pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Target / CBackend / CBackend.cpp
blobfe63edf3ff68c55337114550d2ef92c3a5ba4e47
1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library converts LLVM code to C code, compilable by GCC and other C
11 // compilers.
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Analysis/ConstantsScanner.h"
30 #include "llvm/Analysis/FindUsedTypes.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/IntrinsicLowering.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Target/TargetRegistry.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/CFG.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/FormattedStream.h"
43 #include "llvm/Support/GetElementPtrTypeIterator.h"
44 #include "llvm/Support/InstVisitor.h"
45 #include "llvm/Support/Mangler.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/System/Host.h"
48 #include "llvm/Config/config.h"
49 #include <algorithm>
50 #include <sstream>
51 using namespace llvm;
53 extern "C" void LLVMInitializeCBackendTarget() {
54 // Register the target.
55 RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
58 namespace {
59 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
60 /// any unnamed structure types that are used by the program, and merges
61 /// external functions with the same name.
62 ///
63 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
64 public:
65 static char ID;
66 CBackendNameAllUsedStructsAndMergeFunctions()
67 : ModulePass(&ID) {}
68 void getAnalysisUsage(AnalysisUsage &AU) const {
69 AU.addRequired<FindUsedTypes>();
72 virtual const char *getPassName() const {
73 return "C backend type canonicalizer";
76 virtual bool runOnModule(Module &M);
79 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
81 /// CWriter - This class is the main chunk of code that converts an LLVM
82 /// module to a C translation unit.
83 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
84 formatted_raw_ostream &Out;
85 IntrinsicLowering *IL;
86 Mangler *Mang;
87 LoopInfo *LI;
88 const Module *TheModule;
89 const MCAsmInfo* TAsm;
90 const TargetData* TD;
91 std::map<const Type *, std::string> TypeNames;
92 std::map<const ConstantFP *, unsigned> FPConstantMap;
93 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
94 std::set<const Argument*> ByValParams;
95 unsigned FPCounter;
96 unsigned OpaqueCounter;
97 DenseMap<const Value*, unsigned> AnonValueNumbers;
98 unsigned NextAnonValueNumber;
100 public:
101 static char ID;
102 explicit CWriter(formatted_raw_ostream &o)
103 : FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0),
104 TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
105 FPCounter = 0;
108 virtual const char *getPassName() const { return "C backend"; }
110 void getAnalysisUsage(AnalysisUsage &AU) const {
111 AU.addRequired<LoopInfo>();
112 AU.setPreservesAll();
115 virtual bool doInitialization(Module &M);
117 bool runOnFunction(Function &F) {
118 // Do not codegen any 'available_externally' functions at all, they have
119 // definitions outside the translation unit.
120 if (F.hasAvailableExternallyLinkage())
121 return false;
123 LI = &getAnalysis<LoopInfo>();
125 // Get rid of intrinsics we can't handle.
126 lowerIntrinsics(F);
128 // Output all floating point constants that cannot be printed accurately.
129 printFloatingPointConstants(F);
131 printFunction(F);
132 return false;
135 virtual bool doFinalization(Module &M) {
136 // Free memory...
137 delete IL;
138 delete TD;
139 delete Mang;
140 FPConstantMap.clear();
141 TypeNames.clear();
142 ByValParams.clear();
143 intrinsicPrototypesAlreadyGenerated.clear();
144 return false;
147 raw_ostream &printType(formatted_raw_ostream &Out,
148 const Type *Ty,
149 bool isSigned = false,
150 const std::string &VariableName = "",
151 bool IgnoreName = false,
152 const AttrListPtr &PAL = AttrListPtr());
153 std::ostream &printType(std::ostream &Out, const Type *Ty,
154 bool isSigned = false,
155 const std::string &VariableName = "",
156 bool IgnoreName = false,
157 const AttrListPtr &PAL = AttrListPtr());
158 raw_ostream &printSimpleType(formatted_raw_ostream &Out,
159 const Type *Ty,
160 bool isSigned,
161 const std::string &NameSoFar = "");
162 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
163 bool isSigned,
164 const std::string &NameSoFar = "");
166 void printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
167 const AttrListPtr &PAL,
168 const PointerType *Ty);
170 /// writeOperandDeref - Print the result of dereferencing the specified
171 /// operand with '*'. This is equivalent to printing '*' then using
172 /// writeOperand, but avoids excess syntax in some cases.
173 void writeOperandDeref(Value *Operand) {
174 if (isAddressExposed(Operand)) {
175 // Already something with an address exposed.
176 writeOperandInternal(Operand);
177 } else {
178 Out << "*(";
179 writeOperand(Operand);
180 Out << ")";
184 void writeOperand(Value *Operand, bool Static = false);
185 void writeInstComputationInline(Instruction &I);
186 void writeOperandInternal(Value *Operand, bool Static = false);
187 void writeOperandWithCast(Value* Operand, unsigned Opcode);
188 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
189 bool writeInstructionCast(const Instruction &I);
191 void writeMemoryAccess(Value *Operand, const Type *OperandType,
192 bool IsVolatile, unsigned Alignment);
194 private :
195 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
197 void lowerIntrinsics(Function &F);
199 void printModule(Module *M);
200 void printModuleTypes(const TypeSymbolTable &ST);
201 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
202 void printFloatingPointConstants(Function &F);
203 void printFloatingPointConstants(const Constant *C);
204 void printFunctionSignature(const Function *F, bool Prototype);
206 void printFunction(Function &);
207 void printBasicBlock(BasicBlock *BB);
208 void printLoop(Loop *L);
210 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
211 void printConstant(Constant *CPV, bool Static);
212 void printConstantWithCast(Constant *CPV, unsigned Opcode);
213 bool printConstExprCast(const ConstantExpr *CE, bool Static);
214 void printConstantArray(ConstantArray *CPA, bool Static);
215 void printConstantVector(ConstantVector *CV, bool Static);
217 /// isAddressExposed - Return true if the specified value's name needs to
218 /// have its address taken in order to get a C value of the correct type.
219 /// This happens for global variables, byval parameters, and direct allocas.
220 bool isAddressExposed(const Value *V) const {
221 if (const Argument *A = dyn_cast<Argument>(V))
222 return ByValParams.count(A);
223 return isa<GlobalVariable>(V) || isDirectAlloca(V);
226 // isInlinableInst - Attempt to inline instructions into their uses to build
227 // trees as much as possible. To do this, we have to consistently decide
228 // what is acceptable to inline, so that variable declarations don't get
229 // printed and an extra copy of the expr is not emitted.
231 static bool isInlinableInst(const Instruction &I) {
232 // Always inline cmp instructions, even if they are shared by multiple
233 // expressions. GCC generates horrible code if we don't.
234 if (isa<CmpInst>(I))
235 return true;
237 // Must be an expression, must be used exactly once. If it is dead, we
238 // emit it inline where it would go.
239 if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
240 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
241 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
242 isa<InsertValueInst>(I))
243 // Don't inline a load across a store or other bad things!
244 return false;
246 // Must not be used in inline asm, extractelement, or shufflevector.
247 if (I.hasOneUse()) {
248 const Instruction &User = cast<Instruction>(*I.use_back());
249 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
250 isa<ShuffleVectorInst>(User))
251 return false;
254 // Only inline instruction it if it's use is in the same BB as the inst.
255 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
258 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
259 // variables which are accessed with the & operator. This causes GCC to
260 // generate significantly better code than to emit alloca calls directly.
262 static const AllocaInst *isDirectAlloca(const Value *V) {
263 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
264 if (!AI) return false;
265 if (AI->isArrayAllocation())
266 return 0; // FIXME: we can also inline fixed size array allocas!
267 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
268 return 0;
269 return AI;
272 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
273 static bool isInlineAsm(const Instruction& I) {
274 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
275 return true;
276 return false;
279 // Instruction visitation functions
280 friend class InstVisitor<CWriter>;
282 void visitReturnInst(ReturnInst &I);
283 void visitBranchInst(BranchInst &I);
284 void visitSwitchInst(SwitchInst &I);
285 void visitInvokeInst(InvokeInst &I) {
286 llvm_unreachable("Lowerinvoke pass didn't work!");
289 void visitUnwindInst(UnwindInst &I) {
290 llvm_unreachable("Lowerinvoke pass didn't work!");
292 void visitUnreachableInst(UnreachableInst &I);
294 void visitPHINode(PHINode &I);
295 void visitBinaryOperator(Instruction &I);
296 void visitICmpInst(ICmpInst &I);
297 void visitFCmpInst(FCmpInst &I);
299 void visitCastInst (CastInst &I);
300 void visitSelectInst(SelectInst &I);
301 void visitCallInst (CallInst &I);
302 void visitInlineAsm(CallInst &I);
303 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
305 void visitMallocInst(MallocInst &I);
306 void visitAllocaInst(AllocaInst &I);
307 void visitFreeInst (FreeInst &I);
308 void visitLoadInst (LoadInst &I);
309 void visitStoreInst (StoreInst &I);
310 void visitGetElementPtrInst(GetElementPtrInst &I);
311 void visitVAArgInst (VAArgInst &I);
313 void visitInsertElementInst(InsertElementInst &I);
314 void visitExtractElementInst(ExtractElementInst &I);
315 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
317 void visitInsertValueInst(InsertValueInst &I);
318 void visitExtractValueInst(ExtractValueInst &I);
320 void visitInstruction(Instruction &I) {
321 #ifndef NDEBUG
322 errs() << "C Writer does not know about " << I;
323 #endif
324 llvm_unreachable(0);
327 void outputLValue(Instruction *I) {
328 Out << " " << GetValueName(I) << " = ";
331 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
332 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
333 BasicBlock *Successor, unsigned Indent);
334 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
335 unsigned Indent);
336 void printGEPExpression(Value *Ptr, gep_type_iterator I,
337 gep_type_iterator E, bool Static);
339 std::string GetValueName(const Value *Operand);
343 char CWriter::ID = 0;
345 /// This method inserts names for any unnamed structure types that are used by
346 /// the program, and removes names from structure types that are not used by the
347 /// program.
349 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
350 // Get a set of types that are used by the program...
351 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
353 // Loop over the module symbol table, removing types from UT that are
354 // already named, and removing names for types that are not used.
356 TypeSymbolTable &TST = M.getTypeSymbolTable();
357 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
358 TI != TE; ) {
359 TypeSymbolTable::iterator I = TI++;
361 // If this isn't a struct or array type, remove it from our set of types
362 // to name. This simplifies emission later.
363 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
364 !isa<ArrayType>(I->second)) {
365 TST.remove(I);
366 } else {
367 // If this is not used, remove it from the symbol table.
368 std::set<const Type *>::iterator UTI = UT.find(I->second);
369 if (UTI == UT.end())
370 TST.remove(I);
371 else
372 UT.erase(UTI); // Only keep one name for this type.
376 // UT now contains types that are not named. Loop over it, naming
377 // structure types.
379 bool Changed = false;
380 unsigned RenameCounter = 0;
381 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
382 I != E; ++I)
383 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
384 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
385 ++RenameCounter;
386 Changed = true;
390 // Loop over all external functions and globals. If we have two with
391 // identical names, merge them.
392 // FIXME: This code should disappear when we don't allow values with the same
393 // names when they have different types!
394 std::map<std::string, GlobalValue*> ExtSymbols;
395 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
396 Function *GV = I++;
397 if (GV->isDeclaration() && GV->hasName()) {
398 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
399 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
400 if (!X.second) {
401 // Found a conflict, replace this global with the previous one.
402 GlobalValue *OldGV = X.first->second;
403 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
404 GV->eraseFromParent();
405 Changed = true;
409 // Do the same for globals.
410 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
411 I != E;) {
412 GlobalVariable *GV = I++;
413 if (GV->isDeclaration() && GV->hasName()) {
414 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
415 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
416 if (!X.second) {
417 // Found a conflict, replace this global with the previous one.
418 GlobalValue *OldGV = X.first->second;
419 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
420 GV->eraseFromParent();
421 Changed = true;
426 return Changed;
429 /// printStructReturnPointerFunctionType - This is like printType for a struct
430 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
431 /// print it as "Struct (*)(...)", for struct return functions.
432 void CWriter::printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
433 const AttrListPtr &PAL,
434 const PointerType *TheTy) {
435 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
436 std::stringstream FunctionInnards;
437 FunctionInnards << " (*) (";
438 bool PrintedType = false;
440 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
441 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
442 unsigned Idx = 1;
443 for (++I, ++Idx; I != E; ++I, ++Idx) {
444 if (PrintedType)
445 FunctionInnards << ", ";
446 const Type *ArgTy = *I;
447 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
448 assert(isa<PointerType>(ArgTy));
449 ArgTy = cast<PointerType>(ArgTy)->getElementType();
451 printType(FunctionInnards, ArgTy,
452 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
453 PrintedType = true;
455 if (FTy->isVarArg()) {
456 if (PrintedType)
457 FunctionInnards << ", ...";
458 } else if (!PrintedType) {
459 FunctionInnards << "void";
461 FunctionInnards << ')';
462 std::string tstr = FunctionInnards.str();
463 printType(Out, RetTy,
464 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
467 raw_ostream &
468 CWriter::printSimpleType(formatted_raw_ostream &Out, const Type *Ty,
469 bool isSigned,
470 const std::string &NameSoFar) {
471 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
472 "Invalid type for printSimpleType");
473 switch (Ty->getTypeID()) {
474 case Type::VoidTyID: return Out << "void " << NameSoFar;
475 case Type::IntegerTyID: {
476 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
477 if (NumBits == 1)
478 return Out << "bool " << NameSoFar;
479 else if (NumBits <= 8)
480 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
481 else if (NumBits <= 16)
482 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
483 else if (NumBits <= 32)
484 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
485 else if (NumBits <= 64)
486 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
487 else {
488 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
489 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
492 case Type::FloatTyID: return Out << "float " << NameSoFar;
493 case Type::DoubleTyID: return Out << "double " << NameSoFar;
494 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
495 // present matches host 'long double'.
