
.getDesc().Opcode
;
592 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");//FIXME:
593 case TargetInstrInfo::INLINEASM
: {
594 // We allow inline assembler nodes with empty bodies - they can
595 // implicitly define registers, which is ok for JIT.
596 if (MI
.getOperand(0).getSymbolName()[0]) {
597 llvm_report_error("JIT does not support inline asm!");
601 case TargetInstrInfo::DBG_LABEL
:
602 case TargetInstrInfo::EH_LABEL
:
603 MCE
.emitLabel(MI
.getOperand(0).getImm());
605 case TargetInstrInfo::IMPLICIT_DEF
:
609 case ARM::CONSTPOOL_ENTRY
:
610 emitConstPoolInstruction(MI
);
613 // Remember of the address of the PC label for relocation later.
614 addPCLabel(MI
.getOperand(2).getImm());
615 // PICADD is just an add instruction that implicitly read pc.
616 emitDataProcessingInstruction(MI
, 0, ARM::PC
);
623 // Remember of the address of the PC label for relocation later.
624 addPCLabel(MI
.getOperand(2).getImm());
625 // These are just load / store instructions that implicitly read pc.
626 emitLoadStoreInstruction(MI
, 0, ARM::PC
);
633 // Remember of the address of the PC label for relocation later.
634 addPCLabel(MI
.getOperand(2).getImm());
635 // These are just load / store instructions that implicitly read pc.
636 emitMiscLoadStoreInstruction(MI
, ARM::PC
);
639 case ARM::MOVi2pieces
:
640 // Two instructions to materialize a constant.
641 emitMOVi2piecesInstruction(MI
);
643 case ARM::LEApcrelJT
:
644 // Materialize jumptable address.
645 emitLEApcrelJTInstruction(MI
);
648 case ARM::MOVsrl_flag
:
649 case ARM::MOVsra_flag
:
650 emitPseudoMoveInstruction(MI
);
655 template<class CodeEmitter
>
656 unsigned Emitter
<CodeEmitter
>::getMachineSoRegOpValue(
657 const MachineInstr
&MI
,
658 const TargetInstrDesc
&TID
,
659 const MachineOperand
&MO
,
661 unsigned Binary
= getMachineOpValue(MI
, MO
);
663 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
+ 1);
664 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
+ 2);
665 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(MO2
.getImm());
667 // Encode the shift opcode.
669 unsigned Rs
= MO1
.getReg();
671 // Set shift operand (bit[7:4]).
676 // RRX - 0110 and bit[11:8] clear.
678 default: llvm_unreachable("Unknown shift opc!");
679 case ARM_AM::lsl
: SBits
= 0x1; break;
680 case ARM_AM::lsr
: SBits
= 0x3; break;
681 case ARM_AM::asr
: SBits
= 0x5; break;
682 case ARM_AM::ror
: SBits
= 0x7; break;
683 case ARM_AM::rrx
: SBits
= 0x6; break;
686 // Set shift operand (bit[6:4]).
692 default: llvm_unreachable("Unknown shift opc!");
693 case ARM_AM::lsl
: SBits
= 0x0; break;
694 case ARM_AM::lsr
: SBits
= 0x2; break;
695 case ARM_AM::asr
: SBits
= 0x4; break;
696 case ARM_AM::ror
: SBits
= 0x6; break;
699 Binary
|= SBits
<< 4;
700 if (SOpc
== ARM_AM::rrx
)
703 // Encode the shift operation Rs or shift_imm (except rrx).
705 // Encode Rs bit[11:8].
706 assert(ARM_AM::getSORegOffset(MO2
.getImm()) == 0);
708 (ARMRegisterInfo::getRegisterNumbering(Rs
) << ARMII::RegRsShift
);
711 // Encode shift_imm bit[11:7].
712 return Binary
| ARM_AM::getSORegOffset(MO2
.getImm()) << 7;
715 template<class CodeEmitter
>
716 unsigned Emitter
<CodeEmitter
>::getMachineSoImmOpValue(unsigned SoImm
) {
717 int SoImmVal
= ARM_AM::getSOImmVal(SoImm
);
718 assert(SoImmVal
!= -1 && "Not a valid so_imm value!");
720 // Encode rotate_imm.
