pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Target / TargetData.cpp
blob5bcd6583635bed8003917f59b382932603738d17
1 //===-- TargetData.cpp - Data size & alignment routines --------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines target properties related to datatype size/offset/alignment
11 // information.
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Module.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/System/Mutex.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include <algorithm>
31 #include <cstdlib>
32 using namespace llvm;
34 // Handle the Pass registration stuff necessary to use TargetData's.
36 // Register the default SparcV9 implementation...
37 static RegisterPass<TargetData> X("targetdata", "Target Data Layout", false,
38 true);
39 char TargetData::ID = 0;
41 //===----------------------------------------------------------------------===//
42 // Support for StructLayout
43 //===----------------------------------------------------------------------===//
45 StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
46 StructAlignment = 0;
47 StructSize = 0;
48 NumElements = ST->getNumElements();
50 // Loop over each of the elements, placing them in memory.
51 for (unsigned i = 0, e = NumElements; i != e; ++i) {
52 const Type *Ty = ST->getElementType(i);
53 unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
55 // Add padding if necessary to align the data element properly.
56 if ((StructSize & (TyAlign-1)) != 0)
57 StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
59 // Keep track of maximum alignment constraint.
60 StructAlignment = std::max(TyAlign, StructAlignment);
62 MemberOffsets[i] = StructSize;
63 StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
66 // Empty structures have alignment of 1 byte.
67 if (StructAlignment == 0) StructAlignment = 1;
69 // Add padding to the end of the struct so that it could be put in an array
70 // and all array elements would be aligned correctly.
71 if ((StructSize & (StructAlignment-1)) != 0)
72 StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
76 /// getElementContainingOffset - Given a valid offset into the structure,
77 /// return the structure index that contains it.
78 unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
79 const uint64_t *SI =
80 std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
81 assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
82 --SI;
83 assert(*SI <= Offset && "upper_bound didn't work");
84 assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
85 (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
86 "Upper bound didn't work!");
88 // Multiple fields can have the same offset if any of them are zero sized.
89 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
90 // at the i32 element, because it is the last element at that offset. This is
91 // the right one to return, because anything after it will have a higher
92 // offset, implying that this element is non-empty.
93 return SI-&MemberOffsets[0];
96 //===----------------------------------------------------------------------===//
97 // TargetAlignElem, TargetAlign support
98 //===----------------------------------------------------------------------===//
100 TargetAlignElem
101 TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
102 unsigned char pref_align, uint32_t bit_width) {
103 assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
104 TargetAlignElem retval;
105 retval.AlignType = align_type;
106 retval.ABIAlign = abi_align;
107 retval.PrefAlign = pref_align;
108 retval.TypeBitWidth = bit_width;
109 return retval;
112 bool
113 TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
114 return (AlignType == rhs.AlignType
115 && ABIAlign == rhs.ABIAlign
116 && PrefAlign == rhs.PrefAlign
117 && TypeBitWidth == rhs.TypeBitWidth);
120 std::ostream &
121 TargetAlignElem::dump(std::ostream &os) const {
122 return os << AlignType
123 << TypeBitWidth
124 << ":" << (int) (ABIAlign * 8)
125 << ":" << (int) (PrefAlign * 8);
128 const TargetAlignElem TargetData::InvalidAlignmentElem =
129 TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
131 //===----------------------------------------------------------------------===//
132 // TargetData Class Implementation
133 //===----------------------------------------------------------------------===//
136 A TargetDescription string consists of a sequence of hyphen-delimited
137 specifiers for target endianness, pointer size and alignments, and various
138 primitive type sizes and alignments. A typical string looks something like:
139 <br><br>
140 "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
141 <br><br>
142 (note: this string is not fully specified and is only an example.)
144 Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
145 below) dictates how a type will be aligned within an aggregate and when used
146 as an argument. Preferred alignment (pref_align, below) determines a type's
147 alignment when emitted as a global.
149 Specifier string details:
150 <br><br>
151 <i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
152 specifies a little-endian target data model.
153 <br><br>
154 <i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size,
155 ABI and preferred alignment.
156 <br><br>
157 <i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type
158 alignment. Type is
159 one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector, or
160 aggregate. Size indicates the size, e.g., 32 or 64 bits.