496 case Type::X86_FP80TyID:
497 case Type::PPC_FP128TyID:
498 case Type::FP128TyID: return Out << "long double " << NameSoFar;
500 case Type::VectorTyID: {
501 const VectorType *VTy = cast<VectorType>(Ty);
502 return printSimpleType(Out, VTy->getElementType(), isSigned,
503 " __attribute__((vector_size(" +
504 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
507 default:
508 #ifndef NDEBUG
509 errs() << "Unknown primitive type: " << *Ty << "\n";
510 #endif
511 llvm_unreachable(0);
515 std::ostream &
516 CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
517 const std::string &NameSoFar) {
518 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
519 "Invalid type for printSimpleType");
520 switch (Ty->getTypeID()) {
521 case Type::VoidTyID: return Out << "void " << NameSoFar;
522 case Type::IntegerTyID: {
523 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
524 if (NumBits == 1)
525 return Out << "bool " << NameSoFar;
526 else if (NumBits <= 8)
527 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
528 else if (NumBits <= 16)
529 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
530 else if (NumBits <= 32)
531 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
532 else if (NumBits <= 64)
533 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
534 else {
535 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
536 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
539 case Type::FloatTyID: return Out << "float " << NameSoFar;
540 case Type::DoubleTyID: return Out << "double " << NameSoFar;
541 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
542 // present matches host 'long double'.
543 case Type::X86_FP80TyID:
544 case Type::PPC_FP128TyID:
545 case Type::FP128TyID: return Out << "long double " << NameSoFar;
547 case Type::VectorTyID: {
548 const VectorType *VTy = cast<VectorType>(Ty);
549 return printSimpleType(Out, VTy->getElementType(), isSigned,
550 " __attribute__((vector_size(" +
551 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
554 default:
555 #ifndef NDEBUG
556 errs() << "Unknown primitive type: " << *Ty << "\n";
557 #endif
558 llvm_unreachable(0);
562 // Pass the Type* and the variable name and this prints out the variable
563 // declaration.
565 raw_ostream &CWriter::printType(formatted_raw_ostream &Out,
566 const Type *Ty,
567 bool isSigned, const std::string &NameSoFar,
568 bool IgnoreName, const AttrListPtr &PAL) {
569 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
570 printSimpleType(Out, Ty, isSigned, NameSoFar);
571 return Out;
574 // Check to see if the type is named.
575 if (!IgnoreName || isa<OpaqueType>(Ty)) {
576 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
577 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
580 switch (Ty->getTypeID()) {
581 case Type::FunctionTyID: {
582 const FunctionType *FTy = cast<FunctionType>(Ty);
583 std::stringstream FunctionInnards;
584 FunctionInnards << " (" << NameSoFar << ") (";
585 unsigned Idx = 1;
586 for (FunctionType::param_iterator I = FTy->param_begin(),
587 E = FTy->param_end(); I != E; ++I) {
588 const Type *ArgTy = *I;
589 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
590 assert(isa<PointerType>(ArgTy));
591 ArgTy = cast<PointerType>(ArgTy)->getElementType();
593 if (I != FTy->param_begin())
594 FunctionInnards << ", ";
595 printType(FunctionInnards, ArgTy,
596 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
597 ++Idx;
599 if (FTy->isVarArg()) {
600 if (FTy->getNumParams())
601 FunctionInnards << ", ...";
602 } else if (!FTy->getNumParams()) {
603 FunctionInnards << "void";
605 FunctionInnards << ')';
606 std::string tstr = FunctionInnards.str();
607 printType(Out, FTy->getReturnType(),
608 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
609 return Out;
611 case Type::StructTyID: {
612 const StructType *STy = cast<StructType>(Ty);
613 Out << NameSoFar + " {\n";
614 unsigned Idx = 0;
615 for (StructType::element_iterator I = STy->element_begin(),
616 E = STy->element_end(); I != E; ++I) {
617 Out << " ";
618 printType(Out, *I, false, "field" + utostr(Idx++));
619 Out << ";\n";
621 Out << '}';
622 if (STy->isPacked())
623 Out << " __attribute__ ((packed))";
624 return Out;
627 case Type::PointerTyID: {
628 const PointerType *PTy = cast<PointerType>(Ty);
629 std::string ptrName = "*" + NameSoFar;
631 if (isa<ArrayType>(PTy->getElementType()) ||
632 isa<VectorType>(PTy->getElementType()))
633 ptrName = "(" + ptrName + ")";
635 if (!PAL.isEmpty())
636 // Must be a function ptr cast!
637 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
638 return printType(Out, PTy->getElementType(), false, ptrName);
641 case Type::ArrayTyID: {
642 const ArrayType *ATy = cast<ArrayType>(Ty);
643 unsigned NumElements = ATy->getNumElements();
644 if (NumElements == 0) NumElements = 1;
645 // Arrays are wrapped in structs to allow them to have normal
646 // value semantics (avoiding the array "decay").
647 Out << NameSoFar << " { ";
648 printType(Out, ATy->getElementType(), false,
649 "array[" + utostr(NumElements) + "]");
650 return Out << "; }";
653 case Type::OpaqueTyID: {
654 std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
655 assert(TypeNames.find(Ty) == TypeNames.end());
656 TypeNames[Ty] = TyName;
657 return Out << TyName << ' ' << NameSoFar;
659 default:
660 llvm_unreachable("Unhandled case in getTypeProps!");
663 return Out;
666 // Pass the Type* and the variable name and this prints out the variable
667 // declaration.
669 std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
670 bool isSigned, const std::string &NameSoFar,
671 bool IgnoreName, const AttrListPtr &PAL) {
672 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
673 printSimpleType(Out, Ty, isSigned, NameSoFar);
674 return Out;
677 // Check to see if the type is named.
678 if (!IgnoreName || isa<OpaqueType>(Ty)) {
679 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
680 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
683 switch (Ty->getTypeID()) {
684 case Type::FunctionTyID: {
685 const FunctionType *FTy = cast<FunctionType>(Ty);
686 std::stringstream FunctionInnards;
687 FunctionInnards << " (" << NameSoFar << ") (";
688 unsigned Idx = 1;
689 for (FunctionType::param_iterator I = FTy->param_begin(),
690 E = FTy->param_end(); I != E; ++I) {
691 const Type *ArgTy = *I;
692 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
693 assert(isa<PointerType>(ArgTy));
694 ArgTy = cast<PointerType>(ArgTy)->getElementType();
696 if (I != FTy->param_begin())
697 FunctionInnards << ", ";
698 printType(FunctionInnards, ArgTy,
699 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
700 ++Idx;
702 if (FTy->isVarArg()) {
703 if (FTy->getNumParams())
704 FunctionInnards << ", ...";
705 } else if (!FTy->getNumParams()) {
706 FunctionInnards << "void";
708 FunctionInnards << ')';
709 std::string tstr = FunctionInnards.str();
710 printType(Out, FTy->getReturnType(),
711 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
712 return Out;
714 case Type::StructTyID: {
715 const StructType *STy = cast<StructType>(Ty);
716 Out << NameSoFar + " {\n";
717 unsigned Idx = 0;
718 for (StructType::element_iterator I = STy->element_begin(),
719 E = STy->element_end(); I != E; ++I) {
720 Out << " ";
721 printType(Out, *I, false, "field" + utostr(Idx++));
722 Out << ";\n";
724 Out << '}';
725 if (STy->isPacked())
726 Out << " __attribute__ ((packed))";
727 return Out;
730 case Type::PointerTyID: {
731 const PointerType *PTy = cast<PointerType>(Ty);
732 std::string ptrName = "*" + NameSoFar;
734 if (isa<ArrayType>(PTy->getElementType()) ||
735 isa<VectorType>(PTy->getElementType()))
736 ptrName = "(" + ptrName + ")";
738 if (!PAL.isEmpty())
739 // Must be a function ptr cast!
740 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
741 return printType(Out, PTy->getElementType(), false, ptrName);
744 case Type::ArrayTyID: {
745 const ArrayType *ATy = cast<ArrayType>(Ty);
746 unsigned NumElements = ATy->getNumElements();
747 if (NumElements == 0) NumElements = 1;
748 // Arrays are wrapped in structs to allow them to have normal
749 // value semantics (avoiding the array "decay").
750 Out << NameSoFar << " { ";
751 printType(Out, ATy->getElementType(), false,
752 "array[" + utostr(NumElements) + "]");
753 return Out << "; }";
756 case Type::OpaqueTyID: {
757 std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
758 assert(TypeNames.find(Ty) == TypeNames.end());
759 TypeNames[Ty] = TyName;
760 return Out << TyName << ' ' << NameSoFar;
762 default:
763 llvm_unreachable("Unhandled case in getTypeProps!");
766 return Out;
769 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
771 // As a special case, print the array as a string if it is an array of
772 // ubytes or an array of sbytes with positive values.
774 const Type *ETy = CPA->getType()->getElementType();
775 bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
776 ETy == Type::getInt8Ty(CPA->getContext()));
778 // Make sure the last character is a null char, as automatically added by C
779 if (isString && (CPA->getNumOperands() == 0 ||
780 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
781 isString = false;
783 if (isString) {
784 Out << '\"';
785 // Keep track of whether the last number was a hexadecimal escape
786 bool LastWasHex = false;
788 // Do not include the last character, which we know is null
789 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
790 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
792 // Print it out literally if it is a printable character. The only thing
793 // to be careful about is when the last letter output was a hex escape
794 // code, in which case we have to be careful not to print out hex digits
795 // explicitly (the C compiler thinks it is a continuation of the previous
796 // character, sheesh...)
798 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
799 LastWasHex = false;
800 if (C == '"' || C == '\\')
801 Out << "\\" << (char)C;
802 else
803 Out << (char)C;
804 } else {
805 LastWasHex = false;
806 switch (C) {
807 case '\n': Out << "\\n"; break;
808 case '\t': Out << "\\t"; break;
809 case '\r': Out << "\\r"; break;
810 case '\v': Out << "\\v"; break;
811 case '\a': Out << "\\a"; break;
812 case '\"': Out << "\\\""; break;
813 case '\'': Out << "\\\'"; break;
814 default:
815 Out << "\\x";
816 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
817 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
818 LastWasHex = true;
819 break;
823 Out << '\"';
824 } else {
825 Out << '{';
826 if (CPA->getNumOperands()) {
827 Out << ' ';
828 printConstant(cast<Constant>(CPA->getOperand(0)), Static);
829 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
830 Out << ", ";
831 printConstant(cast<Constant>(CPA->getOperand(i)), Static);
834 Out << " }";
838 void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
839 Out << '{';
840 if (CP->getNumOperands()) {
841 Out << ' ';
842 printConstant(cast<Constant>(CP->getOperand(0)), Static);
843 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
844 Out << ", ";
845 printConstant(cast<Constant>(CP->getOperand(i)), Static);
848 Out << " }";
851 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
852 // textually as a double (rather than as a reference to a stack-allocated
853 // variable). We decide this by converting CFP to a string and back into a
854 // double, and then checking whether the conversion results in a bit-equal
855 // double to the original value of CFP. This depends on us and the target C
856 // compiler agreeing on the conversion process (which is pretty likely since we
857 // only deal in IEEE FP).
859 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
860 bool ignored;
861 // Do long doubles in hex for now.
862 if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
863 CFP->getType() != Type::getDoubleTy(CFP->getContext()))
864 return false;
865 APFloat APF = APFloat(CFP->getValueAPF()); // copy
866 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
867 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
868 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
869 char Buffer[100];
870 sprintf(Buffer, "%a", APF.convertToDouble());
871 if (!strncmp(Buffer, "0x", 2) ||
872 !strncmp(Buffer, "-0x", 3) ||
873 !strncmp(Buffer, "+0x", 3))
874 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
875 return false;
876 #else
877 std::string StrVal = ftostr(APF);
879 while (StrVal[0] == ' ')
880 StrVal.erase(StrVal.begin());
882 // Check to make sure that the stringized number is not some string like "Inf"
883 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
884 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
885 ((StrVal[0] == '-' || StrVal[0] == '+') &&
886 (StrVal[1] >= '0' && StrVal[1] <= '9')))
887 // Reparse stringized version!
888 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
889 return false;
890 #endif
893 /// Print out the casting for a cast operation. This does the double casting
894 /// necessary for conversion to the destination type, if necessary.
895 /// @brief Print a cast
896 void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
897 // Print the destination type cast
898 switch (opc) {
899 case Instruction::UIToFP:
900 case Instruction::SIToFP:
901 case Instruction::IntToPtr:
902 case Instruction::Trunc:
903 case Instruction::BitCast:
904 case Instruction::FPExt:
905 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
906 Out << '(';
907 printType(Out, DstTy);
908 Out << ')';
909 break;
910 case Instruction::ZExt:
911 case Instruction::PtrToInt:
912 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
913 Out << '(';
914 printSimpleType(Out, DstTy, false);
915 Out << ')';
916 break;
917 case Instruction::SExt:
918 case Instruction::FPToSI: // For these, make sure we get a signed dest
919 Out << '(';
920 printSimpleType(Out, DstTy, true);
921 Out << ')';
922 break;
923 default:
924 llvm_unreachable("Invalid cast opcode");
927 // Print the source type cast
928 switch (opc) {
929 case Instruction::UIToFP:
930 case Instruction::ZExt:
931 Out << '(';
932 printSimpleType(Out, SrcTy, false);
933 Out << ')';
934 break;
935 case Instruction::SIToFP:
936 case Instruction::SExt:
937 Out << '(';
938 printSimpleType(Out, SrcTy, true);
939 Out << ')';
940 break;
941 case Instruction::IntToPtr:
942 case Instruction::PtrToInt:
943 // Avoid "cast to pointer from integer of different size" warnings
944 Out << "(unsigned long)";
945 break;
946 case Instruction::Trunc:
947 case Instruction::BitCast:
948 case Instruction::FPExt:
949 case Instruction::FPTrunc:
950 case Instruction::FPToSI:
951 case Instruction::FPToUI:
952 break; // These don't need a source cast.
953 default:
954 llvm_unreachable("Invalid cast opcode");
955 break;
959 // printConstant - The LLVM Constant to C Constant converter.