721 unsigned Binary
= (ARM_AM::getSOImmValRot((unsigned)SoImmVal
) >> 1)
722 << ARMII::SoRotImmShift
;
725 Binary
|= ARM_AM::getSOImmValImm((unsigned)SoImmVal
);
729 template<class CodeEmitter
>
730 unsigned Emitter
<CodeEmitter
>::getAddrModeSBit(const MachineInstr
&MI
,
731 const TargetInstrDesc
&TID
) const {
732 for (unsigned i
= MI
.getNumOperands(), e
= TID
.getNumOperands(); i
!= e
; --i
){
733 const MachineOperand
&MO
= MI
.getOperand(i
-1);
734 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)
735 return 1 << ARMII::S_BitShift
;
740 template<class CodeEmitter
>
741 void Emitter
<CodeEmitter
>::emitDataProcessingInstruction(
742 const MachineInstr
&MI
,
744 unsigned ImplicitRn
) {
745 const TargetInstrDesc
&TID
= MI
.getDesc();
747 if (TID
.Opcode
== ARM::BFC
) {
748 llvm_report_error("ARMv6t2 JIT is not yet supported.");
751 // Part of binary is determined by TableGn.
752 unsigned Binary
= getBinaryCodeForInstr(MI
);
754 // Set the conditional execution predicate
755 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
757 // Encode S bit if MI modifies CPSR.
758 Binary
|= getAddrModeSBit(MI
, TID
);
760 // Encode register def if there is one.
761 unsigned NumDefs
= TID
.getNumDefs();
764 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
766 // Special handling for implicit use (e.g. PC).
767 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd
)
768 << ARMII::RegRdShift
);
770 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
771 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
774 // Encode first non-shifter register operand if there is one.
775 bool isUnary
= TID
.TSFlags
& ARMII::UnaryDP
;
778 // Special handling for implicit use (e.g. PC).
779 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
780 << ARMII::RegRnShift
);
782 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRnShift
;
787 // Encode shifter operand.
788 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
789 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::DPSoRegFrm
) {
791 emitWordLE(Binary
| getMachineSoRegOpValue(MI
, TID
, MO
, OpIdx
));
796 // Encode register Rm.
797 emitWordLE(Binary
| ARMRegisterInfo::getRegisterNumbering(MO
.getReg()));
802 Binary
|= getMachineSoImmOpValue((unsigned)MO
.getImm());
807 template<class CodeEmitter
>
808 void Emitter
<CodeEmitter
>::emitLoadStoreInstruction(
809 const MachineInstr
&MI
,
811 unsigned ImplicitRn
) {
812 const TargetInstrDesc
&TID
= MI
.getDesc();
813 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
814 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
816 // Part of binary is determined by TableGn.
817 unsigned Binary
= getBinaryCodeForInstr(MI
);
819 // Set the conditional execution predicate
820 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
824 // Operand 0 of a pre- and post-indexed store is the address base
825 // writeback. Skip it.
826 bool Skipped
= false;
827 if (IsPrePost
&& Form
== ARMII::StFrm
) {
834 // Special handling for implicit use (e.g. PC).
835 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd
)
836 << ARMII::RegRdShift
);
838 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
840 // Set second operand
842 // Special handling for implicit use (e.g. PC).
843 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
844 << ARMII::RegRnShift
);
846 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
848 // If this is a two-address operand, skip it. e.g. LDR_PRE.
849 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
852 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
853 unsigned AM2Opc
= (ImplicitRn
== ARM::PC
)
854 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
856 // Set bit U(23) according to sign of immed value (positive or negative).
857 Binary
|= ((ARM_AM::getAM2Op(AM2Opc
) == ARM_AM::add
? 1 : 0) <<
859 if (!MO2
.getReg()) { // is immediate
860 if (ARM_AM::getAM2Offset(AM2Opc
))
861 // Set the value of offset_12 field
862 Binary
|= ARM_AM::getAM2Offset(AM2Opc
);
867 // Set bit I(25), because this is not in immediate enconding.