162 The default string, fully specified, is:
163 <br><br>
164 "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64"
165 "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64"
166 "-v64:64:64-v128:128:128"
167 <br><br>
168 Note that in the case of aggregates, 0 is the default ABI and preferred
169 alignment. This is a special case, where the aggregate's computed worst-case
170 alignment will be used.
172 void TargetData::init(const std::string &TargetDescription) {
173 std::string temp = TargetDescription;
175 LayoutMap = 0;
176 LittleEndian = false;
177 PointerMemSize = 8;
178 PointerABIAlign = 8;
179 PointerPrefAlign = PointerABIAlign;
181 // Default alignments
182 setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
183 setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
184 setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
185 setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
186 setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
187 setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
188 setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
189 setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
190 setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
191 setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
193 while (!temp.empty()) {
194 std::string token = getToken(temp, "-");
195 std::string arg0 = getToken(token, ":");
196 const char *p = arg0.c_str();
197 switch(*p) {
198 case 'E':
199 LittleEndian = false;
200 break;
201 case 'e':
202 LittleEndian = true;
203 break;
204 case 'p':
205 PointerMemSize = atoi(getToken(token,":").c_str()) / 8;
206 PointerABIAlign = atoi(getToken(token,":").c_str()) / 8;
207 PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8;
208 if (PointerPrefAlign == 0)
209 PointerPrefAlign = PointerABIAlign;
210 break;
211 case 'i':
212 case 'v':
213 case 'f':
214 case 'a':
215 case 's': {
216 AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning
217 switch(*p) {
218 case 'i': align_type = INTEGER_ALIGN; break;
219 case 'v': align_type = VECTOR_ALIGN; break;
220 case 'f': align_type = FLOAT_ALIGN; break;
221 case 'a': align_type = AGGREGATE_ALIGN; break;
222 case 's': align_type = STACK_ALIGN; break;
224 uint32_t size = (uint32_t) atoi(++p);
225 unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8;
226 unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8;
227 if (pref_align == 0)
228 pref_align = abi_align;
229 setAlignment(align_type, abi_align, pref_align, size);
230 break;
232 default:
233 break;
238 TargetData::TargetData(const Module *M)
239 : ImmutablePass(&ID) {
240 init(M->getDataLayout());
243 void
244 TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
245 unsigned char pref_align, uint32_t bit_width) {
246 assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
247 for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
248 if (Alignments[i].AlignType == align_type &&
249 Alignments[i].TypeBitWidth == bit_width) {
250 // Update the abi, preferred alignments.
251 Alignments[i].ABIAlign = abi_align;
252 Alignments[i].PrefAlign = pref_align;
253 return;
257 Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
258 pref_align, bit_width));
261 /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
262 /// preferred if ABIInfo = false) the target wants for the specified datatype.
263 unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
264 uint32_t BitWidth, bool ABIInfo,
265 const Type *Ty) const {
266 // Check to see if we have an exact match and remember the best match we see.
267 int BestMatchIdx = -1;
268 int LargestInt = -1;
269 for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
270 if (Alignments[i].AlignType == AlignType &&
271 Alignments[i].TypeBitWidth == BitWidth)
272 return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
274 // The best match so far depends on what we're looking for.
275 if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) {
276 // If this is a specification for a smaller vector type, we will fall back
277 // to it. This happens because <128 x double> can be implemented in terms
278 // of 64 <2 x double>.
279 if (Alignments[i].TypeBitWidth < BitWidth) {
280 // Verify that we pick the biggest of the fallbacks.
281 if (BestMatchIdx == -1 ||
282 Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth)
283 BestMatchIdx = i;
285 } else if (AlignType == INTEGER_ALIGN &&
286 Alignments[i].AlignType == INTEGER_ALIGN) {
287 // The "best match" for integers is the smallest size that is larger than
288 // the BitWidth requested.
289 if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
290 Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
291 BestMatchIdx = i;
292 // However, if there isn't one that's larger, then we must use the
293 // largest one we have (see below)
294 if (LargestInt == -1 ||
295 Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
296 LargestInt = i;
300 // Okay, we didn't find an exact solution. Fall back here depending on what
301 // is being looked for.