960 void CWriter::printConstant(Constant *CPV, bool Static) {
961 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
962 switch (CE->getOpcode()) {
963 case Instruction::Trunc:
964 case Instruction::ZExt:
965 case Instruction::SExt:
966 case Instruction::FPTrunc:
967 case Instruction::FPExt:
968 case Instruction::UIToFP:
969 case Instruction::SIToFP:
970 case Instruction::FPToUI:
971 case Instruction::FPToSI:
972 case Instruction::PtrToInt:
973 case Instruction::IntToPtr:
974 case Instruction::BitCast:
975 Out << "(";
976 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
977 if (CE->getOpcode() == Instruction::SExt &&
978 CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
979 // Make sure we really sext from bool here by subtracting from 0
980 Out << "0-";
982 printConstant(CE->getOperand(0), Static);
983 if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
984 (CE->getOpcode() == Instruction::Trunc ||
985 CE->getOpcode() == Instruction::FPToUI ||
986 CE->getOpcode() == Instruction::FPToSI ||
987 CE->getOpcode() == Instruction::PtrToInt)) {
988 // Make sure we really truncate to bool here by anding with 1
989 Out << "&1u";
991 Out << ')';
992 return;
994 case Instruction::GetElementPtr:
995 Out << "(";
996 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
997 gep_type_end(CPV), Static);
998 Out << ")";
999 return;
1000 case Instruction::Select:
1001 Out << '(';
1002 printConstant(CE->getOperand(0), Static);
1003 Out << '?';
1004 printConstant(CE->getOperand(1), Static);
1005 Out << ':';
1006 printConstant(CE->getOperand(2), Static);
1007 Out << ')';
1008 return;
1009 case Instruction::Add:
1010 case Instruction::FAdd:
1011 case Instruction::Sub:
1012 case Instruction::FSub:
1013 case Instruction::Mul:
1014 case Instruction::FMul:
1015 case Instruction::SDiv:
1016 case Instruction::UDiv:
1017 case Instruction::FDiv:
1018 case Instruction::URem:
1019 case Instruction::SRem:
1020 case Instruction::FRem:
1021 case Instruction::And:
1022 case Instruction::Or:
1023 case Instruction::Xor:
1024 case Instruction::ICmp:
1025 case Instruction::Shl:
1026 case Instruction::LShr:
1027 case Instruction::AShr:
1029 Out << '(';
1030 bool NeedsClosingParens = printConstExprCast(CE, Static);
1031 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1032 switch (CE->getOpcode()) {
1033 case Instruction::Add:
1034 case Instruction::FAdd: Out << " + "; break;
1035 case Instruction::Sub:
1036 case Instruction::FSub: Out << " - "; break;
1037 case Instruction::Mul:
1038 case Instruction::FMul: Out << " * "; break;
1039 case Instruction::URem:
1040 case Instruction::SRem:
1041 case Instruction::FRem: Out << " % "; break;
1042 case Instruction::UDiv:
1043 case Instruction::SDiv:
1044 case Instruction::FDiv: Out << " / "; break;
1045 case Instruction::And: Out << " & "; break;
1046 case Instruction::Or: Out << " | "; break;
1047 case Instruction::Xor: Out << " ^ "; break;
1048 case Instruction::Shl: Out << " << "; break;
1049 case Instruction::LShr:
1050 case Instruction::AShr: Out << " >> "; break;
1051 case Instruction::ICmp:
1052 switch (CE->getPredicate()) {
1053 case ICmpInst::ICMP_EQ: Out << " == "; break;
1054 case ICmpInst::ICMP_NE: Out << " != "; break;
1055 case ICmpInst::ICMP_SLT:
1056 case ICmpInst::ICMP_ULT: Out << " < "; break;
1057 case ICmpInst::ICMP_SLE:
1058 case ICmpInst::ICMP_ULE: Out << " <= "; break;
1059 case ICmpInst::ICMP_SGT:
1060 case ICmpInst::ICMP_UGT: Out << " > "; break;
1061 case ICmpInst::ICMP_SGE:
1062 case ICmpInst::ICMP_UGE: Out << " >= "; break;
1063 default: llvm_unreachable("Illegal ICmp predicate");
1065 break;
1066 default: llvm_unreachable("Illegal opcode here!");
1068 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1069 if (NeedsClosingParens)
1070 Out << "))";
1071 Out << ')';
1072 return;
1074 case Instruction::FCmp: {
1075 Out << '(';
1076 bool NeedsClosingParens = printConstExprCast(CE, Static);
1077 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
1078 Out << "0";
1079 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
1080 Out << "1";
1081 else {
1082 const char* op = 0;
1083 switch (CE->getPredicate()) {
1084 default: llvm_unreachable("Illegal FCmp predicate");
1085 case FCmpInst::FCMP_ORD: op = "ord"; break;
1086 case FCmpInst::FCMP_UNO: op = "uno"; break;
1087 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
1088 case FCmpInst::FCMP_UNE: op = "une"; break;
1089 case FCmpInst::FCMP_ULT: op = "ult"; break;
1090 case FCmpInst::FCMP_ULE: op = "ule"; break;
1091 case FCmpInst::FCMP_UGT: op = "ugt"; break;
1092 case FCmpInst::FCMP_UGE: op = "uge"; break;
1093 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
1094 case FCmpInst::FCMP_ONE: op = "one"; break;
1095 case FCmpInst::FCMP_OLT: op = "olt"; break;
1096 case FCmpInst::FCMP_OLE: op = "ole"; break;
1097 case FCmpInst::FCMP_OGT: op = "ogt"; break;
1098 case FCmpInst::FCMP_OGE: op = "oge"; break;
1100 Out << "llvm_fcmp_" << op << "(";
1101 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1102 Out << ", ";
1103 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1104 Out << ")";
1106 if (NeedsClosingParens)
1107 Out << "))";
1108 Out << ')';
1109 return;
1111 default:
1112 #ifndef NDEBUG
1113 errs() << "CWriter Error: Unhandled constant expression: "
1114 << *CE << "\n";
1115 #endif
1116 llvm_unreachable(0);
1118 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
1119 Out << "((";
1120 printType(Out, CPV->getType()); // sign doesn't matter
1121 Out << ")/*UNDEF*/";
1122 if (!isa<VectorType>(CPV->getType())) {
1123 Out << "0)";
1124 } else {
1125 Out << "{})";
1127 return;
1130 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1131 const Type* Ty = CI->getType();
1132 if (Ty == Type::getInt1Ty(CPV->getContext()))
1133 Out << (CI->getZExtValue() ? '1' : '0');
1134 else if (Ty == Type::getInt32Ty(CPV->getContext()))
1135 Out << CI->getZExtValue() << 'u';
1136 else if (Ty->getPrimitiveSizeInBits() > 32)
1137 Out << CI->getZExtValue() << "ull";
1138 else {
1139 Out << "((";
1140 printSimpleType(Out, Ty, false) << ')';
1141 if (CI->isMinValue(true))
1142 Out << CI->getZExtValue() << 'u';
1143 else
1144 Out << CI->getSExtValue();
1145 Out << ')';
1147 return;
1150 switch (CPV->getType()->getTypeID()) {
1151 case Type::FloatTyID:
1152 case Type::DoubleTyID:
1153 case Type::X86_FP80TyID:
1154 case Type::PPC_FP128TyID:
1155 case Type::FP128TyID: {
1156 ConstantFP *FPC = cast<ConstantFP>(CPV);
1157 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
1158 if (I != FPConstantMap.end()) {
1159 // Because of FP precision problems we must load from a stack allocated
1160 // value that holds the value in hex.
1161 Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
1162 "float" :
1163 FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
1164 "double" :
1165 "long double")
1166 << "*)&FPConstant" << I->second << ')';
1167 } else {
1168 double V;
1169 if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
1170 V = FPC->getValueAPF().convertToFloat();
1171 else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
1172 V = FPC->getValueAPF().convertToDouble();
1173 else {
1174 // Long double. Convert the number to double, discarding precision.
1175 // This is not awesome, but it at least makes the CBE output somewhat
1176 // useful.
1177 APFloat Tmp = FPC->getValueAPF();
1178 bool LosesInfo;
1179 Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
1180 V = Tmp.convertToDouble();
1183 if (IsNAN(V)) {
1184 // The value is NaN
1186 // FIXME the actual NaN bits should be emitted.
1187 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
1188 // it's 0x7ff4.
1189 const unsigned long QuietNaN = 0x7ff8UL;
1190 //const unsigned long SignalNaN = 0x7ff4UL;
1192 // We need to grab the first part of the FP #
1193 char Buffer[100];
1195 uint64_t ll = DoubleToBits(V);
1196 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
1198 std::string Num(&Buffer[0], &Buffer[6]);
1199 unsigned long Val = strtoul(Num.c_str(), 0, 16);
1201 if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
1202 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
1203 << Buffer << "\") /*nan*/ ";
1204 else
1205 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1206 << Buffer << "\") /*nan*/ ";
1207 } else if (IsInf(V)) {
1208 // The value is Inf
1209 if (V < 0) Out << '-';
1210 Out << "LLVM_INF" <<
1211 (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
1212 << " /*inf*/ ";
1213 } else {
1214 std::string Num;
1215 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1216 // Print out the constant as a floating point number.
1217 char Buffer[100];
1218 sprintf(Buffer, "%a", V);
1219 Num = Buffer;
1220 #else
1221 Num = ftostr(FPC->getValueAPF());
1222 #endif
1223 Out << Num;
1226 break;
1229 case Type::ArrayTyID:
1230 // Use C99 compound expression literal initializer syntax.
1231 if (!Static) {
1232 Out << "(";
1233 printType(Out, CPV->getType());
1234 Out << ")";
1236 Out << "{ "; // Arrays are wrapped in struct types.
1237 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
1238 printConstantArray(CA, Static);
1239 } else {
1240 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1241 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1242 Out << '{';
1243 if (AT->getNumElements()) {
1244 Out << ' ';
1245 Constant *CZ = Constant::getNullValue(AT->getElementType());
1246 printConstant(CZ, Static);
1247 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1248 Out << ", ";
1249 printConstant(CZ, Static);
1252 Out << " }";
1254 Out << " }"; // Arrays are wrapped in struct types.
1255 break;
1257 case Type::VectorTyID:
1258 // Use C99 compound expression literal initializer syntax.
1259 if (!Static) {
1260 Out << "(";
1261 printType(Out, CPV->getType());
1262 Out << ")";
1264 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
1265 printConstantVector(CV, Static);
1266 } else {
1267 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1268 const VectorType *VT = cast<VectorType>(CPV->getType());
1269 Out << "{ ";
1270 Constant *CZ = Constant::getNullValue(VT->getElementType());
1271 printConstant(CZ, Static);
1272 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
1273 Out << ", ";
1274 printConstant(CZ, Static);
1276 Out << " }";
1278 break;
1280 case Type::StructTyID:
1281 // Use C99 compound expression literal initializer syntax.
1282 if (!Static) {
1283 Out << "(";
1284 printType(Out, CPV->getType());
1285 Out << ")";
1287 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1288 const StructType *ST = cast<StructType>(CPV->getType());
1289 Out << '{';
1290 if (ST->getNumElements()) {
1291 Out << ' ';
1292 printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
1293 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1294 Out << ", ";
1295 printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
1298 Out << " }";
1299 } else {
1300 Out << '{';
1301 if (CPV->getNumOperands()) {
1302 Out << ' ';
1303 printConstant(cast<Constant>(CPV->getOperand(0)), Static);
1304 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1305 Out << ", ";
1306 printConstant(cast<Constant>(CPV->getOperand(i)), Static);
1309 Out << " }";
1311 break;
1313 case Type::PointerTyID:
1314 if (isa<ConstantPointerNull>(CPV)) {
1315 Out << "((";
1316 printType(Out, CPV->getType()); // sign doesn't matter
1317 Out << ")/*NULL*/0)";
1318 break;
1319 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1320 writeOperand(GV, Static);
1321 break;
1323 // FALL THROUGH
1324 default:
1325 #ifndef NDEBUG
1326 errs() << "Unknown constant type: " << *CPV << "\n";
1327 #endif
1328 llvm_unreachable(0);
1332 // Some constant expressions need to be casted back to the original types
1333 // because their operands were casted to the expected type. This function takes
1334 // care of detecting that case and printing the cast for the ConstantExpr.
1335 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
1336 bool NeedsExplicitCast = false;
1337 const Type *Ty = CE->getOperand(0)->getType();
1338 bool TypeIsSigned = false;
1339 switch (CE->getOpcode()) {
1340 case Instruction::Add:
1341 case Instruction::Sub:
1342 case Instruction::Mul:
1343 // We need to cast integer arithmetic so that it is always performed
1344 // as unsigned, to avoid undefined behavior on overflow.
1345 case Instruction::LShr:
1346 case Instruction::URem:
1347 case Instruction::UDiv: NeedsExplicitCast = true; break;
1348 case Instruction::AShr:
1349 case Instruction::SRem:
1350 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1351 case Instruction::SExt:
1352 Ty = CE->getType();
1353 NeedsExplicitCast = true;
1354 TypeIsSigned = true;
1355 break;
1356 case Instruction::ZExt:
1357 case Instruction::Trunc:
1358 case Instruction::FPTrunc:
1359 case Instruction::FPExt:
1360 case Instruction::UIToFP:
1361 case Instruction::SIToFP:
1362 case Instruction::FPToUI:
1363 case Instruction::FPToSI:
1364 case Instruction::PtrToInt:
1365 case Instruction::IntToPtr:
1366 case Instruction::BitCast:
1367 Ty = CE->getType();
1368 NeedsExplicitCast = true;
1369 break;
1370 default: break;
1372 if (NeedsExplicitCast) {
1373 Out << "((";
1374 if (Ty->isInteger() && Ty != Type::getInt1Ty(Ty->getContext()))
1375 printSimpleType(Out, Ty, TypeIsSigned);
1376 else
1377 printType(Out, Ty); // not integer, sign doesn't matter
1378 Out << ")(";
1380 return NeedsExplicitCast;
1383 // Print a constant assuming that it is the operand for a given Opcode. The
1384 // opcodes that care about sign need to cast their operands to the expected
1385 // type before the operation proceeds. This function does the casting.
1386 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1388 // Extract the operand's type, we'll need it.
1389 const Type* OpTy = CPV->getType();
1391 // Indicate whether to do the cast or not.
1392 bool shouldCast = false;
1393 bool typeIsSigned = false;
1395 // Based on the Opcode for which this Constant is being written, determine
1396 // the new type to which the operand should be casted by setting the value
1397 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1398 // casted below.
1399 switch (Opcode) {
1400 default:
1401 // for most instructions, it doesn't matter
1402 break;
1403 case Instruction::Add:
1404 case Instruction::Sub:
1405 case Instruction::Mul:
1406 // We need to cast integer arithmetic so that it is always performed
1407 // as unsigned, to avoid undefined behavior on overflow.