868 Binary
|= 1 << ARMII::I_BitShift
;
869 assert(TargetRegisterInfo::isPhysicalRegister(MO2
.getReg()));
870 // Set bit[3:0] to the corresponding Rm register
871 Binary
|= ARMRegisterInfo::getRegisterNumbering(MO2
.getReg());
873 // If this instr is in scaled register offset/index instruction, set
874 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
875 if (unsigned ShImm
= ARM_AM::getAM2Offset(AM2Opc
)) {
876 Binary
|= getShiftOp(AM2Opc
) << ARMII::ShiftImmShift
; // shift
877 Binary
|= ShImm
<< ARMII::ShiftShift
; // shift_immed
883 template<class CodeEmitter
>
884 void Emitter
<CodeEmitter
>::emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
885 unsigned ImplicitRn
) {
886 const TargetInstrDesc
&TID
= MI
.getDesc();
887 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
888 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
890 // Part of binary is determined by TableGn.
891 unsigned Binary
= getBinaryCodeForInstr(MI
);
893 // Set the conditional execution predicate
894 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
898 // Operand 0 of a pre- and post-indexed store is the address base
899 // writeback. Skip it.
900 bool Skipped
= false;
901 if (IsPrePost
&& Form
== ARMII::StMiscFrm
) {
907 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
909 // Skip LDRD and STRD's second operand.
910 if (TID
.Opcode
== ARM::LDRD
|| TID
.Opcode
== ARM::STRD
)
913 // Set second operand
915 // Special handling for implicit use (e.g. PC).
916 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
917 << ARMII::RegRnShift
);
919 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
921 // If this is a two-address operand, skip it. e.g. LDRH_POST.
922 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
925 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
926 unsigned AM3Opc
= (ImplicitRn
== ARM::PC
)
927 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
929 // Set bit U(23) according to sign of immed value (positive or negative)
930 Binary
|= ((ARM_AM::getAM3Op(AM3Opc
) == ARM_AM::add
? 1 : 0) <<
933 // If this instr is in register offset/index encoding, set bit[3:0]
934 // to the corresponding Rm register.
936 Binary
|= ARMRegisterInfo::getRegisterNumbering(MO2
.getReg());
941 // This instr is in immediate offset/index encoding, set bit 22 to 1.
942 Binary
|= 1 << ARMII::AM3_I_BitShift
;
943 if (unsigned ImmOffs
= ARM_AM::getAM3Offset(AM3Opc
)) {
945 Binary
|= (ImmOffs
>> 4) << ARMII::ImmHiShift
; // immedH
946 Binary
|= (ImmOffs
& 0xF); // immedL
952 static unsigned getAddrModeUPBits(unsigned Mode
) {
955 // Set addressing mode by modifying bits U(23) and P(24)
956 // IA - Increment after - bit U = 1 and bit P = 0
957 // IB - Increment before - bit U = 1 and bit P = 1
958 // DA - Decrement after - bit U = 0 and bit P = 0
959 // DB - Decrement before - bit U = 0 and bit P = 1
961 default: llvm_unreachable("Unknown addressing sub-mode!");
962 case ARM_AM::da
: break;
963 case ARM_AM::db
: Binary
|= 0x1 << ARMII::P_BitShift
; break;
964 case ARM_AM::ia
: Binary
|= 0x1 << ARMII::U_BitShift
; break;
965 case ARM_AM::ib
: Binary
|= 0x3 << ARMII::U_BitShift
; break;
971 template<class CodeEmitter
>
972 void Emitter
<CodeEmitter
>::emitLoadStoreMultipleInstruction(
973 const MachineInstr
&MI
) {
974 // Part of binary is determined by TableGn.
975 unsigned Binary
= getBinaryCodeForInstr(MI
);
977 // Set the conditional execution predicate
978 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
980 // Set base address operand
981 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRnShift
;
983 // Set addressing mode by modifying bits U(23) and P(24)
984 const MachineOperand
&MO
= MI
.getOperand(1);
985 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO
.getImm()));
988 if (ARM_AM::getAM4WBFlag(MO
.getImm()))
989 Binary
|= 0x1 << ARMII::W_BitShift
;
992 for (unsigned i
= 4, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
993 const MachineOperand
&MO
= MI
.getOperand(i
);
994 if (!MO
.isReg() || MO
.isImplicit())
996 unsigned RegNum
= ARMRegisterInfo::getRegisterNumbering(MO
.getReg());
997 assert(TargetRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
999 Binary
|= 0x1 << RegNum
;
1005 template<class CodeEmitter
>
1006 void Emitter
<CodeEmitter
>::emitMulFrmInstruction(const MachineInstr
&MI
) {
1007 const TargetInstrDesc
&TID
= MI
.getDesc();
1009 // Part of binary is determined by TableGn.