302 if (BestMatchIdx == -1) {
303 // If we didn't find an integer alignment, fall back on most conservative.
304 if (AlignType == INTEGER_ALIGN) {
305 BestMatchIdx = LargestInt;
306 } else {
307 assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
309 // If we didn't find a vector size that is smaller or equal to this type,
310 // then we will end up scalarizing this to its element type. Just return
311 // the alignment of the element.
312 return getAlignment(cast<VectorType>(Ty)->getElementType(), ABIInfo);
316 // Since we got a "best match" index, just return it.
317 return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
318 : Alignments[BestMatchIdx].PrefAlign;
321 typedef DenseMap<const StructType*, StructLayout*>LayoutInfoTy;
323 TargetData::~TargetData() {
324 if (!LayoutMap)
325 return;
327 // Remove any layouts for this TD.
328 LayoutInfoTy &TheMap = *static_cast<LayoutInfoTy*>(LayoutMap);
329 for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) {
330 I->second->~StructLayout();
331 free(I->second);
332 TheMap.erase(I++);
335 delete static_cast<LayoutInfoTy*>(LayoutMap);
338 const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
339 if (!LayoutMap)
340 LayoutMap = static_cast<void*>(new LayoutInfoTy());
342 LayoutInfoTy &TheMap = *static_cast<LayoutInfoTy*>(LayoutMap);
344 StructLayout *&SL = TheMap[Ty];
345 if (SL) return SL;
347 // Otherwise, create the struct layout. Because it is variable length, we
348 // malloc it, then use placement new.
349 int NumElts = Ty->getNumElements();
350 StructLayout *L =
351 (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t));
353 // Set SL before calling StructLayout's ctor. The ctor could cause other
354 // entries to be added to TheMap, invalidating our reference.
355 SL = L;
357 new (L) StructLayout(Ty, *this);
358 return L;
361 /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
362 /// objects. If a TargetData object is alive when types are being refined and
363 /// removed, this method must be called whenever a StructType is removed to
364 /// avoid a dangling pointer in this cache.
365 void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
366 if (!LayoutMap) return; // No cache.
368 LayoutInfoTy* LayoutInfo = static_cast<LayoutInfoTy*>(LayoutMap);
369 LayoutInfoTy::iterator I = LayoutInfo->find(Ty);
370 if (I == LayoutInfo->end()) return;
372 I->second->~StructLayout();
373 free(I->second);
374 LayoutInfo->erase(I);
378 std::string TargetData::getStringRepresentation() const {
379 std::string repr;
380 repr.append(LittleEndian ? "e" : "E");
381 repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))).
382 append(":").append(itostr((int64_t) (PointerABIAlign * 8))).
383 append(":").append(itostr((int64_t) (PointerPrefAlign * 8)));
384 for (align_const_iterator I = Alignments.begin();
385 I != Alignments.end();
386 ++I) {
387 repr.append("-").append(1, (char) I->AlignType).
388 append(utostr((int64_t) I->TypeBitWidth)).
389 append(":").append(utostr((uint64_t) (I->ABIAlign * 8))).
390 append(":").append(utostr((uint64_t) (I->PrefAlign * 8)));
392 return repr;
396 uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
397 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
398 switch (Ty->getTypeID()) {
399 case Type::LabelTyID:
400 case Type::PointerTyID:
401 return getPointerSizeInBits();
402 case Type::ArrayTyID: {
403 const ArrayType *ATy = cast<ArrayType>(Ty);
404 return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
406 case Type::StructTyID:
407 // Get the layout annotation... which is lazily created on demand.
408 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
409 case Type::IntegerTyID:
410 return cast<IntegerType>(Ty)->getBitWidth();
411 case Type::VoidTyID:
412 return 8;
413 case Type::FloatTyID:
414 return 32;
415 case Type::DoubleTyID:
416 return 64;
417 case Type::PPC_FP128TyID:
418 case Type::FP128TyID:
419 return 128;
420 // In memory objects this is always aligned to a higher boundary, but
421 // only 80 bits contain information.
422 case Type::X86_FP80TyID:
423 return 80;
424 case Type::VectorTyID:
425 return cast<VectorType>(Ty)->getBitWidth();
426 default:
427 llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
428 break;
430 return 0;
434 \param abi_or_pref Flag that determines which alignment is returned. true
435 returns the ABI alignment, false returns the preferred alignment.