1408 case Instruction::LShr:
1409 case Instruction::UDiv:
1410 case Instruction::URem:
1411 shouldCast = true;
1412 break;
1413 case Instruction::AShr:
1414 case Instruction::SDiv:
1415 case Instruction::SRem:
1416 shouldCast = true;
1417 typeIsSigned = true;
1418 break;
1421 // Write out the casted constant if we should, otherwise just write the
1422 // operand.
1423 if (shouldCast) {
1424 Out << "((";
1425 printSimpleType(Out, OpTy, typeIsSigned);
1426 Out << ")";
1427 printConstant(CPV, false);
1428 Out << ")";
1429 } else
1430 printConstant(CPV, false);
1433 std::string CWriter::GetValueName(const Value *Operand) {
1434 // Mangle globals with the standard mangler interface for LLC compatibility.
1435 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
1436 return Mang->getMangledName(GV);
1438 std::string Name = Operand->getName();
1440 if (Name.empty()) { // Assign unique names to local temporaries.
1441 unsigned &No = AnonValueNumbers[Operand];
1442 if (No == 0)
1443 No = ++NextAnonValueNumber;
1444 Name = "tmp__" + utostr(No);
1447 std::string VarName;
1448 VarName.reserve(Name.capacity());
1450 for (std::string::iterator I = Name.begin(), E = Name.end();
1451 I != E; ++I) {
1452 char ch = *I;
1454 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1455 (ch >= '0' && ch <= '9') || ch == '_')) {
1456 char buffer[5];
1457 sprintf(buffer, "_%x_", ch);
1458 VarName += buffer;
1459 } else
1460 VarName += ch;
1463 return "llvm_cbe_" + VarName;
1466 /// writeInstComputationInline - Emit the computation for the specified
1467 /// instruction inline, with no destination provided.
1468 void CWriter::writeInstComputationInline(Instruction &I) {
1469 // We can't currently support integer types other than 1, 8, 16, 32, 64.
1470 // Validate this.
1471 const Type *Ty = I.getType();
1472 if (Ty->isInteger() && (Ty!=Type::getInt1Ty(I.getContext()) &&
1473 Ty!=Type::getInt8Ty(I.getContext()) &&
1474 Ty!=Type::getInt16Ty(I.getContext()) &&
1475 Ty!=Type::getInt32Ty(I.getContext()) &&
1476 Ty!=Type::getInt64Ty(I.getContext()))) {
1477 llvm_report_error("The C backend does not currently support integer "
1478 "types of widths other than 1, 8, 16, 32, 64.\n"
1479 "This is being tracked as PR 4158.");
1482 // If this is a non-trivial bool computation, make sure to truncate down to
1483 // a 1 bit value. This is important because we want "add i1 x, y" to return
1484 // "0" when x and y are true, not "2" for example.
1485 bool NeedBoolTrunc = false;
1486 if (I.getType() == Type::getInt1Ty(I.getContext()) &&
1487 !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1488 NeedBoolTrunc = true;
1490 if (NeedBoolTrunc)
1491 Out << "((";
1493 visit(I);
1495 if (NeedBoolTrunc)
1496 Out << ")&1)";
1500 void CWriter::writeOperandInternal(Value *Operand, bool Static) {
1501 if (Instruction *I = dyn_cast<Instruction>(Operand))
1502 // Should we inline this instruction to build a tree?
1503 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1504 Out << '(';
1505 writeInstComputationInline(*I);
1506 Out << ')';
1507 return;
1510 Constant* CPV = dyn_cast<Constant>(Operand);
1512 if (CPV && !isa<GlobalValue>(CPV))
1513 printConstant(CPV, Static);
1514 else
1515 Out << GetValueName(Operand);
1518 void CWriter::writeOperand(Value *Operand, bool Static) {
1519 bool isAddressImplicit = isAddressExposed(Operand);
1520 if (isAddressImplicit)
1521 Out << "(&"; // Global variables are referenced as their addresses by llvm
1523 writeOperandInternal(Operand, Static);
1525 if (isAddressImplicit)
1526 Out << ')';
1529 // Some instructions need to have their result value casted back to the
1530 // original types because their operands were casted to the expected type.
1531 // This function takes care of detecting that case and printing the cast
1532 // for the Instruction.
1533 bool CWriter::writeInstructionCast(const Instruction &I) {
1534 const Type *Ty = I.getOperand(0)->getType();
1535 switch (I.getOpcode()) {
1536 case Instruction::Add:
1537 case Instruction::Sub:
1538 case Instruction::Mul:
1539 // We need to cast integer arithmetic so that it is always performed
1540 // as unsigned, to avoid undefined behavior on overflow.
1541 case Instruction::LShr:
1542 case Instruction::URem:
1543 case Instruction::UDiv:
1544 Out << "((";
1545 printSimpleType(Out, Ty, false);
1546 Out << ")(";
1547 return true;
1548 case Instruction::AShr:
1549 case Instruction::SRem:
1550 case Instruction::SDiv:
1551 Out << "((";
1552 printSimpleType(Out, Ty, true);
1553 Out << ")(";
1554 return true;
1555 default: break;
1557 return false;
1560 // Write the operand with a cast to another type based on the Opcode being used.
1561 // This will be used in cases where an instruction has specific type
1562 // requirements (usually signedness) for its operands.
1563 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1565 // Extract the operand's type, we'll need it.
1566 const Type* OpTy = Operand->getType();
1568 // Indicate whether to do the cast or not.
1569 bool shouldCast = false;
1571 // Indicate whether the cast should be to a signed type or not.
1572 bool castIsSigned = false;
1574 // Based on the Opcode for which this Operand is being written, determine
1575 // the new type to which the operand should be casted by setting the value
1576 // of OpTy. If we change OpTy, also set shouldCast to true.
1577 switch (Opcode) {
1578 default:
1579 // for most instructions, it doesn't matter
1580 break;
1581 case Instruction::Add:
1582 case Instruction::Sub:
1583 case Instruction::Mul:
1584 // We need to cast integer arithmetic so that it is always performed
1585 // as unsigned, to avoid undefined behavior on overflow.
1586 case Instruction::LShr:
1587 case Instruction::UDiv:
1588 case Instruction::URem: // Cast to unsigned first
1589 shouldCast = true;
1590 castIsSigned = false;
1591 break;
1592 case Instruction::GetElementPtr:
1593 case Instruction::AShr:
1594 case Instruction::SDiv:
1595 case Instruction::SRem: // Cast to signed first
1596 shouldCast = true;
1597 castIsSigned = true;
1598 break;
1601 // Write out the casted operand if we should, otherwise just write the
1602 // operand.
1603 if (shouldCast) {
1604 Out << "((";
1605 printSimpleType(Out, OpTy, castIsSigned);
1606 Out << ")";
1607 writeOperand(Operand);
1608 Out << ")";
1609 } else
1610 writeOperand(Operand);
1613 // Write the operand with a cast to another type based on the icmp predicate
1614 // being used.
1615 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1616 // This has to do a cast to ensure the operand has the right signedness.
1617 // Also, if the operand is a pointer, we make sure to cast to an integer when
1618 // doing the comparison both for signedness and so that the C compiler doesn't
1619 // optimize things like "p < NULL" to false (p may contain an integer value
1620 // f.e.).
1621 bool shouldCast = Cmp.isRelational();
1623 // Write out the casted operand if we should, otherwise just write the
1624 // operand.
1625 if (!shouldCast) {
1626 writeOperand(Operand);
1627 return;
1630 // Should this be a signed comparison? If so, convert to signed.
1631 bool castIsSigned = Cmp.isSignedPredicate();
1633 // If the operand was a pointer, convert to a large integer type.
1634 const Type* OpTy = Operand->getType();
1635 if (isa<PointerType>(OpTy))
1636 OpTy = TD->getIntPtrType(Operand->getContext());
1638 Out << "((";
1639 printSimpleType(Out, OpTy, castIsSigned);
1640 Out << ")";
1641 writeOperand(Operand);
1642 Out << ")";
1645 // generateCompilerSpecificCode - This is where we add conditional compilation
1646 // directives to cater to specific compilers as need be.
1648 static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
1649 const TargetData *TD) {
1650 // Alloca is hard to get, and we don't want to include stdlib.h here.
1651 Out << "/* get a declaration for alloca */\n"
1652 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1653 << "#define alloca(x) __builtin_alloca((x))\n"
1654 << "#define _alloca(x) __builtin_alloca((x))\n"
1655 << "#elif defined(__APPLE__)\n"
1656 << "extern void *__builtin_alloca(unsigned long);\n"
1657 << "#define alloca(x) __builtin_alloca(x)\n"
1658 << "#define longjmp _longjmp\n"
1659 << "#define setjmp _setjmp\n"
1660 << "#elif defined(__sun__)\n"
1661 << "#if defined(__sparcv9)\n"
1662 << "extern void *__builtin_alloca(unsigned long);\n"
1663 << "#else\n"
1664 << "extern void *__builtin_alloca(unsigned int);\n"
1665 << "#endif\n"
1666 << "#define alloca(x) __builtin_alloca(x)\n"
1667 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
1668 << "#define alloca(x) __builtin_alloca(x)\n"
1669 << "#elif defined(_MSC_VER)\n"
1670 << "#define inline _inline\n"
1671 << "#define alloca(x) _alloca(x)\n"
1672 << "#else\n"
1673 << "#include <alloca.h>\n"
1674 << "#endif\n\n";
1676 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1677 // If we aren't being compiled with GCC, just drop these attributes.
1678 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1679 << "#define __attribute__(X)\n"
1680 << "#endif\n\n";
1682 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1683 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1684 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1685 << "#elif defined(__GNUC__)\n"
1686 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1687 << "#else\n"
1688 << "#define __EXTERNAL_WEAK__\n"
1689 << "#endif\n\n";
1691 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1692 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1693 << "#define __ATTRIBUTE_WEAK__\n"
1694 << "#elif defined(__GNUC__)\n"
1695 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1696 << "#else\n"
1697 << "#define __ATTRIBUTE_WEAK__\n"
1698 << "#endif\n\n";
1700 // Add hidden visibility support. FIXME: APPLE_CC?
1701 Out << "#if defined(__GNUC__)\n"
1702 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1703 << "#endif\n\n";
1705 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1706 // From the GCC documentation:
1708 // double __builtin_nan (const char *str)
1710 // This is an implementation of the ISO C99 function nan.
1712 // Since ISO C99 defines this function in terms of strtod, which we do
1713 // not implement, a description of the parsing is in order. The string is
1714 // parsed as by strtol; that is, the base is recognized by leading 0 or
1715 // 0x prefixes. The number parsed is placed in the significand such that
1716 // the least significant bit of the number is at the least significant
1717 // bit of the significand. The number is truncated to fit the significand
1718 // field provided. The significand is forced to be a quiet NaN.
1720 // This function, if given a string literal, is evaluated early enough
1721 // that it is considered a compile-time constant.
1723 // float __builtin_nanf (const char *str)
1725 // Similar to __builtin_nan, except the return type is float.
1727 // double __builtin_inf (void)
1729 // Similar to __builtin_huge_val, except a warning is generated if the
1730 // target floating-point format does not support infinities. This
1731 // function is suitable for implementing the ISO C99 macro INFINITY.
1733 // float __builtin_inff (void)
1735 // Similar to __builtin_inf, except the return type is float.
1736 Out << "#ifdef __GNUC__\n"
1737 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1738 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1739 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1740 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1741 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1742 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1743 << "#define LLVM_PREFETCH(addr,rw,locality) "
1744 "__builtin_prefetch(addr,rw,locality)\n"
1745 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1746 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1747 << "#define LLVM_ASM __asm__\n"
1748 << "#else\n"
1749 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1750 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1751 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1752 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1753 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1754 << "#define LLVM_INFF 0.0F /* Float */\n"
1755 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1756 << "#define __ATTRIBUTE_CTOR__\n"
1757 << "#define __ATTRIBUTE_DTOR__\n"
1758 << "#define LLVM_ASM(X)\n"
1759 << "#endif\n\n";
1761 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1762 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1763 << "#define __builtin_stack_restore(X) /* noop */\n"
1764 << "#endif\n\n";
1766 // Output typedefs for 128-bit integers. If these are needed with a
1767 // 32-bit target or with a C compiler that doesn't support mode(TI),
1768 // more drastic measures will be needed.
1769 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1770 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1771 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1772 << "#endif\n\n";
1774 // Output target-specific code that should be inserted into main.
1775 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1778 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1779 /// the StaticTors set.
1780 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1781 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1782 if (!InitList) return;
1784 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1785 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1786 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1788 if (CS->getOperand(1)->isNullValue())
1789 return; // Found a null terminator, exit printing.
1790 Constant *FP = CS->getOperand(1);
1791 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1792 if (CE->isCast())
1793 FP = CE->getOperand(0);
1794 if (Function *F = dyn_cast<Function>(FP))
1795 StaticTors.insert(F);
1799 enum SpecialGlobalClass {
1800 NotSpecial = 0,
1801 GlobalCtors, GlobalDtors,
1802 NotPrinted
1805 /// getGlobalVariableClass - If this is a global that is specially recognized
1806 /// by LLVM, return a code that indicates how we should handle it.
1807 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1808 // If this is a global ctors/dtors list, handle it now.
1809 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1810 if (GV->getName() == "llvm.global_ctors")
1811 return GlobalCtors;
1812 else if (GV->getName() == "llvm.global_dtors")
1813 return GlobalDtors;
1816 // Otherwise, it it is other metadata, don't print it. This catches things
1817 // like debug information.
1818 if (GV->getSection() == "llvm.metadata")
1819 return NotPrinted;
1821 return NotSpecial;
1824 // PrintEscapedString - Print each character of the specified string, escaping
1825 // it if it is not printable or if it is an escape char.
1826 static void PrintEscapedString(const char *Str, unsigned Length,
1827 raw_ostream &Out) {
1828 for (unsigned i = 0; i != Length; ++i) {
1829 unsigned char C = Str[i];
1830 if (isprint(C) && C != '\\' && C != '"')
1831 Out << C;
1832 else if (C == '\\')
1833 Out << "\\\\";
1834 else if (C == '\"')
1835 Out << "\\\"";
1836 else if (C == '\t')
1837 Out << "\\t";
1838 else
1839 Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1843 // PrintEscapedString - Print each character of the specified string, escaping
1844 // it if it is not printable or if it is an escape char.