1010 unsigned Binary
= getBinaryCodeForInstr(MI
);
1012 // Set the conditional execution predicate
1013 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1015 // Encode S bit if MI modifies CPSR.
1016 Binary
|= getAddrModeSBit(MI
, TID
);
1018 // 32x32->64bit operations have two destination registers. The number
1019 // of register definitions will tell us if that's what we're dealing with.
1021 if (TID
.getNumDefs() == 2)
1022 Binary
|= getMachineOpValue (MI
, OpIdx
++) << ARMII::RegRdLoShift
;
1025 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdHiShift
;
1028 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1031 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRsShift
;
1033 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1034 // it as Rn (for multiply, that's in the same offset as RdLo.
1035 if (TID
.getNumOperands() > OpIdx
&&
1036 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1037 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1038 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRdLoShift
;
1043 template<class CodeEmitter
>
1044 void Emitter
<CodeEmitter
>::emitExtendInstruction(const MachineInstr
&MI
) {
1045 const TargetInstrDesc
&TID
= MI
.getDesc();
1047 // Part of binary is determined by TableGn.
1048 unsigned Binary
= getBinaryCodeForInstr(MI
);
1050 // Set the conditional execution predicate
1051 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1056 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1058 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
++);
1059 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1061 // Two register operand form.
1063 Binary
|= getMachineOpValue(MI
, MO1
) << ARMII::RegRnShift
;
1066 Binary
|= getMachineOpValue(MI
, MO2
);
1069 Binary
|= getMachineOpValue(MI
, MO1
);
1072 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1073 if (MI
.getOperand(OpIdx
).isImm() &&
1074 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1075 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1076 Binary
|= (getMachineOpValue(MI
, OpIdx
) / 8) << ARMII::ExtRotImmShift
;
1081 template<class CodeEmitter
>
1082 void Emitter
<CodeEmitter
>::emitMiscArithInstruction(const MachineInstr
&MI
) {
1083 const TargetInstrDesc
&TID
= MI
.getDesc();
1085 // Part of binary is determined by TableGn.
1086 unsigned Binary
= getBinaryCodeForInstr(MI
);
1088 // Set the conditional execution predicate
1089 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1094 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1096 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1097 if (OpIdx
== TID
.getNumOperands() ||
1098 TID
.OpInfo
[OpIdx
].isPredicate() ||
1099 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1100 // Encode Rm and it's done.
1101 Binary
|= getMachineOpValue(MI
, MO
);
1107 Binary
|= getMachineOpValue(MI
, MO
) << ARMII::RegRnShift
;
1110 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1112 // Encode shift_imm.
1113 unsigned ShiftAmt
= MI
.getOperand(OpIdx
).getImm();
1114 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1115 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1120 template<class CodeEmitter
>
1121 void Emitter
<CodeEmitter
>::emitBranchInstruction(const MachineInstr
&MI
) {
1122 const TargetInstrDesc
&TID
= MI
.getDesc();
1124 if (TID
.Opcode
== ARM::TPsoft
) {
1125 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1128 // Part of binary is determined by TableGn.
1129 unsigned Binary
= getBinaryCodeForInstr(MI
);
1131 // Set the conditional execution predicate
1132 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1134 // Set signed_immed_24 field
1135 Binary
|= getMachineOpValue(MI
, 0);
1140 template<class CodeEmitter
>
1141 void Emitter
<CodeEmitter
>::emitInlineJumpTable(unsigned JTIndex
) {
1142 // Remember the base address of the inline jump table.
1143 uintptr_t JTBase
= MCE
.getCurrentPCValue();
1144 JTI
->addJumpTableBaseAddr(JTIndex
, JTBase
);
1145 DEBUG(errs() << " ** Jump Table #" << JTIndex
<< " @ " << (void*)JTBase
1148 // Now emit the jump table entries.
1149 const std::vector
<MachineBasicBlock
*> &MBBs
= (*MJTEs
)[JTIndex
].MBBs
;
1150 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
1152 // DestBB address - JT base.