436 \param Ty The underlying type for which alignment is determined.
438 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
439 == false) for the requested type \a Ty.
441 unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
442 int AlignType = -1;
444 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
445 switch (Ty->getTypeID()) {
446 // Early escape for the non-numeric types.
447 case Type::LabelTyID:
448 case Type::PointerTyID:
449 return (abi_or_pref
450 ? getPointerABIAlignment()
451 : getPointerPrefAlignment());
452 case Type::ArrayTyID:
453 return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
455 case Type::StructTyID: {
456 // Packed structure types always have an ABI alignment of one.
457 if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
458 return 1;
460 // Get the layout annotation... which is lazily created on demand.
461 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
462 unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
463 return std::max(Align, (unsigned)Layout->getAlignment());
465 case Type::IntegerTyID:
466 case Type::VoidTyID:
467 AlignType = INTEGER_ALIGN;
468 break;
469 case Type::FloatTyID:
470 case Type::DoubleTyID:
471 // PPC_FP128TyID and FP128TyID have different data contents, but the
472 // same size and alignment, so they look the same here.
473 case Type::PPC_FP128TyID:
474 case Type::FP128TyID:
475 case Type::X86_FP80TyID:
476 AlignType = FLOAT_ALIGN;
477 break;
478 case Type::VectorTyID:
479 AlignType = VECTOR_ALIGN;
480 break;
481 default:
482 llvm_unreachable("Bad type for getAlignment!!!");
483 break;
486 return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
487 abi_or_pref, Ty);
490 unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
491 return getAlignment(Ty, true);
494 unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const {
495 for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
496 if (Alignments[i].AlignType == STACK_ALIGN)
497 return Alignments[i].ABIAlign;
499 return getABITypeAlignment(Ty);
502 unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
503 return getAlignment(Ty, false);
506 unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
507 unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
508 assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
509 return Log2_32(Align);
512 /// getIntPtrType - Return an unsigned integer type that is the same size or
513 /// greater to the host pointer size.
514 const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
515 return IntegerType::get(C, getPointerSizeInBits());
519 uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
520 unsigned NumIndices) const {
521 const Type *Ty = ptrTy;
522 assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()");
523 uint64_t Result = 0;
525 generic_gep_type_iterator<Value* const*>
526 TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
527 for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
528 if (const StructType *STy = dyn_cast<StructType>(*TI)) {
529 assert(Indices[CurIDX]->getType() ==
530 Type::getInt32Ty(ptrTy->getContext()) &&
531 "Illegal struct idx");
532 unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
534 // Get structure layout information...
535 const StructLayout *Layout = getStructLayout(STy);
537 // Add in the offset, as calculated by the structure layout info...
538 Result += Layout->getElementOffset(FieldNo);
540 // Update Ty to refer to current element
541 Ty = STy->getElementType(FieldNo);
542 } else {
543 // Update Ty to refer to current element
544 Ty = cast<SequentialType>(Ty)->getElementType();
546 // Get the array index and the size of each array element.
547 int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
548 Result += arrayIdx * (int64_t)getTypeAllocSize(Ty);
552 return Result;
555 /// getPreferredAlignment - Return the preferred alignment of the specified
556 /// global. This includes an explicitly requested alignment (if the global
557 /// has one).
558 unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const {
559 const Type *ElemType = GV->getType()->getElementType();
560 unsigned Alignment = getPrefTypeAlignment(ElemType);
561 if (GV->getAlignment() > Alignment)
562 Alignment = GV->getAlignment();
564 if (GV->hasInitializer()) {
565 if (Alignment < 16) {
566 // If the global is not external, see if it is large. If so, give it a
567 // larger alignment.
568 if (getTypeSizeInBits(ElemType) > 128)
569 Alignment = 16; // 16-byte alignment.
572 return Alignment;
575 /// getPreferredAlignmentLog - Return the preferred alignment of the
576 /// specified global, returned in log form. This includes an explicitly
577 /// requested alignment (if the global has one).
578 unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
579 return Log2_32(getPreferredAlignment(GV));