1845 static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
1846 PrintEscapedString(Str.c_str(), Str.size(), Out);
1849 bool CWriter::doInitialization(Module &M) {
1850 FunctionPass::doInitialization(M);
1852 // Initialize
1853 TheModule = &M;
1855 TD = new TargetData(&M);
1856 IL = new IntrinsicLowering(*TD);
1857 IL->AddPrototypes(M);
1859 // Ensure that all structure types have names...
1860 Mang = new Mangler(M);
1861 Mang->markCharUnacceptable('.');
1863 // Keep track of which functions are static ctors/dtors so they can have
1864 // an attribute added to their prototypes.
1865 std::set<Function*> StaticCtors, StaticDtors;
1866 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1867 I != E; ++I) {
1868 switch (getGlobalVariableClass(I)) {
1869 default: break;
1870 case GlobalCtors:
1871 FindStaticTors(I, StaticCtors);
1872 break;
1873 case GlobalDtors:
1874 FindStaticTors(I, StaticDtors);
1875 break;
1879 // get declaration for alloca
1880 Out << "/* Provide Declarations */\n";
1881 Out << "#include <stdarg.h>\n"; // Varargs support
1882 Out << "#include <setjmp.h>\n"; // Unwind support
1883 generateCompilerSpecificCode(Out, TD);
1885 // Provide a definition for `bool' if not compiling with a C++ compiler.
1886 Out << "\n"
1887 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1889 << "\n\n/* Support for floating point constants */\n"
1890 << "typedef unsigned long long ConstantDoubleTy;\n"
1891 << "typedef unsigned int ConstantFloatTy;\n"
1892 << "typedef struct { unsigned long long f1; unsigned short f2; "
1893 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1894 // This is used for both kinds of 128-bit long double; meaning differs.
1895 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1896 " ConstantFP128Ty;\n"
1897 << "\n\n/* Global Declarations */\n";
1899 // First output all the declarations for the program, because C requires
1900 // Functions & globals to be declared before they are used.
1902 if (!M.getModuleInlineAsm().empty()) {
1903 Out << "/* Module asm statements */\n"
1904 << "asm(";
1906 // Split the string into lines, to make it easier to read the .ll file.
1907 std::string Asm = M.getModuleInlineAsm();
1908 size_t CurPos = 0;
1909 size_t NewLine = Asm.find_first_of('\n', CurPos);
1910 while (NewLine != std::string::npos) {
1911 // We found a newline, print the portion of the asm string from the
1912 // last newline up to this newline.
1913 Out << "\"";
1914 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1915 Out);
1916 Out << "\\n\"\n";
1917 CurPos = NewLine+1;
1918 NewLine = Asm.find_first_of('\n', CurPos);
1920 Out << "\"";
1921 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1922 Out << "\");\n"
1923 << "/* End Module asm statements */\n";
1926 // Loop over the symbol table, emitting all named constants...
1927 printModuleTypes(M.getTypeSymbolTable());
1929 // Global variable declarations...
1930 if (!M.global_empty()) {
1931 Out << "\n/* External Global Variable Declarations */\n";
1932 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1933 I != E; ++I) {
1935 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1936 I->hasCommonLinkage())
1937 Out << "extern ";
1938 else if (I->hasDLLImportLinkage())
1939 Out << "__declspec(dllimport) ";
1940 else
1941 continue; // Internal Global
1943 // Thread Local Storage
1944 if (I->isThreadLocal())
1945 Out << "__thread ";
1947 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1949 if (I->hasExternalWeakLinkage())
1950 Out << " __EXTERNAL_WEAK__";
1951 Out << ";\n";
1955 // Function declarations
1956 Out << "\n/* Function Declarations */\n";
1957 Out << "double fmod(double, double);\n"; // Support for FP rem
1958 Out << "float fmodf(float, float);\n";
1959 Out << "long double fmodl(long double, long double);\n";
1961 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1962 // Don't print declarations for intrinsic functions.
1963 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
1964 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1965 if (I->hasExternalWeakLinkage())
1966 Out << "extern ";
1967 printFunctionSignature(I, true);
1968 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1969 Out << " __ATTRIBUTE_WEAK__";
1970 if (I->hasExternalWeakLinkage())
1971 Out << " __EXTERNAL_WEAK__";
1972 if (StaticCtors.count(I))
1973 Out << " __ATTRIBUTE_CTOR__";
1974 if (StaticDtors.count(I))
1975 Out << " __ATTRIBUTE_DTOR__";
1976 if (I->hasHiddenVisibility())
1977 Out << " __HIDDEN__";
1979 if (I->hasName() && I->getName()[0] == 1)
1980 Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
1982 Out << ";\n";
1986 // Output the global variable declarations
1987 if (!M.global_empty()) {
1988 Out << "\n\n/* Global Variable Declarations */\n";
1989 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1990 I != E; ++I)
1991 if (!I->isDeclaration()) {
1992 // Ignore special globals, such as debug info.
1993 if (getGlobalVariableClass(I))
1994 continue;
1996 if (I->hasLocalLinkage())
1997 Out << "static ";
1998 else
1999 Out << "extern ";
2001 // Thread Local Storage
2002 if (I->isThreadLocal())
2003 Out << "__thread ";
2005 printType(Out, I->getType()->getElementType(), false,
2006 GetValueName(I));
2008 if (I->hasLinkOnceLinkage())
2009 Out << " __attribute__((common))";
2010 else if (I->hasCommonLinkage()) // FIXME is this right?
2011 Out << " __ATTRIBUTE_WEAK__";
2012 else if (I->hasWeakLinkage())
2013 Out << " __ATTRIBUTE_WEAK__";
2014 else if (I->hasExternalWeakLinkage())
2015 Out << " __EXTERNAL_WEAK__";
2016 if (I->hasHiddenVisibility())
2017 Out << " __HIDDEN__";
2018 Out << ";\n";
2022 // Output the global variable definitions and contents...
2023 if (!M.global_empty()) {
2024 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
2025 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
2026 I != E; ++I)
2027 if (!I->isDeclaration()) {
2028 // Ignore special globals, such as debug info.
2029 if (getGlobalVariableClass(I))
2030 continue;
2032 if (I->hasLocalLinkage())
2033 Out << "static ";
2034 else if (I->hasDLLImportLinkage())
2035 Out << "__declspec(dllimport) ";
2036 else if (I->hasDLLExportLinkage())
2037 Out << "__declspec(dllexport) ";
2039 // Thread Local Storage
2040 if (I->isThreadLocal())
2041 Out << "__thread ";
2043 printType(Out, I->getType()->getElementType(), false,
2044 GetValueName(I));
2045 if (I->hasLinkOnceLinkage())
2046 Out << " __attribute__((common))";
2047 else if (I->hasWeakLinkage())
2048 Out << " __ATTRIBUTE_WEAK__";
2049 else if (I->hasCommonLinkage())
2050 Out << " __ATTRIBUTE_WEAK__";
2052 if (I->hasHiddenVisibility())
2053 Out << " __HIDDEN__";
2055 // If the initializer is not null, emit the initializer. If it is null,
2056 // we try to avoid emitting large amounts of zeros. The problem with
2057 // this, however, occurs when the variable has weak linkage. In this
2058 // case, the assembler will complain about the variable being both weak
2059 // and common, so we disable this optimization.
2060 // FIXME common linkage should avoid this problem.
2061 if (!I->getInitializer()->isNullValue()) {
2062 Out << " = " ;
2063 writeOperand(I->getInitializer(), true);
2064 } else if (I->hasWeakLinkage()) {
2065 // We have to specify an initializer, but it doesn't have to be
2066 // complete. If the value is an aggregate, print out { 0 }, and let
2067 // the compiler figure out the rest of the zeros.
2068 Out << " = " ;
2069 if (isa<StructType>(I->getInitializer()->getType()) ||
2070 isa<VectorType>(I->getInitializer()->getType())) {
2071 Out << "{ 0 }";
2072 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
2073 // As with structs and vectors, but with an extra set of braces
2074 // because arrays are wrapped in structs.
2075 Out << "{ { 0 } }";
2076 } else {
2077 // Just print it out normally.
2078 writeOperand(I->getInitializer(), true);
2081 Out << ";\n";
2085 if (!M.empty())
2086 Out << "\n\n/* Function Bodies */\n";
2088 // Emit some helper functions for dealing with FCMP instruction's
2089 // predicates
2090 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
2091 Out << "return X == X && Y == Y; }\n";
2092 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
2093 Out << "return X != X || Y != Y; }\n";
2094 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
2095 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
2096 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
2097 Out << "return X != Y; }\n";
2098 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
2099 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
2100 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
2101 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
2102 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
2103 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
2104 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
2105 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
2106 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
2107 Out << "return X == Y ; }\n";
2108 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
2109 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
2110 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
2111 Out << "return X < Y ; }\n";
2112 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
2113 Out << "return X > Y ; }\n";
2114 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
2115 Out << "return X <= Y ; }\n";
2116 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
2117 Out << "return X >= Y ; }\n";
2118 return false;
2122 /// Output all floating point constants that cannot be printed accurately...
2123 void CWriter::printFloatingPointConstants(Function &F) {
2124 // Scan the module for floating point constants. If any FP constant is used
2125 // in the function, we want to redirect it here so that we do not depend on
2126 // the precision of the printed form, unless the printed form preserves
2127 // precision.
2129 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
2130 I != E; ++I)
2131 printFloatingPointConstants(*I);
2133 Out << '\n';
2136 void CWriter::printFloatingPointConstants(const Constant *C) {
2137 // If this is a constant expression, recursively check for constant fp values.
2138 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2139 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
2140 printFloatingPointConstants(CE->getOperand(i));
2141 return;
2144 // Otherwise, check for a FP constant that we need to print.
2145 const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
2146 if (FPC == 0 ||
2147 // Do not put in FPConstantMap if safe.
2148 isFPCSafeToPrint(FPC) ||
2149 // Already printed this constant?
2150 FPConstantMap.count(FPC))
2151 return;
2153 FPConstantMap[FPC] = FPCounter; // Number the FP constants
2155 if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
2156 double Val = FPC->getValueAPF().convertToDouble();
2157 uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2158 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
2159 << " = 0x" << utohexstr(i)
2160 << "ULL; /* " << Val << " */\n";
2161 } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
2162 float Val = FPC->getValueAPF().convertToFloat();
2163 uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
2164 getZExtValue();
2165 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
2166 << " = 0x" << utohexstr(i)
2167 << "U; /* " << Val << " */\n";
2168 } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
2169 // api needed to prevent premature destruction
2170 APInt api = FPC->getValueAPF().bitcastToAPInt();
2171 const uint64_t *p = api.getRawData();
2172 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
2173 << " = { 0x" << utohexstr(p[0])
2174 << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
2175 << "}; /* Long double constant */\n";
2176 } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
2177 FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
2178 APInt api = FPC->getValueAPF().bitcastToAPInt();
2179 const uint64_t *p = api.getRawData();
2180 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
2181 << " = { 0x"
2182 << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
2183 << "}; /* Long double constant */\n";
2185 } else {
2186 llvm_unreachable("Unknown float type!");
2192 /// printSymbolTable - Run through symbol table looking for type names. If a
2193 /// type name is found, emit its declaration...
2195 void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
2196 Out << "/* Helper union for bitcasts */\n";
2197 Out << "typedef union {\n";
2198 Out << " unsigned int Int32;\n";
2199 Out << " unsigned long long Int64;\n";
2200 Out << " float Float;\n";
2201 Out << " double Double;\n";
2202 Out << "} llvmBitCastUnion;\n";
2204 // We are only interested in the type plane of the symbol table.
2205 TypeSymbolTable::const_iterator I = TST.begin();
2206 TypeSymbolTable::const_iterator End = TST.end();
2208 // If there are no type names, exit early.
2209 if (I == End) return;
2211 // Print out forward declarations for structure types before anything else!
2212 Out << "/* Structure forward decls */\n";
2213 for (; I != End; ++I) {
2214 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
2215 Out << Name << ";\n";
2216 TypeNames.insert(std::make_pair(I->second, Name));
2219 Out << '\n';
2221 // Now we can print out typedefs. Above, we guaranteed that this can only be
2222 // for struct or opaque types.
2223 Out << "/* Typedefs */\n";
2224 for (I = TST.begin(); I != End; ++I) {
2225 std::string Name = "l_" + Mang->makeNameProper(I->first);
2226 Out << "typedef ";
2227 printType(Out, I->second, false, Name);
2228 Out << ";\n";
2231 Out << '\n';
2233 // Keep track of which structures have been printed so far...
2234 std::set<const Type *> StructPrinted;
2236 // Loop over all structures then push them into the stack so they are
2237 // printed in the correct order.
2239 Out << "/* Structure contents */\n";
2240 for (I = TST.begin(); I != End; ++I)
2241 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
2242 // Only print out used types!
2243 printContainedStructs(I->second, StructPrinted);
2246 // Push the struct onto the stack and recursively push all structs
2247 // this one depends on.
2249 // TODO: Make this work properly with vector types
2251 void CWriter::printContainedStructs(const Type *Ty,
2252 std::set<const Type*> &StructPrinted) {
2253 // Don't walk through pointers.
2254 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
2256 // Print all contained types first.
2257 for (Type::subtype_iterator I = Ty->subtype_begin(),
2258 E = Ty->subtype_end(); I != E; ++I)
2259 printContainedStructs(*I, StructPrinted);
2261 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
2262 // Check to see if we have already printed this struct.
2263 if (StructPrinted.insert(Ty).second) {
2264 // Print structure type out.
2265 std::string Name = TypeNames[Ty];
2266 printType(Out, Ty, false, Name, true);
2267 Out << ";\n\n";
2272 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
2273 /// isStructReturn - Should this function actually return a struct by-value?
2274 bool isStructReturn = F->hasStructRetAttr();
2276 if (F->hasLocalLinkage()) Out << "static ";
2277 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
2278 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
2279 switch (F->getCallingConv()) {
2280 case CallingConv::X86_StdCall:
2281 Out << "__attribute__((stdcall)) ";
2282 break;
2283 case CallingConv::X86_FastCall:
2284 Out << "__attribute__((fastcall)) ";
2285 break;
2286 default:
2287 break;
2290 // Loop over the arguments, printing them...
2291 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
2292 const AttrListPtr &PAL = F->getAttributes();
2294 std::stringstream FunctionInnards;
2296 // Print out the name...