1153 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_pic_jt
, JTBase
);
1155 // Absolute DestBB address.
1156 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_absolute
);
1161 template<class CodeEmitter
>
1162 void Emitter
<CodeEmitter
>::emitMiscBranchInstruction(const MachineInstr
&MI
) {
1163 const TargetInstrDesc
&TID
= MI
.getDesc();
1165 // Handle jump tables.
1166 if (TID
.Opcode
== ARM::BR_JTr
|| TID
.Opcode
== ARM::BR_JTadd
) {
1167 // First emit a ldr pc, [] instruction.
1168 emitDataProcessingInstruction(MI
, ARM::PC
);
1170 // Then emit the inline jump table.
1172 (TID
.Opcode
== ARM::BR_JTr
)
1173 ? MI
.getOperand(1).getIndex() : MI
.getOperand(2).getIndex();
1174 emitInlineJumpTable(JTIndex
);
1176 } else if (TID
.Opcode
== ARM::BR_JTm
) {
1177 // First emit a ldr pc, [] instruction.
1178 emitLoadStoreInstruction(MI
, ARM::PC
);
1180 // Then emit the inline jump table.
1181 emitInlineJumpTable(MI
.getOperand(3).getIndex());
1185 // Part of binary is determined by TableGn.
1186 unsigned Binary
= getBinaryCodeForInstr(MI
);
1188 // Set the conditional execution predicate
1189 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1191 if (TID
.Opcode
== ARM::BX_RET
)
1192 // The return register is LR.
1193 Binary
|= ARMRegisterInfo::getRegisterNumbering(ARM::LR
);
1195 // otherwise, set the return register
1196 Binary
|= getMachineOpValue(MI
, 0);
1201 static unsigned encodeVFPRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1202 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1203 unsigned Binary
= 0;
1204 bool isSPVFP
= false;
1205 RegD
= ARMRegisterInfo::getRegisterNumbering(RegD
, &isSPVFP
);
1207 Binary
|= RegD
<< ARMII::RegRdShift
;
1209 Binary
|= ((RegD
& 0x1E) >> 1) << ARMII::RegRdShift
;
1210 Binary
|= (RegD
& 0x01) << ARMII::D_BitShift
;
1215 static unsigned encodeVFPRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1216 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1217 unsigned Binary
= 0;
1218 bool isSPVFP
= false;
1219 RegN
= ARMRegisterInfo::getRegisterNumbering(RegN
, &isSPVFP
);
1221 Binary
|= RegN
<< ARMII::RegRnShift
;
1223 Binary
|= ((RegN
& 0x1E) >> 1) << ARMII::RegRnShift
;
1224 Binary
|= (RegN
& 0x01) << ARMII::N_BitShift
;
1229 static unsigned encodeVFPRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1230 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1231 unsigned Binary
= 0;
1232 bool isSPVFP
= false;
1233 RegM
= ARMRegisterInfo::getRegisterNumbering(RegM
, &isSPVFP
);
1237 Binary
|= ((RegM
& 0x1E) >> 1);
1238 Binary
|= (RegM
& 0x01) << ARMII::M_BitShift
;
1243 template<class CodeEmitter
>
1244 void Emitter
<CodeEmitter
>::emitVFPArithInstruction(const MachineInstr
&MI
) {
1245 const TargetInstrDesc
&TID
= MI
.getDesc();
1247 // Part of binary is determined by TableGn.
1248 unsigned Binary
= getBinaryCodeForInstr(MI
);
1250 // Set the conditional execution predicate
1251 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1254 assert((Binary
& ARMII::D_BitShift
) == 0 &&
1255 (Binary
& ARMII::N_BitShift
) == 0 &&
1256 (Binary
& ARMII::M_BitShift
) == 0 && "VFP encoding bug!");
1259 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1261 // If this is a two-address operand, skip it, e.g. FMACD.
1262 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1266 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPBinaryFrm
)
1267 Binary
|= encodeVFPRn(MI
, OpIdx
++);
1269 if (OpIdx
== TID
.getNumOperands() ||
1270 TID
.OpInfo
[OpIdx
].isPredicate() ||
1271 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1272 // FCMPEZD etc. has only one operand.
1278 Binary
|= encodeVFPRm(MI
, OpIdx
);
1283 template<class CodeEmitter
>
1284 void Emitter
<CodeEmitter
>::emitVFPConversionInstruction(
1285 const MachineInstr
&MI
) {
1286 const TargetInstrDesc
&TID
= MI
.getDesc();
1287 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
1289 // Part of binary is determined by TableGn.
1290 unsigned Binary
= getBinaryCodeForInstr(MI
);
1292 // Set the conditional execution predicate
1293 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1297 case ARMII::VFPConv1Frm
:
1298 case ARMII::VFPConv2Frm
:
1299 case ARMII::VFPConv3Frm
:
1301 Binary
|= encodeVFPRd(MI
, 0);
1303 case ARMII::VFPConv4Frm
:
1305 Binary
|= encodeVFPRn(MI
, 0);
1307 case ARMII::VFPConv5Frm
:
1309 Binary
|= encodeVFPRm(MI
, 0);
1315 case ARMII::VFPConv1Frm
:
1317 Binary
|= encodeVFPRm(MI
, 1);
1319 case ARMII::VFPConv2Frm
:
1320 case ARMII::VFPConv3Frm
:
1322 Binary
|= encodeVFPRn(MI
, 1);
1324 case ARMII::VFPConv4Frm
:
1325 case ARMII::VFPConv5Frm
:
1327 Binary
|= encodeVFPRd(MI
, 1);
1331 if (Form
== ARMII::VFPConv5Frm
)
1333 Binary
|= encodeVFPRn(MI
, 2);
1334 else if (Form
== ARMII::VFPConv3Frm
)
1336 Binary
|= encodeVFPRm(MI
, 2);
1341 template<class CodeEmitter
>
1342 void Emitter
<CodeEmitter
>::emitVFPLoadStoreInstruction(const MachineInstr
&MI
) {
1343 // Part of binary is determined by TableGn.
1344 unsigned Binary
= getBinaryCodeForInstr(MI
);
1346 // Set the conditional execution predicate
1347 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1352 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1354 // Encode address base.
1355 const MachineOperand
&Base
= MI
.getOperand(OpIdx
++);
1356 Binary
|= getMachineOpValue(MI
, Base
) << ARMII::RegRnShift
;
1358 // If there is a non-zero immediate offset, encode it.
1360 const MachineOperand
&Offset
= MI
.getOperand(OpIdx
);
1361 if (unsigned ImmOffs
= ARM_AM::getAM5Offset(Offset
.getImm())) {
1362 if (ARM_AM::getAM5Op(Offset
.getImm()) == ARM_AM::add
)
1363 Binary
|= 1 << ARMII::U_BitShift
;
1370 // If immediate offset is omitted, default to +0.
1371 Binary
|= 1 << ARMII::U_BitShift
;
1376 template<class CodeEmitter
>
1377 void Emitter
<CodeEmitter
>::emitVFPLoadStoreMultipleInstruction(
1378 const MachineInstr
&MI
) {
1379 // Part of binary is determined by TableGn.
1380 unsigned Binary
= getBinaryCodeForInstr(MI
);
1382 // Set the conditional execution predicate
1383 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1385 // Set base address operand
1386 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRnShift
;
1388 // Set addressing mode by modifying bits U(23) and P(24)
1389 const MachineOperand
&MO
= MI
.getOperand(1);
1390 Binary
|= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO
.getImm()));
1393 if (ARM_AM::getAM5WBFlag(MO
.getImm()))
1394 Binary
|= 0x1 << ARMII::W_BitShift
;
1396 // First register is encoded in Dd.
1397 Binary
|= encodeVFPRd(MI
, 4);
1399 // Number of registers are encoded in offset field.
1400 unsigned NumRegs
= 1;
1401 for (unsigned i
= 5, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1402 const MachineOperand
&MO
= MI
.getOperand(i
);
1403 if (!MO
.isReg() || MO
.isImplicit())
1407 Binary
|= NumRegs
* 2;
1412 template<class CodeEmitter
>
1413 void Emitter
<CodeEmitter
>::emitMiscInstruction(const MachineInstr
&MI
) {
1414 // Part of binary is determined by TableGn.
1415 unsigned Binary
= getBinaryCodeForInstr(MI
);
1417 // Set the conditional execution predicate
1418 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1423 #include "ARMGenCodeEmitter.inc"