2297 FunctionInnards << GetValueName(F) << '(';
2299 bool PrintedArg = false;
2300 if (!F->isDeclaration()) {
2301 if (!F->arg_empty()) {
2302 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2303 unsigned Idx = 1;
2305 // If this is a struct-return function, don't print the hidden
2306 // struct-return argument.
2307 if (isStructReturn) {
2308 assert(I != E && "Invalid struct return function!");
2309 ++I;
2310 ++Idx;
2313 std::string ArgName;
2314 for (; I != E; ++I) {
2315 if (PrintedArg) FunctionInnards << ", ";
2316 if (I->hasName() || !Prototype)
2317 ArgName = GetValueName(I);
2318 else
2319 ArgName = "";
2320 const Type *ArgTy = I->getType();
2321 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2322 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2323 ByValParams.insert(I);
2325 printType(FunctionInnards, ArgTy,
2326 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
2327 ArgName);
2328 PrintedArg = true;
2329 ++Idx;
2332 } else {
2333 // Loop over the arguments, printing them.
2334 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
2335 unsigned Idx = 1;
2337 // If this is a struct-return function, don't print the hidden
2338 // struct-return argument.
2339 if (isStructReturn) {
2340 assert(I != E && "Invalid struct return function!");
2341 ++I;
2342 ++Idx;
2345 for (; I != E; ++I) {
2346 if (PrintedArg) FunctionInnards << ", ";
2347 const Type *ArgTy = *I;
2348 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2349 assert(isa<PointerType>(ArgTy));
2350 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2352 printType(FunctionInnards, ArgTy,
2353 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
2354 PrintedArg = true;
2355 ++Idx;
2359 // Finish printing arguments... if this is a vararg function, print the ...,
2360 // unless there are no known types, in which case, we just emit ().
2362 if (FT->isVarArg() && PrintedArg) {
2363 if (PrintedArg) FunctionInnards << ", ";
2364 FunctionInnards << "..."; // Output varargs portion of signature!
2365 } else if (!FT->isVarArg() && !PrintedArg) {
2366 FunctionInnards << "void"; // ret() -> ret(void) in C.
2368 FunctionInnards << ')';
2370 // Get the return tpe for the function.
2371 const Type *RetTy;
2372 if (!isStructReturn)
2373 RetTy = F->getReturnType();
2374 else {
2375 // If this is a struct-return function, print the struct-return type.
2376 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2379 // Print out the return type and the signature built above.
2380 printType(Out, RetTy,
2381 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
2382 FunctionInnards.str());
2385 static inline bool isFPIntBitCast(const Instruction &I) {
2386 if (!isa<BitCastInst>(I))
2387 return false;
2388 const Type *SrcTy = I.getOperand(0)->getType();
2389 const Type *DstTy = I.getType();
2390 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2391 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2394 void CWriter::printFunction(Function &F) {
2395 /// isStructReturn - Should this function actually return a struct by-value?
2396 bool isStructReturn = F.hasStructRetAttr();
2398 printFunctionSignature(&F, false);
2399 Out << " {\n";
2401 // If this is a struct return function, handle the result with magic.
2402 if (isStructReturn) {
2403 const Type *StructTy =
2404 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2405 Out << " ";
2406 printType(Out, StructTy, false, "StructReturn");
2407 Out << "; /* Struct return temporary */\n";
2409 Out << " ";
2410 printType(Out, F.arg_begin()->getType(), false,
2411 GetValueName(F.arg_begin()));
2412 Out << " = &StructReturn;\n";
2415 bool PrintedVar = false;
2417 // print local variable information for the function
2418 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2419 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2420 Out << " ";
2421 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2422 Out << "; /* Address-exposed local */\n";
2423 PrintedVar = true;
2424 } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
2425 !isInlinableInst(*I)) {
2426 Out << " ";
2427 printType(Out, I->getType(), false, GetValueName(&*I));
2428 Out << ";\n";
2430 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2431 Out << " ";
2432 printType(Out, I->getType(), false,
2433 GetValueName(&*I)+"__PHI_TEMPORARY");
2434 Out << ";\n";
2436 PrintedVar = true;
2438 // We need a temporary for the BitCast to use so it can pluck a value out
2439 // of a union to do the BitCast. This is separate from the need for a
2440 // variable to hold the result of the BitCast.
2441 if (isFPIntBitCast(*I)) {
2442 Out << " llvmBitCastUnion " << GetValueName(&*I)
2443 << "__BITCAST_TEMPORARY;\n";
2444 PrintedVar = true;
2448 if (PrintedVar)
2449 Out << '\n';
2451 if (F.hasExternalLinkage() && F.getName() == "main")
2452 Out << " CODE_FOR_MAIN();\n";
2454 // print the basic blocks
2455 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2456 if (Loop *L = LI->getLoopFor(BB)) {
2457 if (L->getHeader() == BB && L->getParentLoop() == 0)
2458 printLoop(L);
2459 } else {
2460 printBasicBlock(BB);
2464 Out << "}\n\n";
2467 void CWriter::printLoop(Loop *L) {
2468 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2469 << "' to make GCC happy */\n";
2470 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2471 BasicBlock *BB = L->getBlocks()[i];
2472 Loop *BBLoop = LI->getLoopFor(BB);
2473 if (BBLoop == L)
2474 printBasicBlock(BB);
2475 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2476 printLoop(BBLoop);
2478 Out << " } while (1); /* end of syntactic loop '"
2479 << L->getHeader()->getName() << "' */\n";
2482 void CWriter::printBasicBlock(BasicBlock *BB) {
2484 // Don't print the label for the basic block if there are no uses, or if
2485 // the only terminator use is the predecessor basic block's terminator.
2486 // We have to scan the use list because PHI nodes use basic blocks too but
2487 // do not require a label to be generated.
2489 bool NeedsLabel = false;
2490 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2491 if (isGotoCodeNecessary(*PI, BB)) {
2492 NeedsLabel = true;
2493 break;
2496 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2498 // Output all of the instructions in the basic block...
2499 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2500 ++II) {
2501 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2502 if (II->getType() != Type::getVoidTy(BB->getContext()) &&
2503 !isInlineAsm(*II))
2504 outputLValue(II);
2505 else
2506 Out << " ";
2507 writeInstComputationInline(*II);
2508 Out << ";\n";
2512 // Don't emit prefix or suffix for the terminator.
2513 visit(*BB->getTerminator());
2517 // Specific Instruction type classes... note that all of the casts are
2518 // necessary because we use the instruction classes as opaque types...
2520 void CWriter::visitReturnInst(ReturnInst &I) {
2521 // If this is a struct return function, return the temporary struct.
2522 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
2524 if (isStructReturn) {
2525 Out << " return StructReturn;\n";
2526 return;
2529 // Don't output a void return if this is the last basic block in the function
2530 if (I.getNumOperands() == 0 &&
2531 &*--I.getParent()->getParent()->end() == I.getParent() &&
2532 !I.getParent()->size() == 1) {
2533 return;
2536 if (I.getNumOperands() > 1) {
2537 Out << " {\n";
2538 Out << " ";
2539 printType(Out, I.getParent()->getParent()->getReturnType());
2540 Out << " llvm_cbe_mrv_temp = {\n";
2541 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2542 Out << " ";
2543 writeOperand(I.getOperand(i));
2544 if (i != e - 1)
2545 Out << ",";
2546 Out << "\n";
2548 Out << " };\n";
2549 Out << " return llvm_cbe_mrv_temp;\n";
2550 Out << " }\n";
2551 return;
2554 Out << " return";
2555 if (I.getNumOperands()) {
2556 Out << ' ';
2557 writeOperand(I.getOperand(0));
2559 Out << ";\n";
2562 void CWriter::visitSwitchInst(SwitchInst &SI) {
2564 Out << " switch (";
2565 writeOperand(SI.getOperand(0));
2566 Out << ") {\n default:\n";
2567 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2568 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2569 Out << ";\n";
2570 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2571 Out << " case ";
2572 writeOperand(SI.getOperand(i));
2573 Out << ":\n";
2574 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2575 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2576 printBranchToBlock(SI.getParent(), Succ, 2);
2577 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2578 Out << " break;\n";
2580 Out << " }\n";
2583 void CWriter::visitUnreachableInst(UnreachableInst &I) {
2584 Out << " /*UNREACHABLE*/;\n";
2587 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2588 /// FIXME: This should be reenabled, but loop reordering safe!!
2589 return true;
2591 if (next(Function::iterator(From)) != Function::iterator(To))
2592 return true; // Not the direct successor, we need a goto.
2594 //isa<SwitchInst>(From->getTerminator())
2596 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2597 return true;
2598 return false;
2601 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2602 BasicBlock *Successor,
2603 unsigned Indent) {
2604 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2605 PHINode *PN = cast<PHINode>(I);
2606 // Now we have to do the printing.
2607 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2608 if (!isa<UndefValue>(IV)) {
2609 Out << std::string(Indent, ' ');
2610 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2611 writeOperand(IV);
2612 Out << "; /* for PHI node */\n";
2617 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2618 unsigned Indent) {
2619 if (isGotoCodeNecessary(CurBB, Succ)) {
2620 Out << std::string(Indent, ' ') << " goto ";
2621 writeOperand(Succ);
2622 Out << ";\n";
2626 // Branch instruction printing - Avoid printing out a branch to a basic block
2627 // that immediately succeeds the current one.
2629 void CWriter::visitBranchInst(BranchInst &I) {
2631 if (I.isConditional()) {
2632 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2633 Out << " if (";
2634 writeOperand(I.getCondition());
2635 Out << ") {\n";
2637 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2638 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2640 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2641 Out << " } else {\n";
2642 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2643 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2645 } else {
2646 // First goto not necessary, assume second one is...
2647 Out << " if (!";
2648 writeOperand(I.getCondition());
2649 Out << ") {\n";
2651 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2652 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2655 Out << " }\n";
2656 } else {
2657 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2658 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2660 Out << "\n";
2663 // PHI nodes get copied into temporary values at the end of predecessor basic
2664 // blocks. We now need to copy these temporary values into the REAL value for
2665 // the PHI.
2666 void CWriter::visitPHINode(PHINode &I) {
2667 writeOperand(&I);
2668 Out << "__PHI_TEMPORARY";
2672 void CWriter::visitBinaryOperator(Instruction &I) {
2673 // binary instructions, shift instructions, setCond instructions.
2674 assert(!isa<PointerType>(I.getType()));
2676 // We must cast the results of binary operations which might be promoted.
2677 bool needsCast = false;
2678 if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
2679 (I.getType() == Type::getInt16Ty(I.getContext()))
2680 || (I.getType() == Type::getFloatTy(I.getContext()))) {
2681 needsCast = true;
2682 Out << "((";
2683 printType(Out, I.getType(), false);
2684 Out << ")(";
2687 // If this is a negation operation, print it out as such. For FP, we don't
2688 // want to print "-0.0 - X".
2689 if (BinaryOperator::isNeg(&I)) {
2690 Out << "-(";
2691 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2692 Out << ")";
2693 } else if (BinaryOperator::isFNeg(&I)) {
2694 Out << "-(";
2695 writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
2696 Out << ")";
2697 } else if (I.getOpcode() == Instruction::FRem) {
2698 // Output a call to fmod/fmodf instead of emitting a%b
2699 if (I.getType() == Type::getFloatTy(I.getContext()))
2700 Out << "fmodf(";
2701 else if (I.getType() == Type::getDoubleTy(I.getContext()))
2702 Out << "fmod(";
2703 else // all 3 flavors of long double
2704 Out << "fmodl(";
2705 writeOperand(I.getOperand(0));
2706 Out << ", ";
2707 writeOperand(I.getOperand(1));
2708 Out << ")";
2709 } else {
2711 // Write out the cast of the instruction's value back to the proper type
2712 // if necessary.
2713 bool NeedsClosingParens = writeInstructionCast(I);
2715 // Certain instructions require the operand to be forced to a specific type
2716 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2717 // below for operand 1
2718 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2720 switch (I.getOpcode()) {
2721 case Instruction::Add:
2722 case Instruction::FAdd: Out << " + "; break;
2723 case Instruction::Sub:
2724 case Instruction::FSub: Out << " - "; break;
2725 case Instruction::Mul:
2726 case Instruction::FMul: Out << " * "; break;
2727 case Instruction::URem:
2728 case Instruction::SRem:
2729 case Instruction::FRem: Out << " % "; break;
2730 case Instruction::UDiv:
2731 case Instruction::SDiv:
2732 case Instruction::FDiv: Out << " / "; break;
2733 case Instruction::And: Out << " & "; break;
2734 case Instruction::Or: Out << " | "; break;
2735 case Instruction::Xor: Out << " ^ "; break;
2736 case Instruction::Shl : Out << " << "; break;
2737 case Instruction::LShr:
2738 case Instruction::AShr: Out << " >> "; break;
2739 default:
2740 #ifndef NDEBUG
2741 errs() << "Invalid operator type!" << I;
2742 #endif
2743 llvm_unreachable(0);
2746 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2747 if (NeedsClosingParens)
2748 Out << "))";
2751 if (needsCast) {
2752 Out << "))";
2756 void CWriter::visitICmpInst(ICmpInst &I) {
2757 // We must cast the results of icmp which might be promoted.
2758 bool needsCast = false;
2760 // Write out the cast of the instruction's value back to the proper type
2761 // if necessary.
2762 bool NeedsClosingParens = writeInstructionCast(I);
2764 // Certain icmp predicate require the operand to be forced to a specific type
2765 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2766 // below for operand 1
2767 writeOperandWithCast(I.getOperand(0), I);
2769 switch (I.getPredicate()) {
2770 case ICmpInst::ICMP_EQ: Out << " == "; break;
2771 case ICmpInst::ICMP_NE: Out << " != "; break;
2772 case ICmpInst::ICMP_ULE:
2773 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2774 case ICmpInst::ICMP_UGE:
2775 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2776 case ICmpInst::ICMP_ULT:
2777 case ICmpInst::ICMP_SLT: Out << " < "; break;
2778 case ICmpInst::ICMP_UGT:
2779 case ICmpInst::ICMP_SGT: Out << " > "; break;
2780 default:
2781 #ifndef NDEBUG
2782 errs() << "Invalid icmp predicate!" << I;
2783 #endif
2784 llvm_unreachable(0);
2787 writeOperandWithCast(I.getOperand(1), I);
2788 if (NeedsClosingParens)
2789 Out << "))";
2791 if (needsCast) {
2792 Out << "))";
2796 void CWriter::visitFCmpInst(FCmpInst &I) {
2797 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2798 Out << "0";
2799 return;
2801 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2802 Out << "1";
2803 return;
2806 const char* op = 0;
2807 switch (I.getPredicate()) {
2808 default: llvm_unreachable("Illegal FCmp predicate");
2809 case FCmpInst::FCMP_ORD: op = "ord"; break;
2810 case FCmpInst::FCMP_UNO: op = "uno"; break;
2811 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2812 case FCmpInst::FCMP_UNE: op = "une"; break;
2813 case FCmpInst::FCMP_ULT: op = "ult"; break;
2814 case FCmpInst::FCMP_ULE: op = "ule"; break;
2815 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2816 case FCmpInst::FCMP_UGE: op = "uge"; break;
2817 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2818 case FCmpInst::FCMP_ONE: op = "one"; break;
2819 case FCmpInst::FCMP_OLT: op = "olt"; break;
2820 case FCmpInst::FCMP_OLE: op = "ole"; break;
2821 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2822 case FCmpInst::FCMP_OGE: op = "oge"; break;
2825 Out << "llvm_fcmp_" << op << "(";
2826 // Write the first operand
2827 writeOperand(I.getOperand(0));
2828 Out << ", ";
2829 // Write the second operand
2830 writeOperand(I.getOperand(1));
2831 Out << ")";
2834 static const char * getFloatBitCastField(const Type *Ty) {
2835 switch (Ty->getTypeID()) {
2836 default: llvm_unreachable("Invalid Type");
2837 case Type::FloatTyID: return "Float";
2838 case Type::DoubleTyID: return "Double";
2839 case Type::IntegerTyID: {
2840 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2841 if (NumBits <= 32)
2842 return "Int32";
2843 else
2844 return "Int64";
2849 void CWriter::visitCastInst(CastInst &I) {
2850 const Type *DstTy = I.getType();
2851 const Type *SrcTy = I.getOperand(0)->getType();
2852 if (isFPIntBitCast(I)) {
2853 Out << '(';
2854 // These int<->float and long<->double casts need to be handled specially
2855 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2856 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2857 writeOperand(I.getOperand(0));
2858 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2859 << getFloatBitCastField(I.getType());
2860 Out << ')';
2861 return;
2864 Out << '(';
2865 printCast(I.getOpcode(), SrcTy, DstTy);
2867 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2868 if (SrcTy == Type::getInt1Ty(I.getContext()) &&
2869 I.getOpcode() == Instruction::SExt)
2870 Out << "0-";
2872 writeOperand(I.getOperand(0));
2874 if (DstTy == Type::getInt1Ty(I.getContext()) &&
2875 (I.getOpcode() == Instruction::Trunc ||
2876 I.getOpcode() == Instruction::FPToUI ||
2877 I.getOpcode() == Instruction::FPToSI ||
2878 I.getOpcode() == Instruction::PtrToInt)) {
2879 // Make sure we really get a trunc to bool by anding the operand with 1
2880 Out << "&1u";
2882 Out << ')';
2885 void CWriter::visitSelectInst(SelectInst &I) {
2886 Out << "((";
2887 writeOperand(I.getCondition());
2888 Out << ") ? (";
2889 writeOperand(I.getTrueValue());
2890 Out << ") : (";
2891 writeOperand(I.getFalseValue());
2892 Out << "))";
2896 void CWriter::lowerIntrinsics(Function &F) {
2897 // This is used to keep track of intrinsics that get generated to a lowered
2898 // function. We must generate the prototypes before the function body which
2899 // will only be expanded on first use (by the loop below).
2900 std::vector<Function*> prototypesToGen;
2902 // Examine all the instructions in this function to find the intrinsics that
2903 // need to be lowered.
2904 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2905 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2906 if (CallInst *CI = dyn_cast<CallInst>(I++))
2907 if (Function *F = CI->getCalledFunction())
2908 switch (F->getIntrinsicID()) {
2909 case Intrinsic::not_intrinsic:
2910 case Intrinsic::memory_barrier:
2911 case Intrinsic::vastart:
2912 case Intrinsic::vacopy:
2913 case Intrinsic::vaend:
2914 case Intrinsic::returnaddress:
2915 case Intrinsic::frameaddress:
2916 case Intrinsic::setjmp:
2917 case Intrinsic::longjmp:
2918 case Intrinsic::prefetch:
2919 case Intrinsic::dbg_stoppoint:
2920 case Intrinsic::powi:
2921 case Intrinsic::x86_sse_cmp_ss:
2922 case Intrinsic::x86_sse_cmp_ps:
2923 case Intrinsic::x86_sse2_cmp_sd:
2924 case Intrinsic::x86_sse2_cmp_pd:
2925 case Intrinsic::ppc_altivec_lvsl:
2926 // We directly implement these intrinsics
2927 break;
2928 default:
2929 // If this is an intrinsic that directly corresponds to a GCC
2930 // builtin, we handle it.
2931 const char *BuiltinName = "";
2932 #define GET_GCC_BUILTIN_NAME
2933 #include "llvm/Intrinsics.gen"
2934 #undef GET_GCC_BUILTIN_NAME
2935 // If we handle it, don't lower it.
2936 if (BuiltinName[0]) break;
2938 // All other intrinsic calls we must lower.
2939 Instruction *Before = 0;
2940 if (CI != &BB->front())
2941 Before = prior(BasicBlock::iterator(CI));
2943 IL->LowerIntrinsicCall(CI);
2944 if (Before) { // Move iterator to instruction after call
2945 I = Before; ++I;
2946 } else {
2947 I = BB->begin();
2949 // If the intrinsic got lowered to another call, and that call has
2950 // a definition then we need to make sure its prototype is emitted
2951 // before any calls to it.
2952 if (CallInst *Call = dyn_cast<CallInst>(I))
2953 if (Function *NewF = Call->getCalledFunction())
2954 if (!NewF->isDeclaration())
2955 prototypesToGen.push_back(NewF);
2957 break;
2960 // We may have collected some prototypes to emit in the loop above.
2961 // Emit them now, before the function that uses them is emitted. But,
2962 // be careful not to emit them twice.
2963 std::vector<Function*>::iterator I = prototypesToGen.begin();
2964 std::vector<Function*>::iterator E = prototypesToGen.end();
2965 for ( ; I != E; ++I) {
2966 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2967 Out << '\n';
2968 printFunctionSignature(*I, true);
2969 Out << ";\n";
2974 void CWriter::visitCallInst(CallInst &I) {
2975 if (isa<InlineAsm>(I.getOperand(0)))
2976 return visitInlineAsm(I);
2978 bool WroteCallee = false;
2980 // Handle intrinsic function calls first...
2981 if (Function *F = I.getCalledFunction())
2982 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2983 if (visitBuiltinCall(I, ID, WroteCallee))
2984 return;
2986 Value *Callee = I.getCalledValue();
2988 const PointerType *PTy = cast<PointerType>(Callee->getType());
2989 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2991 // If this is a call to a struct-return function, assign to the first
2992 // parameter instead of passing it to the call.
2993 const AttrListPtr &PAL = I.getAttributes();
2994 bool hasByVal = I.hasByValArgument();
2995 bool isStructRet = I.hasStructRetAttr();
2996 if (isStructRet) {
2997 writeOperandDeref(I.getOperand(1));
2998 Out << " = ";
3001 if (I.isTailCall()) Out << " /*tail*/ ";
3003 if (!WroteCallee) {
3004 // If this is an indirect call to a struct return function, we need to cast
3005 // the pointer. Ditto for indirect calls with byval arguments.
3006 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
3008 // GCC is a real PITA. It does not permit codegening casts of functions to
3009 // function pointers if they are in a call (it generates a trap instruction
3010 // instead!). We work around this by inserting a cast to void* in between
3011 // the function and the function pointer cast. Unfortunately, we can't just
3012 // form the constant expression here, because the folder will immediately
3013 // nuke it.
3015 // Note finally, that this is completely unsafe. ANSI C does not guarantee
3016 // that void* and function pointers have the same size. :( To deal with this
3017 // in the common case, we handle casts where the number of arguments passed
3018 // match exactly.
3020 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
3021 if (CE->isCast())
3022 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
3023 NeedsCast = true;
3024 Callee = RF;
3027 if (NeedsCast) {
3028 // Ok, just cast the pointer type.
3029 Out << "((";
3030 if (isStructRet)
3031 printStructReturnPointerFunctionType(Out, PAL,
3032 cast<PointerType>(I.getCalledValue()->getType()));
3033 else if (hasByVal)
3034 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
3035 else
3036 printType(Out, I.getCalledValue()->getType());
3037 Out << ")(void*)";
3039 writeOperand(Callee);
3040 if (NeedsCast) Out << ')';
3043 Out << '(';
3045 unsigned NumDeclaredParams = FTy->getNumParams();
3047 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
3048 unsigned ArgNo = 0;
3049 if (isStructRet) { // Skip struct return argument.
3050 ++AI;
3051 ++ArgNo;
3054 bool PrintedArg = false;
3055 for (; AI != AE; ++AI, ++ArgNo) {
3056 if (PrintedArg) Out << ", ";
3057 if (ArgNo < NumDeclaredParams &&
3058 (*AI)->getType() != FTy->getParamType(ArgNo)) {
3059 Out << '(';
3060 printType(Out, FTy->getParamType(ArgNo),
3061 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
3062 Out << ')';
3064 // Check if the argument is expected to be passed by value.
3065 if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
3066 writeOperandDeref(*AI);
3067 else
3068 writeOperand(*AI);
3069 PrintedArg = true;
3071 Out << ')';
3074 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
3075 /// if the entire call is handled, return false it it wasn't handled, and
3076 /// optionally set 'WroteCallee' if the callee has already been printed out.
3077 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
3078 bool &WroteCallee) {
3079 switch (ID) {
3080 default: {
3081 // If this is an intrinsic that directly corresponds to a GCC
3082 // builtin, we emit it here.
3083 const char *BuiltinName = "";
3084 Function *F = I.getCalledFunction();
3085 #define GET_GCC_BUILTIN_NAME
3086 #include "llvm/Intrinsics.gen"
3087 #undef GET_GCC_BUILTIN_NAME
3088 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
3090 Out << BuiltinName;
3091 WroteCallee = true;
3092 return false;
3094 case Intrinsic::memory_barrier:
3095 Out << "__sync_synchronize()";
3096 return true;
3097 case Intrinsic::vastart:
3098 Out << "0; ";
3100 Out << "va_start(*(va_list*)";
3101 writeOperand(I.getOperand(1));
3102 Out << ", ";
3103 // Output the last argument to the enclosing function.
3104 if (I.getParent()->getParent()->arg_empty()) {
3105 std::string msg;
3106 raw_string_ostream Msg(msg);
3107 Msg << "The C backend does not currently support zero "
3108 << "argument varargs functions, such as '"
3109 << I.getParent()->getParent()->getName() << "'!";
3110 llvm_report_error(Msg.str());
3112 writeOperand(--I.getParent()->getParent()->arg_end());
3113 Out << ')';
3114 return true;
3115 case Intrinsic::vaend:
3116 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
3117 Out << "0; va_end(*(va_list*)";
3118 writeOperand(I.getOperand(1));
3119 Out << ')';
3120 } else {
3121 Out << "va_end(*(va_list*)0)";
3123 return true;
3124 case Intrinsic::vacopy:
3125 Out << "0; ";
3126 Out << "va_copy(*(va_list*)";
3127 writeOperand(I.getOperand(1));
3128 Out << ", *(va_list*)";
3129 writeOperand(I.getOperand(2));
3130 Out << ')';
3131 return true;
3132 case Intrinsic::returnaddress:
3133 Out << "__builtin_return_address(";
3134 writeOperand(I.getOperand(1));
3135 Out << ')';
3136 return true;
3137 case Intrinsic::frameaddress:
3138 Out << "__builtin_frame_address(";
3139 writeOperand(I.getOperand(1));
3140 Out << ')';
3141 return true;
3142 case Intrinsic::powi:
3143 Out << "__builtin_powi(";
3144 writeOperand(I.getOperand(1));
3145 Out << ", ";
3146 writeOperand(I.getOperand(2));
3147 Out << ')';
3148 return true;
3149 case Intrinsic::setjmp:
3150 Out << "setjmp(*(jmp_buf*)";
3151 writeOperand(I.getOperand(1));
3152 Out << ')';
3153 return true;
3154 case Intrinsic::longjmp:
3155 Out << "longjmp(*(jmp_buf*)";
3156 writeOperand(I.getOperand(1));
3157 Out << ", ";
3158 writeOperand(I.getOperand(2));
3159 Out << ')';
3160 return true;
3161 case Intrinsic::prefetch:
3162 Out << "LLVM_PREFETCH((const void *)";
3163 writeOperand(I.getOperand(1));
3164 Out << ", ";
3165 writeOperand(I.getOperand(2));
3166 Out << ", ";
3167 writeOperand(I.getOperand(3));
3168 Out << ")";
3169 return true;
3170 case Intrinsic::stacksave:
3171 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
3172 // to work around GCC bugs (see PR1809).
3173 Out << "0; *((void**)&" << GetValueName(&I)
3174 << ") = __builtin_stack_save()";
3175 return true;
3176 case Intrinsic::dbg_stoppoint: {
3177 // If we use writeOperand directly we get a "u" suffix which is rejected
3178 // by gcc.
3179 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3180 std::string dir;
3181 GetConstantStringInfo(SPI.getDirectory(), dir);
3182 std::string file;
3183 GetConstantStringInfo(SPI.getFileName(), file);
3184 Out << "\n#line "
3185 << SPI.getLine()
3186 << " \""
3187 << dir << '/' << file << "\"\n";
3188 return true;
3190 case Intrinsic::x86_sse_cmp_ss:
3191 case Intrinsic::x86_sse_cmp_ps:
3192 case Intrinsic::x86_sse2_cmp_sd:
3193 case Intrinsic::x86_sse2_cmp_pd:
3194 Out << '(';
3195 printType(Out, I.getType());
3196 Out << ')';
3197 // Multiple GCC builtins multiplex onto this intrinsic.
3198 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
3199 default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
3200 case 0: Out << "__builtin_ia32_cmpeq"; break;
3201 case 1: Out << "__builtin_ia32_cmplt"; break;
3202 case 2: Out << "__builtin_ia32_cmple"; break;
3203 case 3: Out << "__builtin_ia32_cmpunord"; break;
3204 case 4: Out << "__builtin_ia32_cmpneq"; break;
3205 case 5: Out << "__builtin_ia32_cmpnlt"; break;
3206 case 6: Out << "__builtin_ia32_cmpnle"; break;
3207 case 7: Out << "__builtin_ia32_cmpord"; break;
3209 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
3210 Out << 'p';
3211 else
3212 Out << 's';
3213 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
3214 Out << 's';
3215 else
3216 Out << 'd';
3218 Out << "(";
3219 writeOperand(I.getOperand(1));
3220 Out << ", ";
3221 writeOperand(I.getOperand(2));
3222 Out << ")";
3223 return true;
3224 case Intrinsic::ppc_altivec_lvsl:
3225 Out << '(';
3226 printType(Out, I.getType());
3227 Out << ')';
3228 Out << "__builtin_altivec_lvsl(0, (void*)";
3229 writeOperand(I.getOperand(1));
3230 Out << ")";
3231 return true;
3235 //This converts the llvm constraint string to something gcc is expecting.
3236 //TODO: work out platform independent constraints and factor those out
3237 // of the per target tables
3238 // handle multiple constraint codes
3239 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
3241 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
3243 const char *const *table = 0;
3245 // Grab the translation table from MCAsmInfo if it exists.
3246 if (!TAsm) {
3247 std::string Triple = TheModule->getTargetTriple();
3248 if (Triple.empty())
3249 Triple = llvm::sys::getHostTriple();
3251 std::string E;
3252 if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
3253 TAsm = Match->createAsmInfo(Triple);
3255 if (TAsm)
3256 table = TAsm->getAsmCBE();
3258 // Search the translation table if it exists.
3259 for (int i = 0; table && table[i]; i += 2)
3260 if (c.Codes[0] == table[i])
3261 return table[i+1];
3263 // Default is identity.
3264 return c.Codes[0];
3267 //TODO: import logic from AsmPrinter.cpp
3268 static std::string gccifyAsm(std::string asmstr) {
3269 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
3270 if (asmstr[i] == '\n')
3271 asmstr.replace(i, 1, "\\n");
3272 else if (asmstr[i] == '\t')
3273 asmstr.replace(i, 1, "\\t");
3274 else if (asmstr[i] == '$') {
3275 if (asmstr[i + 1] == '{') {
3276 std::string::size_type a = asmstr.find_first_of(':', i + 1);
3277 std::string::size_type b = asmstr.find_first_of('}', i + 1);
3278 std::string n = "%" +
3279 asmstr.substr(a + 1, b - a - 1) +
3280 asmstr.substr(i + 2, a - i - 2);
3281 asmstr.replace(i, b - i + 1, n);
3282 i += n.size() - 1;
3283 } else
3284 asmstr.replace(i, 1, "%");
3286 else if (asmstr[i] == '%')//grr
3287 { asmstr.replace(i, 1, "%%"); ++i;}
3289 return asmstr;
3292 //TODO: assumptions about what consume arguments from the call are likely wrong
3293 // handle communitivity
3294 void CWriter::visitInlineAsm(CallInst &CI) {
3295 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
3296 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
3298 std::vector<std::pair<Value*, int> > ResultVals;
3299 if (CI.getType() == Type::getVoidTy(CI.getContext()))
3301 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
3302 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
3303 ResultVals.push_back(std::make_pair(&CI, (int)i));
3304 } else {
3305 ResultVals.push_back(std::make_pair(&CI, -1));
3308 // Fix up the asm string for gcc and emit it.
3309 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
3310 Out << " :";
3312 unsigned ValueCount = 0;
3313 bool IsFirst = true;
3315 // Convert over all the output constraints.
3316 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3317 E = Constraints.end(); I != E; ++I) {
3319 if (I->Type != InlineAsm::isOutput) {
3320 ++ValueCount;
3321 continue; // Ignore non-output constraints.
3324 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3325 std::string C = InterpretASMConstraint(*I);
3326 if (C.empty()) continue;
3328 if (!IsFirst) {
3329 Out << ", ";
3330 IsFirst = false;
3333 // Unpack the dest.
3334 Value *DestVal;
3335 int DestValNo = -1;
3337 if (ValueCount < ResultVals.size()) {
3338 DestVal = ResultVals[ValueCount].first;
3339 DestValNo = ResultVals[ValueCount].second;
3340 } else
3341 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3343 if (I->isEarlyClobber)
3344 C = "&"+C;
3346 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3347 if (DestValNo != -1)
3348 Out << ".field" << DestValNo; // Multiple retvals.
3349 Out << ")";
3350 ++ValueCount;
3354 // Convert over all the input constraints.
3355 Out << "\n :";
3356 IsFirst = true;
3357 ValueCount = 0;
3358 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3359 E = Constraints.end(); I != E; ++I) {
3360 if (I->Type != InlineAsm::isInput) {
3361 ++ValueCount;
3362 continue; // Ignore non-input constraints.
3365 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3366 std::string C = InterpretASMConstraint(*I);
3367 if (C.empty()) continue;
3369 if (!IsFirst) {
3370 Out << ", ";
3371 IsFirst = false;
3374 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3375 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3377 Out << "\"" << C << "\"(";
3378 if (!I->isIndirect)
3379 writeOperand(SrcVal);
3380 else
3381 writeOperandDeref(SrcVal);
3382 Out << ")";
3385 // Convert over the clobber constraints.
3386 IsFirst = true;
3387 ValueCount = 0;
3388 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3389 E = Constraints.end(); I != E; ++I) {
3390 if (I->Type != InlineAsm::isClobber)
3391 continue; // Ignore non-input constraints.
3393 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3394 std::string C = InterpretASMConstraint(*I);
3395 if (C.empty()) continue;
3397 if (!IsFirst) {
3398 Out << ", ";
3399 IsFirst = false;
3402 Out << '\"' << C << '"';
3405 Out << ")";
3408 void CWriter::visitMallocInst(MallocInst &I) {
3409 llvm_unreachable("lowerallocations pass didn't work!");
3412 void CWriter::visitAllocaInst(AllocaInst &I) {
3413 Out << '(';
3414 printType(Out, I.getType());
3415 Out << ") alloca(sizeof(";
3416 printType(Out, I.getType()->getElementType());
3417 Out << ')';
3418 if (I.isArrayAllocation()) {
3419 Out << " * " ;
3420 writeOperand(I.getOperand(0));
3422 Out << ')';
3425 void CWriter::visitFreeInst(FreeInst &I) {
3426 llvm_unreachable("lowerallocations pass didn't work!");
3429 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3430 gep_type_iterator E, bool Static) {
3432 // If there are no indices, just print out the pointer.
3433 if (I == E) {
3434 writeOperand(Ptr);
3435 return;
3438 // Find out if the last index is into a vector. If so, we have to print this
3439 // specially. Since vectors can't have elements of indexable type, only the
3440 // last index could possibly be of a vector element.
3441 const VectorType *LastIndexIsVector = 0;
3443 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3444 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
3447 Out << "(";
3449 // If the last index is into a vector, we can't print it as &a[i][j] because
3450 // we can't index into a vector with j in GCC. Instead, emit this as
3451 // (((float*)&a[i])+j)
3452 if (LastIndexIsVector) {
3453 Out << "((";
3454 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3455 Out << ")(";
3458 Out << '&';
3460 // If the first index is 0 (very typical) we can do a number of
3461 // simplifications to clean up the code.
3462 Value *FirstOp = I.getOperand();
3463 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3464 // First index isn't simple, print it the hard way.
3465 writeOperand(Ptr);
3466 } else {
3467 ++I; // Skip the zero index.
3469 // Okay, emit the first operand. If Ptr is something that is already address
3470 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3471 if (isAddressExposed(Ptr)) {
3472 writeOperandInternal(Ptr, Static);
3473 } else if (I != E && isa<StructType>(*I)) {
3474 // If we didn't already emit the first operand, see if we can print it as
3475 // P->f instead of "P[0].f"
3476 writeOperand(Ptr);
3477 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3478 ++I; // eat the struct index as well.
3479 } else {
3480 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3481 Out << "(*";
3482 writeOperand(Ptr);
3483 Out << ")";
3487 for (; I != E; ++I) {
3488 if (isa<StructType>(*I)) {
3489 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3490 } else if (isa<ArrayType>(*I)) {
3491 Out << ".array[";
3492 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3493 Out << ']';
3494 } else if (!isa<VectorType>(*I)) {
3495 Out << '[';
3496 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3497 Out << ']';
3498 } else {
3499 // If the last index is into a vector, then print it out as "+j)". This
3500 // works with the 'LastIndexIsVector' code above.
3501 if (isa<Constant>(I.getOperand()) &&
3502 cast<Constant>(I.getOperand())->isNullValue()) {
3503 Out << "))"; // avoid "+0".
3504 } else {
3505 Out << ")+(";
3506 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3507 Out << "))";
3511 Out << ")";
3514 void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3515 bool IsVolatile, unsigned Alignment) {
3517 bool IsUnaligned = Alignment &&
3518 Alignment < TD->getABITypeAlignment(OperandType);
3520 if (!IsUnaligned)
3521 Out << '*';
3522 if (IsVolatile || IsUnaligned) {
3523 Out << "((";
3524 if (IsUnaligned)
3525 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3526 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3527 if (IsUnaligned) {
3528 Out << "; } ";
3529 if (IsVolatile) Out << "volatile ";
3530 Out << "*";
3532 Out << ")";
3535 writeOperand(Operand);
3537 if (IsVolatile || IsUnaligned) {
3538 Out << ')';
3539 if (IsUnaligned)
3540 Out << "->data";
3544 void CWriter::visitLoadInst(LoadInst &I) {
3545 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3546 I.getAlignment());
3550 void CWriter::visitStoreInst(StoreInst &I) {
3551 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3552 I.isVolatile(), I.getAlignment());
3553 Out << " = ";
3554 Value *Operand = I.getOperand(0);
3555 Constant *BitMask = 0;
3556 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3557 if (!ITy->isPowerOf2ByteWidth())
3558 // We have a bit width that doesn't match an even power-of-2 byte
3559 // size. Consequently we must & the value with the type's bit mask
3560 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3561 if (BitMask)
3562 Out << "((";
3563 writeOperand(Operand);
3564 if (BitMask) {
3565 Out << ") & ";
3566 printConstant(BitMask, false);
3567 Out << ")";
3571 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3572 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3573 gep_type_end(I), false);
3576 void CWriter::visitVAArgInst(VAArgInst &I) {
3577 Out << "va_arg(*(va_list*)";
3578 writeOperand(I.getOperand(0));
3579 Out << ", ";
3580 printType(Out, I.getType());
3581 Out << ");\n ";
3584 void CWriter::visitInsertElementInst(InsertElementInst &I) {
3585 const Type *EltTy = I.getType()->getElementType();
3586 writeOperand(I.getOperand(0));
3587 Out << ";\n ";
3588 Out << "((";
3589 printType(Out, PointerType::getUnqual(EltTy));
3590 Out << ")(&" << GetValueName(&I) << "))[";
3591 writeOperand(I.getOperand(2));
3592 Out << "] = (";
3593 writeOperand(I.getOperand(1));
3594 Out << ")";
3597 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3598 // We know that our operand is not inlined.
3599 Out << "((";
3600 const Type *EltTy =
3601 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3602 printType(Out, PointerType::getUnqual(EltTy));
3603 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3604 writeOperand(I.getOperand(1));
3605 Out << "]";
3608 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3609 Out << "(";
3610 printType(Out, SVI.getType());
3611 Out << "){ ";
3612 const VectorType *VT = SVI.getType();
3613 unsigned NumElts = VT->getNumElements();
3614 const Type *EltTy = VT->getElementType();
3616 for (unsigned i = 0; i != NumElts; ++i) {
3617 if (i) Out << ", ";
3618 int SrcVal = SVI.getMaskValue(i);
3619 if ((unsigned)SrcVal >= NumElts*2) {
3620 Out << " 0/*undef*/ ";
3621 } else {
3622 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3623 if (isa<Instruction>(Op)) {
3624 // Do an extractelement of this value from the appropriate input.
3625 Out << "((";
3626 printType(Out, PointerType::getUnqual(EltTy));
3627 Out << ")(&" << GetValueName(Op)
3628 << "))[" << (SrcVal & (NumElts-1)) << "]";
3629 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3630 Out << "0";
3631 } else {
3632 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3633 (NumElts-1)),
3634 false);
3638 Out << "}";
3641 void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3642 // Start by copying the entire aggregate value into the result variable.
3643 writeOperand(IVI.getOperand(0));
3644 Out << ";\n ";
3646 // Then do the insert to update the field.
3647 Out << GetValueName(&IVI);
3648 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3649 i != e; ++i) {
3650 const Type *IndexedTy =
3651 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3652 if (isa<ArrayType>(IndexedTy))
3653 Out << ".array[" << *i << "]";
3654 else
3655 Out << ".field" << *i;
3657 Out << " = ";
3658 writeOperand(IVI.getOperand(1));
3661 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3662 Out << "(";
3663 if (isa<UndefValue>(EVI.getOperand(0))) {
3664 Out << "(";
3665 printType(Out, EVI.getType());
3666 Out << ") 0/*UNDEF*/";
3667 } else {
3668 Out << GetValueName(EVI.getOperand(0));
3669 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3670 i != e; ++i) {
3671 const Type *IndexedTy =
3672 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3673 if (isa<ArrayType>(IndexedTy))
3674 Out << ".array[" << *i << "]";
3675 else
3676 Out << ".field" << *i;
3679 Out << ")";
3682 //===----------------------------------------------------------------------===//
3683 // External Interface declaration
3684 //===----------------------------------------------------------------------===//
3686 bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3687 formatted_raw_ostream &o,
3688 CodeGenFileType FileType,
3689 CodeGenOpt::Level OptLevel) {
3690 if (FileType != TargetMachine::AssemblyFile) return true;
3692 PM.add(createGCLoweringPass());
3693 PM.add(createLowerAllocationsPass(true));
3694 PM.add(createLowerInvokePass());
3695 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3696 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3697 PM.add(new CWriter(o));
3698 PM.add(createGCInfoDeleter());
3699 return false;